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1. Introduction

In variational inference (VI), the parameters η of an approximation to the posterior Q(Θ; η)
are selected to optimize an objective function, typically the evidence lower bound (ELBO)
(Blei et al., 2017). However, the ELBO is generally nonconvex in η, even for simple vari-
ational families such as the family of Gaussian distributions, and so only convergence to a
local optimum of the ELBO can be guaranteed (Ghadimi and Lan, 2015; Ranganath et al.,
2014).

We examine an increasingly popular alternative objective for variational inference, the
forward KL divergence. We focus on the amortized setting, considering minimizing the
expected forward KL divergence

EP (X)KL

[
P (Θ | X) || Q(Θ; f(X;ϕ))

]
, (1)

where P (X) denotes a marginal of the model, and distributional parameters η ∈ Rq are
given for each x ∈ X by f(x;ϕ), the outputs of a neural network with parameters ϕ.

We analyze the convergence of gradient descent for minimizing the expected forward
KL. Convergence of variational inference methods is an area of active research. Our work
differs from previous work in that our convergence result is global. Considering the expected
forward (or inclusive) KL divergence, rather than the ELBO, is key to this result. Con-
vergence of ELBO-based methods has been widely studied, but these are not amenable to
global minimization due to nonconvexity (Domke, 2020; Domke et al., 2023). Additionally,
our approach is novel because we consider the more complicated amortized problem where
the parameters fit are those of a neural network that defines the variational approximation.

We make two contributions. Firstly, we demonstrate the strict convexity of the expected
forward KL divergence in f under certain conditions when Q is restricted to the exponential
family of distributions. Strict convexity implies the existence of a unique global optimizer
f∗ of the expected forward KL for a large class of variational families used in practice.
Secondly, we analyze gradient flow dynamics to show that fitting the expected forward
KL objective with gradient descent results asymptotically in an optimizer f that is at most
ϵ-suboptimal, provided a sufficiently flexible network is used to parameterize f (Theorem 4).
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2. Background

2.1. The Expected Forward KL Divergence

The expected forward KL objective is equivalent to the “sleep” objective of Reweighted
Wake-Sleep (RWS) (Bornschein and Bengio, 2015), and to the objective considered in for-
ward amortized variational inference (FAVI) (Ambrogioni et al., 2019). These methods in
turn fit into the framework of the thermodynamic variational objective (TVO) as a spe-
cial case. Similar objectives have been considered by neural posterior estimation (NPE)
methods (e.g. Papamakarios and Murray (2016); Papamakarios et al. (2019)), but in these
methods the prior used to simulate observations (and thus the marginal P (X)) mutates
during training. Objectives based on the forward KL divergence generally result in varia-
tional posteriors that are overdispersed, a desirable property compared to reverse KL-based
optimization (Le et al., 2019; Domke and Sheldon, 2018).

Other objectives often optimize a different expectation of the forward KL than Equa-
tion (1), typically EX∼DKL [P (Θ | X) || Q(Θ; f(X;ϕ))]. Here, the outer expectation is over
an empirical dataset D rather than P (X). Averaging over simulated draws from P (X)
compared to averaging over the dataset D is advantageous because when P (X) is used,
the resulting method is likelihood-free and admits unbiased gradient estimates (see Ap-
pendix B). In non-amortized cases or when the expected forward KL is computed over
the dataset D, approximations are required that result in biased gradient estimates (e.g.,
by self-normalized importance sampling in the wake-phase of RWS), for which stochastic
gradient descent carries no convergence guarantees.

2.2. The Neural Tangent Kernel

A neural network architecture and the parameter space Φ of its weights together define a
family of functions {f(·;ϕ) : ϕ ∈ Φ}. Let ℓ(x, f(x)) denote a general real-valued loss and
consider selecting the parameters ϕ to minimize EP (X)ℓ(X, f(X;ϕ)), where P (X) is a fixed
distribution on the data space X . The neural tangent kernel (NTK) (Jacot et al., 2018)
analyzes the evolution of the function f(·;ϕ) while ϕ is fitted to minimize the objective
above by gradient descent. Continuous-time dynamics are used and ϕ(t) and f(·;ϕ(t)) are
considered across continuous time t. The parameters ϕ thus follow the ODE

∂ϕ(t)

∂t
= −∇ϕEP (X)ℓ(X, f(X;ϕ(t))), (2)

and so by the chain rule the function values f(x;ϕ(t)) evolve via

∂f(x;ϕ(t))

∂t
= −EP (X) Jϕf(x;ϕ(t))Jϕf(X;ϕ(t))⊤︸ ︷︷ ︸

NTK

ℓ′(X, f(X;ϕ(t))).

Above, we set ℓ′(X, f(X)) := ∇f ℓ(X, f(X)) to simplify notation. The product of Jacobians
above is known as the neural tangent kernel (NTK). The seminal work of Jacot et al. (2018)
defined and studied this kernel, given by

Kϕ(x, x
′) = Jϕf(x;ϕ)Jϕf(x

′;ϕ)⊤, (3)

and established convergence results for certain neural network architectures as the width
grows large.
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3. Convexity of the Expected Forward KL Objective

To accommodate arbitrary sizes of the parameter space Φ for arbitrarily wide networks, we
now consider a general reproducing kernel Hilbert space (RKHS) of functions H as the space
of possible amortized inference functions f , where H is subspace of F = L2(X , P ), the space
of functions on X with finite second moment under the model marginal P . Throughout,
we assume H is sufficiently large to contain the family {f(·;ϕ) : ϕ ∈ Φ} for any choice of Φ,
regardless of network width.

The expected forward KL objective may be reformulated as a functional L : H → R to
be minimized over functions f ∈ H:

L(f) = EP (X)KL

[
P (Θ | X) || Q(Θ; f(X))

]
. (4)

Let ℓ(x, f(x)) = KL [P (Θ | X = x) || Q(Θ; f(x))]. This functional then has the form
EP (X)ℓ(X, f(X)), similar to Equation (2) in Section 2.2. The formulation above recasts
expected forward KL minimization from a functional perspective; previous formulations all
considered minimizing an objective function L(ϕ) in parameter space Φ, given by

L(ϕ) = EP (X)KL

[
P (Θ | X) || Q(Θ; f(X;ϕ))

]
. (5)

We generally refer to Equation (5) as PO (the parametric objective), and Equation (4) as
FO (the functional objective). Targeting FO is highly desirable theoretically: we show below
that FO admits a unique global minimizer when the variational family Q is exponential.

Lemma 1 Suppose that Q(Θ; η) is an exponential family distribution with natural param-
eters η, sufficient statistics T (θ), and log-density log q(θ; η) with respect to Lebesgue measure
λ(Θ). Then, for any x ∈ X ⊆ Rd, the function

ℓ(x, η) = KL

[
P (Θ | X = x) || Q(Θ; η)

]
is strictly convex in η, provided that P (Θ | X = x) ≪ Q(Θ; η) ≪ λ(Θ) for all η ∈ Y ⊆ Rq.

A proof of Lemma 1 is provided in Appendix A. Lemma 1 shows strict convexity of
the function ℓ in η. This immediately implies strict convexity of the functional L(f) =
EP (X)ℓ(X, f(X)) in f by linearity of expectation, in turn implying the existence of at most
one global minimizer.

Corollary 2 Suppose that Q(Θ; η) is an exponential family. Then, under the same con-
ditions as Lemma 1, the expected forward KL objective FO,

L(f) = EP (X)KL

[
P (Θ | X) || Q(Θ; f(X))

]
,

is strictly convex in f . Consequently, the set of global minimizers f∗ of FO is either a
singleton set or empty.
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We will assume the existence of f∗ so that minimization of FO is well-posed, and also
assume ||f∗||H < ∞ so that f∗ ∈ H. Hereafter, we shall use “unique” to mean unique
almost everywhere with respect to P (X). Furthermore, in a slight abuse of notation, f∗

will denote the unique equivalence class of functions that minimizes L(f).

Lemma 1 establishes convexity of the (non-amortized) forward KL divergence. Corollary
2 establishes the convexity of FO, the amortized objective, in function space. Convexity
holds regardless of the distribution chosen for the outer expectation (e.g., a mixture of
point masses corresponding to a empirical dataset may be used, such as in the objective in
Section 2.1).

4. Asymptotic Analysis via the Neural Tangent Kernel

In the second phase of our analysis, we consider converging to f∗ by gradient descent. As
done in practice, we target PO, as optimizing FO directly is not tractable. We consider
performing gradient descent on ϕ in continuous time as in Equation (2). Continuous-time
dynamics simplify theoretical analysis; stochastic gradient descent with unbiased gradients
follows a (noisy) Euler discretization of the continuous ODE (Santambrogio, 2017; Yang
et al., 2020). Considering X ∼ P (X) for the outer expectation in both PO and FO is
key in this context: this choice enables unbiased stochastic gradient estimation for PO (see
Appendix B), whereas other choices require approximations that result in biased gradient
estimates (see Section 2.2) and thus follow different gradient dynamics.

We focus on a scaled two-layer ReLU network for our results (this architecture is detailed
in Appendix C) and use this simple architecture to prove results as the network width
p tends to infinity. Our results may be extended to multilayer perceptrons with other
activation functions as well. Recall the NTK Kp

ϕ from Equation (3), where we now let
p denote the network width. We allow multidimensional natural parameters η ∈ Rq in
our formulation and so for any p, ϕ, x, x̃ we have Kp

ϕ(x, x̃) ∈ Rq×q because if dim Φ = p,

then Jϕf(x;ϕ) ∈ Rq×p and so Kp
ϕ(x, x

′) ∈ Rq×q. For certain neural network architectures,
Jacot et al. (2018) show that as the network width p tends to infinity, the neural tangent
kernel becomes stable and tends (pointwise) towards a fixed, positive-definite limiting neural
tangent kernel K∞. We prove this convergence holds uniformly over the data space X in
Appendix D for our two-layer ReLU architecture. Hereafter, H is taken to be the RKHS
with kernel K∞.

We bridge the divide between the minimizers of the convex functional FO and the
nonconvex PO using the limiting kernel. Section 2.2 shows that optimizing PO causes the
network function to evolve according to a kernel gradient flow via the neural tangent kernel,
i.e.

ḟ(x;ϕ(t)) = −EP (X)K
p
ϕ(t)(x,X)ℓ′(X, f(X;ϕ(t))

where ḟ denotes the time derivative. Recalling that FO has a unique minimizer f∗ (Corollary
2), we show that under mild conditions on the limiting tangent kernel K∞, f∗ is the solution
obtained by following the corresponding kernel gradient flow dynamics in H with respect
to the limiting neural tangent kernel, i.e. the ODE given by

ḟt(x) = −EP (X)K∞(x,X)ℓ′(X, ft(X)).
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In other words, beginning from some function f0, following the limiting NTK gradient flow
dynamics above minimizes the loss functional FO for sufficiently large T . Appendix E
provides a proof of Lemma 3 and enumerates regularity conditions (E1)–(E3).

Lemma 3 Let f∗ denote the minimizer of FO from Lemma 1, and ϵ > 0. Fix f0, and let
K∞ denote the limiting neural tangent kernel. Let f0 evolve according to the dynamics

ḟt(x) = −EP (X)K∞(x,X)ℓ′(X, ft(X)).

Suppose the conditions of Lemma 1 and (E1)-(E3) hold. Then, there exists T > 0 such that
L(fT ) ≤ L(f∗) + ϵ, where L is the loss functional from FO.

This result enables comparison of the minimizers of PO and FO by comparing the
two gradient flows above, i.e. kernel gradient flow dynamics that follow Kp

ϕ(t) and K∞,
respectively. We show that for any fixed T , the functions obtained by following kernel
gradient dynamics withKp

ϕ(t) andK∞ can be made arbitrarily close to one another, provided

p is sufficiently large. This suggests that for large p, the gradient descent solution to (PO)
becomes close to the unique solution f∗ of FO. We prove that this is the case in Theorem 4,
proven in Appendix E. Regularity conditions (C1)–(C4), (D1)–(D4), and (E1)–(E5) are
provided in Appendices C, D, and E, respectively.

Theorem 4 Consider the width-p scaled 2-layer ReLU network, evolving via the flow

ḟt(x) = −EP (X)K
p
ϕ(t)(x,X)ℓ′(X, ft(X)), (6)

where ft denotes f(·, ϕ(t)). Let f∗ denote the unique minimizer of FO from Lemma 1, and
ϵ > 0. Then under conditions (C1)–(C4),(D1)–(D4), and (E1)–(E5), there exists T > 0
such that almost surely [

lim
p→∞

L(fT )

]
≤ L(f∗) + ϵ. (7)

The proof first selects a T by Lemma 3, and then bounds the difference in the trajectories
on [0, T ] for sufficiently large width p by convergence of the kernels Kp

ϕ(t) → K∞. The

proof differs from previous results in that it relies on uniform convergence of kernels (cf.
Appendices C and D), enabling analysis of population quantities such as EP (X)ℓ(X, f(X)).
Theorem 4 suggests convergence to a unique solution when optimizing PO, despite the
highly nonconvex nature of this optimization problem in the network parameters ϕ. For
sufficiently flexible network architectures, optimization of PO behaves similarly to that of
FO, which we have shown is a convex problem in function space H.

5. Simulation Study

Here we assess whether the asymptotic regime of Theorem 4 is relevant to practice (with
finite width p). We explore a diagnostic from Chizat et al. (2019), who provide the intuition
that in the limiting NTK regime, the function f behaves much like its linearization around
the initial weights ϕ0, i.e.,

f(x;ϕ) ≈ f(x;ϕ0) + Jϕf(x;ϕ0)(ϕ− ϕ0). (8)
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Equality holds exactly in the equation above if and only if f(x;ϕ) has a constant tangent
kernel (i.e. K∞). Note that even if f is linear in ϕ, as in the above expression, it may
still be highly nonlinear in x. We consider a toy example for which ||x||2 = 1, a condition
assumed for many NTK-based results. The generative model first draws a rotation angle
Θ uniformly between 0 and 2π, and then a rotation perturbation Z ∼ N (0, σ2), where we
take σ = 0.5. Conditional on these, data x is drawn from

X | (Θ = θ, Z = z) ∼ δ
([

cos(θ + z), sin(θ + z)
]⊤)

, (9)

where δ denotes a point mass. The data x are thus deterministic given realizations θ and z.
This construction ensures that the data lie on the sphere S1 ⊂ R2, guaranteeing positivity
of the limiting NTK for certain architectures (Jacot et al., 2018). We aim to infer Θ given a
realization X = x, marginalizing out the nuisance latent variable Z. Our variational family
Q(Θ; f(x)) is a von Mises distribution on the interval [0, 2π]. This family is an exponential
family distribution to allow application of Lemma 1. The encoder network fϕ is given by a
two-layer (equivalently, single hidden layer) dense network with rectified linear unit (ReLU)
activation, which we study as the network width p grows. The network outputs f(x;ϕ)
parameterize the natural parameter η.

We demonstrate that finite p is well described by the asymptotic regime by fitting
the neural network f(x;ϕ) above, and comparing the results to fitting its linearization
flin(x;ϕ) = f(x;ϕ0) + Jϕf(x;ϕ0)(ϕ − ϕ0) in ϕ for differing widths p. For both settings,
stochastic gradient estimation was performed by following the procedure in Appendix B. For
evaluation, we fix N = 1000 independent realizations x∗1, . . . , x

∗
N from the generative model

with underlying ground-truth latent parameter values θ∗1, . . . , θ
∗
N , and evaluate the held-out

negative log-likelihood (NLL), − 1
N

∑N
i=1 log q (θ

∗
i | f(x∗i ;ϕ)), for each function: f(x;ϕ) and

flin(x;ϕ). Figure 1 shows the evolution of the held-out NLL across the fitting procedure for
three different network widths n: 64, 256, and 1024. The difference in quality between the
linearized and true functions at convergence diminishes as the width n grows; for n = 1024
the two are nearly identical, providing evidence that the asymptotic regime of Section 4 is
achieved.

Figure 1: Negative log-likelihood across gradient steps, for network widths 64, 256, and
1024 neurons. NLL for the exact posterior is denoted by the red line.
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Appendix A. Convexity of FO

We prove Lemma 1 from the manuscript below.

Lemma 1 Suppose that Q(Θ; η) is an exponential family distribution with natural parame-
ters η, sufficient statistics T (θ), and log-density log q(θ; η) with respect to Lebesgue measure
λ(Θ). Then, for any x ∈ X ⊆ Rd, the function

ℓ(x, η) = KL

[
P (Θ | X = x) || Q(Θ; η)

]
is strictly convex in η, provided that P (Θ | X = x) ≪ Q(Θ; η) ≪ λ(Θ) for all η ∈ Y ⊆ Rq.

Proof Let the log-density be given by log q(θ; η) = log h(θ)+ η⊤T (θ)−A(η). First observe
that under the conditions given, the function ℓ is equivalent (up to additive constants) to a
much simpler expression, the expected log-density of q, via

ℓ(x, η) = KL

[
P (Θ|X = x) || Q(Θ; η)

]
= Hx − EP (Θ|X=x) log q(θ; η)
η
= −EP (Θ|X=x) log q(θ; η).
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Now, the mapping η → − log q(θ; η) is convex in η because its Hessian is ∂A
∂η∂η⊤

=

Var(T (θ)) ≻ 0 (cf. Chapter 6.6.3 of Srivastava et al. (2014)). We can show ℓ is convex
in η by applying linearity of expectation. We have for any λ ∈ [0, 1]

ℓ(x, λη1 + (1− λ)η2) = −EP (Θ|X=x) log q(Θ;λη1 + (1− λ)η2) (10)

≤ −EP (Θ|X=x)

(
λ log q(Θ; η1)− (1− λ) log q(Θ; η2

)
(11)

= λℓ(x, η1) + (1− λ)ℓ(x, η2) (12)

where the second line follows from convexity of the map η 7→ − log q(θ; η) above for any
value of θ. So the function ℓ(x, η) is strictly convex in η.

Appendix B. Unbiased Stochastic Gradients For PO

Computation of unbiased estimates of gradient of the loss function L(ϕ) with respect to
parameters ϕ is all that is needed to implement SGD for PO. Under mild conditions (see
Proposition 5), the loss function L(ϕ) may be equivalently written as

L(ϕ) = EP (X)EP (Θ|X=x) log
p(Θ | x)

q(Θ; f(x;ϕ))
= EP (Θ,X) log

p(Θ | X)

q(Θ; f(X;ϕ))

for density functions p, q, where f(·, ϕ) denotes a function parameterized by ϕ. Under the
conditions of Theorem 5 differentiation and integration may be interchanged, so that

∇ϕL(ϕ) = EP (Θ,X)∇ϕ log
p(Θ | X)

q(Θ; f(X;ϕ))
= −EP (Θ,X)∇ϕ log q(Θ; f(X;ϕ))

and unbiased estimates of the quantity can be easily attained by samples drawn (θ, x) ∼
P (Θ, X).

Proposition 5 Let (Ω1,B1), (Ω2,B2) be measurable spaces on which the random variables
X : Ω1 → X and Θ : Ω2 → O are defined, respectively. Suppose that for all x ∈ X and
all ϕ ∈ Φ we have P (Θ | X = x) ≪ Q(Θ; f(x;ϕ)) ≪ λ(Θ), with λ(Θ) denoting Lebesgue

measure and ≪ denoting absolute continuity. Further, suppose that log
(

p(Θ|X)
q(Θ;f(X;ϕ))

)
is

measurable with respect to the product space (Ω1 × Ω2,B1 × B2) for each ϕ ∈ Φ, and
∇ϕ log q(θ | f(x;ϕ)) exists for almost all (θ, x) ∈ O × X . Finally, assume there exists an
integrable Y dominating ∇ϕ log q(θ | f(x;ϕ)) for all ϕ ∈ Φ and almost all (θ, x) ∈ O × X .
Then for any B ∈ N and any ϕ ∈ Φ the quantity

∇̂(ϕ) = − 1

B

B∑
i=1

∇ϕ log q(θi; f(xi;ϕ)), (θi, xi)
iid∼ P (Θ, X) (13)

is an unbiased estimator of the gradient of the objective PO, evaluated at ϕ ∈ Φ.

Proof By the absolute continuity assumptions, for any x ∈ X the distributions P (Θ | X =
x) and Q(Θ; f(x;ϕ)) admit densities with respect to Lebesgue measure denoted p(θ | x)
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and q(θ; f(x;ϕ)), respectively. We may then rewrite the KL divergence from Equation (5)
as

KL

[
P (Θ | X = x) || Q(Θ; f(x;ϕ))

]
:= EP (Θ|X=x) log

(
dP (Θ | X = x)

dQ(Θ; f(x;ϕ))

)
= EP (Θ|X=x) log

(
p(Θ | x)

q(Θ; f(x;ϕ))

)
because the Radon-Nikodym derivative dP/dQ is given by the ratio of these densities.
Equation (5) is thus equivalent to

EP (X)EP (Θ|X=x) log

(
p(Θ | x)

q(Θ; f(x;ϕ))

)
= EP (Θ,X) log

(
p(Θ | X)

q(Θ; f(x;ϕ))

)
.

This expectation is well-defined by the measurability assumption on log
(

p(Θ|X)
q(Θ;f(x;ϕ))

)
.

To interchange differentiation and integration, it suffices by Leibniz’s rule that the gra-
dient of this quantity with respect to ϕ is dominated by a measurable r.v. Y . More
precisely, there exists integrable Y (θ, x) defined on the product space O × X such that∣∣∣∣∇ϕ log

(
p(θ|x)

q(θ;f(x;ϕ))

) ∣∣∣∣ ≤ Y (θ, x) for all ϕ ∈ Φ and almost everywhere-P (Θ, X). This is

assumed in the statement of the proposition, and so we have

∇ϕEP (Θ,X) log

(
p(Θ | X)

q(Θ; f(x;ϕ))

)
= EP (Θ,X)∇ϕ log

(
p(Θ | X)

q(Θ; f(x;ϕ))

)
= −EP (Θ,X)∇ϕ log q(Θ; f(x;ϕ))

and the result follows by sampling.

The variance of the gradient estimator can be reduced at the standard Monte Carlo
rate, and for any B Equation (13) can be used for stochastic gradient descent (SGD).

Appendix C. The Limiting NTK

Before proceeding, we introduce the architecture specific to our analysis, a scaled two-layer
network, and several theorems that we will use throughout the analysis.

The first result from Shapiro (2003) concerns optimization of the objective f(x) =

Eξ∼PF (x; ξ) in x via its empirical approximation f̂n(x) = 1
n

∑n
i=1 F (x; ξi), ξi

iid∼ P . We
reproduce this result below.

Theorem 6 (Proposition 7 of Shapiro (2003)) Let C be a nonempty compact subset
of Rn and suppose thats (i) for almost every ξ ∈ Ξ the function F (·, ξ) is continuous on
C, (ii) F (x, ξ), x ∈ C, is dominated by an integrable function, (iii) the sample ξ1, . . . , ξn is
iid. Then the expected value function f(x) is finite valued and continuous on C, and f̂n(x)
converges to f(x) with probability 1 uniformly on C.

The next two results are integral forms of Gronwall’s inequality that we use in subsequent
analysis. We refer to Dragomir (2003) for a detailed review, and present simplified versions
of the results therein below.
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Theorem 7 (Gronwall’s Inequality, Corollary 3 of Dragomir (2003)) Let u(t) ∈
R be such that u(t) ≤ c1 + c2

∫ t
0 u(s)ds for t > 0 and nonnegative c1, c2. Then

u(t) ≤ c1 exp[c2t].

Theorem 8 (Theorem 57 of Dragomir (2003)) Let u(t) ∈ R be such that u(t) ≤ c1+
c2
∫ t
0

∫ s
0 u(v)dvds for t > 0 and nonnegative c1, c2. Then

u(t) ≤ c1 exp[c2t
2/2].

Now we turn to specifics of the architecture we consider. Assume the function f has the
architecture of a (scaled) two-layer (single hidden layer) network mapping f : X → Y with
X ⊆ Rd and Y ⊆ Rq. We consider this network architecture for a given width p, and study
each of the i = 1, . . . , q coordinate functions of f . For a scaled two-layer network, the ith
such function is

f(x;ϕ)i :=
1
√
p

p∑
j=1

aijσ
(
x⊤wj

)
for i = 1, . . . , q, where σ denotes an activation function. The scaling depends on the width
of the network p. The parameters ϕ are thus ϕ = {wj , a(·),j}

p
j=1 where a(·),j denotes the

vector [a1j , . . . , aqj ]
⊤ (i.e. the jth coefficient for each component function i). The individual

parameters have dimensions as follows: wj ∈ Rd and a(·),j ∈ Rq, for all j = 1, . . . , p, where
again p denotes the network width and d the data dimension dim X . For ease hereafter, we
write aj = a(·),j to refer to the entire jth vector of second layer network coefficients when
the context is clear. As is standard, the first layer parameters are initialized as independent

standard Gaussian random variables, i.e. wj
iid∼ N (0, Id) for all j = 1, . . . , p. The weight

aij can also be drawn aij
iid∼ N (0, 1) for all i = 1, . . . , q, j = 1, . . . , p, but in this work we

initialize these second-layer weights to zero for simplicity to ensure that at initialization,
f(·;ϕ) = 0. A zero-initialized network function is used for analysis in several related works,
e.g. Chizat et al. (2019) and Ba et al. (2020). For now, notationally we denote weights to
be initialized as draws from an arbitrary distribution D, and we introduce specificity to D
as required.

The neural tangent kernel (Equation (3)) can be computed explicitly for this architecture
with ease, and is given in the lemma below which proves pointwise convergence to the
limiting NTK at initialization as the width p tends to infinity.

Lemma 9 (Pointwise Convergence At Intialization) For the architecture above,
consider any p. Let a,∈ Rq, w ∈ Rd be distributed according to a,w ∼ D for some dis-
tribution D such that a,w are integrable (L1) random variables. Assume X is compact, and
σ′ is bounded. Then provided condition (C4) holds (see below), we have for any x, x̃ ∈ X
that

Kp
ϕ(0)(x, x̃)

a.s.→ EDK(x, x̃;w, a) (14)

as p → ∞ where Kp
ϕ(0) denotes the NTK at initialization constructed from draws aj , wj

iid∼ D

and K(x, x̃;w, a) ∈ Rq×q is the q × q matrix whose k, lth entry is given by[
1k=lσ

(
x⊤w

)
σ
(
x̃⊤w

)
+ akalσ

′
(
x⊤w

)
σ′
(
x̃⊤w

)(
x⊤x̃

)]
11
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for k, l = 1, . . . , q.

Proof Consider the kth coordinate function of f . For any choice of p, the gradient is given
by

∇ϕfk(x;ϕ) =



∂fk(x;ϕ)
∂ak1
...

∂fk(x;ϕ)
∂akp

∂fk(x;ϕ)
∂w1
...

∂fk(x;ϕ)
∂wp


=

1
√
p



σ
(
x⊤w1

)
...

σ
(
x⊤wp

)
ak1σ

′ (x⊤w1

)
x

...
akpσ

′ (x⊤wp

)
x


where we have imposed an arbitrary ordering on the parameters. In the above, we omitted
partial derivatives ∂fk

∂alj
for l ̸= k, j = 1, . . . , p because these are all identically zero. From

this, it follows that for any fixed x, x̃ ∈ X we have the k, l-th entry of Kp
ϕ(0)(x, x̃) is given

by

∇ϕfk(x;ϕ(0))
⊤∇ϕfl(x̃;ϕ(0)) =

1

p

p∑
j=1

1k=lσ
(
x⊤wj

)
σ
(
x̃⊤wj

)
+

1

p

p∑
j=1

akjaljσ
′
(
x⊤wj

)
σ′
(
x̃⊤wj

)(
x⊤x̃

)
.

The existence of the limiting NTK follows immediately: for each of the two terms above,
each term is clearly is integrable by compactness of X and domination (see (C4)). It follows
that K∞(x, x̃) is the q × q matrix whose k, lth entry is given by

Ew,a∼D

[
1k=lσ

(
x⊤w

)
σ
(
x̃⊤w

)
+ akalσ

′
(
x⊤w

)
σ′
(
x̃⊤w

)(
x⊤x̃

)]
with w, a ∼ D. Convergence in probability pointwise follows from the weak law of large num-
bers, and almost sure convergence holds by the strong law of large numbers. K(x, x; a,w)
is integrable by the assumption (C4) (see below), so the expectation is well-defined.

The proof of the existence and pointwise convergence to the limiting NTK K∞ above
is rather straightforward, and this result has been previously established in other works
(Jacot et al., 2018). For our analysis of kernel gradient flows in Theorem 4 for the expected
forward KL objectives PO and FO, however, we require uniform convergence to K∞ over
the entire data space X .

We establish conditions under which this uniform convergence holds in two results,
Proposition 10 and Proposition 13. Proposition 10, given below, concerns convergence
at initialization to the limiting neural tangent kernel K∞ (i.e. before beginning gradient
descent). Proposition 13, proven in Appendix D, demonstrates that across a finite training
interval [0, T ], the NTK changes minimally from its initial value in a large width regime.
Generally, we refer to the first result as “deterministic initialization” and the second as
“lazy training” following related works (Jacot et al., 2018; Chizat et al., 2019).

Below, we give suitable regularity conditions and state and prove Proposition 10.

12



Globally Convergent Variational Inference

(C1) The data space is X = Sd−1 ⊂ Rd, i.e. the d-dimensional sphere. Note this immedi-
ately gives compactness of both X and X × X as well.

(C2) The distribution D is such that w ∼ N (0, Id) and a = 0 w.p. 1. For j = 1, . . . , p iid

draws from this distribution, we thus have wj
iid∼ N (0, Id) and aij = 0 w.p 1 for all

i, j.

(C3) The activation function σ is continuous. Under (C2), this implies that the function
K(·, ·; a,w) from Lemma 9 with a,w ∼ D is almost surely continuous.

(C4) The function K(x, x̃; a,w) is dominated by some integrable random variable G, i.e.
for all x, x̃ ∈ X × X we have ||K(x, x̃; a,w)||F ≤ G(a,w) almost surely for integrable
G(a,w).

Proposition 10 Fix a scaled two-layer network architecture of width p, and let Φ denote
the corresponding parameter space. Initialize ϕ(0) as independent, identically distributed
random variables drawn from the distribution D in (C2). Let Kp

ϕ(0) : X × X → Rq×q be

the mapping defined by (x, x′) 7→ Kϕ(0)(x, x
′) = Jϕf(x;ϕ(0))Jϕf(x

′;ϕ(0))⊤. Then provided
conditions (C1)–(C4) hold, we have as p → ∞ that

sup
x,x̃∈X

||Kp
ϕ(0)(x, x̃)−K∞(x, x̃)||F

a.s.→ 0, (DI)

where K∞(x, x̃) := plimp→∞Kp
ϕ(0)(x, x̃) is a fixed, continuous kernel.

Proof The proof follows by direct application of Proposition 7 of Shapiro (2003). Precisely,
we satisfy i) almost-sure continuity of K(·, ·; a,w) by (C3), ii) domination by (C4), and
iii) the draws comprising Kp

ϕ(0) are iid by assumption. By this proposition, then, we have

uniform convergence of Kp
ϕ(0) to K∞ and get continuity of K∞ as well.

Appendix D. Lazy Training

Below, we prove several results that will aid in proving the “lazy training” result of
Proposition 13 (see below). Given the same architecture as above in Appendix C and
a fixed width p and time T > 0, we will begin by bounding ||wj(T ) − wj(0)|| and
||akj(T ) − akj(0)||, ||alj(T ) − alj(0)|| for all k, l = 1, . . . , q and all j = 1, . . . , p. As in
Appendix C, there are several conditions that we impose and use in the following results.
(D1)–(D2) are identical to (C1)–(C2), repeated for clarity.

(D1) The data space is X = Sd−1 ⊂ Rd, i.e. the d-dimensional sphere. Note this immedi-
ately gives compactness of both X and X × X as well.

(D2) The distribution D is such that w ∼ N (0, Id) and a = 0 w.p. 1. For j = 1, . . . , p iid

draws from this distribution, we thus have wj
iid∼ N (0, Id) and aij = 0 w.p 1 for all

i, j.

13
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(D3) In PO, the function ℓ(x, η) is such that ℓ′(x; η) is bounded uniformly for all x and for
all η ∈ {f(x;ϕ(t)) : t > 0} by a constant M̃ , uniformly over the width p. We recall
that this notation is shorthand for ∇ηℓ(x, η).

(D4) The activation function σ(·) is non-polynomial and is Lipschitz with constant C. Note
that the Lipschitz condition implies σ has bounded first derivative i.e. |σ′(r)| ≤ C for
all r ∈ R.

With these conditions in hand, we now prove several lemmas for individual parameters.

Lemma 11 (Lazy Training of w) For the width p scaled two-layer architecture above,
assume conditions (D1)–(D4) hold. Let ϕ evolve according to the gradient flow of the ob-
jective PO, i.e.

ϕ̇(t) = −∇ϕL(ϕ).

Fix any T > 0. Then for all j = 1, . . . , p we have almost surely that

||wj(T )− wj(0)||2 ≤ ||wj(0)||2 ·Dp,T + Ep,T (15)

where Dp,T , Ep,T are constants depending on p, T and satisfying limp→∞Dp,T = 0 and
limp→∞Ep,T = 0.

Proof First note that for any fixed j, we have

Jwjf(x;ϕ) =

∇wjf1(x;ϕ)
⊤

...
∇wjfq(x;ϕ)

⊤

 =
1
√
p

a1jσ
′ (x⊤wj

)
x⊤

...
aqjσ

′ (x⊤wj

)
x⊤

 ∈ Rq×d

as required, where aij ∈ R for i = 1, . . . , q and x ∈ Sd−1 from (D1). We can bound the
operator 2-norm of this matrix by observing that for any y ∈ Rd we have

||Jwjf(x;ϕ)y||22 =
1

p
·

(
q∑

i=1

a2ij

)
· σ′
(
x⊤wj

)2
(x⊤y)2

≤ C2

p
||aj ||22 · ||x||22 · ||y||22 by (D4) and Cauchy-Schwarz

=⇒ ||Jwjf(x;ϕ)||2 ≤
C
√
p
||aj ||2

by observing ||x||22 = 1. By similar computations, we also have

Jajf(x;ϕ) =

∇ajf1(x;ϕ)
⊤

...
∇ajfq(x;ϕ)

⊤

 =
1
√
p
diag

σ
(
x⊤wj

)
...

σ
(
x⊤wj

)
 ∈ Rq×q.

14
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Using condition (D4), it follows that

||Jajf(x;ϕ)||2 ≤
|σ(x⊤wj)|√

p

≤ |σ(0)|+ C|x⊤wj |√
p|

def
=

K + C|x⊤wj |√
p

≤ K + C||wj ||2√
p

by Cauchy-Schwarz and (D1),(D4), where throughout the following we let K := |σ(0)|. Now
we will use these computations to bound the variation on wj across the interval (0, T ]. Fix
any t ∈ (0, T ]. Then we have

||wj(t)− wj(0)||2 ≤
∫ t

0
||ẇj(s)||ds

≤
∫ t

0
EP (X)||Jwjf(X;ϕ(s))ℓ′(X, f(X;ϕ(s)))||2ds

≤ M̃

∫ t

0
EP (X)||Jwjf(X;ϕ(s))||2ds by (D3)

≤ CM̃
√
p

∫ t

0
||aj(s)||2ds by above work

a.s.
=

CM̃
√
p

∫ t

0
||aj(s)− aj(0)||2ds by (D2)

≤ CM̃
√
p

∫ t

0

∫ s

0
||ȧj(v)||2dvds

≤ CM̃
√
p

∫ t

0

∫ s

0
EP (X)||Jajf(X;ϕ)||2||ℓ′(X, f(X;ϕ(v)))||2dvds

≤ CM̃2

√
p

∫ t

0

∫ s

0
EP (X)||Jajf(X;ϕ)||2dvds by (D3)

≤ CM̃2Kt2

2p
+

C2M̃2

p

∫ t

0

∫ s

0
||wj(v)||2dvds by above work

≤ CM̃2Kt2

2p
+

C2M̃2

p

∫ t

0

∫ s

0
||wj(v)− wj(0)||2 + ||wj(0)||2dvds

=
CM̃2Kt2

2p
+

C2M̃2t2

2p
||wj(0)||2 +

C2M̃2

p

∫ t

0

∫ s

0
||wj(v)− wj(0)||2dvds

≤ CM̃2KT 2

2p
+

C2M̃2T 2

2p
||wj(0)||2 +

C2M̃2

p

∫ t

0

∫ s

0
||wj(v)− wj(0)||2dvds

= c1 +

∫ t

0

∫ s

0
c2||wj(v)− wj(0)||2dvds

15
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with c1 = CM̃2KT 2

2p + C2M̃2T 2

2p ||wj(0)||2 and c2 = C2M̃2

p . Note that even though c1 depends
on T , this is constant as T is fixed. We write these quantities in this way to recognize a
Gronwall-type inequality that we can use to bound the left hand side. Indeed, by direct
application of Theorem 57 of Dragomir (2003) (see Theorem 8) we have that

||wj(t)− wj(0)||2 ≤ c1 exp

[∫ t

0

∫ s

0
c2dvds

]
= c1 exp

c2t
2

2

=

(
CM̃2KT 2

2p
+

C2M̃2T 2

2p
||wj(0)||2

)
exp

[
C2M̃2t2

2p

]
.

giving the result for t = T if we take Dp,T = C2M̃2T 2

2p exp
[
C2M̃2T 2

2p

]
and

Ep,T = CM̃2KT 2

2p exp
[
C2M̃2T 2

2p

]
. Clearly these constants satisfy limp→∞Dp,T = 0 and

limp→∞Ep,T = 0 for any fixed T .

Lemma 12 (Lazy Training of a) Under the same conditions as Lemma 11, let ϕ evolve
according to the gradient flow of problem PO, i.e.

ϕ̇(t) = −∇ϕL(ϕ).

Fix any T > 0. Then we have for any j that

||aj(T )||2 ≤ ||wj(0)||2 · Fp,T +Gp,T (16)

almost surely, where Ep,T and Fp,T are constants depending on p, T satisfying
limp→∞Ep,T = 0 and limp→∞ Fp,T = 0.

16
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Proof We will use much of the same work as in Lemma 11. Namely, ||aj(t)||2 = ||aj(t) −
aj(0)||2 almost surely by (D2), and thereafter for any t ∈ (0, T ] we have

||aj(t)− aj(0)||2 ≤
∫ t

0
||ȧj(v)||2ds

≤ 1
√
p

∫ t

0
EP (X)||Jajf(X;ϕ)||2||ℓ′(X, f(X;ϕ(v)))||2ds

≤ M̃
√
p

∫ t

0
EP (X)||Jajf(X;ϕ)||2ds

≤ KM̃t

p
+

M̃C

p

∫ t

0
||wj(s)||2ds by work in Lemma 11

≤ KM̃t

p
+

M̃C

p

∫ t

0
||wj(s)− wj(0)||2 + ||wj(0)||2ds

≤ KM̃t

p
+

M̃Ct

p
||wj(0)||2 +

M̃C

p

∫ t

0
Dp,s||wj(0)||2 + Ep,sds by Lemma 11

≤ KM̃t

p
+

M̃Ct

p
||wj(0)||2 +

M̃C

p

∫ t

0
Ep,sds+

M̃C

p
||wj(0)||2

∫ t

0
Dp,sds

= ||wj(0)||2

(
M̃Ct

p
+

M̃C

p

∫ t

0
Dp,sds

)
+

(
KM̃t

p
+

M̃C

p

∫ t

0
Ep,sds

)
def
= ||wj(0)||2 · Fp,t +Gp,t

Clearly, these constants satisfy limp→∞ Fp,t → 0 and limp→∞Gp,t → 0 (to see this, simply
plug in the forms of Dp,s and Ep,s from Lemma 11 above) and we have the result by taking
t = T .

Now with these results in hand, we may state and prove Proposition 13, given below.

Proposition 13 Under the same conditions as Proposition 10, fix any T > 0. For any
t ∈ (0, T ] let Kp

ϕ(t) : X × X → Rq×q be the mapping defined by (x, x′) 7→ Kϕ(t)(x, x
′) =

Jϕf(x;ϕ(t))Jϕf(x
′;ϕ(t))⊤. Then provided conditions (D1)–(D4) hold, we have as p → ∞

that

sup
x,x̃∈X ,t∈(0,T ]

||Kp
ϕ(t)(x, x̃)−Kp

ϕ(0)(x, x̃)||F
a.s.→ 0. (LT)
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Proof Let us examine the k, lth term of the q× q matrix given by Kp
ϕ(t)(x, x̃)−Kp

ϕ(0)(x, x̃)

for fixed x, x̃, and some t ∈ (0, T ]. The k, lth term is given by (see the work in Appendix C):

1

p

p∑
j=1

1k=l

(
σ
(
x⊤wj(t)

)
σ
(
x̃⊤wj(t)

))
− (17)(

σ
(
x⊤wj(0)

)
σ
(
x̃⊤wj(0)

))
(18)

+
1

p

p∑
j=1

(
akj(t)alj(t)σ

′
(
x⊤wj(t)

)
σ′
(
x̃⊤wj(t)

)(
x⊤x̃

))
− (19)(

akj(0)alj(0)σ
′
(
x⊤wj(0)

)
σ′
(
x̃⊤wj(0)

)(
x⊤x̃

))
. (20)

Above, we have explicitly made clear the dependence of the parameters on time, e.g.
wj(t) vs. wj(0). We aim to show that the quantity above tends to zero as p → ∞. We
first prove this holds pointwise, and will consider the red and blue terms one at a time for
a fixed x, x̃.

First consider the jth summand of the red term. We will bound its absolute value. If
k ̸= l, we’re done, so assume k = l. We have for any j that∣∣∣∣σ (x⊤wj(t)

)
σ
(
x̃⊤wj(t)

)
− σ

(
x⊤wj(0)

)
σ
(
x̃⊤wj(0)

) ∣∣∣∣
=

∣∣∣∣σ (x⊤wj(t)
)
σ
(
x̃⊤wj(t)

)
− σ

(
x⊤wj(t)

)
σ
(
x̃⊤wj(0)

)
+

σ
(
x⊤wj(t)

)
σ
(
x̃⊤wj(0)

)
− σ

(
x⊤wj(0)

)
σ
(
x̃⊤wj(0)

) ∣∣∣∣
≤ |σ

(
x⊤wj(t)

)
| · |σ

(
x̃⊤wj(t)

)
− σ

(
x̃⊤wj(0)

)
|+ |σ

(
x̃⊤wj(0)

)
| · |σ

(
x⊤wj(t)

)
− σ

(
x⊤wj(0)

)
|

and by the Lipschitz assumption on σ(·) and Cauchy-Schwarz, we can bound the quantity
above as follows

≤ (K + C||x||2||wj(t)||2) · C||x̃||2||wj(t)− wj(0)||2 + (K + C||x||2||wj(0)||2) · C||x||2||wj(t)− wj(0)||2

= C2||wj(t)− wj(0)||2
(
2
K

C
+ ||wj(t)||2 + ||wj(0)||2

)
since ||x||2 = ||x̃||2 = 1

≤ C2||wj(t)− wj(0)||2
(
2
K

C
+ ||wj(t)− wj(0)||2 + 2||wj(0)||2

)
by triangle inequality

= 2CK||wj(t)− wj(0)||2 + C2||wj(t)− wj(0)||22 + 2C2||wj(0)||2||wj(t)− wj(0)||2

and using Lemma 11, we can bound all terms above using ||wj(0)||2 as follows.

≤ 2CK (Dp,t||wj(0)||2 + Ep,t) + C2 (Dp,t||wj(0)||2 + Ep,t)
2 + 2C2

(
Dp,t||wj(0)||22 + Ep,t||wj(0)||2

)
=
(
2C2Dp,t + C2D2

p,t

)
||wj(0)||22 +

(
2CKDp,t + 2C2Dp,tEp,t + 2C2Ep,t

)
||wj(0)||2 +

(
2CKEp,t + C2E2

p,t

)
18
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Recalling that wj(0)
iid∼ N (0, Id), we have that ||wj(0)||2 and ||wj(0)||22 are integrable with

expectations denoted µ and ν, respectively. All our work has allowed us to show that∣∣∣∣1p
p∑

j=1

(
σ
(
x⊤wj(t)

)
σ
(
x̃⊤wj(t)

)
− σ

(
x⊤wj(0)

)
σ
(
x̃⊤wj(0)

))∣∣∣∣
≤ 1

p

p∑
j=1

(
2C2Dp,t + C2D2

p,t

)
||wj(0)||22 +

(
2CKDp,t + 2C2Dp,tEp,t + 22CEp,t

)
||wj(0)||2

+
(
2CKEp,t + C2E2

p,t

)
a.s.→
(

lim
p→∞

2C2Dp,t + C2D2
p,t

)
ν +

(
lim
p→∞

2CKDp,t + 2C2Dp,tEp,t + 2C2Ep,t

)
µ

+

(
lim
p→∞

2CKEp,t + C2E2
p,t

)
= 0

by conditions on Dp,t and Ep,t from Lemma 11, the strong law of large numbers, and the
classic result from analysis that limn→∞ anbn = (limn→∞ an) (limn→∞ bn), provided both
limits on the right hand side exist. Lastly, we can achieve the same result for the blue term
quickly. Because aij(0) = 0 w.p. 1 by (D2), we have almost surely that

1

p

p∑
j=1

(
akj(t)alj(t)σ

′
(
x⊤wj(t)

)
σ′
(
x̃⊤wj(t)

)(
x⊤x̃

))
−

(((((((((((((((((((((((((
akj(0)alj(0)σ

′
(
x⊤wj(0)

)
σ′
(
x̃⊤wj(0)

)(
x⊤x̃

))
≤ 1

p

p∑
j=1

|akj(t)||alj(t)||σ′
(
x⊤wj(0)

)
||σ′

(
x̃⊤wj(0)

)
|||x||2||x̃||2

≤ C2

p

p∑
j=1

|akj ||alj |

≤ C2

p

p∑
j=1

||aj(t)||22

because for all j, we have |akj |, |akj | are dominated by ||aj ||2. From here, we have by
Lemma 12 that we can bound each term in the sum above by

≤ C2

p

p∑
j=1

(||wj(0)||2Fp,t +Gp,t)
2

=
C2

p

p∑
j=1

F 2
p,t||wj(0)||22 + 2Fp,tGp,t||wj(0)||2 +G2

p,t

a.s.→ 0
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as p → ∞ by similar logic to the above. Together, these results combine to show that
|Kp

ϕ(t)(x, x̃)kl −Kp
ϕ(0)(x, x̃)kl|

a.s.→ 0 as p → ∞. As k, l were arbitrary k, l ∈ 1, . . . , q, we have

||Kp
ϕ(t)(x, x̃) − Kp

ϕ(0)(x, x̃)||F
a.s.→ 0. This establishes pointwise convergence for some fixed

t ∈ (0, T ]. Uniform convergence over all of X × X and all t ∈ (0, T ] follows easily in this
case. Firstly, the numbers Dp,t, Ep,t, Fp,t, and Gp,t are monotonic in t, so we can bound
uniformly for all t ∈ (0, T ] by taking t = T in the expressions above. Secondly, in our work
above, our bounds on the red and blue terms were independent of the choice of point (x, x̃).
More precisely, the supremum over x, x̃ can accounted for in the bounds easily by observing
that supx,x̃∈X ,t∈(0,T ] ||K

p
ϕ(t)(x, x̃)−Kp

ϕ(0)(x, x̃)||F can be bounded above by

≤ sup
x,x̃∈X

∣∣∣∣∣∣∣∣1p
p∑

j=1

1k=l

(
σ
(
x⊤wj(t)

)
σ
(
x̃⊤wj(t)

))

−
(
σ
(
x⊤wj(0)

)
σ
(
x̃⊤wj(0)

))∣∣∣∣∣∣∣∣
+ sup

x,x̃∈X

∣∣∣∣∣∣∣∣1p
p∑

j=1

(
akj(t)alj(t)σ

′
(
x⊤wj(t)

)
σ′
(
x̃⊤wj(t)

)(
x⊤x̃

))

−
(
akj(0)alj(0)σ

′
(
x⊤wj(0)

)
σ′
(
x̃⊤wj(0)

)(
x⊤x̃

))∣∣∣∣∣∣∣∣
≤ sup

x,x̃∈X

1

p

p∑
j=1

(
2C2Dp,T + C2D2

p,T

)
||wj(0)||22 +

(
2CKDp,t + 2C2Dp,TEp,T + 2C2Ep,T

)
||wj(0)||2

+
(
2CKEp,T + C2E2

p,T

)
+ sup

x,x̃∈X

C2

p

p∑
j=1

F 2
p,T ||wj(0)||22 + 2Fp,TGp,T ||wj(0)||2 +G2

p,T

a.s.→ 0

by the same work as above.

Appendix E. Kernel Gradient Flow Analysis

We rely on additional regularity conditions outlined below. We will consider the following
three flows in our proof of Theorem 4 (for some choice of p):

ḟt(x) = −EP (X)K
p
ϕ(t)(x,X)ℓ′(X, ft(X)) (21)

ġt(x) = −EP (X)K∞(x,X)ℓ′(X, gt(X)) (22)

ḣt(x) = −EP (X)K
p
ϕ(0)(x,X)ℓ′(X,ht(X)) (23)

where ft is shorthand for f(·;ϕ(t)). The three flows above can thought of as corresponding
to PO, FO, and a “lazy” variant, respectively. The flow of ht is “lazy” because it follows
the dynamics of a fixed kernel, the kernel at initialization. The flow of gt also follows a
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fixed kernel, but the limiting NTK K∞ instead. The flow of ft is that obtained in practice,
where the kernel Kp

ϕ(t) changes continuously as the parameters ϕ(t) evolve in time. The
flow in ht is used to bound the differences between ft and gt in the proof of Theorem 4. We
now enumerate the regularity conditions.

(E1) The functional L(f) in FO satisfies inff L(f) > −∞.

(E2) The limiting NTK K∞ is positive definite (so that the RKHS H with kernel K∞ is
well-defined).

(E3) Under (E1) and (E2), the function f∗ minimizing FO satisfies ||f∗||H < ∞, so that
f∗ ∈ H.

(E4) For any choice of p, we have for all t, x that ℓ′(x; ft(x)), ℓ
′(x; gt(x)), and ℓ′(x;ht(x))

are bounded by a constant M̃ .

(E5) The function ℓ is L̃-smooth in its second argument, i.e. ||ℓ′(x, η1) − ℓ′(x, η2)|| ≤
L̃||η1 − η2||.

We first prove Lemma 3 from the manuscript.

Lemma 3 Let f∗ denote the minimizer of FO from Lemma 1, and ϵ > 0. Fix f0, and let
K∞ denote the limiting neural tangent kernel. Let f0 evolve according to the dynamics

ḟt(x) = −EP (X)K∞(x,X)ℓ′(X, ft(X)).

Suppose the conditions of Lemma 1 and (E1)-(E3) hold. Then, there exists T > 0 such that
L(fT ) ≤ L(f∗) + ϵ, where L is the loss functional from FO.

Proof Let f∗ ∈ argminL(f), where L(f) is the functional from FO. Then L(f∗) > −∞
by (E1). Then if ft evolves according to the kernel gradient flow above, we have (from the
chain rule for Frechet derivatives) that

L̇(ft) =
∂L

∂ft
◦ ∂ft

∂t
.

By definition, ∂ft
∂t = ḟt. We also have ∂L

∂ft
: h 7→ EP (X)ℓ

′(X, ft(X))⊤h(X). Plugging this in
yields

L̇(ft) = EX∼P (X)ℓ
′(X, ft(X))⊤

[
−EX′∼P (X)K∞(X,X ′)ℓ′(X ′, ft(X

′))
]

= −EX,X′∼P ℓ
′(X, ft(X))⊤K∞(X,X ′)ℓ′(X ′, ft(X

′)) ≤ 0.

by the positiveness of the kernel K∞ (from (E2)). Now define ∆t =
1
2 ||ft − f∗||2H, where H

is the vector-valued reproducing kernel Hilbert space corresponding to the kernel K∞ (see
Carmeli et al. (2006) for a detailed review). It follows that ∂∆t

∂ft
: h 7→ ⟨ft − f∗, h⟩. Then by

the chain rule we have

−∆̇t = −⟨ft − f∗, ḟt⟩
= −⟨ft − f∗,−EP (X)K∞(·, X)ℓ′(X, ft(X))⟩
= EP (X)ℓ

′(X, ft(X))⊤ [ft(X)− f∗(X)]

≥ EP (X)ℓ(X, ft(X))− ℓ(X, f∗(X))

= L(ft)− L(f∗).
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To go from the second to the third line, we used the reproducing property of the vector-
valued kernel, the definition of inner product, and the linearity of integration. More pre-
cisely, the reproducing property (cf. Eq. (2.2) of Carmeli et al. (2006)) tells us for any
functions g, h and fixed x,

⟨g,K∞(·, x)h(x)⟩ = g(x)⊤h(x)

and so the third line results from the second by exchanging the integral and inner product.
In the second-to-last line we used convexity of ℓ in its second argument (from Lemma 1 of
the manuscript). Now consider the Lyapunov functional given by

E(t) = t [L(ft)− L(f∗)] + ∆t. (24)

Differentiating, we have

Ė(t) = L(ft)− L(f∗) + tL̇(ft) + ∆̇t ≤ 0

by the above work because i) tL̇(ft) ≤ 0 and ii) L(ft) − L(f∗) + ∆̇t ≤ 0, implying that
E(t) ≤ E(0) for all t. Evaluating at t = 0, thus

t [L(ft)− L(f∗)] + ∆t ≤ ∆0

t [L(ft)− L(f∗)] ≤ ∆0 −∆t

t [L(ft)− L(f∗)] ≤ ∆0 since ∆t ≥ 0

[L(ft)− L(f∗)] ≤ 1

t
∆0.

and so we have that there exists sufficiently large T such that |L(fT )−L(f∗)| ≤ ϵ as desired.

Using this result and our previous results, we now are able to prove Theorem 4 from
the manuscript.

Theorem 4 Consider the width-p scaled 2-layer ReLU network, evolving via the flow

ḟt(x) = −EP (X)K
p
ϕ(t)(x,X)ℓ′(X, ft(X)), (6)

where ft denotes f(·, ϕ(t)). Let f∗ denote the unique minimizer of FO from Lemma 1, and
ϵ > 0. Then under conditions (C1)–(C4),(D1)–(D4), and (E1)–(E5), there exists T > 0
such that almost surely [

lim
p→∞

L(fT )

]
≤ L(f∗) + ϵ. (7)

Proof We will examine the three gradient flows

ḟt(x) = −EP (X)K
p
ϕ(t)(x,X)ℓ′(X, ft(X)) (25)

ġt(x) = −EP (X)K∞(x,X)ℓ′(X, gt(X)) (26)

ḣt(x) = −EP (X)K
p
ϕ(0)(x,X)ℓ′(X,ht(X)) (27)
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and establish the result by the triangle inequality, i.e.

|L(fT )− L(f∗)| ≤ |L(fT )− L(gT )|+ |L(gT )− L(f∗)|. (28)

The flow in ht will be used to help bound the first term, but we begin with the second term.
By Lemma 3, pick T > 0 sufficiently large such that |L(gT ) − L(f∗)| ≤ ϵ/2. Fix this T .
This provides a suitable bound on the second term.

Turning to the first term, by continuity of L(f) from FO in f , there exists δ > 0 such
that y ∈ B(gT , δ) =⇒ |L(y)− L(gT )| ≤ ϵ/2. We will show that there exists P sufficiently
large such that p > P implies ||fT − gT || ≤ δ almost surely, yielding the desired bound
on the first term of the decomposition above. Throughout, || · || denotes the L2 norm of
a function with respect to probability measure P (i.e. the marginal distribution of P (X)
from our joint model P (Θ, X)).

To show that there exists sufficiently large P such that ||fT − gT || ≤ δ, we use another
application of the triangle inequality

||fT − gT || ≤ ||fT − hT ||+ ||hT − gT ||

and construct bounds on the two terms on the right hand side using Proposition 10 and
Proposition 13. Observe first that by (C2)/(D2), at initialization we have almost surely
that f0 = g0 = h0 = 0. Also note that by continuity of K∞ (established in Lemma 9) on
the compact domain X ×X we have supx,x̃ ||K(x, x̃)||2 < M for some M . Finally, note that

by (E5) the function ℓ′(x, η) is Lipschitz in its second argument with constant L̃. Below, we
let || · ||2 denote the 2-norm of a vector or matrix, depending on the argument, and || · ||F
the Frobenius norm of a matrix. For functions, as stated || · || denotes the L2 norm with
respect to measure P (X), i.e. ||f ||2 =

∫
f(X)⊤f(X)dP (X). From here, we have

||gT − hT ||
a.s.
= ||(gT − g0)− (hT − h0)||

=

∣∣∣∣∣∣∣∣ ∫ T

0
EP (X)

[
K∞(·, X)ℓ′(X, gt(X))−Kp

ϕ(0)(·, X)ℓ′(X,ht(X))
]
dt

∣∣∣∣∣∣∣∣
≤
∫ T

0
EP (X)||K∞(·, X)ℓ′(X, gt(X))−Kp

ϕ(0)(·, X)ℓ′(X,ht(X))||dt

=

∫ T

0
EP (X)||K∞(·, X)ℓ′(X, gt(X))−K∞(·, X)ℓ′(X,ht(X))+

K∞(·, X)ℓ′(X,ht(X))−Kp
ϕ(0)(·, X)ℓ′(X,ht(X))||dt

≤
∫ T

0
EP (X)||K∞(·, X)

[
ℓ′(X, gt(X))− ℓ′(X,ht(X))

]
||+

||K∞(·, X)ℓ′(X,ht(X))−Kp
ϕ(0)(·, X)ℓ′(X,ht(X))||dt (29)

Now, we note the following facts. Firstly, for any kernel K that is uniformly bounded (i.e.
||K(x, y)||2 ≤ M for any x, y), the L2 norm of the function ||K(·, X)v|| for fixed X, v can
be bounded by

||K(·, X)v||2 =
∫

v⊤K(Y,X)⊤K(Y,X)vdP (Y ) ≤
∫

||K(Y,X)||22||v||22dP (Y ) ≤ M2||v||22

=⇒ ||K(·, X)v|| ≤ M ||v||2
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Secondly, we have again for any fixed v and X that

||
[
K∞(·, X)−Kp

ϕ(0)(·, X)
]
v||2 =

∫
v⊤
[
K∞(Y,X)−Kp

ϕ(0)(Y,X)
]⊤ [

K∞(Y,X)−Kp
ϕ(0)(Y,X)

]
vdP (y)

≤
∫

||K∞(Y,X)−Kp
ϕ(0)(Y,X)||22||v||22dP (y)

≤
(
sup
x,y

||K∞(y, x)−Kp
ϕ(0)(y, x)||F

)2

||v||22

=⇒ ||
[
K∞(·, X)−Kp

ϕ(0)(·, X)
]
v|| ≤ sup

x,y
||K∞(y, x)−Kp

ϕ(0)(y, x)||F · ||v||2

since the matrix (spectral) 2-norm is dominated by the Frobenius norm. Plugging these
facts into Equation (29) above, we have

≤
∫ T

0
EP (X)M · ||ℓ′(X, gt(X))− ℓ′(X,ht(X))||2 + sup

x,y
||K∞(x, y)−Kp

ϕ(0)(x, y)||F · ||ℓ′(X,ht(X))||2dt

≤
∫ T

0
EP (X)ML̃||gt(X)− ht(X)||2 + M̃ sup

x,y
||K∞(x, y)−Kp

ϕ(0)(x, y)||dt by (E4)

≤ M̃T sup
x,y

||K∞(x, y)−Kp
ϕ(0)(x, y)||F +ML̃

∫ T

0
EP (X)

√
||gt(X)− ht(X)||22dt

≤ M̃T sup
x,y

||K∞(x, y)−Kp
ϕ(0)(x, y)||F +ML̃

∫ T

0

√
EP (X)||gt(X)− ht(X)||22dt by Jensen’s inequality

= M̃T sup
x,y

||K∞(x, y)−Kp
ϕ(0)(x, y)||F +ML̃

∫ T

0
||gt − ht||dt

≤ M̃T sup
x,y

||K∞(x, y)−Kp
ϕ(0)(x, y)||F exp(ML̃T ) by Gronwall’s inequality (Theorem 7)

By Proposition 10, there thus exists P1 such that for all p > P1 we have ||gT − hT || ≤ δ
2

almost surely. We proceed nearly identically for the term ||hT − fT ||. We need only note
that Kp

ϕ(0) for sufficiently large p, say p > P2, we can bound Kp
ϕ(0) uniformly (almost surely)

by a constant A > M . To see this, observe that by Proposition 10 we have that there exists
almost surely a sufficiently large P such that supx,y ||K∞(x, y) − Kp

ϕ(0)(x, y)||F < A − M
and so by triangle inequality we have

sup
x,y

||Kp
ϕ(0)||F ≤ sup

x,y
||Kp

ϕ(0)(x, y)−K∞(x, y)||F + ||K∞(x, y)||F

≤ sup
x,y

||Kp
ϕ(0)(x, y)−K∞(x, y)||F + sup

x,y
||K∞(x, y)||F

≤ A−M +M = A
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Thereafter,

||hT − fT ||
a.s.
= ||(hT − h0)− (fT − f0)||

=

∣∣∣∣∣∣∣∣ ∫ T

0
EP (X)

[
Kp

ϕ(0)(·, X)ℓ′(X,ht(X))−Kp
ϕ(t)(·, X)ℓ′(X, ft(X))

]
dt

∣∣∣∣∣∣∣∣
≤
∫ T

0
EP (X)||K

p
ϕ(0)(·, X)ℓ′(X,ht(X))−Kp

ϕ(t)(·, X)ℓ′(X, ft(X))||dt

≤
∫ T

0
EP (X)||K

p
ϕ(0)(·, X)ℓ′(X,ht(X))−Kp

ϕ(0)(·, X)ℓ′(X, ft(X))||+

||Kp
ϕ(0)(·, X)ℓ′(X, ft(X))−Kp

ϕ(t)(·, X)ℓ′(X, ft(X))||dt

≤
∫ T

0
EP (X)A · ||ℓ′(X,ht(X))− ℓ′(X, ft(X))||2+

sup
x,y,t∈(0,T ]

||Kp
ϕ(0)(x, y)−Kp

ϕ(t)(x, y)||F · ||ℓ′(X, ft(X))||dt

≤ M̃T sup
x,y,t∈(0,T ]

||Kp
ϕ(0)(x, y)−Kp

ϕ(t)(x, y)||F +AL̃

∫ T

0
EP (X)||ht(X)− ft(X)||2dt

and we can similarly switch from EP (X)||ht(X)−ft(X)||2 to the L2 norm ||ht−ft|| as above
using Jensen’s inequality, yielding

≤ M̃T sup
x,y,t∈(0,T ]

||Kp
ϕ(0)(x, y)−Kp

ϕ(t)(x, y)||F +AL̃

∫ T

0
||ht − ft||dt

≤ M̃T sup
x,y,t∈(0,T ]

||Kp
ϕ(0)(x, y)−Kp

ϕ(t)(x, y)||F exp
(
AL̃T

)
Clearly, by the same logic as the above there exists P3 such that p > P3 implies
M̃T supx,y,t∈(0,T ] ||K

p
ϕ(0)(x, y)−Kp

ϕ(0)(x, y)|| exp(AL̃T ) ≤ δ/2 by Proposition 13. Then for

all p > max(P1, P2, P3), we have almost surely that ||hT − fT || ≤ δ/2. This completes
the proof, as in this case we have by the triangle inequality that ||fT − gT || ≤ δ and so
|L(fT )− L(gT )| ≤ ϵ/2 by construction.

Appendix F. Experimental Details

Recall the generative model for this problem, given by the following:

Θ ∼ Unif[0, 2π]

Z ∼ N (0, σ2)

X | (Θ = θ, Z = z) ∼ δ
(
[cos(θ + z), sin(θ + z)]⊤

)
.

The variable σ is a hyperparameter of the model that we take to be σ = 0.5. The
model is constructed such that x ∈ S1 to satisfy assumptions (C1) and (D1), respectively.

25



Authors

One thousand pairs of data points {θi, xi}1000i=1 were generated independently from the model
above and fixed as the “dataset” for which ground truth latent parameter values are known.

We constructed scaled, dense single hidden-layer ReLU networks of varying widths, with
2j neurons for j = 6, . . . , 12 with the same architecture as in Appendix C and the initial-
ization described in condition (C2). All networks were trained to minimize the expected
forward KL objective; stochastic gradients were estimated using batches of 16 independent
simulated (θ, x) pairs from the generative model, and stochastic gradient descent was per-
formed using the Adam optimizer with learning rate ρ = 0.0001. We employ a learning rate
scheduler that scales the learning rate as O(1/I), where I denotes the number of iterations.
All models were fitted for 200,000 stochastic gradient steps. The natural parameter for the
von Mises distribution is parameterized as η = f(x;ϕ) + 0.0001. This small perturbation
must be added because f(·;ϕ) = 0 at initialization, and the value of η = 0 lies outside the
natural parameter space for this variational family.

For the linearized neural network models, all training settings where the same except
for the architecture. For these models, we first constructed neural networks as above for
each width to compute the Jacobian evaluated at the initial weights Jϕ(x;ϕ0). Thereafter,
the model in ϕ is fixed as

f(x;ϕ) = f(x;ϕ0) + Jϕ(x;ϕ0)(ϕ− ϕ0)

where ϕ, ϕ0 are flattened vectors of parameters from the neural network architectures. Using
this linearized model above, the parameter ϕ is fitted by SGD as above.

The plots in Figure 1 of the manuscript are constructed by evaluating the average neg-
ative log-likelihood on the dataset at each iteration, i.e. for the fixed n = 1000 pairs of
observations above, we evaluate the finite-sample loss for the expected forward KL diver-
gence. Up to fixed constants, this quantity is given by

− 1

n

n∑
i=1

log q(θi; f(xi;ϕ))

where ϕ is the current iterate of the parameters (either the neural network parameters or the
flattened vector of parameters of the same size for the linearized model). The red horizontal
line in Figure 1 is set at the value − 1

n

∑n
i=1 log p(θi | xi), where p denotes the exact posterior

distribution (computed using numerical integration over a fine grid of evaluation points).
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