
Scalable Attention-based Reinforcement Learning Method
for Multi-asset Control

Seyed Soroush Karimi Madahi 1 Giuseppe Gabriele 1 Bert Claessens 1 2 Chris Develder 1

Abstract
In this paper, we propose a scalable centralized
reinforcement learning method to jointly optimize
a fleet of flexible assets. The attention layer in our
proposed architecture enables the agent to make
decisions for each asset based on both its local
and aggregated asset-specific information. As a
proof-of-concept, we investigate the performance
of the proposed method on an electric vehicle
(EV) charging problem. The results show that the
trained agent can effectively control multiple EVs
to achieve a common objective (load flattening in
our case).

1. Introduction
Buildings account for around 40% of global energy con-
sumption and a quarter of CO2 emissions (Gao et al., 2024).
To reduce their energy consumption, controlling Heating,
Ventilation, and Air Conditioning (HVAC) systems and elec-
tric vehicles (EVs), as major energy consumers in buildings,
plays a significant role. These flexible assets can be effec-
tively managed to optimize energy costs and support the reli-
able operation of electricity grids, while also satisfying user
comfort. However, managing these assets independently
fails to capture the advantages of collective optimization,
highlighting the importance of coordination among multiple
assets to achieve a global objective or to satisfy coupling
constraints among them.

Various approaches have been proposed to jointly control a
fleet of assets, mostly based on model-based optimization
methods, such as model predictive control (MPC) (Chen
et al., 2018; Vandael et al., 2012; Afram & Janabi-Sharifi,
2014; Madahi et al., 2020). However, these model-based
methods suffer from four major drawbacks: (i) they need
an accurate system dynamics model, which can sometimes
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be challenging to develop, especially for building thermal
models (Yu et al., 2020); (ii) since they need to solve an
optimization problem on-the-fly, these methods can be time–
consuming for large-scale problems (such as controlling a
large number of EVs simultaneously), making them ineffi-
cient for real-time decision-making (Kamrani et al., 2025);
(iii) due to their dependence on specific models, their gener-
alizability is limited for problems involving multiple envi-
ronments (such as multi-building scenarios) (Madahi et al.,
2024); (iv) their performance is highly dependent on the
accuracy of predictions for uncertain system states, such as
future EV arrivals and required energy (Qiu et al., 2023).

Model-free reinforcement learning (RL) can address the
aforementioned shortcomings of model-based methods, as
it does not require any prior knowledge of system models.
RL agents implicitly learn system dynamics by interacting
with the environment(s), which leads to learning the opti-
mal policy. The proposed RL-based solutions for the joint
coordination of a fleet of flexible assets can be broadly cate-
gorized into two main groups: (i) Centralized (Orfanoudakis
et al., 2025; Sadeghianpourhamami et al., 2019; Nagy et al.,
2018; Claessens et al., 2016): a single-agent manages all
assets based on complete knowledge of the system. Al-
though such global oversight can lead to better decisions,
most of these methods lack scalability due to the exponen-
tial growth of the input space with the number of agents,
limiting their applicability to large-scale problems. (ii) Dis-
tributed (Savino et al., 2025; Yan et al., 2022; Li et al.,
2024): Each asset is controlled by an individual agent that
makes decisions based on local information. Typically, these
agents are trained in a centralized manner to ensure effective
coordination between them. However, distributed methods
can result in sub-optimal decisions due to decision-making
based on local states rather than the global state.

In this paper, we aim to address the gap in previous works by
proposing a scalable centralized RL method for the joint op-
timization of a fleet of flexible assets. By aggregating fleet
information using the attention mechanism, the decision
for each asset is made based on its individual information
and its priority relative to other assets. Since the lengths
of individual information and priority vectors are fixed, in-
creasing the number of assets does not affect the size of the
network, making the proposed method scalable and suitable
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for large-scale problems. As a proof-of-principle, and to
assess the performance of our proposed method, we imple-
ment it for an EV charging problem, where a fleet of EVs at
a residential parking lot is controlled to flatten the parking
consumption profile.

2. Proposed Architecture
Figure 1 shows an overview of the proposed architecture.
xl
i ∈ R1×dl denotes features related to asset i. First, these

vectors are fed into a fully connected neural network, FC(·),
which outputs embedding vectors ei ∈ R1×de as follows:

ei = FC
(
xl
i

)
. (1)

We use a self-attention mechanism, introduced in (Vaswani
et al., 2017), to obtain a fleet-aware representation for each
asset as follows:

h = softmax

(
(Wqe)(Wke)T√

de

)
Wv e, (2)

where e =
⊕N

i=1 ei is the concatenation of embeddings,
N is the total number of assets, and h ∈ RN×de denotes
our proposed fleet-aware representation. Wq,Wk,Wv ∈
Rde×de are projection matrices that transform embeddings
into query, key, and value matrices, respectively. A fleet-
aware representation for each asset encapsulates the relation
of that asset to the entire fleet. In this way, each asset
has access to aggregated information about the entire fleet,
processed into its specific representation hi.

As a part of the final asset representation, we also repre-
sent asset-independent global information as a single vector
xg ∈ R1×dg . We simply concatenate xg =

⊕N
i=1 x

g with
the original asset representations and the fleet-aware repre-
sentations h. Finally, the output of our model, o ∈ RN×do ,
is calculated using a fully connected layer as follows:

o =

N⊕
i=1

FC(xl
i, x

g, hi). (3)

Before the fully connected layer, we pass its inputs through
a normalization layer to stabilize and speed up training (Ba
et al., 2016).

Since the sizes of the fully connected networks are deter-
mined by the length of the information and embedding vec-
tors for an individual asset, it remains independent of the
number of assets, thereby making the proposed architecture
scalable to large asset pools. Furthermore, the inputs to
the fully connected network can be parallelized to improve
the computational efficiency of the architecture. Note that
using an attention layer provides two main benefits. First,
it computes a vector for each asset that reflects its situa-
tion relative to the other assets. For decision-making, the

final fully connected layer thus can rely on both aggregated
asset-specific and local information to assess the priority
or urgency of each asset in relation to the rest of the fleet.
Second, the attention layer makes the architecture dynamic,
enabling it to handle a variable number of assets at differ-
ent decision time steps. This is especially important when
flexible assets are not always available for control (such as
when controlling multiple HVAC systems, some of which
may become uncontrollable due to communication loss) or
when their number changes dynamically over time (as in
the case of the EV charging problem).

3. Problem Formulation
While our proposed architecture can be applied for con-
trolling any aggregate of flexible assets (e.g., heat pumps,
batteries, EV charging stations), as a proof-of-principle, we
will apply it here for the joint control of multiple EV charg-
ers at a parking site. Specifically, we aim to control the
concurrent charging of multiple EVs to flatten the load of
the whole parking, while satisfying the needs of EV users.
Since the objective concerns the joint load of EV chargers
together, they must collaborate and communicate effectively
to achieve it, highlighting the importance of the attention
layer and fleet-aware representation in the proposed archi-
tecture for decision-making.

3.1. MDP Formulation

We formulate the EV problem as a Markov decision process
(MDP). This MDP is represented by a tuple (S,A,R,P, γ),
where S and A represent the state and action spaces, respec-
tively, R : S × A → R denotes the instantaneous reward
function, P : S × A × S → [0, 1] defines the unknown
state transition probability distribution (where P(s1, a, s2)
represents the probability of transitioning to state s2 when
applying action a on state s1), and γ ∈ (0, 1] is the discount
factor (Sutton & Barto, 2018).

At each time step t, the state st consists of global and local
inputs from all EVs currently present in the parking lot:

st = (xl
t, xg

t ) (4)

xl
i,t = (tarr

i,t, t
dep
i,t , E

req
i,t ) (5)

xg
t = (t,Nt), (6)

where tarr
i,t denotes the time elapsed since the arrival of the

ith EV, tdep
i,t is the time remaining until the departure of the

ith EV, Ereq
i,t represents the energy required by the ith EV,

and Nt indicates the number of currently connected EVs.

We consider a discrete action space with two possible ac-
tions for each EV, defined as follows:

ai,t ∈ A, A = {0, Pmax
i }, (7)
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Figure 1: Our proposed architecture for centralized control of a fleet of assets.

where Pmax
i is the maximum charging power of the ith EV.

In this paper, the decision-making time resolution is 1 hour.

The goal of the centralized agent is to flatten the parking
load while meeting energy required by EVs. Thus, the
reward function is formulated as:1

rt = −

(
Nt∑
i=1

ai,t

)2

−α

Nt∑
i=1

1

{
Ereq

i,t > tdep
i,t · Pmax

i

}
. (8)

Since the RL agent learns a policy to maximize the reward,
we use the negative of the squared sum of all EVs’ actions
in the reward formulation. The second term in Equation (8)
corresponds to the penalty for unfinished charging. It counts
the number of EVs that cannot be fully charged in their
remaining connection time tdep

i and penalizes the agent pro-
portionally, using a penalty factor of α. In this paper, α
is set to 2 Nmax (maxi P

max
i )2, following the suggestion

in (Sadeghianpourhamami et al., 2019).

A state transition probability function P describes system
dynamics. Even though part of the system dynamics in
the EV problem — specifically the state-of-charge updates —
can be explicitly formulated, the overall transition function
remains unknown due to uncertainty on future EV arrivals.
Through interaction with the environment, this transition
function is implicitly learned by the RL agent.

3.2. RL Algorithm

In this paper, we use soft actor-critic (SAC), because of
its superior performance and sample efficiency (Haarnoja
et al., 2018). This off-policy method learns the policy using
an actor network, while the Q-function is estimated by a
critic network. The actor aims to maximize both the Q-
values and the entropy, with the latter encouraging further
exploration of the environment. To stabilize learning and
mitigate Q-value overestimation, we implement a distribu-
tional variant of SAC (which we refer to as DistSAC) in
which the critic network learns a distribution over returns
instead of a single-value return (Bellemare et al., 2017; Ma

1Here 1{x} represents the indicator function, i.e., 1{x} =
1 if x else 0.

et al., 2020). More specifically, the critic network estimates
the quantiles of return distributions and uses the quantile
regression loss, rather than the mean squared error loss, to
update its weights (Dabney et al., 2018).

We use our proposed architecture from Figure 1 for both the
actor and critic networks in aforementioned DistSAC vari-
ant — but please note that the proposed architecture could
equally be integrated in other RL variants. In our Dist-
SAC, at each time step t, st is provided as input to the actor
network, which outputs a probability distribution over the
actions for each EV. It is important to note that the proposed
method is applicable not only to discrete actions but also to
continuous ones. The critic network receives both the state
st and the joint action probability vectors ot as inputs. Ac-
tion probability vectors are transformed into one-hot vectors
using Gumbel softmax before inputting to the model. These
one-hot vectors are concatenated with the local information
vectors to create inputs for the embedding layer. The critic
network outputs quantile values of the return distribution
for each EV.

4. Results
We use two datasets to assess the performance of the pro-
posed architecture for the EV problem: a historical dataset
of Belgian residential charging sessions collected from
20 EVs, and a generated, scaled dataset of 100 EVs based
on that historical data, used to evaluate the scalability of the
proposed architecture. Appendix A lists further details of
these datasets. RL hyperparameters are provided in detail
in Appendix B. Furthermore, we benchmark our trained
RL agent against (i) a business-as-usual (BAU) controller,
where EVs start charging upon arrival, as well as (ii) the Op-
timal policy, which is obtained by solving a perfect foresight
optimization problem with knowledge of all future data.

The learning curves in Figure 2 show the evolution of the
RL agent’s performance over the course of training on their
validation sets. The trained RL agents on the original and
scaled datasets outperform the BAU controller by 28% and
35.3% on their test sets, respectively. Both agents learned
the policies that are only about 20% worse than the optimal
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(a) (b)

Figure 2: The learning process for (a) the original dataset,
and (b) the generated dataset.

(a)

(b)

Figure 3: The original dataset parking lot(a) power con-
sumption (b) daily peak power

policies, calculated with perfect foresight. During testing,
both agents were able to satisfy 100% of users, similar to
the other benchmarks. The inference runtime for agents
using the original and generated datasets per day is 186 ms
and 199 ms, respectively. These values for the optimization
method are 4.46 s and 5.11 s, respectively. After scaling,
the execution time of the proposed method increased by
7%, compared to 14.6% for the optimization method. The
experiments were conducted on a machine with an Intel
Core i5 CPU (2.90 GHz) and 32 GB of RAM.

Figure 3a illustrates the impact of different controllers on
the power consumption of the parking lot based on the orig-
inal 20 EVs dataset. The RL agent, similar to the optimal
policy, spreads the charging of EVs throughout their stay
time instead of charging them immediately upon arrival,

(a) (b)

Figure 4: The control decisions of EVs for the scaled dataset
at (a) 16:00 (b) 20:00.

resulting in the desired flattened power consumption profile.
According to Figure 3b, the trained RL agent reduces peak
power by 26.9% on average compared to the BAU policy
during the test days.

The results above demonstrate the effectiveness of the
learned policy. Finally, we further investigate whether it
learns to prioritize charging the right EVs, i.e., focuses on
charging those with limited flexibility. Here, we define time
flexibility as the duration by which EV charging can be
delayed: it reflects the urgency of EV charging, with greater
flexibility indicating a lower charging priority (Lahariya
et al., 2022). Figure 4b confirms that our agent appropri-
ately learns this concept of time flexibility. Furthermore, we
also note that the agent considers time as a decisive feature
to anticipate future events (implicitly learned from historic
observations): in Figure 4a, the agent decides to charge
almost all EVs in the parking lot even though most of them
have more than 10 hours of flexibility. The reason is that
the agent expects a large number of EV arrivals in the near
future, and since charging the current EVs does not cause
a peak, it chooses to charge them now to prevent a future
peak.

5. Conclusion and Future Work
In this paper, we propose a scalable centralized RL method
to simultaneously control a fleet of flexible assets. We use
the attention layer in our proposed architecture to aggregate
asset-specific information for each EV, enabling the agent
to make decisions based not only on local information, but
also on each EV’s relative situation compared to others.
The size of our proposed architecture is independent of the
number of assets, enabling scalability to large asset pools.
We implemented the proposed method for load flattening
in an EV parking lot to demonstrate its performance. The
results revealed that the RL agent learned a policy to jointly
control multiple EVs toward a common goal, outperforming
the BAU controller by 28%.
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As discussed earlier, applying the proposed method to other
multi-agent problems in the energy domain, such as multi-
heat pump control, is part of our future work. Another pos-
sible extension of this work is to adapt the proposed method
to the joint control of a fleet of heterogeneous flexible assets.
Exploring transfer learning to improve the scalability of the
proposed method across diverse and unseen fleets is another
direction for future work.
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A. EV Data
We used historical EV session data collected from 20 residential EVs in Belgium between November 15, 2021, and January
21, 2022. The dataset was preprocessed to remove invalid sessions, such as those with a stay time of less than an hour or
sessions without energy requirement data. Moreover, we modified sessions where the EV stay time exceeded 24 hours
to ensure that EVs did not remain parked for more than 24 hours. Since EV user behavior differs between weekdays and
weekends, we only considered weekday sessions. Sessions from November 15, 2021, to January 7, 2022, were used as the
training set, sessions from January 10 to January 14 as the validation set, and the remaining sessions as the test set.

To evaluate the scalability of the proposed architecture, we fit distributions to the original dataset to generate the desired
number of sessions. To capture the correlation between arrival and departure times, a mixture Gaussian model is employed
to model the arrival and stay time distributions. The energy required distribution is modeled using a normal distribution.
Figure 5 illustrates the distribution of arrival and departure times for the original and 100 generated sessions. We use 30
days of generated sessions for training the agent, 7 days for evaluation, and 7 days for testing.

Figure 5: Historical and generated arrival and departure times.

B. Simulation Setup
Each training episode consists of a single day. The discount factor γ, the soft update factor for the target critic network
τ , the experience replay buffer size, and the mini-batch size are set to 0.995, 0.1, 16 384, and 256, respectively. Both the
actor and critic networks use the proposed architecture, in which the embedding layer and the final layer each contain two
hidden layers with 256 and 128 neurons, respectively. In the actor network, the local information dimension (dl), embedding
dimension (de), global dimension (dg), and output dimension (do) are set to 3, 16, 2, and 2, respectively. The critic network
uses the same embedding and global dimensions, while dl = 5 and do = 20. The learning rates of the actor and critic
networks are 5× 10−5 and 5× 10−4, respectively.

C. Further Results
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Figure 6: Parking lot power consumption for 100 EVs.

Figure 7: Parking lot daily power power for the generated dataset.

(a) (b)

Figure 8: The control decisions of EVs for the original dataset at (a) 3:00 (b) 6:00.
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