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Abstract

In variational inference (VI), an approximation of the posterior distribution is selected from
a family of distributions through numerical optimization. With the most common varia-
tional objective function, known as the evidence lower bound (ELBO), only convergence to
a local optimum can be guaranteed. In this work, we instead establish the global conver-
gence of a particular VI method. This VI method, which may be considered an instance of
neural posterior estimation (NPE), minimizes an expectation of the inclusive (forward) KL
divergence to fit a variational distribution that is parameterized by a neural network. Our
convergence result relies on the neural tangent kernel (NTK) to characterize the gradient
dynamics that arise from considering the variational objective in function space. In the
asymptotic regime of a fixed, positive-definite neural tangent kernel, we establish condi-
tions under which the variational objective admits a unique solution in a reproducing kernel
Hilbert space (RKHS). Then, we show that the gradient descent dynamics in function space
converge to this unique function. We empirically demonstrate that our theoretical results
explain the good performance of NPE in non-asymptotic finite-neuron settings.

1. Introduction

In variational inference (VI), the parameters η of an approximation to the posterior Q(Θ; η)
are selected to optimize an objective function, typically the evidence lower bound (ELBO)
(Blei et al., 2017). However, the ELBO is generally nonconvex in η, even for simple vari-
ational families such as the family of Gaussian distributions, and so only convergence to a
local optimum of the ELBO can be guaranteed (Ghadimi and Lan, 2015; Ranganath et al.,
2014; Hoffman et al., 2013). As the number of such optima and the degree of suboptimality
of each is generally unknown, the lack of global convergence guarantees constitutes a signif-
icant complication for practitioners and a longstanding barrier to the broader adoption of
VI. In this work, we present the first global convergence result for variational inference. We
accomplish this in the context of an increasingly popular alternative objective for variational
inference, the expected forward KL divergence:

LP (ϕ) := EP (X)KL [P (Θ | X) || Q(Θ; f(X;ϕ))] . (1)

Here, P (X) denotes a marginal of the model and P (Θ | X) denotes the posterior. For each
x ∈ X , the approximation Q(Θ; η) to P (Θ | X = x) is indexed by distributional parameters
η ∈ Y ⊆ Rq, which are themselves the output of a neural network f(x;ϕ) with weights ϕ ∈ Φ.
Minimization of this objective is straightforward: computing unbiased gradients requires
only sampling θ, x ∼ P (Θ, X) from the joint model (Section 2.1), readily accomplished by
ancestral sampling of P (Θ) followed by P (X | Θ). Analysis of the amortized problem (i.e.,
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optimizing an objective that averages over P (X)) is beneficial when considering the forward
KL; for the non-amortized problem in which a single observation x is considered, only
biased estimates of the gradient of the forward KL can be obtained using self-normalized
importance sampling, making convergence difficult to establish (Bornschein and Bengio,
2015; Le et al., 2019; Owen, 2013).

Our analysis considers a functional form of the variational objective LP , given by

LF (f) := EP (X)KL [P (Θ | X) || Q(Θ; f(X))] , (2)

where LF : H → R is defined over a general reproducing kernel Hilbert space of functions
H. We refer to (1) as the “parametric objective”, as its argument is the parameters ϕ ∈ Φ,
and we refer to (2) as the “functional objective” as its argument is a function f ∈ H.
These objectives are closely related: under a given network parameterization, provided
f(·;ϕ) ∈ H, we have LP (ϕ) = LF (f(·;ϕ)). We first demonstrate strict convexity of the
functional objective LF when Q is parameterized as an exponential family distribution
(Section 3). This implies the existence of a unique global optimizer f∗ of LF for a large
class of variational families. Afterward, we analyze kernel gradient flow dynamics using
the neural tangent kernel to show that minimization of LP results (asymptotically) in an
empirical mapping f that is at most ϵ-suboptimal relative to f∗ provided a sufficiently
flexible neural network is used to parameterize f (Section 4). Together, these results imply
that in the infinite-width limit, optimization of LP by gradient descent recovers a unique
global solution.

Our analysis relies on fairly mild conditions, the most important of which are the
positive-definiteness of the neural tangent kernel and the structure of the variational fam-
ily (i.e., an exponential family) (Section 6). Our proofs further assume a two-layer ReLU
network architecture for simplicity, but we conjecture that this assumption can be relaxed.
Even for practitioners interested in non-amortized inference for a single observable x0, our
approach still yields a unique solution. Lifting the problem into the amortized setting
yields a unique mapping f , and a unique variational approximation for the x0 of interest:
Q(Θ; f(x0;ϕ)). Our results thus have implications for practitioners of both amortized and
non-amortized VI. Beyond suggesting the advantages of the expected forward KL objective
in particular, our results suggest, surprisingly, that a likelihood-free approach to inference
can outperform likelihood-based optimization of the ELBO.

2. Background

2.1. The Expected Forward KL Divergence

The expected forward KL objective is equivalent to the “sleep” objective of Reweighted
Wake-Sleep (RWS) (Bornschein and Bengio, 2015), and to the objective considered in for-
ward amortized variational inference (FAVI) (Ambrogioni et al., 2019). These methods in
turn fit into the framework of the thermodynamic variational objective (TVO) as a spe-
cial case. Similar objectives have been considered by neural posterior estimation (NPE)
methods (e.g. Papamakarios and Murray (2016); Papamakarios et al. (2019)), but in these
methods the prior used to simulate observations (and thus the marginal P (X)) mutates
during training. Objectives based on the forward KL divergence generally result in varia-
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tional posteriors that are overdispersed, a desirable property compared to reverse KL-based
optimization (Le et al., 2019; Domke and Sheldon, 2018).

Other VI methods optimize different expectations of the forward KL than Equation (1),
typically EX∼DKL [P (Θ | X) || Q(Θ; f(X;ϕ))] (Zhang et al., 2023; McNamara et al., 2024).
Here, the outer expectation is over an empirical dataset D rather than P (X). Averaging
over simulated draws from P (X) compared to averaging over the dataset D is advantageous
because when P (X) is used, the resulting method is likelihood-free and admits unbiased
gradient estimates (see Appendix B). In non-amortized cases or when the expected forward
KL is computed over the dataset D, approximations are required that result in biased
gradient estimates (e.g., by self-normalized importance sampling in the wake phase of RWS),
for which stochastic gradient descent carries no convergence guarantees.

2.2. The Neural Tangent Kernel

A neural network architecture and the parameter space Φ of its weights together define
a family of functions {f(·;ϕ) : ϕ ∈ Φ}. Let ℓ(x, f(x)) denote a general real-valued loss
function and consider selecting the parameters ϕ to minimize EP (X)ℓ(X, f(X;ϕ)), where
P (X) is a fixed distribution on the data space X . The neural tangent kernel (NTK) (Jacot
et al., 2018) analyzes the evolution of the function f(·;ϕ) while ϕ is fitted to minimize
the objective above by gradient descent. Continuous-time dynamics are used and ϕ(t) and
f(·;ϕ(t)) are defined across continuous time t. The parameters ϕ thus follow the ODE

ϕ̇(t) = −∇ϕEP (X)ℓ(X, f(X;ϕ(t))). (3)

Here, ϕ̇ denotes the derivative with respect to t, and by the chain rule the function values
f(x;ϕ(t)) evolve via

ḟ(x;ϕ(t)) = −EP (X) Jϕf(x;ϕ(t))Jϕf(X;ϕ(t))⊤︸ ︷︷ ︸
NTK

ℓ′(X, f(X;ϕ(t))).

Above, we set ℓ′(X, f(X)) := ∇f ℓ(X, f(X)) to simplify notation. The product of Jacobians
above is known as the neural tangent kernel (NTK). The seminal work of Jacot et al. (2018)
defined and studied this kernel, given by

Kϕ(x, x
′) = Jϕf(x;ϕ)Jϕf(x

′;ϕ)⊤, (4)

and established convergence results for certain neural network architectures as the width
grows large.

3. Convexity of the Functional Objective

We now turn to analysis of the functional objective LF given in Equation (2). We fix an
RKHSH over which to minimize LF for now, specializing to the particular choice ofH based
on the neural tangent kernel subsequently. Let ℓ(x, f(x)) = KL [P (Θ | X = x) || Q(Θ; f(x))].
The functional LF then has the form LF (f) = EP (X)ℓ(X, f(X)); we will use this form subse-
quently for neural tangent kernel analysis. Our first result shows that targeting LF is highly
desirable theoretically: LF admits a unique global minimizer if the variational family Q is
an exponential family, as is common practice in VI.
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Lemma 1 Suppose that Q(Θ; η) is an exponential family distribution with natural param-
eters η, sufficient statistics T (θ), and density q(θ; η) with respect to Lebesgue measure λ(Θ).
Then, for any observation x ∈ X ⊆ Rd, the loss function

ℓ(x, η) = KL [P (Θ | X = x) || Q(Θ; η)]

is strictly convex in η, provided that P (Θ | X = x) ≪ Q(Θ; η) ≪ λ(Θ) for all η ∈ Y ⊆ Rq.

A proof of Lemma 1 is provided in Appendix A. Lemma 1 shows strict convexity of
the function ℓ in η. This immediately implies strict convexity of the functional LF (f) =
EP (X)ℓ(X, f(X)) in f by linearity of expectation, which in turn implies the existence of at
most one global minimizer.

Corollary 2 Suppose that Q(Θ; η) is an exponential family distribution. Then, under the
conditions of Lemma 1, the functional objective

LF (f) := EP (X)KL [P (Θ | X) || Q(Θ; f(X))]

is strictly convex in f . Consequently, the set of global minimizers of LF is either a singleton
set or empty.

We will assume the existence of f∗ so that minimization of LF is well-posed, and also
assume ||f∗||H < ∞ so that f∗ ∈ H. Hereafter, we shall use “unique” to mean unique
almost everywhere with respect to P (X). Furthermore, in a slight abuse of notation, f∗

will denote the unique equivalence class of functions that minimizes LF .
Lemma 1 establishes convexity of the (non-amortized) forward KL divergence. Corollary

2 establishes the convexity of LF , the amortized objective, in function space. Convexity
holds regardless of the distribution chosen for the outer expectation (e.g., a mixture of point
masses corresponding to a empirical dataset may be used, such as in the methods described
in Section 2.1).

4. Global Optima of the Parametric Objective

In the second phase of our analysis, we consider converging to f∗ by gradient descent. As
done in practice, we target LP , as optimizing LF directly is not tractable. We consider
performing gradient descent on ϕ in continuous time as in Equation (3). Continuous-time
dynamics simplify theoretical analysis; stochastic gradient descent with unbiased gradients
follows a (noisy) Euler discretization of the continuous ODE (Santambrogio, 2017; Yang
et al., 2021). Considering X ∼ P (X) for the outer expectation in both LP and LF is
key in this context: this choice enables unbiased stochastic gradient estimation for LP (see
Appendix B), whereas other choices require approximations that result in biased gradient
estimates (see Section 2.1) and thus follow different gradient dynamics.

We focus on a scaled two-layer ReLU network for our results (this architecture is detailed
in Appendix C) and use this simple architecture to prove results as the network width
p tends to infinity. Our results may be extended to multilayer perceptrons with other
activation functions as well. Recall the NTK Kp

ϕ from Equation (4), where we now let
p denote the network width. We allow multidimensional natural parameters η ∈ Rq in
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our formulation and so for any p, ϕ, x, x̃ we have Kp
ϕ(x, x̃) ∈ Rq×q because if dim Φ = r,

then Jϕf(x;ϕ) ∈ Rq×r and so Kp
ϕ(x, x

′) ∈ Rq×q. For certain neural network architectures,
Jacot et al. (2018) show that as the network width p tends to infinity, the neural tangent
kernel becomes stable and tends (pointwise) towards a fixed, positive-definite limiting neural
tangent kernel K∞. We prove this convergence holds uniformly over the data space X in
Appendix D for our two-layer ReLU architecture. Hereafter, H is taken to be the RKHS
with kernel K∞.

We bridge the divide between the minimizers of the convex functional LF and the
nonconvex LP using the limiting kernel. Section 2.2 shows that optimizing LP causes the
network function to evolve according to a kernel gradient flow via the neural tangent kernel,
i.e. for any fixed x, optimization of LP yields

ḟ(x;ϕ(t)) = −EP (X)K
p
ϕ(t)(x,X)ℓ′(X, f(X;ϕ(t)),

where ḟ denotes the time derivative. Recalling that LF has a unique minimizer f∗ (Corollary
2), we show that under mild conditions on the limiting tangent kernel K∞, f∗ is the solution
obtained by following the same kernel gradient flow dynamics in H with respect to the
limiting neural tangent kernel, i.e. the ODE given by

ḟt(x) = −EP (X)K∞(x,X)ℓ′(X, ft(X)).

In other words, beginning from some function f0, following the limiting NTK gradient flow
dynamics above minimizes the loss functional LF for sufficiently large T . Appendix E
provides a proof of Lemma 3 and enumerates regularity conditions (E1)–(E3).

Lemma 3 Let f∗ denote the minimizer of LF from Lemma 1, and ϵ > 0. Fix f0, and let
K∞ denote the limiting neural tangent kernel. Let f0 evolve according to the dynamics

ḟt(x) = −EP (X)K∞(x,X)ℓ′(X, ft(X)).

Suppose that the conditions of Lemma 1 and (E1)-(E3) hold. Then, there exists T > 0 such
that LF (fT ) ≤ LF (f

∗) + ϵ.

This result enables comparison of the minimizers of LP and LF by comparing the two
gradient flows above, i.e. kernel gradient flow dynamics that follow Kp

ϕ(t) and K∞, respec-
tively. We show that for any fixed T , the functions obtained by following kernel gradient
dynamics with Kp

ϕ(t) and K∞ can be made arbitrarily close to one another, provided p is
sufficiently large. This suggests that for large p, the gradient descent solution to LP becomes
close to the unique solution f∗ of LF . We prove that this is the case in Theorem 4, proven
in Appendix E. Regularity conditions (C1)–(C4), (D1)–(D4), and (E1)–(E5) are provided
in Appendices C, D, and E, respectively.

Theorem 4 Consider the width-p scaled 2-layer ReLU network, evolving via the flow

ḟt(x) = −EP (X)K
p
ϕ(t)(x,X)ℓ′(X, ft(X)), (5)
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where ft denotes f(·, ϕ(t)). Let f∗ denote the unique minimizer of LF from Lemma 1, and
fix ϵ > 0. Then, under conditions (C1)–(C4),(D1)–(D4), and (E1)–(E5), there exists T > 0
such that almost surely [

lim
p→∞

L(fT )

]
≤ L(f∗) + ϵ, (6)

where L is the loss functional LF .

The proof first selects a T by Lemma 3, and then bounds the difference in the trajectories
on [0, T ] for sufficiently large width p by convergence of the kernels Kp

ϕ(t) → K∞. The

proof differs from previous results in that it relies on uniform convergence of kernels (cf.
Appendices C and D), enabling analysis of population quantities such as EP (X)ℓ(X, f(X)).
Theorem 4 implies convergence to a unique solution when optimizing LP , despite the highly
nonconvex nature of this optimization problem in the network parameters ϕ. For sufficiently
flexible network architectures, optimization of LP behaves similarly to that of LF , which
we have shown is a convex problem in function space H.

5. Simulation Study

Here we assess whether the asymptotic regime of Theorem 4 is relevant to practice (with
finite width p). We explore a diagnostic from Chizat et al. (2019), who provide the intuition
that in the limiting NTK regime, the function f behaves much like its linearization around
the initial weights ϕ0, i.e.,

f(x;ϕ) ≈ f(x;ϕ0) + Jϕf(x;ϕ0)(ϕ− ϕ0). (7)

Liu et al. (2020) prove that equality holds exactly in the equation above if and only if
f(x;ϕ) has a constant tangent kernel (i.e. K∞). Note that even if f is linear in ϕ, as in
the above expression, it may still be highly nonlinear in x. We consider a toy example
for which ||x||2 = 1, a condition assumed for many NTK-based results. The generative
model first draws a rotation angle Θ uniformly between 0 and 2π, and then a rotation
perturbation Z ∼ N (0, σ2), where we take σ = 0.5. Conditional on Θ and Z, the data x is
deterministic: x = [cos(θ + z), sin(θ + z)]⊤. This construction ensures that the data lie on
the sphere S1 ⊂ R2, guaranteeing positivity of the limiting NTK for certain architectures
(Jacot et al., 2018). We aim to infer Θ given a realization x, marginalizing out the nuisance
latent variable Z. Our variational family Q(Θ; f(x)) is a von Mises distribution on the
interval [0, 2π]. This family is an exponential family distribution to allow application of
Lemma 1. The encoder network f(·, ϕ) is given by a two-layer (equivalently, single hidden
layer) dense network with rectified linear unit (ReLU) activation, which we study as the
network width p grows. The network outputs f(x;ϕ) parameterize the natural parameter
η.

We demonstrate that finite p is well described by the asymptotic regime by fitting
the neural network f(x;ϕ) above, and comparing the results to fitting its linearization
flin(x;ϕ) = f(x;ϕ0) + Jϕf(x;ϕ0)(ϕ − ϕ0) in ϕ for differing widths p. For both settings,
stochastic gradient estimation was performed by following the procedure in Appendix B.
For evaluation, we fix N = 1000 independent realizations x∗1, . . . , x

∗
N from the generative

model with underlying ground-truth latent parameter values θ∗1, . . . , θ
∗
N , and evaluate the
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held-out negative log-likelihood (NLL), − 1
N

∑N
i=1 log q (θ

∗
i ; f(x

∗
i ;ϕ)), for each of the two

functions f(x;ϕ) and flin(x;ϕ). Figure 1 shows the evolution of the held-out NLL across
the fitting procedure for three different network widths p: 64, 256, and 1024. The difference
in quality between the linearized and true functions at convergence diminishes as the width
n grows; for n = 1024 the two are nearly identical, providing evidence that the asymptotic
regime of Section 4 is achieved, i.e. that the neural tangent kernel is approximately K∞.

Figure 1: Negative log-likelihood across gradient steps, for network widths 64, 256, and
1024 neurons. NLL for the exact posterior is denoted by the red line.

6. Discussion

In this work, we showed that in the asymptotic limit of an infinitely wide neural network,
gradient descent dynamics on the expected forward KL objective LP converge to an ϵ
neighborhood of a unique function f∗. The proofs of Lemma 1 and Theorem 4 depend
on several regularity conditions, the most important of which is the positive definiteness
of the limiting neural tangent kernel (Section 2.2) and the compactness of the data space
X . The former allows us to take H, the domain of LF , to be the RKHS defined by the
limiting neural tangent kernel, while the latter is key in establishing uniform convergence
of kernels on X , necessary to analyze population losses such as LF and LP that take the
form of expectations with respect to a continuous measure on X .

Like other neural tangent kernel results, we analyze a specific architecture and initializa-
tion of the network weights, and require smoothness of the objective. Our results consider a
single hidden-layer ReLU network, as is common in the NTK literature, and are asymptotic
in its width p. We show experimentally that the asymptotic regime accurately characterizes
training dynamics in practice for a finite number of neurons (Section 5), which provides ev-
idence that our global convergence result describes training dynamics in empirical settings,
i.e. the convex behavior of LP -based minimization is achieved in practice.

Expected forward KL minimization is a likelihood-free inference (LFI) method. This
class of methods is often viewed as a tool only for use in the case where the likelihood func-
tion is unavailable. Our results suggest, instead, that likelihood-free approaches to inference
may be preferable even when the likelihood function is readily available. Likelihood-based
optimization of the ELBO often converges to a shallow local optimum, while, under reason-
able conditions, expected forward KL minimization converges to a global optimum.
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Appendix A. Convexity of the Functional Objective

We prove Lemma 1 from the manuscript below.

Lemma 1 Suppose that Q(Θ; η) is an exponential family distribution with natural param-
eters η, sufficient statistics T (θ), and density q(θ; η) with respect to Lebesgue measure λ(Θ).
Then, for any observation x ∈ X ⊆ Rd, the loss function

ℓ(x, η) = KL [P (Θ | X = x) || Q(Θ; η)]

is strictly convex in η, provided that P (Θ | X = x) ≪ Q(Θ; η) ≪ λ(Θ) for all η ∈ Y ⊆ Rq.

Proof Let the log-density be given by log q(θ; η) = log h(θ)+ η⊤T (θ)−A(η). First observe
that under the conditions given, the function ℓ is equivalent (up to additive constants) to a
much simpler expression, the expected log-density of q, via

ℓ(x, η) = KL

[
P (Θ|X = x) || Q(Θ; η)

]
= Hx − EP (Θ|X=x) log q(θ; η)
η
= −EP (Θ|X=x) log q(θ; η).

Now, the mapping η → − log q(θ; η) is convex in η because its Hessian is ∂A
∂η∂η⊤

= Var(T (θ)) ≻
0 (cf. Chapter 6.6.3 of Srivastava et al. (2014)). We can show ℓ is convex in η by applying
linearity of expectation. We have for any λ ∈ [0, 1]

ℓ(x, λη1 + (1− λ)η2) = −EP (Θ|X=x) log q(Θ;λη1 + (1− λ)η2) (8)

≤ −EP (Θ|X=x)

(
λ log q(Θ; η1) + (1− λ) log q(Θ; η2

)
(9)

= λℓ(x, η1) + (1− λ)ℓ(x, η2) (10)

where the second line follows from convexity of the map η 7→ − log q(θ; η) above for any
value of θ. So the function ℓ(x, η) is strictly convex in η.

Appendix B. Unbiased Stochastic Gradients for the Parametric
Objective

Computation of unbiased estimates of gradient of the loss function LP (ϕ) with respect to
parameters ϕ is all that is needed to implement SGD for LP . Under mild conditions (see
Proposition 5), the loss function LP (ϕ) may be equivalently written as

LP (ϕ) = EP (X)EP (Θ|X) log
p(Θ | X)

q(Θ; f(X;ϕ))
= EP (Θ,X) log

p(Θ | X)

q(Θ; f(X;ϕ))

for density functions p, q, where f(·, ϕ) denotes a function parameterized by ϕ. Under the
conditions of Theorem 5 differentiation and integration may be interchanged, so that

∇ϕLP (ϕ) = EP (Θ,X)∇ϕ log
p(Θ | X)

q(Θ; f(X;ϕ))
= −EP (Θ,X)∇ϕ log q(Θ; f(X;ϕ))

and unbiased estimates of the quantity can be easily attained by samples drawn (θ, x) ∼
P (Θ, X).
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Proposition 5 Let (Ω1,B1), (Ω2,B2) be measurable spaces on which the random variables
X : Ω1 → X and Θ : Ω2 → O are defined, respectively. Suppose that for all x ∈ X and
all ϕ ∈ Φ we have P (Θ | X = x) ≪ Q(Θ; f(x;ϕ)) ≪ λ(Θ), with λ(Θ) denoting Lebesgue

measure and ≪ denoting absolute continuity. Further, suppose that log
(

p(Θ|X)
q(Θ;f(X;ϕ))

)
is

measurable with respect to the product space (Ω1 × Ω2,B1 × B2) for each ϕ ∈ Φ, and
∇ϕ log q(θ; f(x;ϕ)) exists for almost all (θ, x) ∈ O × X . Finally, assume there exists an
integrable Y dominating ∇ϕ log q(θ; f(x;ϕ)) for all ϕ ∈ Φ and almost all (θ, x) ∈ O × X .
Then for any B ∈ N and any ϕ ∈ Φ the quantity

∇̂(ϕ) = − 1

B

B∑
i=1

∇ϕ log q(θi; f(xi;ϕ)), (θi, xi)
iid∼ P (Θ, X) (11)

is an unbiased estimator of the gradient of the objective LP , evaluated at ϕ ∈ Φ.

Proof By the absolute continuity assumptions, for any x ∈ X the distributions P (Θ | X =
x) and Q(Θ; f(x;ϕ)) admit densities with respect to Lebesgue measure denoted p(θ | x)
and q(θ; f(x;ϕ)), respectively. We may then rewrite the KL divergence from Equation (1)
as

KL

[
P (Θ | X = x) || Q(Θ; f(x;ϕ))

]
:= EP (Θ|X=x) log

(
dP (Θ | X = x)

dQ(Θ; f(x;ϕ))

)
= EP (Θ|X=x) log

(
p(Θ | x)

q(Θ; f(x;ϕ))

)
because the Radon-Nikodym derivative dP/dQ is given by the ratio of these densities.
Equation (1) is thus equivalent to

EP (X)EP (Θ|X) log

(
p(Θ | X)

q(Θ; f(X;ϕ))

)
= EP (Θ,X) log

(
p(Θ | X)

q(Θ; f(X;ϕ))

)
.

This expectation is well-defined by the measurability assumption on log
(

p(Θ|X)
q(Θ;f(X;ϕ))

)
.

To interchange differentiation and integration, it suffices by Leibniz’s rule that the gra-
dient of this quantity with respect to ϕ is dominated by a measurable r.v. Y . More
precisely, there exists integrable Y (θ, x) defined on the product space O × X such that∣∣∣∣∇ϕ log

(
p(θ|x)

q(θ;f(x;ϕ))

) ∣∣∣∣ ≤ Y (θ, x) for all ϕ ∈ Φ and almost everywhere-P (Θ, X). This is

assumed in the statement of the proposition, and so we have

∇ϕEP (Θ,X) log

(
p(Θ | X)

q(Θ; f(X;ϕ))

)
= EP (Θ,X)∇ϕ log

(
p(Θ | X)

q(Θ; f(X;ϕ))

)
= −EP (Θ,X)∇ϕ log q(Θ; f(X;ϕ))

and the result follows by sampling.

The variance of the gradient estimator can be reduced at the standard Monte Carlo
rate, and for any B Equation (11) can be used for stochastic gradient descent (SGD).

11
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Appendix C. The Limiting NTK

Before proceeding, we introduce the architecture specific to our analysis, a scaled two-layer
network, and several theorems that we will use throughout the analysis.

The first result from Shapiro (2003) concerns optimization of the objective f(x) =

Eξ∼PF (x; ξ) in x via its empirical approximation f̂n(x) = 1
n

∑n
i=1 F (x; ξi), ξi

iid∼ P . We
reproduce this result below.

Theorem 6 (Proposition 7 of Shapiro (2003)) Let C be a nonempty compact subset
of Rn and suppose that (i) for almost every ξ ∈ Ξ the function F (·, ξ) is continuous on C,
(ii) F (x, ξ), x ∈ C, is dominated by an integrable function, (iii) the sample ξ1, . . . , ξn is
iid. Then the expected value function f(x) is finite valued and continuous on C, and f̂n(x)
converges to f(x) with probability 1 uniformly on C.

The next two results are integral forms of Gronwall’s inequality that we use in subsequent
analysis. We refer to Dragomir (2003) for a detailed review, and present simplified versions
of the results therein below.

Theorem 7 (Gronwall’s Inequality, Corollary 3 of Dragomir (2003)) Let u(t) ∈
R be such that u(t) ≤ c1 + c2

∫ t
0 u(s)ds for t > 0 and nonnegative c1, c2. Then

u(t) ≤ c1 exp[c2t].

Theorem 8 (Theorem 57 of Dragomir (2003)) Let u(t) ∈ R be such that u(t) ≤ c1+
c2
∫ t
0

∫ s
0 u(v)dvds for t > 0 and nonnegative c1, c2. Then

u(t) ≤ c1 exp[c2t
2/2].

Now we turn to specifics of the architecture we consider. Assume the function f has the
architecture of a (scaled) two-layer (single hidden layer) network mapping f : X → Y with
X ⊆ Rd and Y ⊆ Rq. We consider this network architecture for a given width p, and study
each of the i = 1, . . . , q coordinate functions of f . For a scaled two-layer network, the ith
such function is

fi(x;ϕ) :=
1
√
p

p∑
j=1

aijσ
(
x⊤wj

)
for i = 1, . . . , q, where σ denotes an activation function. The scaling depends on the width
of the network p. The parameters ϕ are thus ϕ = {wj , a(·),j}

p
j=1 where a(·),j denotes the

vector [a1j , . . . , aqj ]
⊤ (i.e. the jth coefficient for each component function i). The individual

parameters have dimensions as follows: wj ∈ Rd and a(·),j ∈ Rq, for all j = 1, . . . , p, where
again p denotes the network width and d the data dimension dim X . For ease hereafter, we
write aj = a(·),j to refer to the entire jth vector of second layer network coefficients when
the context is clear. As is standard, the first layer parameters are initialized as independent

standard Gaussian random variables, i.e. wj
iid∼ N (0, Id) for all j = 1, . . . , p. The weight

aij can also be drawn aij
iid∼ N (0, 1) for all i = 1, . . . , q, j = 1, . . . , p, but in this work we

initialize these second-layer weights to zero for simplicity to ensure that at initialization,
f(·;ϕ) = 0. A zero-initialized network function is used for analysis in several related works,

12



Globally Convergent Variational Inference

e.g. Chizat et al. (2019) and Ba et al. (2020). For now, notationally we denote weights to
be initialized as draws from an arbitrary distribution D, and we introduce specificity to D
as required.

The neural tangent kernel (Equation (4)) can be computed explicitly for this architecture
with ease, and is given in the lemma below which proves pointwise convergence to the
limiting NTK at initialization as the width p tends to infinity.

Lemma 9 (Pointwise Convergence At Initialization) For the architecture above, con-
sider any p. Let a ∈ Rq, w ∈ Rd be distributed according to a,w ∼ D for some distribution
D such that a,w are integrable (L1) random variables. Assume X is compact, and σ′ is
bounded. Then provided condition (C4) holds (see below), we have for any x, x̃ ∈ X that

Kp
ϕ(0)(x, x̃)

a.s.→ EDK(x, x̃;w, a) (12)

as p → ∞ where Kp
ϕ(0) denotes the NTK at initialization constructed from draws aj , wj

iid∼ D

and K(x, x̃;w, a) ∈ Rq×q is the q × q matrix whose k, lth entry is given by[
1k=lσ

(
x⊤w

)
σ
(
x̃⊤w

)
+ akalσ

′
(
x⊤w

)
σ′
(
x̃⊤w

)(
x⊤x̃

)]
for k, l = 1, . . . , q.

Proof Consider the kth coordinate function of f . For any choice of p, the gradient is given
by

∇ϕfk(x;ϕ) =



∂fk(x;ϕ)
∂ak1
...

∂fk(x;ϕ)
∂akp

∂fk(x;ϕ)
∂w1
...

∂fk(x;ϕ)
∂wp


=

1
√
p



σ
(
x⊤w1

)
...

σ
(
x⊤wp

)
ak1σ

′ (x⊤w1

)
x

...
akpσ

′ (x⊤wp

)
x


where we have imposed an arbitrary ordering on the parameters. In the above, we omitted
partial derivatives ∂fk

∂alj
for l ̸= k, j = 1, . . . , p because these are all identically zero. From

this, it follows that for any fixed x, x̃ ∈ X we have the k, l-th entry of Kp
ϕ(0)(x, x̃) is given

by

∇ϕfk(x;ϕ(0))
⊤∇ϕfl(x̃;ϕ(0)) =

1

p

p∑
j=1

1k=lσ
(
x⊤wj

)
σ
(
x̃⊤wj

)
+

1

p

p∑
j=1

akjaljσ
′
(
x⊤wj

)
σ′
(
x̃⊤wj

)(
x⊤x̃

)
.

The existence of the limiting NTK follows immediately: for each of the two terms above,
each term is clearly integrable by compactness of X and domination (see (C4)). It follows
that K∞(x, x̃) (the pointwise limit) is the q × q matrix whose k, lth entry is given by

Ew,a∼D

[
1k=lσ

(
x⊤w

)
σ
(
x̃⊤w

)
+ akalσ

′
(
x⊤w

)
σ′
(
x̃⊤w

)(
x⊤x̃

)]
13
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with w, a ∼ D. Convergence in probability pointwise follows from the weak law of large num-
bers, and almost sure convergence holds by the strong law of large numbers. K(x, x; a,w)
is integrable by the assumption (C4) (see below), so the expectation is well-defined.

The proof of the existence and pointwise convergence to the limiting NTK K∞ above is
rather straightforward, and this result has been previously established in other works (Jacot
et al., 2018). For our analysis of kernel gradient flows in Theorem 4 for the expected forward
KL objectives LP and LF , however, we require uniform convergence to K∞ over the entire
data space X .

We establish conditions under which this uniform convergence holds in two results,
Proposition 10 and Proposition 13. Proposition 10, given below, concerns uniform con-
vergence at initialization to the limiting neural tangent kernel K∞ (i.e. before beginning
gradient descent). Proposition 13, proven in Appendix D, demonstrates that across a finite
training interval [0, T ], the NTK changes minimally from its initial value in a large width
regime. Generally, we refer to the first result as “deterministic initialization” and the second
as “lazy training” following related works (Jacot et al., 2018; Chizat et al., 2019).

Below, we give suitable regularity conditions and state and prove Proposition 10.

(C1) The data space is X is compact.

(C2) The distribution D is such that w ∼ N (0, Id) and a = 0 w.p. 1. For j = 1, . . . , p iid

draws from this distribution, we thus have wj
iid∼ N (0, Id) and aij = 0 w.p 1 for all

i, j.

(C3) The activation function σ is continuous. Under (C2), this implies that the function
K(·, ·; a,w) from Lemma 9 with a,w ∼ D is almost surely continuous.

(C4) The function K(x, x̃; a,w) is dominated by some integrable random variable G, i.e.
for all x, x̃ ∈ X × X we have ||K(x, x̃; a,w)||F ≤ G(a,w) almost surely for integrable
G(a,w).

Proposition 10 Fix a scaled two-layer network architecture of width p, and let Φ denote
the corresponding parameter space. Initialize ϕ(0) as independent, identically distributed
random variables drawn from the distribution D in (C2). Let Kp

ϕ(0) : X × X → Rq×q be

the mapping defined by (x, x′) 7→ Kϕ(0)(x, x
′) = Jϕf(x;ϕ(0))Jϕf(x

′;ϕ(0))⊤. Then provided
conditions (C1)–(C4) hold, we have as p → ∞ that

sup
x,x̃∈X

||Kp
ϕ(0)(x, x̃)−K∞(x, x̃)||F

a.s.→ 0, (DI)

where K∞(x, x̃) := plimp→∞Kp
ϕ(0)(x, x̃) is a fixed, continuous kernel.

Proof The proof follows by direct application of Proposition 7 of Shapiro (2003). Precisely,
we satisfy i) almost-sure continuity of K(·, ·; a,w) by (C3), ii) domination by (C4), and
iii) the draws comprising Kp

ϕ(0) are iid by assumption. By this proposition, then, we have

uniform convergence of Kp
ϕ(0) to K∞ and get continuity of K∞ as well.

14
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Appendix D. Lazy Training

Below, we prove several results that will aid in proving the “lazy training” result of Propo-
sition 13 (see below). Given the same architecture as above in Appendix C and a fixed
width p and time T > 0, we will begin by bounding ||wj(T ) − wj(0)|| and ||akj(T ) −
akj(0)||, ||alj(T ) − alj(0)|| for all k, l = 1, . . . , q and all j = 1, . . . , p. As in Appendix C,
there are several conditions that we impose and use in the following results. (D1)–(D2) are
identical to (C1)–(C2), repeated for clarity.

(D1) The data space is X is compact.

(D2) The distribution D is such that w ∼ N (0, Id) and a = 0 w.p. 1. For j = 1, . . . , p iid

draws from this distribution, we thus have wj
iid∼ N (0, Id) and aij = 0 w.p 1 for all

i, j.

(D3) The function ℓ(x, η) = KL [P (Θ | X = x) || Q(Θ; η)] is such that ℓ′(x; η) is bounded
uniformly for all x and for all η ∈ {f(x;ϕ(t)) : t > 0} by a constant M̃ , uniformly
over the width p. We recall that this notation is shorthand for ∇ηℓ(x, η).

(D4) The activation function σ(·) is non-polynomial and is Lipschitz with constant C. Note
that the Lipschitz condition implies σ has bounded first derivative i.e. |σ′(r)| ≤ C for
all r ∈ R.

With these conditions in hand, we now prove several lemmas for individual parameters.

Lemma 11 (Lazy Training of w) For the width p scaled two-layer architecture above,
assume conditions (D1)–(D4) hold. Let ϕ evolve according to the gradient flow of the ob-
jective LP , i.e.

ϕ̇(t) = −∇ϕLP (ϕ).

Fix any T > 0. Then for all j = 1, . . . , p we have almost surely that

||wj(T )− wj(0)||2 ≤ ||wj(0)||2 ·Dp,T + Ep,T (13)

where Dp,T , Ep,T are constants depending on p, T and satisfying limp→∞Dp,T = 0 and
limp→∞Ep,T = 0.

Proof First note that for any fixed j, we have

Jwjf(x;ϕ) =

∇wjf1(x;ϕ)
⊤

...
∇wjfq(x;ϕ)

⊤

 =
1
√
p

a1jσ
′ (x⊤wj

)
x⊤

...
aqjσ

′ (x⊤wj

)
x⊤

 ∈ Rq×d
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as required, where aij ∈ R for i = 1, . . . , q and x ∈ X ⊆ Rd from (D1). We can bound the
operator 2-norm of this matrix by observing that for any y ∈ Rd we have

||Jwjf(x;ϕ)y||22 =
1

p
·

(
q∑

i=1

a2ij

)
· σ′
(
x⊤wj

)2
(x⊤y)2

≤ C2

p
||aj ||22 · ||x||22 · ||y||22 by (D4) and Cauchy-Schwarz

=⇒ ||Jwjf(x;ϕ)||2 ≤
C
√
p
||aj ||2

by observing ||x||22 is bounded by (D1) (and we absorb this term into the constant C). By
similar computations, we also have

Jajf(x;ϕ) =

∇ajf1(x;ϕ)
⊤

...
∇ajfq(x;ϕ)

⊤

 =
1
√
p
diag

σ
(
x⊤wj

)
...

σ
(
x⊤wj

)
 ∈ Rq×q.

Using condition (D4), it follows that

||Jajf(x;ϕ)||2 ≤
|σ(x⊤wj)|√

p

≤ |σ(0)|+ C|x⊤wj |√
p|

def
=

K + C|x⊤wj |√
p

≤ K + C||wj ||2√
p

by Cauchy-Schwarz and (D1),(D4), where throughout the following we let K := |σ(0)| and
again absorb the ||x|| term into the general constant C. Now we will use these computations
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to bound the variation on wj across the interval (0, T ]. Fix any t ∈ (0, T ]. Then we have

||wj(t)− wj(0)||2 ≤
∫ t

0
||ẇj(s)||ds

≤
∫ t

0
EP (X)||Jwjf(X;ϕ(s))ℓ′(X, f(X;ϕ(s)))||2ds

≤ M̃

∫ t

0
EP (X)||Jwjf(X;ϕ(s))||2ds by (D3)

≤ CM̃
√
p

∫ t

0
||aj(s)||2ds by above work

a.s.
=

CM̃
√
p

∫ t

0
||aj(s)− aj(0)||2ds by (D2)

≤ CM̃
√
p

∫ t

0

∫ s

0
||ȧj(v)||2dvds

≤ CM̃
√
p

∫ t

0

∫ s

0
EP (X)||Jajf(X;ϕ)||2||ℓ′(X, f(X;ϕ(v)))||2dvds

≤ CM̃2

√
p

∫ t

0

∫ s

0
EP (X)||Jajf(X;ϕ)||2dvds by (D3)

≤ CM̃2Kt2

2p
+

C2M̃2

p

∫ t

0

∫ s

0
||wj(v)||2dvds by above work

≤ CM̃2Kt2

2p
+

C2M̃2

p

∫ t

0

∫ s

0
||wj(v)− wj(0)||2 + ||wj(0)||2dvds

=
CM̃2Kt2

2p
+

C2M̃2t2

2p
||wj(0)||2 +

C2M̃2

p

∫ t

0

∫ s

0
||wj(v)− wj(0)||2dvds

≤ CM̃2KT 2

2p
+

C2M̃2T 2

2p
||wj(0)||2 +

C2M̃2

p

∫ t

0

∫ s

0
||wj(v)− wj(0)||2dvds

= c1 +

∫ t

0

∫ s

0
c2||wj(v)− wj(0)||2dvds

with c1 = CM̃2KT 2

2p + C2M̃2T 2

2p ||wj(0)||2 and c2 = C2M̃2

p . Note that even though c1 depends
on T , this is constant as T is fixed. We write these quantities in this way to recognize a
Gronwall-type inequality that we can use to bound the left hand side. Indeed, by direct
application of Theorem 57 of Dragomir (2003) (see Theorem 8) we have that

||wj(t)− wj(0)||2 ≤ c1 exp

[∫ t

0

∫ s

0
c2dvds

]
= c1 exp

c2t
2

2

=

(
CM̃2KT 2

2p
+

C2M̃2T 2

2p
||wj(0)||2

)
exp

[
C2M̃2t2

2p

]
.
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giving the result for t = T if we take Dp,T = C2M̃2T 2

2p exp
[
C2M̃2T 2

2p

]
and Ep,T =

CM̃2KT 2

2p exp
[
C2M̃2T 2

2p

]
. Clearly these constants satisfy limp→∞Dp,T = 0 and limp→∞Ep,T =

0 for any fixed T .

Lemma 12 (Lazy Training of a) Under the same conditions as Lemma 11, let ϕ evolve
according to the gradient flow of problem LP , i.e.

ϕ̇(t) = −∇ϕLP (ϕ).

Fix any T > 0. Then we have for any j that

||aj(T )||2 ≤ ||wj(0)||2 · Fp,T +Gp,T (14)

almost surely, where Ep,T and Fp,T are constants depending on p, T satisfying limp→∞Ep,T =
0 and limp→∞ Fp,T = 0.

Proof We will use much of the same work as in Lemma 11. Namely, ||aj(t)||2 = ||aj(t) −
aj(0)||2 almost surely by (D2), and thereafter for any t ∈ (0, T ] we have

||aj(t)− aj(0)||2 ≤
∫ t

0
||ȧj(v)||2ds

≤ 1
√
p

∫ t

0
EP (X)||Jajf(X;ϕ)||2||ℓ′(X, f(X;ϕ(v)))||2ds

≤ M̃
√
p

∫ t

0
EP (X)||Jajf(X;ϕ)||2ds

≤ KM̃t

p
+

M̃C

p

∫ t

0
||wj(s)||2ds by work in Lemma 11

≤ KM̃t

p
+

M̃C

p

∫ t

0
||wj(s)− wj(0)||2 + ||wj(0)||2ds

≤ KM̃t

p
+

M̃Ct

p
||wj(0)||2 +

M̃C

p

∫ t

0
Dp,s||wj(0)||2 + Ep,sds a.s. by Lemma 11

≤ KM̃t

p
+

M̃Ct

p
||wj(0)||2 +

M̃C

p

∫ t

0
Ep,sds+

M̃C

p
||wj(0)||2

∫ t

0
Dp,sds

= ||wj(0)||2

(
M̃Ct

p
+

M̃C

p

∫ t

0
Dp,sds

)
+

(
KM̃t

p
+

M̃C

p

∫ t

0
Ep,sds

)
def
= ||wj(0)||2 · Fp,t +Gp,t

Clearly, these constants satisfy limp→∞ Fp,t → 0 and limp→∞Gp,t → 0 (to see this, simply
plug in the forms of Dp,s and Ep,s from Lemma 11 above) and we have the result by taking
t = T .

Now with these results in hand, we may state and prove Proposition 13, given below.
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Proposition 13 Under the same conditions as Proposition 10, fix any T > 0. For any
t ∈ (0, T ] let Kp

ϕ(t) : X × X → Rq×q be the mapping defined by (x, x′) 7→ Kϕ(t)(x, x
′) =

Jϕf(x;ϕ(t))Jϕf(x
′;ϕ(t))⊤. Then provided conditions (D1)–(D4) hold, we have as p → ∞

that
sup

x,x̃∈X ,t∈(0,T ]
||Kp

ϕ(t)(x, x̃)−Kp
ϕ(0)(x, x̃)||F

a.s.→ 0. (LT)

Proof Let us examine the k, lth term of the q× q matrix given by Kp
ϕ(t)(x, x̃)−Kp

ϕ(0)(x, x̃)

for fixed x, x̃, and some t ∈ (0, T ]. The k, lth term is given by (see the work in Appendix C):

1

p

p∑
j=1

1k=l

(
σ
(
x⊤wj(t)

)
σ
(
x̃⊤wj(t)

))
− (15)(

σ
(
x⊤wj(0)

)
σ
(
x̃⊤wj(0)

))
(16)

+
1

p

p∑
j=1

(
akj(t)alj(t)σ

′
(
x⊤wj(t)

)
σ′
(
x̃⊤wj(t)

)(
x⊤x̃

))
− (17)(

akj(0)alj(0)σ
′
(
x⊤wj(0)

)
σ′
(
x̃⊤wj(0)

)(
x⊤x̃

))
. (18)

Above, we have explicitly made clear the dependence of the parameters on time, e.g.
wj(t) vs. wj(0). We aim to show that the quantity above tends to zero as p → ∞. We
first prove this holds pointwise, and will consider the red and blue terms one at a time for
a fixed x, x̃.

First consider the jth summand of the red term. We will bound its absolute value. If
k ̸= l, we’re done, so assume k = l. We have for any j that∣∣∣∣σ (x⊤wj(t)

)
σ
(
x̃⊤wj(t)

)
− σ

(
x⊤wj(0)

)
σ
(
x̃⊤wj(0)

) ∣∣∣∣
=

∣∣∣∣σ (x⊤wj(t)
)
σ
(
x̃⊤wj(t)

)
− σ

(
x⊤wj(t)

)
σ
(
x̃⊤wj(0)

)
+

σ
(
x⊤wj(t)

)
σ
(
x̃⊤wj(0)

)
− σ

(
x⊤wj(0)

)
σ
(
x̃⊤wj(0)

) ∣∣∣∣
≤ |σ

(
x⊤wj(t)

)
| · |σ

(
x̃⊤wj(t)

)
− σ

(
x̃⊤wj(0)

)
|+ |σ

(
x̃⊤wj(0)

)
| · |σ

(
x⊤wj(t)

)
− σ

(
x⊤wj(0)

)
|

and by the Lipschitz assumption on σ(·) and Cauchy-Schwarz, we can bound the quantity
above as follows

≤ (K + C||x||2||wj(t)||2) · C||x̃||2||wj(t)− wj(0)||2 + (K + C||x||2||wj(0)||2) · C||x||2||wj(t)− wj(0)||2

= C2||wj(t)− wj(0)||2
(
2
K

C
+ ||wj(t)||2 + ||wj(0)||2

)
since ||x||2, ||x̃||2 are bounded by (D1)

≤ C2||wj(t)− wj(0)||2
(
2
K

C
+ ||wj(t)− wj(0)||2 + 2||wj(0)||2

)
by triangle inequality

= 2CK||wj(t)− wj(0)||2 + C2||wj(t)− wj(0)||22 + 2C2||wj(0)||2||wj(t)− wj(0)||2
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and using Lemma 11, we can bound all terms above using ||wj(0)||2 as follows.

≤ 2CK (Dp,t||wj(0)||2 + Ep,t) + C2 (Dp,t||wj(0)||2 + Ep,t)
2 + 2C2

(
Dp,t||wj(0)||22 + Ep,t||wj(0)||2

)
=
(
2C2Dp,t + C2D2

p,t

)
||wj(0)||22 +

(
2CKDp,t + 2C2Dp,tEp,t + 2C2Ep,t

)
||wj(0)||2 +

(
2CKEp,t + C2E2

p,t

)

Recalling that wj(0)
iid∼ N (0, Id), we have that ||wj(0)||2 and ||wj(0)||22 are integrable with

expectations denoted µ and ν, respectively. All our work has allowed us to show that

∣∣∣∣1p
p∑

j=1

(
σ
(
x⊤wj(t)

)
σ
(
x̃⊤wj(t)

)
− σ

(
x⊤wj(0)

)
σ
(
x̃⊤wj(0)

))∣∣∣∣
≤ 1

p

p∑
j=1

(
2C2Dp,t + C2D2

p,t

)
||wj(0)||22 +

(
2CKDp,t + 2C2Dp,tEp,t + 22CEp,t

)
||wj(0)||2

+
(
2CKEp,t + C2E2

p,t

)
a.s.→
(

lim
p→∞

2C2Dp,t + C2D2
p,t

)
ν +

(
lim
p→∞

2CKDp,t + 2C2Dp,tEp,t + 2C2Ep,t

)
µ

+

(
lim
p→∞

2CKEp,t + C2E2
p,t

)
= 0

by conditions on Dp,t and Ep,t from Lemma 11, the strong law of large numbers, and the
classic result from analysis that limn→∞ anbn = (limn→∞ an) (limn→∞ bn), provided both
limits on the right hand side exist. Lastly, we can achieve the same result for the blue term
quickly. Because aij(0) = 0 w.p. 1 by (D2), we have almost surely that

1

p

p∑
j=1

(
akj(t)alj(t)σ

′
(
x⊤wj(t)

)
σ′
(
x̃⊤wj(t)

)(
x⊤x̃

))
−

(((((((((((((((((((((((((
akj(0)alj(0)σ

′
(
x⊤wj(0)

)
σ′
(
x̃⊤wj(0)

)(
x⊤x̃

))
≤ 1

p

p∑
j=1

|akj(t)||alj(t)||σ′
(
x⊤wj(0)

)
||σ′

(
x̃⊤wj(0)

)
|||x||2||x̃||2

≤ C2

p

p∑
j=1

|akj(t)||alj(t)|

≤ C2

p

p∑
j=1

||aj(t)||22
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because for all j, we have |akj |, |alj | are dominated by ||aj ||2. From here, we have by
Lemma 12 that we can bound each term in the sum above by

≤ C2

p

p∑
j=1

(||wj(0)||2Fp,t +Gp,t)
2

=
C2

p

p∑
j=1

F 2
p,t||wj(0)||22 + 2Fp,tGp,t||wj(0)||2 +G2

p,t

a.s.→ 0

as p → ∞ by similar logic to the above. Together, these results combine to show that
|Kp

ϕ(t)(x, x̃)kl −Kp
ϕ(0)(x, x̃)kl|

a.s.→ 0 as p → ∞. As k, l were arbitrary k, l ∈ 1, . . . , q, we have

||Kp
ϕ(t)(x, x̃) − Kp

ϕ(0)(x, x̃)||F
a.s.→ 0. This establishes pointwise convergence for some fixed

t ∈ (0, T ]. Uniform convergence over all of X × X and all t ∈ (0, T ] follows easily in this
case. Firstly, the numbers Dp,t, Ep,t, Fp,t, and Gp,t are monotonic in t, so we can bound
uniformly for all t ∈ (0, T ] by taking t = T in the expressions above. Secondly, in our work
above, our bounds on the red and blue terms were independent of the choice of point (x, x̃).
More precisely, the supremum over x, x̃ can accounted for in the bounds easily by observing
that supx,x̃∈X ,t∈(0,T ] ||K

p
ϕ(t)(x, x̃)−Kp

ϕ(0)(x, x̃)||F can be bounded above by

≤ sup
x,x̃∈X

∣∣∣∣∣∣∣∣1p
p∑

j=1

1k=l

(
σ
(
x⊤wj(t)

)
σ
(
x̃⊤wj(t)

))

−
(
σ
(
x⊤wj(0)

)
σ
(
x̃⊤wj(0)

))∣∣∣∣∣∣∣∣
+ sup

x,x̃∈X

∣∣∣∣∣∣∣∣1p
p∑

j=1

(
akj(t)alj(t)σ

′
(
x⊤wj(t)

)
σ′
(
x̃⊤wj(t)

)(
x⊤x̃

))

−
(
akj(0)alj(0)σ

′
(
x⊤wj(0)

)
σ′
(
x̃⊤wj(0)

)(
x⊤x̃

))∣∣∣∣∣∣∣∣
≤ sup

x,x̃∈X

1

p

p∑
j=1

(
2C2Dp,T + C2D2

p,T

)
||wj(0)||22 +

(
2CKDp,t + 2C2Dp,TEp,T + 2C2Ep,T

)
||wj(0)||2

+
(
2CKEp,T + C2E2

p,T

)
+ sup

x,x̃∈X

C2

p

p∑
j=1

F 2
p,T ||wj(0)||22 + 2Fp,TGp,T ||wj(0)||2 +G2

p,T

a.s.→ 0

by the same work as above.
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Appendix E. Kernel Gradient Flow Analysis

We rely on additional regularity conditions outlined below. We will consider the following
three flows in our proof of Theorem 4 (for some choice of p):

ḟt(x) = −EP (X)K
p
ϕ(t)(x,X)ℓ′(X, ft(X)) (19)

ġt(x) = −EP (X)K∞(x,X)ℓ′(X, gt(X)) (20)

ḣt(x) = −EP (X)K
p
ϕ(0)(x,X)ℓ′(X,ht(X)) (21)

where ft is shorthand for f(·;ϕ(t)). The three flows above can thought of as corresponding
to LP , LF , and a “lazy” variant, respectively. The flow of ht is “lazy” because it follows the
dynamics of a fixed kernel, the kernel at initialization. The flow of gt also follows a fixed
kernel, but the limiting NTK K∞ instead. The flow of ft is that obtained in practice, where
the kernel Kp

ϕ(t) changes continuously as the parameters ϕ(t) evolve in time. The flow in
ht is used to bound the differences between ft and gt in the proof of Theorem 4. We now
enumerate the regularity conditions.

(E1) The functional LF (f) satisfies inff LF (f) > −∞.

(E2) The limiting NTK K∞ is positive definite (so that the RKHS H with kernel K∞ is
well-defined).

(E3) Under (E1) and (E2), the function f∗ minimizing LF satisfies ||f∗||H < ∞, so that
f∗ ∈ H.

(E4) For any choice of p, we have for all t, x that ℓ′(x; ft(x)), ℓ
′(x; gt(x)), and ℓ′(x;ht(x))

are bounded by a constant M̃ .

(E5) The function ℓ is L̃-smooth in its second argument, i.e. ||ℓ′(x, η1) − ℓ′(x, η2)|| ≤
L̃||η1 − η2||.

We first prove Lemma 3 from the manuscript.

Lemma 3 Let f∗ denote the minimizer of LF from Lemma 1, and ϵ > 0. Fix f0, and let
K∞ denote the limiting neural tangent kernel. Let f0 evolve according to the dynamics

ḟt(x) = −EP (X)K∞(x,X)ℓ′(X, ft(X)).

Suppose that the conditions of Lemma 1 and (E1)-(E3) hold. Then, there exists T > 0 such
that LF (fT ) ≤ LF (f

∗) + ϵ.

Proof Let f∗ ∈ argmin LF (f), where LF (f) is the functional objective. Then LF (f
∗) >

−∞ by (E1). Hereafter, let LF = L for notational convenience. Then if ft evolves according
to the kernel gradient flow above, we have (from the chain rule for Fréchet derivatives) that

L̇(ft) =
∂L

∂ft
◦ ∂ft

∂t
.
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By definition, ∂ft
∂t = ḟt. We also have ∂L

∂ft
: h 7→ EP (X)ℓ

′(X, ft(X))⊤h(X). Plugging this in
yields

L̇(ft) = EX∼P (X)ℓ
′(X, ft(X))⊤

[
−EX′∼P (X)K∞(X,X ′)ℓ′(X ′, ft(X

′))
]

= −EX,X′∼P ℓ
′(X, ft(X))⊤K∞(X,X ′)ℓ′(X ′, ft(X

′)) ≤ 0

by the positiveness of the kernel K∞ (from (E2)). Now define ∆t =
1
2 ||ft − f∗||2H, where H

is the vector-valued reproducing kernel Hilbert space corresponding to the kernel K∞ (see
Carmeli et al. (2006) for a detailed review). It follows that ∂∆t

∂ft
: h 7→ ⟨ft − f∗, h⟩. Then by

the chain rule we have

−∆̇t = −⟨ft − f∗, ḟt⟩
= −⟨ft − f∗,−EP (X)K∞(·, X)ℓ′(X, ft(X))⟩
= EP (X)ℓ

′(X, ft(X))⊤ [ft(X)− f∗(X)]

≥ EP (X)ℓ(X, ft(X))− ℓ(X, f∗(X))

= L(ft)− L(f∗).

To go from the second to the third line, we used the reproducing property of the vector-
valued kernel, the definition of inner product, and the linearity of integration. More pre-
cisely, the reproducing property (cf. Eq. (2.2) of Carmeli et al. (2006)) tells us for any
functions g, h and fixed x,

⟨g,K∞(·, x)h(x)⟩ = g(x)⊤h(x)

and so the third line results from the second by exchanging the integral and inner product.
In the second-to-last line we used convexity of ℓ in its second argument (from Lemma 1 of
the manuscript). Now consider the Lyapunov functional given by

E(t) = t [L(ft)− L(f∗)] + ∆t. (22)

Differentiating, we have

Ė(t) = L(ft)− L(f∗) + tL̇(ft) + ∆̇t ≤ 0

by the above work because i) tL̇(ft) ≤ 0 and ii) L(ft) − L(f∗) + ∆̇t ≤ 0, implying that
E(t) ≤ E(0) for all t. Evaluating at t = 0, thus

t [L(ft)− L(f∗)] + ∆t ≤ ∆0

t [L(ft)− L(f∗)] ≤ ∆0 −∆t

t [L(ft)− L(f∗)] ≤ ∆0 since ∆t ≥ 0

[L(ft)− L(f∗)] ≤ 1

t
∆0.

and so we have that there exists sufficiently large T such that |L(fT )−L(f∗)| ≤ ϵ as desired.

Using this result and our previous results, we now are able to prove Theorem 4 from
the manuscript.
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Theorem 4 Consider the width-p scaled 2-layer ReLU network, evolving via the flow

ḟt(x) = −EP (X)K
p
ϕ(t)(x,X)ℓ′(X, ft(X)), (5)

where ft denotes f(·, ϕ(t)). Let f∗ denote the unique minimizer of LF from Lemma 1, and
fix ϵ > 0. Then, under conditions (C1)–(C4),(D1)–(D4), and (E1)–(E5), there exists T > 0
such that almost surely [

lim
p→∞

L(fT )

]
≤ L(f∗) + ϵ, (6)

where L is the loss functional LF .

Proof Throughout, we use L to denote LF for ease. We will examine the three gradient
flows

ḟt(x) = −EP (X)K
p
ϕ(t)(x,X)ℓ′(X, ft(X)) (23)

ġt(x) = −EP (X)K∞(x,X)ℓ′(X, gt(X)) (24)

ḣt(x) = −EP (X)K
p
ϕ(0)(x,X)ℓ′(X,ht(X)) (25)

and establish the result by the triangle inequality, i.e.

|L(fT )− L(f∗)| ≤ |L(fT )− L(gT )|+ |L(gT )− L(f∗)|. (26)

The flow in ht will be used to help bound the first term, but we begin with the second term.
By Lemma 3, pick T > 0 sufficiently large such that |L(gT ) − L(f∗)| ≤ ϵ/2. Fix this T .
This provides a suitable bound on the second term.

Turning to the first term, by continuity of L(f) in f , there exists δ > 0 such that
y ∈ B(gT , δ) =⇒ |L(y)− L(gT )| ≤ ϵ/2. We will show that there exists P sufficiently large
such that p > P implies ||fT − gT || ≤ δ almost surely, yielding the desired bound on the
first term of the decomposition above. Throughout, || · || denotes the L2 norm of a function
with respect to probability measure P (X) (i.e. the marginal distribution of our joint model
P (Θ, X)).

To show that there exists sufficiently large P such that ||fT − gT || ≤ δ, we use another
application of the triangle inequality

||fT − gT || ≤ ||fT − hT ||+ ||hT − gT ||

and construct bounds on the two terms on the right hand side using Proposition 10 and
Proposition 13. Observe first that by (C2)/(D2), at initialization we have almost surely
that f0 = g0 = h0 = 0. Also note that by continuity of K∞ (established in Lemma 9)
on the compact domain X × X we have supx,x̃ ||K∞(x, x̃)||2 < M for some M . Finally,

note that by (E5) the function ℓ′(x, η) is Lipschitz in its second argument with constant L̃.
Below, we let || · ||2 denote the 2-norm of a vector or matrix, depending on the argument,
and || · ||F the Frobenius norm of a matrix. For functions, as stated || · || denotes the L2
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norm with respect to measure P (X), i.e. ||f ||2 =
∫
f(X)⊤f(X)dP (X). From here, we have

||gT − hT ||
a.s.
= ||(gT − g0)− (hT − h0)||

=

∣∣∣∣∣∣∣∣ ∫ T

0
EP (X)

[
K∞(·, X)ℓ′(X, gt(X))−Kp

ϕ(0)(·, X)ℓ′(X,ht(X))
]
dt

∣∣∣∣∣∣∣∣
≤
∫ T

0
EP (X)||K∞(·, X)ℓ′(X, gt(X))−Kp

ϕ(0)(·, X)ℓ′(X,ht(X))||dt

=

∫ T

0
EP (X)||K∞(·, X)ℓ′(X, gt(X))−K∞(·, X)ℓ′(X,ht(X))+

K∞(·, X)ℓ′(X,ht(X))−Kp
ϕ(0)(·, X)ℓ′(X,ht(X))||dt

≤
∫ T

0
EP (X)||K∞(·, X)

[
ℓ′(X, gt(X))− ℓ′(X,ht(X))

]
||+

||K∞(·, X)ℓ′(X,ht(X))−Kp
ϕ(0)(·, X)ℓ′(X,ht(X))||dt (27)

Now, we note the following facts. Firstly, for any kernel K that is uniformly bounded (i.e.
||K(x, y)||2 ≤ M for any x, y), the L2 norm of the function ||K(·, X)v|| for fixed X, v can
be bounded in terms of M and ||v||2 because

||K(·, X)v||2 =
∫

v⊤K(Y,X)⊤K(Y,X)vdP (Y ) ≤
∫

||K(Y,X)||22||v||22dP (Y ) ≤ M2||v||22

=⇒ ||K(·, X)v|| ≤ M ||v||2.

Secondly, we have again for any fixed v and X that

||
[
K∞(·, X)−Kp

ϕ(0)(·, X)
]
v||2 =

∫
v⊤
[
K∞(Y,X)−Kp

ϕ(0)(Y,X)
]⊤ [

K∞(Y,X)−Kp
ϕ(0)(Y,X)

]
vdP (y)

≤
∫

||K∞(Y,X)−Kp
ϕ(0)(Y,X)||22||v||22dP (y)

≤
(
sup
x,y

||K∞(y, x)−Kp
ϕ(0)(y, x)||F

)2

||v||22

=⇒ ||
[
K∞(·, X)−Kp

ϕ(0)(·, X)
]
v|| ≤ sup

x,y
||K∞(y, x)−Kp

ϕ(0)(y, x)||F · ||v||2
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since the matrix (spectral) 2-norm is dominated by the Frobenius norm. Plugging these
facts into Equation (27) above, we have

≤
∫ T

0
EP (X)M · ||ℓ′(X, gt(X))− ℓ′(X,ht(X))||2 + sup

x,y
||K∞(x, y)−Kp

ϕ(0)(x, y)||F · ||ℓ′(X,ht(X))||2dt

≤
∫ T

0
EP (X)ML̃||gt(X)− ht(X)||2 + M̃ sup

x,y
||K∞(x, y)−Kp

ϕ(0)(x, y)||dt by (E4)

≤ M̃T sup
x,y

||K∞(x, y)−Kp
ϕ(0)(x, y)||F +ML̃

∫ T

0
EP (X)

√
||gt(X)− ht(X)||22dt

≤ M̃T sup
x,y

||K∞(x, y)−Kp
ϕ(0)(x, y)||F +ML̃

∫ T

0

√
EP (X)||gt(X)− ht(X)||22dt by Jensen’s inequality

= M̃T sup
x,y

||K∞(x, y)−Kp
ϕ(0)(x, y)||F +ML̃

∫ T

0
||gt − ht||dt

and so by Gronwall’s inequality (Theorem 7), we have almost surely that

||gT − hT || ≤ M̃T sup
x,y

||K∞(x, y)−Kp
ϕ(0)(x, y)||F exp(ML̃T ).

By Proposition 10, there thus exists P1 such that for all p > P1 we have ||gT−hT || ≤ δ
2 almost

surely. We proceed nearly identically for the term ||hT − fT ||. We need only note that for
sufficiently large p, say p > P2, we can bound Kp

ϕ(0) uniformly (almost surely) by a constant
A > M . To see this, observe that by Proposition 10 we have that there exists almost surely
a sufficiently large P such that p > P implies supx,y ||K∞(x, y) −Kp

ϕ(0)(x, y)||F < A −M
and so by triangle inequality we have for all p > P almost surely that

sup
x,y

||Kp
ϕ(0)||F ≤ sup

x,y
||Kp

ϕ(0)(x, y)−K∞(x, y)||F + ||K∞(x, y)||F

≤ sup
x,y

||Kp
ϕ(0)(x, y)−K∞(x, y)||F + sup

x,y
||K∞(x, y)||F

≤ A−M +M = A.
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Thereafter,

||hT − fT ||
a.s.
= ||(hT − h0)− (fT − f0)||

=

∣∣∣∣∣∣∣∣ ∫ T

0
EP (X)

[
Kp

ϕ(0)(·, X)ℓ′(X,ht(X))−Kp
ϕ(t)(·, X)ℓ′(X, ft(X))

]
dt

∣∣∣∣∣∣∣∣
≤
∫ T

0
EP (X)||K

p
ϕ(0)(·, X)ℓ′(X,ht(X))−Kp

ϕ(t)(·, X)ℓ′(X, ft(X))||dt

≤
∫ T

0
EP (X)||K

p
ϕ(0)(·, X)ℓ′(X,ht(X))−Kp

ϕ(0)(·, X)ℓ′(X, ft(X))||+

||Kp
ϕ(0)(·, X)ℓ′(X, ft(X))−Kp

ϕ(t)(·, X)ℓ′(X, ft(X))||dt

≤
∫ T

0
EP (X)A · ||ℓ′(X,ht(X))− ℓ′(X, ft(X))||2+

sup
x,y,t∈(0,T ]

||Kp
ϕ(0)(x, y)−Kp

ϕ(t)(x, y)||F · ||ℓ′(X, ft(X))||dt

≤ M̃T sup
x,y,t∈(0,T ]

||Kp
ϕ(0)(x, y)−Kp

ϕ(t)(x, y)||F +AL̃

∫ T

0
EP (X)||ht(X)− ft(X)||2dt

and we can similarly switch from EP (X)||ht(X)−ft(X)||2 to the L2 norm ||ht−ft|| as above
using Jensen’s inequality, yielding

≤ M̃T sup
x,y,t∈(0,T ]

||Kp
ϕ(0)(x, y)−Kp

ϕ(t)(x, y)||F +AL̃

∫ T

0
||ht − ft||dt

=⇒ ||hT − fT || ≤ M̃T sup
x,y,t∈(0,T ]

||Kp
ϕ(0)(x, y)−Kp

ϕ(t)(x, y)||F exp
(
AL̃T

)
almost surely. Clearly, by the same logic as the above there exists P3 such that p >
P3 implies M̃T supx,y,t∈(0,T ] ||K

p
ϕ(0)(x, y)−Kp

ϕ(0)(x, y)|| exp(AL̃T ) ≤ δ/2 by Proposition 13.

Then for all p > max(P1, P2, P3), we have almost surely that ||hT − fT || ≤ δ/2. This
completes the proof, as in this case we have by the triangle inequality that ||fT − gT || ≤ δ
and so |L(fT )− L(gT )| ≤ ϵ/2 by construction.

Appendix F. Experimental Details

We use PyTorch (Paszke et al., 2019) to implement our experiments1, with permission of
the license. All experiments utilized NVIDIA GeForce RTX 2080 Ti graphical processing
units (GPUs), and fit within 10 GB of memory.

Recall the generative model for this problem, given by the following:

Θ ∼ Unif[0, 2π]

Z ∼ N (0, σ2)

X | (Θ = θ, Z = z) ∼ δ
(
[cos(θ + z), sin(θ + z)]⊤

)
.

1. Code publicly available at https://github.com/declanmcnamara/gcvi_aabi.
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The variable σ is a hyperparameter of the model that we take to be σ = 0.5. The
model is constructed such that x ∈ S1 to satisfy assumptions (C1) and (D1), respectively.
One thousand pairs of data points {θi, xi}1000i=1 were generated independently from the model
above and fixed as the “dataset” for which ground truth latent parameter values are known.

We constructed scaled, dense single hidden-layer ReLU networks of varying widths, with
2j neurons for j = 6, . . . , 12 with the same architecture as in Appendix C and the initial-
ization described in condition (C2). All networks were trained to minimize the expected
forward KL objective LP ; stochastic gradients were estimated using batches of 16 indepen-
dent simulated (θ, x) pairs from the generative model, and stochastic gradient descent was
performed using the Adam optimizer with learning rate ρ = 0.0001. We employ a learning
rate scheduler that scales the learning rate as O(1/I), where I denotes the number of it-
erations. All models were fitted for 200,000 stochastic gradient steps, and execution time
is less than one hour. The natural parameter for the von Mises distribution is parameter-
ized as η = f(x;ϕ) + 0.0001. This small perturbation must be added because f(·;ϕ) = 0
at initialization, and the value of η = 0 lies outside the natural parameter space for this
variational family.

For the linearized neural network models, all training settings where the same except
for the architecture. For these models, we first constructed neural networks as above for
each width to compute the Jacobian evaluated at the initial weights Jϕ(x;ϕ0). Thereafter,
the model in ϕ is fixed as

f(x;ϕ) = f(x;ϕ0) + Jϕ(x;ϕ0)(ϕ− ϕ0)

where ϕ, ϕ0 are flattened vectors of parameters from the neural network architectures. Using
this linearized model above, the parameter ϕ is fitted by SGD as above.

The plots in Figure 1 of the manuscript are constructed by evaluating the average neg-
ative log-likelihood on the dataset at each iteration, i.e. for the fixed n = 1000 pairs of
observations above, we evaluate the finite-sample loss for the expected forward KL diver-
gence. Up to fixed constants, this quantity is given by

− 1

n

n∑
i=1

log q(θi; f(xi;ϕ))

where ϕ is the current iterate of the parameters (either the neural network parameters or the
flattened vector of parameters of the same size for the linearized model). The red horizontal
line in Figure 1 is set at the value − 1

n

∑n
i=1 log p(θi | xi), where p denotes the exact posterior

distribution (computed using numerical integration over a fine grid of evaluation points).
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