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Abstract
Modern scientific discovery increasingly relies
on high-performance computing for complex
modeling and simulation. A key challenge in
improving parallel program performance is ef-
ficiently mapping tasks to processors and data
to memory, a process dictated by intricate, low-
level system code known as mappers. Devel-
oping high-performance mappers demands days
of manual tuning, posing a significant barrier
for domain scientists without systems expertise.
We introduce a framework that automates map-
per development with generative optimization,
leveraging richer feedback beyond scalar perfor-
mance metrics. Our approach features the Agent-
System Interface, which includes a Domain-
Specific Language (DSL) to abstract away the
low-level complexity of system code and define
a structured search space, as well as AutoGuide,
a mechanism that interprets raw execution output
into actionable feedback. Unlike traditional rein-
forcement learning methods such as OpenTuner,
which rely solely on scalar feedback, our method
finds superior mappers in far fewer iterations.
With just 10 iterations, it outperforms OpenTuner
even after 1000 iterations, achieving 3.8× faster
performance. Our approach finds mappers that
surpass expert-written mappers by up to 1.34×
speedup across nine benchmarks while reducing
tuning time from days to minutes.

1. Introduction
Modern scientific discovery depends on advanced software
tools for modeling and simulation (Stocks et al., 2024;
Wang et al., 2024; Ltaief et al., 2024). Computational sci-
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entists, including physicists, chemists, and biologists, rely
on high-performance computing to tackle complex prob-
lems. These scientific computations dominate workloads
on the world’s most powerful supercomputers (Exascale
Computing). However, many domain scientists lack exper-
tise in computer science, and therefore having difficulties
in optimizing their programs because of the complexity and
scale of the underlying machines. Even for experts, finding
and fixing performance problems resulting from program
modifications or when porting to a new machine is often
time-consuming. Any progress on automating performance
tuning is of great benefit in this domain.

Task-based programming (Slaughter et al., 2015; Bauer
et al., 2012; Augonnet et al., 2009; Chamberlain et al.,
2007; Moritz et al., 2018; Barham et al., 2022) has emerged
as a promising approach to high performance computing.
The paradigm involves decomposing computations into
independent tasks that communicate exclusively through
their arguments. A key advantage of task-based systems
is that the performance tuning problem is factored out into
a separate mapping: an assignment of tasks to processors
and data to particular memories. High-quality mapping,
achieved through a well-designed mapper (implemented as
code), can significantly improve performance, often by an
order of magnitude (Galvez et al., 2017).

However, currently writing mappers remains a labor-
intensive process, as it requires deep knowledge of appli-
cations, hardware, and low-level system APIs. In addition,
this process is highly application-specific, input-specific,
and machine-specific, often taking experts several days
of meticulous tuning to achieve high performance. This
challenge is especially pronounced for domain scientists,
who typically lack the necessary expertise in computer sys-
tems and code optimization. Automating mapper develop-
ment would enable scientists to focus on their own domain
of expertise while fully utilizing the capabilities of high-
performance computing systems.

In this paper, we introduce a system powered by large lan-
guage models (LLMs) to automate both the generation
and optimization of mapper code. The first challenge
stems from the complexity of generating mapper code due
to the original low-level programming system, which ex-
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Figure 1. Iterative mapper refinement with agent-based generative optimization. The system leverages the Agent-System Interface,
which consists of the Domain-Specific Language (DSL) and AutoGuide. The DSL abstracts away the low-level system code, defining a
search space for mapping strategies, while AutoGuide interprets execution results into actionable guidance. As iterations progress, the
mapper evolves to improve performance.

poses the agent to intricate system APIs, coupled with the
problem that raw feedback messages from the system are
often uninformative to the agent. The second challenge
involves optimizing mapper performance. Specifically, it
consists of (1) defining an appropriate search space and (2)
devising efficient methods to find optimal mappers, thereby
maximizing parallel program performance.

To address the first challenge, we propose an Agent-
System Interface (ASI), as shown in Figure 1, an abstrac-
tion layer between the agent and the system that simplifies
code generation and provides more meaningful feedback to
the agent. At the core of ASI is a Domain-Specific Lan-
guage (DSL), a high-level interface that encapsulates all
performance-critical decisions required to generate a map-
per. The DSL abstracts away the complexity of low-level
system code with a compiler. Additionally, the DSL defines
a structured search space, enabling systematic exploration
of mapping strategies. We also design and implement the
AutoGuide mechanism to interpret raw execution output
into informative and actionable guidance. This mechanism
allows the agent to iteratively optimize the mapper by lever-
aging enriched feedback to update its strategy.

For the second challenge, we adopt the generative opti-
mization approach, a recent advance in optimization tech-
niques. Unlike traditional methods such as reinforcement
learning (Ansel et al., 2014), which rely solely on scalar re-
wards, generative optimization can utilize richer forms of
feedback, such as error explanations and actionable sugges-
tions expressed in natural language. This agentic optimiza-
tion workflow has previously proven to be effective across
various domains (Nie et al., 2024; Cheng et al., 2024; Yang
et al., 2023; Khattab et al., 2023; Yuksekgonul et al., 2024).
Our work is the first to apply such technique to the domain
of system optimization.

Our experiments demonstrate that mappers optimized by

LLM-powered agents not only match but often surpass
expert-written mappers, achieving up to 1.34× speedup
across nine benchmarks. Since expert-written mappers set
the highest standard, surpassing them is a notable accom-
plishment. At the same time, our method significantly re-
duces mapper tuning time from days to minutes, making
high-performance mapping more accessible to domain sci-
entists. To further highlight the advantage of generative op-
timization, we compare it against OpenTuner, a reinforce-
ment learning-based autotuning framework. Our genera-
tive optimizer finds mappers 11× faster than OpenTuner
when both run for 10 iterations and still maintains a 3.8×
advantage even when OpenTuner runs for 1000 iterations.
Furthermore, ablation studies underscore the necessity of
the agent-system interface design in achieving these per-
formance gains. Our contributions are as follows:

1. Design of an Agent-System Interface: We introduce
an abstraction layer that simplifies mapper code gener-
ation and provides guidance to the agent. The Domain-
Specific Language (DSL) defines a search space, al-
lowing the agent to explore mapping strategies without
dealing with low-level system code. AutoGuide inter-
prets raw execution output into targeted feedback, en-
abling the agent to refine mapper code more effectively.

2. Generative Optimization for Systems: We intro-
duce generative optimization to improve system perfor-
mance, leveraging richer feedback such as error mes-
sages and actionable suggestions in natural language.
Unlike reinforcement learning methods like OpenTuner,
which rely solely on scalar feedback, our method identi-
fies better mappers in far fewer iterations. With only 10
iterations, it outperforms OpenTuner by 3.8× even after
1000 iterations.

3. Empirical Evaluation of Performance: Our agent-
based solution achieves up to 1.34× speedup across
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nine benchmarks, surpassing expert-written mappers
while reducing tuning time from days to minutes. We
highlight the critical role of the agent-system interface
through ablation studies, demonstrating its impact on
achieving the performance gains.

2. Related Work
Mapping in Parallel Programming Many parallel pro-
gramming systems allow users to make their own mapping
decisions, such as Legion (Bauer et al., 2012), StarPU (Au-
gonnet et al., 2009; 2010), Chapel (Chamberlain et al.,
2007), HPX (Kaiser et al., 2014; Heller et al., 2017), Se-
quoia (Fatahalian et al., 2006), Ray (Moritz et al., 2018),
TaskFlow (Huang et al., 2021), and Pathways (Barham
et al., 2022). Several techniques have been proposed
to automate mapping, including machine learning mod-
els (O’Boyle et al., 2013; Wang & O’Boyle, 2009), static
analysis (Poesia et al., 2017; Ren et al., 2008), reinforce-
ment learning (Ansel et al., 2014; Mirhoseini et al., 2017)
and auto-tuning (SFX Teixeira et al., 2023). We use an
agent-based approach with LLMs and explore a larger
search space for mappers than traditional methods.

Agentic Frameworks Agents powered by Large Lan-
guage Models (LLMs) play a critical role in decision-
making, planning, tool integration, and solving complex
problems in dynamic environments (Guo et al., 2024).
Many agentic frameworks have been developed (Yao et al.,
2022; Wu et al., 2023; Li et al., 2023; Hong et al., 2023),
with uses spanning domains such as software engineer-
ing (Gur et al., 2023; Yang et al., 2024b; Jin et al., 2024),
robotics (Kannan et al., 2024), healthcare (Li et al., 2024),
education (Ramirez & Esparrell, 2024), and knowledge en-
gineering (Shao et al., 2024). Our work is the first to apply
an agentic workflow to iteratively optimize mapper code,
improving the performance of parallel programs.

AI for Systems The application of AI to optimize sys-
tem design has gained significant traction in recent years.
Techniques such as deep learning (Zheng et al., 2020a;b;
2022b) and gradient-boosted trees (Feng et al., 2023) have
been used to predict program execution times for per-
formance optimization. Reinforcement learning methods
have addressed challenges in chip floorplanning (Mirho-
seini et al., 2021), autotuning (Ansel et al., 2014), auto-
vectorization (Haj-Ali et al., 2020a), and compiler phase
ordering (Haj-Ali et al., 2020b). While previous efforts
have predominantly relied on traditional approaches for
cost prediction and optimization, our work uses the recent
advances in generative optimization to tackle complex sys-
tem challenges.

Generative Optimization Recent work has explored the
use of LLMs for optimization problems traditionally tack-

led with numerical methods, including mixed-integer pro-
gramming (AhmadiTeshnizi et al., 2024a;b) and numerical
optimization (Nie et al., 2024). A key advantage of genera-
tive optimization is its ability to iteratively refine solutions
using diverse forms of feedback. For example, Cheng et al.
(2024) applies generative optimization to robotic manipu-
lation and game playing, while Yuksekgonul et al. (2024)
optimizes prompts and molecular designs. While reinforce-
ment learning has been applied to system optimization,
the potential of LLM-driven optimization in systems re-
mains unexplored. Our work explores whether generative
optimization with richer feedback outperforms traditional
methods using scalar rewards in system optimization.

3. Problem Definition

Motivation and Challenges The concrete problem we
address is the automated generation of high-performance
mappers for the Legion parallel programming frame-
work (Bauer et al., 2012). Mappers dictate task scheduling
and data placement. A well-designed mapper can achieve
orders-of-magnitude speedup over naive strategies.

However, automating mapper generation is challenging due
to two key factors. First, the complexity of low-level sys-
tem code. Implementing a mapper requires writing hun-
dreds of lines of intricate C++ code, demanding exper-
tise in system internals. Second, the vast search space
of mapping strategies. The search space grows exponen-
tially with the number of tasks and arguments.

Search Space and Performance Impact As illustrated
in Figure A1, the search space of mappers involves multi-
ple decisions, each influencing performance. The first key
aspect is processor selection, which determines whether a
task runs on GPUs, CPUs, or the OpenMP runtime. This
choice depends on factors such as task size, GPU mem-
ory capacity, and kernel launch overhead. For instance,
small tasks may prefer CPUs due to the overhead of launch-
ing GPU kernels, while tasks with large memory footprints
may run on CPUs when GPU memory is insufficient.

Another crucial dimension is memory placement, which
dictates where data is stored. A mapper must decide
whether to place data in the GPU’s FrameBuffer for fast
access, ZeroCopy memory for CPU-GPU sharing, or CPU
system memory for more available storage. Each option
presents trade-offs between access speed, memory usage,
and data transfer overhead.

Additionally, memory layout further expands the search
space, with decisions on Struct of Arrays (SOA) vs. Ar-
ray of Structures (AOS), data ordering (Fortran-order vs.
C-order), and alignment constraints (e.g., 128-byte align-
ment) significantly affecting cache efficiency and perfor-
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1 # Map task0 to GPU.
2 Task task0 GPU;
3
4 # Place certain data onto GPU ZeroCopy.
5 Region * ghost_region GPU ZCMEM
6
7 # Specify layout in memory
8 # (aligned to 64 bytes)
9 Layout * * * C_order SOA Align==64

10
11 # Define a cyclic mapping strategy
12 def cyclic(Task task):
13 ip = task.ipoint;
14 mgpu = Machine(GPU);
15 node_idx = ip[0] % mgpu.size[0];
16 gpu_idx = ip[0] % mgpu.size[1];
17 return mgpu[node_idx, gpu_idx];
18
19 IndexTaskMap task4 cyclic

(a) An example mapper in Domain-Specific Language (DSL)

1 void slice_task(const Task& task,
2 const SliceTaskInput &input,
3 SliceTaskOutput &output) {
4 vector<Processor> targets =
5 this->select_targets_for_task(ctx, task);
6 DomainT<2> space = input.domain;
7 Point<2> num_points =
8 space.bounds.hi - space.bounds.lo + ones;
9 Rect<2> blocks(zeroes, num_blocks - ones);

10 ... // 126 lines of C++ code omitted here
11 for (PointInRectIterator<2> it(blocks); it() != NULL; it++)
12 {
13 DomainT<2,coord_t> slice_space;
14 TaskSlice slice;
15 slice.domain = {slice_lo, slice_hi};
16 slice.proc = targets[index++ % targets.size()];
17 output.slices.push_back(slice);
18 }
19 }

(b) Code snippet from a C++ mapper

Figure 2. Comparison of a DSL mapper and a C++ mapper. The DSL’s declarative, high-level design abstracts away the complexity
of low-level C++ code, serving as the core of the Agent-System Interface. The highlighted boxes illustrate how the same functionality,
which requires extensive C++ system code, can be expressed concisely in just a few lines in DSL.

mance.

Finally, an important idiom in high-performance comput-
ing is launching tasks over partitioned data. Index map-
ping determines how data partitions and task executions
are distributed across multiple processors. For consistency,
we can represent data partitioning as a tensor of data par-
titions, the machine as a tensor of processors, and tasks
operating on the partitioned data as a tensor of tasks. The
way data and task indices are mapped to processor indices
affects inter-processor communication, a key factor in per-
formance (Unger et al., 2022; Zheng et al., 2022a).

4. Our Approach: Agent-System Interface
4.1. Domain-Specific Language Design

A key challenge in automating mapper generation with a
coding agent is the complexity of low-level system code,
which requires intricate C++ implementations. To address
this, we design a high-level Domain-Specific Language
(DSL) as the core of our Agent-System Interface (ASI).
The DSL provides a structured search space for mapping
strategies while abstracting away low-level implementation
details. Unlike C++, which demands imperative specifica-
tions of mapping policies, our DSL adopts a declarative
design, allowing users to specify what to achieve rather
than how to implement it. Most critically, the DSL sepa-
rates concerns, enabling multiple aspects of mapping de-
cisions to be expressed independently rather than being
entangled in low-level system APIs. This design reduces
code complexity and naturally provides a search space for
the agent to explore. To implement it, we develop a com-
piler that translates DSL into the low-level C++ APIs.

As illustrated in Figure 2, the complexity of DSL code is

significantly lower than that of C++. Figure 2a provides
an example of a DSL mapper, highlighting the key fea-
tures of our DSL. In contrast, Figure 2b shows a snippet
from a C++ mapper, emphasizing the intricacy of low-level
implementation details. Across the benchmarks, using the
DSL results in an average lines of code reduction of 14×.
This substantial reduction makes DSL a more suitable tar-
get for LLM code generation, as it abstracts away the com-
plexities inherent in low-level systems. As we will show
in Section 5.2, LLMs generate DSL code more effectively,
despite DSL having no examples in LLM training corpora,
whereas C++ is widely represented.

Next, we describe the DSL’s design, emphasizing its
declarative nature and structured search space. Section 3
details the performance impact of each decision.

The Task statement (Line 2) defines processor selection
for each task, choosing between CPU, GPU, or OpenMP.
Line 2 specifies that instances of task0 should run on
GPUs. This decision is made per task; note that the search
space expands exponentially with the number of tasks.

The Region statement (Line 5) controls memory place-
ment for data arguments. Line 5 specifies that all tasks us-
ing ghost_region should place the data in GPU Zero-
Copy memory. Other choices include GPU FrameBuffer
memory and CPU System Memory. This decision is made
per task and per argument, causing the search space to grow
exponentially.

The Layout statement (Line 9) defines memory layouts.
Line 9 enforces a C_order axis ordering, an SOA layout,
and a 64-byte memory alignment for all data used by all
tasks mapped to all processors. Alternative choices include
F_order, AOS, and various alignment strategies. This is
a per-task, per-data, per-processor decision.

4



Improving Parallel Program Performance with LLM Optimizers via Agent-System Interfaces

Figure 3. Agent Optimization Process. The mapper agent takes server specifications and application-specific information as input,
generates mapper code, and executes it alongside the application on the server. Raw execution feedback is enriched using the AutoGuide
mechanism, and the mapper is iteratively refined by an LLM optimizer to improve performance.

Case Raw Execution Output AutoGuide
Explain Suggest

Case 1 Execution Error: Assertion failed: stride
does not match expected value.

Memory layout is
unexpected.

Adjust the layout constraints or move
tasks to different processor types.

Case 2 Performance Metric: Execution time is
0.03s. N/A Move more tasks to GPU to reduce

execution time.

Table 1. AutoGuide Feedback Mechanism. The AutoGuide mechanism interprets raw execution output from the runtime system,
providing more informative error explanations and suggestions for mapper modifications. It is implemented via keyword matching.
Additional examples are shown in Table A3.

The IndexTaskMap statement (Line 19) controls index
mapping using a customized function. Line 12 defines the
mapping function that establishes the correspondence be-
tween two index spaces: the task index space (represented
by task.ipoint) defined in the application code (e.g.,
for loops) and the processor space of the distributed ma-
chine (represented by Machine(GPU)). The DSL allows
users to express arbitrary arithmetic mappings between the
two index spaces. This decision applies to each task group
launched by parallel for loops.

Our DSL is designed to express a wide range of high-
performance mapping strategies, including all of the most
important decisions. While there may be cases where cer-
tain optimizations are not directly expressible, we have
not encountered any. Despite being more constrained than
general-purpose C++, the DSL has been proven to be effec-
tive: all mappers discovered by our agent that outperform
expert-written C++ implementations are expressible within
the current DSL.

4.2. Generative Optimization via AutoGuide

We formulate mapper generation as an online optimiza-
tion problem. Given a triplet (Θ, ω, T ), where Θ is a set of

possible mappers, ω is an optimization objective, and T is a
function that takes a mapper θ ∈ Θ as input, (f, g) = T (θ)
and returns f , the feedback from executing the mapper
(i.e., the measured performance after running the applica-
tion code with the generated mapper), and g, the process
graph tracing how the mapper was generated. In our setup,
mapper performance is deterministic, as we carefully con-
trol all sources of randomness in the environment. If the
parameter space were numerical, this online optimization
problem could be addressed using bandit algorithms (Lat-
timore & Szepesvári, 2020), reinforcement learning (Sut-
ton & Barto, 2018), or Bayesian optimization (Snoek et al.,
2012), but these methods are less efficient when the param-
eter search space is large and discrete (i.e., text).

In this online optimization problem, we leverage the DSL
to structure the parameter space to improve the efficiency of
optimization. Here, θ represents the program code, while
ω and f are expressed as text. We adopt generative op-
timization, leveraging LLMs as optimizers given the ob-
jective in text form. This emergent optimization behavior
has been recently observed and applied across various do-
mains (Yang et al., 2024a; Cheng et al., 2024; Yuksekgonul
et al., 2024; Patel et al., 2024).
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Optimization Process We present the optimization pro-
cess in Figure 3. The agent takes two inputs: server spec-
ifications and application metadata. Server specifications
detail the hardware configuration, including the number of
CPUs and GPUs per node, as well as the total node count.
Application metadata provides information on task names
and the associated data arguments accessed by each task.
These inputs define the structured search space explored by
the agent during optimization. The agent, using the given
inputs, generates mapper code that is executed alongside
the application code on the server. Raw execution feed-
back from the runtime is augmented with the AutoGuide
mechanism and fed back to the LLM, iteratively refining
the agent for improved mapper code generation.

Coding Agent Our mapper agent improves mapping de-
cisions by iteratively generating DSL code. A high-level
schema of the mapper agent is shown in Figure 3. The
mapper agent is implemented as a Python program in the
Trace (Cheng et al., 2024) framework, where we decom-
pose the task of generating a monolithic mapper into in-
dependent code segments. This decomposition allows the
agent to decide what code to generate for each segment
separately. This approach is effective because our DSL de-
sign eliminates unnecessary dependencies between map-
ping decisions. Our modularization strategy aligns with
least-to-most prompting (Zhou et al., 2022).

AutoGuide The AutoGuide feedback mechanism is de-
signed based on three key motivations: (1) generative op-
timization benefits from natural language feedback rather
than relying solely on scalar values, (2) raw execution out-
put from the runtime system is often too uninformative
to effectively guide the agent’s decisions, and (3) domain
heuristics known to systems researchers can be naturally
expressed in language (e.g., most tasks run faster on GPUs
than CPUs). To address these needs, AutoGuide helps the
agent by explaining opaque error messages and suggest-
ing mapper modifications. As shown in Table 1, it in-
terprets uninformative execution output into actionable in-
sights, with additional examples in Appendix A.5. The
implementation relies on keyword matching over the raw
execution output. An ablation study in Section 5.3 demon-
strates its effectiveness in our experiments.

5. Evaluation
Experiments are conducted on one node with two Intel
10-core E5-2640 v4 CPUs, 256G main memory, and four
NVIDIA Tesla P100 GPUs. We use gpt-4o-2024-08-06.

5.1. Speedup of Application Performance

Benchmarks Our evaluation utilizes a suite of 9 bench-
marks, including 3 scientific computing workloads and 6
well-known matrix multiplication algorithms. Circuit is
a simulation benchmark that models electrical circuit be-
havior by simulating currents and voltages across inter-
connected nodes and wires (Bauer et al., 2012). Sten-
cil simulates a 2D grid where each point’s value is up-
dated based on a stencil pattern determined by its neigh-
bors (Van der Wijngaart & Mattson, 2014). Pennant mod-
els unstructured mesh Lagrangian staggered-grid hydro-
dynamics, commonly used for simulating compressible
flow (Ferenbaugh, 2015). The remaining six benchmarks
– Cannon’s, SUMMA, PUMMA, Johnson’s, Solomonik’s,
and COSMA – are well-known parallel matrix multiplica-
tion algorithms (Cannon, 1969; Van De Geijn & Watts,
1997; Choi et al., 1994; Agarwal et al., 1995; Solomonik &
Demmel, 2011; Kwasniewski et al., 2019). Parallel matrix
multiplication remains an active research topic due to its
central role in high-performance computing and scientific
simulations (Yadav et al., 2022). Furthermore, improving
matrix multiplication performance has a broad impact, as it
accelerates numerous downstream machine learning work-
loads (Jangda et al., 2022; Zheng et al., 2025). We discuss
these matrix multiplication algorithms in more detail in Ap-
pendix A.3. This benchmark suite provides both depth with
its representative matrix multiplication algorithms and va-
riety with its range of scientific computing workloads.

In this experiment, we evaluate the performance of the
mappers with the following baselines.

Expert-Written Mappers. These mappers are manually
developed by domain scientists who spend years master-
ing computational science. Writing mappers in parallel
programming frameworks is another challenge, and tuning
them for specific applications can take days.

Randomly Generated Mappers. These mappers were
randomly generated with 10 different random seeds, sam-
pling from the entire search space of each application. We
report the average performance.

Agent-Optimized Mappers. Using Trace (Cheng et al.,
2024), we evaluated the Trace and OPRO (Yang et al.,
2023) search algorithms, running 10 iterations per appli-
cation. To account for stochastic output, we repeated the
process 5 times and report the average. The best mapper
from Trace across runs is also reported.

OpenTuner Mappers. OpenTuner (Ansel et al., 2014) is
a program autotuning framework that uses reinforcement
learning to optimize performance based on scalar feed-
back. We provided execution time as feedback, with a high
penalty for failures.
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Figure 4. Performance Comparison. Normalized throughput for 9 benchmarks, comparing expert mappers, random mappers, the
average optimization trajectories of Trace, OPRO, and OpenTuner in 10 iterations across 5 runs, and the best mappers found by Trace.

100 101 102 103

Iterations (Log Scale)
1X

5X

9X

13X

Re
la

tiv
e 

Th
ro

ug
hp

ut

11X
3.8X

Generative Optimizer vs Traditional RL (1k iters)

Trace
OpenTuner

Figure 5. Comparison of Trace (generative optimizer) and Open-
Tuner (traditional RL) over 1K iterations (averaged across all 9
benchmarks)

Results In Figure 4, we use normalized throughput as
our performance metric, where higher values indicate bet-
ter performance. The throughput is normalized relative to
the expert-written mappers, providing a clear baseline for
comparison. Our focus is on measuring end-to-end perfor-

mance, which includes both the correctness and efficiency
of the generated mappers. If the generated code has any
syntax or runtime issues, its throughput is recorded as 0.
We report the best mappers found by Trace, and the av-
erage optimization trajectories of Trace, OPRO and Open-
Tuner over 10 iterations across 5 runs.

All the best mappers found by Trace can match or sur-
pass the expert-written mappers, underscoring the effec-
tiveness of agent-based generative optimizer. In our con-
text, reporting the best-performing mapper is appropriate.
Mapper optimization is an offline process, and in practice,
it is standard to run the optimizer multiple times and deploy
the best result. Once identified, the mapper can be reused
across repeated executions on the same application, input,
and hardware, incurring no further search cost.

Random mappers consistently exhibit low performance
across all applications, emphasizing the critical role of
mapping decisions. For each application, we generate 10
random mappers by sampling from the full DSL-defined
search space, totaling 90 mappers across 9 applications.
Among them, 74 (82.2%) raise runtime errors due to invalid
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Code Generation Target Mapping Strategy Success Rate1 2 3 4 5 6 7 8 9 10

C++ (single trial) ✗ – – ✗ – – ✗ ✗ – – 0%
DSL (single trial) ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ – 80%

C++ (iterative refine) ✗ – – ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%
DSL (iterative refine) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100%

Table 2. Code Generation Success Rates. Success rates for generating code across 10 mapping strategies described in natural language.
The test evaluates whether the generated code compiles and passes execution tests. Generating DSL code significantly outperforms
generating C++ for both settings. Symbols indicate results: – fails to compile, ✗ compiles but fails the test, and ✓ passes the test.

mapping decisions. The runtime system enforces correct-
ness by rejecting such mappers during execution, resulting
in a throughput of 0.

When comparing optimization trajectories, Trace performs
similarly to OPRO, and significantly outperforms Open-
Tuner. To further compare the agent-based optimizer
with traditional reinforcement learning, we extended Open-
Tuner’s optimization iterations from 10 to 1000, as shown
in Figure 5, where the x-axis is the log-scale of itera-
tions and the y-axis represents relative throughput (aver-
aged across all 9 benchmarks). Notably, Trace achieves a
3.8× speedup over OpenTuner even when OpenTuner is
run for 1000 iterations. When both are limited to 10 itera-
tions, Trace outperforms OpenTuner by 11×, demonstrat-
ing its ability to quickly identify high-performance map-
pings. This highlights the superiority of Trace (genera-
tive optimizer) over OpenTuner (traditional reinforce-
ment learning). Moreover, Trace completes the entire op-
timization process in just 10 minutes per application, re-
ducing mapper development time from days to minutes.

To offer a more comprehensive view of performance vari-
ations, we present additional statistics, including the mean,
standard deviation, worst, median, and best normalized
throughput for both our method and OpenTuner. These
statistics are derived from five runs for each benchmark,
as detailed in Appendix A.4.

Case Analysis The largest performance gain achieved by
Trace over the expert mapper is observed in Circuit, with
a speedup of 1.34×. This improvement is primarily due
to memory placement: the best mapper allocates two data
collections to GPU FrameBuffer memory, while the ex-
pert mapper places them in GPU ZeroCopy memory. De-
spite a slight increase in inter-GPU communication costs,
Trace reduces task execution time due to faster memory ac-
cess, resulting in higher overall performance. For matrix-
multiplication algorithms, the greatest speedup is seen in
COSMA, with Trace achieving a 1.31× speedup over the
expert mapper. This is attributed to Trace’s more efficient
index mapping functions, which reduce inter-GPU com-
munication by better distributing partitioned submatrices

across GPUs. For additional context, examples of Trace
mappers are presented in Appendix A.8.

5.2. Ablation Study of DSL for Code Generation

In Section 5.1, we demonstrate the overall effectiveness of
our approach. Here, we conduct an ablation study on the
DSL, the core of the Agent-System Interface. Since suc-
cessful generation is the foundation of optimization, this
subsection focuses on how well the DSL helps LLMs gen-
erate syntactically and semantically correct mappers
compared to C++, rather than directly optimizing perfor-
mance.

Experiment Setup We designed 10 mapping strategies,
described in natural language, to evaluate whether LLMs
can generate correct code in both the DSL and the orig-
inal low-level C++. The strategies are detailed in Ap-
pendix A.7. To ensure a fair comparison, identical prompt
materials (documentation, examples, and starting code)
were provided for both the DSL and C++. Success rates
are measured based on whether the generated code passes
predefined test cases, with results reported for single trials
and iterative refinement, where the LLM is allowed up to
10 iterations to improve the code using compiler feedback.
The evaluation is conducted with the DSPy (Khattab et al.,
2023) framework.

Results Table 2 shows that DSL achieves significantly
higher generation success rates than C++ in both the
single-trial and iterative refinement settings. This demon-
strates the effectiveness of DSL’s design in abstracting sys-
tem complexity and providing a high-level interface that
enables LLMs to tackle complex system challenges in
code generation. Incorporating iterative refinement with
compiler feedback further improves success rates, resolv-
ing four compilation errors in C++ and two in the DSL.
However, the gap between DSL mappers and C++ map-
pers remains substantial. Notably, these results are strik-
ing given that the DSL is a low-resource language with no
pre-training or fine-tuning data, while C++ code is widely
present in LLM training corpora.
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Figure 6. Comparison of different feedback designs. 0-Shot and 5-Shot are baselines. Execution provides only the raw execution
output as feedback. Explain provides additional explanations of execution errors. Suggest offers mapper modification suggestions. All
feedback is automatically generated.

Analysis LLMs perform better with the DSL for two rea-
sons. First, the semantic gap between natural language and
code is smaller with the DSL than with C++. For example,
writing a mapper to “align all data to 64 bytes in mem-
ory and use Fortran ordering” requires one line Layout
* * * Align==64 F_order in the DSL because of
its declarative design. In contrast, the C++ mapping API
requires a sequence of operations to enforce alignment and
ordering, which widens the semantic gap. Second, the DSL
reduces the amount of code. As discussed before, LLMs
achieve an average reduction of 14× in lines of code, sim-
plifying code generation. These results underscore the im-
portance of a high-level agent-system interface.

5.3. Ablation Study of the AutoGuide Feedback

The AutoGuide mechanism provides enriched feedback to
the agentic optimizer. We compare with alternative feed-
back designs.

Experiment Setup We compare the following baselines.
0-shot and 5-shot have no feedback, allowing the LLM to
generate once with either 0 or 5 examples provided. Execu-
tion only provides raw execution feedback, Explain offers
additional explanations for execution errors, and Suggest
offers mapper modification suggestions. The Trace trajec-
tory shown in Figure 4 uses the full AutoGuide mode with
all Execution+Explain+Suggest. As an ablation study, we
evaluate 3 benchmarks.

Results and Analysis Figure 6 demonstrates that the full
feedback mechanism consistently outperforms all re-
duced feedback variants. The 0-shot and 5-shot results per-
form the worst, underscoring the importance of feedback-
based iterative refinement. This highlights the value of an
agentic workflow, showing that performance improvements
are not solely driven by prompting the LLM but are a direct
result of the iterative refinement in the workflow design.

6. Conclusion
In this paper, we introduced a system that leverages LLMs
to automate mapper generation and optimization. The
Agent-System Interface (ASI) simplifies code generation
with a Domain-Specific Language (DSL), which abstracts
away the low-level complexity of system code, and en-
riches execution feedback through AutoGuide, which in-
terprets raw execution output into actionable guidance. We
adopted generative optimization, allowing LLMs to refine
mappers using rich textual feedback beyond scalar met-
rics. Unlike RL-based methods like OpenTuner, which
rely on numerical rewards, our approach incorporates error
explanations and targeted suggestions, accelerating search
efficiency. Experiments show that agent-generated map-
pers outperform expert-written ones, achieving up to 1.34×
speedup across nine benchmarks. Our method, running
only 10 iterations, maintains a 3.8× advantage over Open-
Tuner even after 1000 iterations. By reducing mapper de-
velopment time from days to minutes, our approach ben-
efits computational scientists and demonstrates the effec-
tiveness of generative optimization in system design.
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A. Appendix
A.1. Illustration for Mapping

We show an illustration for mapping in Figure A1.

(processor)

Application

Tasks
Mapper

Processor

Selection

(tasks)

Memory

Placement

(data)

Data

Index

Mapping

Machines

(tasks, data)

Figure A1. Mappers decide the placement of each task in the task graph to processors, the placement of data to memory, and how the
iteration space of data is partitioned and mapped to different processors.

A.2. DSL Grammar

Terminals: TaskName, RegionName, var, int

Grammar Rules:

Program → Statement+

Statement → TaskMap | DataMap | DataLayout | FuncDef | IndexTaskMap TaskName var

TaskMap → Task TaskName Proc+

DataMap → Region TaskName RegionName Proc Memory+

Proc → CPU | GPU | OMP
Memory → SYSMEM | FBMEM | ZCMEM
DataLayout → Layout TaskName RegionName Proc Constraint+

Constraint → SOA | AOS | C_order | F_order | Align == int

FuncDef → def var(var+): FuncStmt+

FuncStmt → var = Expr | return Expr

Expr → var | var(Expr+) | Machine(Proc) | Expr.Expr | Expr Op Expr | (Expr) |
Expr[Expr] | *Expr | Expr ? Expr : Expr
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A.3. Parallel Matrix Multiplication Algorithms

2D Algorithms Cannon’s (Cannon, 1969) introduced a systolic communication pattern with tiled data partitioning for
distributed matrix multiplication. PUMMA (Choi et al., 1994) and SUMMA (Van De Geijn & Watts, 1997) extended this
approach by supporting non-square matrices and improving communication efficiency through pipelining. They are called
2D algorithms because they partition the matrices into 2D tiles and then map them onto the processor space.

Non-2D Algorithms Johnson’s (Agarwal et al., 1995) introduced a 3D algorithm that partitions the input matri-
ces into 3D tiles and uses additional memory per processor to reduce communication compared to 2D algorithms.
Solomonik’s (Solomonik & Demmel, 2011) balances between 2D and 3D approaches by using extra memory to further
minimize communication. COSMA (Kwasniewski et al., 2019) takes a different approach by optimizing the processor grid
and parallelization strategy based on the input size and the machine size.

A.4. Additional Performance Statistics

In our setting, reporting the best result across multiple runs is appropriate, as the best mapper is the one that is desired by
the user. Mapper search is an offline optimization process, and it is feasible to run the optimizer multiple times to select
the highest-performing mapper. Once identified, this mapper can be reused without incurring additional search cost, as the
deployment scenario (application, input, and hardware) remains fixed.

That said, additional statistics on performance varations can provide a more complete picture. Here we include the mean,
standard deviation, worst, median, and best normalized throughput across five runs for each benchmark of our approach
Trace and OpenTuner.

Benchmark Mean Std Dev Worst Median Best

Circuit 1.33× 0.01 1.31× 1.33× 1.34×
Stencil 1.01× 0.01 1.00× 1.01× 1.02×
Pennant 1.03× 0.02 1.00× 1.03× 1.04×
Cannon 1.09× 0.00 1.08× 1.09× 1.09×
SUMMA 0.86× 0.48 0.00× 1.07× 1.09×
PUMMA 0.57× 0.55 0.00× 0.66× 1.09×
Johnson 0.98× 0.17 0.68× 1.06× 1.07×
Solomonik 0.52× 0.41 0.00× 0.61× 1.09×
COSMA 1.25× 0.03 1.23× 1.23× 1.31×

Table A1. Normalized throughput of our framework Trace.

Benchmark Mean Std Dev Worst Median Best

Circuit 0.97× 0.16 0.81× 0.99× 1.20×
Stencil 0.00× 0.00 0.00× 0.00× 0.00×
Pennant 0.00× 0.00 0.00× 0.00× 0.00×
Cannon 0.00× 0.00 0.00× 0.00× 0.00×
SUMMA 0.00× 0.00 0.00× 0.00× 0.00×
PUMMA 0.00× 0.00 0.00× 0.00× 0.00×
Johnson 0.00× 0.00 0.00× 0.00× 0.00×
Solomonik 0.00× 0.00 0.00× 0.00× 0.00×
COSMA 0.00× 0.00 0.00× 0.00× 0.00×

Table A2. Normalized throughput of OpenTuner.

Our method achieves relatively stable performance across most benchmarks. The higher variance and occasional 0.00×
worst-case throughput observed in SUMMA, PUMMA, and Solomonik are due to invalid mapper configurations in the
search space (e.g., violating cuBLAS layout constraints). The runtime enforces correctness by rejecting such configurations
during execution. While the generative optimizer typically learns to avoid these cases through the AutoGuide mechanism,
occasional failures within the 10-iteration budget are still possible. In practice, such failures can be mitigated by repeating
the optimization and selecting the best-performing mapper. In contrast, OpenTuner, despite running the same number of
iterations, fails to generate valid mappers for 8 out of 9 benchmarks. This highlights the difficulty of exploring the search
space using traditional reinforcement learning methods.
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A.5. Examples of Feedback Configurations

We give examples for the raw execution output and enriched feedback in Table A3. The enhanced feedback includes
explanations of errors and suggestions for mapper modifications.

Case Raw Execution Output AutoGuide
Explain Suggest

case1
Compile Error: Syntax error, unexpected

:, expecting { N/A There should be no colon : in
function definition.

case2
Compile Error: IndexTaskMap’s

function undefined N/A Define the IndexTaskMap function
first before using it.

case3 Compile Error: mgpu not found N/A Include mgpu = Machine(GPU);
in the generated code.

case4
Execution Error: Assertion failed: stride

does not match expected value.
Memory layout is

unexpected.
Adjust the layout constraints or move

tasks to different processor types.

case5
Execution Error: DGEMM parameter

number 8 had an illegal value
Memory layout is

unexpected. Adjust the layout constraint.

case6
Execution Error: Slice processor index

out of bound

IndexTaskMap
statements cause

error.

Ensure that the first index of mgpu
ends with % mgpu.size[0], and

the second element ends with %
mgpu.size[1].

case7
Execution Error: Assertion

‘event.exists()’ failed

InstanceLimit
statements cause

error.

Avoid generating InstanceLimit
statements.

case8
Performance Metric: Execution time is

0.03s. N/A Move more tasks to GPU to reduce
execution time.

case9
Performance Metric: Achieved

throughput = 4877 GFLOPS N/A
Try using different IndexTaskMap
or SingleTaskMap statements to

maximize throughput.

Table A3. Raw execution output and AutoGuide (error explanations and adjustment suggestions) for different cases.
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A.6. Trace Agent Code

Trace (Cheng et al., 2024) uses Python decorators like @bundle to annotate Python programs. It allows us to design an
LLM code generation agent as if we were writing a Python program ourselves. We first set up an end-to-end runnable
Python program that can generate a valid mapper program by randomly making decisions over the search space. We show
the high-level structure of our Trace Mapper in Figure A3. Figure A2 shows how we incorporate the feedback from the
execution to update the agent. At each optimization step, Trace will execute DSLMapperGenerator and collect the
corresponding execution flow to build up a graph. Then it will make a call to an LLM to perform an update to any function
that is decorated with @bundle(trainable=True). The DSLMapperGenerator is structured in the same way as
providing a search space specified by the DSL, where an LLM optimizer can make decisions along the pre-designed axes.
We note that this type of design is only enabled by recent developments like Trace and is much more challenging to do
using older LLM-based frameworks.

1 policy = MapperAgent()
2 params = policy.parameters()
3 optimizer = trace.Optimizer(params)
4
5 app = GetApplicationInfo()
6 test = GetMapperEvaluator(app)
7
8 for i in range(iterations):
9 # Forward pass

10 try:
11 mapper = policy(app)
12 # feedback (str) contains performance
13 feedback = test(mapper)
14 except TraceExecutionError as e:
15 feedback = str(e)
16 target = e.exception_node
17
18 # Backward pass and update
19 optimizer.zero_feedback()
20 optimizer.backward(target, feedback)
21 optimizer.step()

Figure A2. We show how we use Trace to incorporate the feedback from the execution to update the agent, with a Pytorch-like syntax.
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1 import opto.trace as trace
2
3 class MapperAgent(trace.Module):
4 @trace.bundle(trainable=True)
5 def task_decision(self, tasks):
6 ...
7
8 @trace.bundle(trainable=True)
9 def region_decision(self, regions):

10 ...
11
12 @trace.bundle(trainable=True)
13 def layout_decision(self):
14 ...
15
16 @trace.bundle(trainable=True)
17 def instance_limit_decision(self, tasks):
18 ...
19
20 @trace.bundle(trainable=True)
21 def index_task_map_decision(self, index_tasks):
22
23 @trace.bundle(trainable=True)
24 def single_task_map_decision(self, single_tasks):
25 ...
26
27 def generate_mapper(self):
28 """
29 Generate the final mapper code by combining all code statements.
30 """
31 task_statements = self.task_decision(self.tasks)
32 region_statements = self.region_decision(self.regions)
33 layout_statements = self.layout_decision()
34 instance_limit_statements = self.instance_limit_decision(self.tasks)
35 index_task_map_statements = self.index_task_map_decision(self.index_tasks,

self.index_task_specification)
36 single_task_statements = self.single_task_map_decision(self.single_tasks)
37
38 code_statements = (
39 task_statements +
40 region_statements +
41 layout_statements +
42 instance_limit_statements +
43 index_task_map_statements +
44 single_task_statements
45 )
46 # Combine all code statements and function definitions into a single string
47 code_list = code_statements
48 mapper_code = str_join(node(’\n’), *code_list)
49 return mapper_code

Figure A3. High-level structure of the Trace-based agent template, where functions annotated with @bundle(trainable=True)
define the search space that the LLM optimizer updates during mapper generation. Note: This agent serves as a shared starting point
for ALL tasks. For each task, we produce a mapper from this starting agent and then ask LLMs to “optimize” this agent (by changing
functions that are trainable) to produce mappers that are optimal for the particular task.
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A.7. Mapping Strategies

Strategy 1: Map the tasks of calculate_new_currents, distribute_charge, update_voltages onto
GPUs in this way: linearize the 2D GPU processor space into 1D, then perform 1D block mapping from launch domain to
the linearized 1D processor space.

1 Task * GPU,CPU; # for any task, run on GPU if supported
2 Region * *GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
3 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
4
5 Layout * * * SOA C_order;
6
7 mcpu = Machine(CPU);
8 mgpu = Machine(GPU);
9

10 ========== Above is fixed ==========
11 def linearblock(Task task) {
12 return mgpu[task.ipoint[0] / mgpu.size[1], task.ipoint[0] % mgpu.size[1]];
13 }
14
15 IndexTaskMap calculate_new_currents,distribute_charge,update_voltages linearblock;

Strategy 2: Place ghost/shared regions (rp_shared and rp_ghost) onto GPU zero-copy memory

1 Task * GPU,CPU; # for any task, run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5
6 Layout * * * SOA C_order;
7
8 mcpu = Machine(CPU);
9 mgpu = Machine(GPU);

10
11 ========== Above is fixed ==========
12
13 Region * rp_shared GPU ZCMEM;
14 Region * rp_ghost GPU ZCMEM;

Strategy 3: Use Array Of Struct (AOS) data layout for all data instead of the default SOA

1 Task * GPU,CPU; # for any task, run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 ========== Above is fixed ==========

10
11 Layout * * * AOS;

Strategy 4: Use Fortran ordering of data layout for all data instead of the default C order

1 Task * GPU,CPU; # for any task, run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 ========== Above is fixed ==========

10
11 Layout * * * F_order;
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Strategy 5: Align all the regions to 64 bytes while using the Fortran ordering of data

1 Task * GPU,CPU; # for any task, run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 ========== Above is fixed ==========

10
11 Layout * * * Align==64 F_order;

Strategy 6: Place the task calculate_new_currents onto CPU

1 Task * GPU,CPU; # for any task, run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5
6 mcpu = Machine(CPU);
7
8 mgpu = Machine(GPU);
9

10 Layout * * * SOA C_order;
11
12 ========== Above is fixed ==========
13 Task calculate_new_currents CPU;

Strategy 7: Collect all the memory used by task calculate_new_currents

1 Task * GPU,CPU; # for any task, run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 Layout * * * SOA C_order;

10
11 ========== Above is fixed ==========
12 CollectMemory calculate_new_currents *;

Strategy 8: Ensure that at most 4 tasks of calculate_new_currents can be run at the same time

1 Task * GPU,CPU; # for any task, run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 Layout * * * SOA C_order;

10
11 ========== Above is fixed ==========
12 InstanceLimit calculate_new_currents 4;

Strategy 9: Map the second region argument of task distribute_charge onto GPU’s Zero-Copy memory

1 Task * GPU,CPU; # for any task, run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 Layout * * * SOA C_order;

10
11 ========== Above is fixed ==========
12 Region distribute_charge 1 GPU ZCMEM;
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Strategy 10: Map the tasks of calculate_new_currents,distribute_charge,update_voltages onto GPUs in a 1D cyclic man-
ner: perform a cyclic distribution over both the node and processor dimensions.

1 Task * GPU,CPU; # for any task, run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 Layout * * * SOA C_order;

10
11 ========== Above is fixed ==========
12 def cyclic1d(Task task) {
13 ip = task.ipoint;
14 # cyclic over node, cyclic over gpu
15 return mgpu[ip[0] % mgpu.size[0], ip[0] / mgpu.size[0] % mgpu.size[1]];
16 }
17
18 IndexTaskMap calculate_new_currents,distribute_charge,update_voltages cyclic1d;
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A.8. Generated Mapper Examples

Here we provide examples of generated mappers for a subset of problems. The mappers, written in DSL, are produced by
the mapper agent. While the LLM is responsible for creating and refining the mapper agent, the agent itself is implemented
in Python, and it generates mappers as DSL programs. For the Circuit Simulation benchmark, the optimized mapper
(Figure A5) is more concise than the initial version (Figure A4), with an additional constraint for byte alignment in the
data layout. In contrast, for Solomonik’s algorithm, the initial mapper is relatively simple (Figure A6), whereas the final
optimized mapper adopts a more complex and detailed index mapping strategy (Figure A7).

1 Task * GPU,OMP,CPU;
2 Task calculate_new_currents GPU;
3 Task update_voltages GPU;
4 Region * * GPU FBMEM;
5 Region * * * SOCKMEM,SYSMEM;
6 Region * all_times GPU FBMEM;
7 Region * all_nodes GPU FBMEM;
8 Region * all_wires GPU FBMEM;
9 Region * ghost_ranges GPU FBMEM;

10 Region * rp_all_nodes GPU FBMEM;
11 Region * all_private GPU FBMEM;
12 Region * all_shared GPU FBMEM;
13 Region * rp_shared GPU FBMEM;
14 Region * rp_wires GPU FBMEM;
15 Region * rp_ghost_ranges GPU FBMEM;
16 Layout * * * C_order AOS;
17 mgpu = Machine(GPU);
18
19 m_2d = Machine(GPU);
20 def same_point(Task task) {
21 return m_2d[*task.parent.processor(m_2d)];
22 }

Figure A4. For the Circuit task, we show the mapper produced by the mapper agent at iteration 2.

1 Task * GPU,OMP,CPU;
2 Task calculate_new_currents GPU;
3 Task update_voltages GPU;
4 Region * * GPU FBMEM;
5 Layout * * * C_order AOS Align==128;
6 mgpu = Machine(GPU);
7
8 m_2d = Machine(GPU);
9 def same_point(Task task) {

10 return m_2d[*task.parent.processor(m_2d)];
11 }

Figure A5. For the Circuit task, we show the mapper produced by the mapper agent at iteration 10.
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1 Task * GPU,OMP,CPU;
2 Region * * GPU FBMEM;
3 Region * * * SOCKMEM,SYSMEM;
4 Layout * * * F_order SOA;
5 mgpu = Machine(GPU);
6
7 def block1d(Task task) {
8 ip = task.ipoint;
9 return mgpu[ip[0] % mgpu.size[0], ip[0] % mgpu.size[1]];

10 }
11
12 IndexTaskMap task_2 block1d;
13
14 m_2d = Machine(GPU);
15 def same_point(Task task) {
16 return m_2d[*task.parent.processor(m_2d)];
17 }

Figure A6. For Solomonik’s algorithm, we show the mapper produced by the mapper agent at iteration 2.

1 Task * GPU,OMP,CPU;
2 Region * * GPU FBMEM;
3 Region * * * SOCKMEM,SYSMEM;
4 Layout * * * C_order SOA No_Align;
5 mgpu = Machine(GPU);
6
7 def linearize3D(Task task) {
8 ip = task.ipoint;
9 linearize = ip[0] + ip[1] + ip[2];

10 return mgpu[linearize % mgpu.size[0], linearize % mgpu.size[1]];
11 }
12
13 IndexTaskMap task_1 linearize3D;
14
15 def linearize2D(Task task) {
16 ip = task.ipoint;
17 linearize = ip[0] * 2 + ip[2];
18 return mgpu[linearize % mgpu.size[0], linearize % mgpu.size[1]];
19 }
20
21 IndexTaskMap task_1 linearize2D;
22 IndexTaskMap task_2 linearize2D;
23 IndexTaskMap task_3 linearize2D;
24 IndexTaskMap task_5 linearize2D;
25
26 m_2d = Machine(GPU);
27 def same_point(Task task) {
28 return m_2d[*task.parent.processor(m_2d)];
29 }

Figure A7. For Solomonik’s algorithm, we show the mapper produced by the mapper agent at iteration 10.
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