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ABSTRACT
Uncertainties from model parameters and model discrepancy from small-scale models impact the accu-
racy and reliability of predictions of large-scale systems. Inadequate representation of these uncertainties
may result in inaccurate and overconfident predictions during scale-up to larger systems. Hence, multiscale
modeling efforts must accurately quantify the effect of the propagation of uncertainties during upscaling.
Using a Bayesian approach, we calibrate a small-scale solid sorbentmodel to thermogravimetric (TGA) data
on a functional profile using chemistry-based priors. Crucial to this effort is the representation ofmodel dis-
crepancy,whichuses a Bayesian smoothing splines (BSS-ANOVA) framework.Our uncertainty quantification
(UQ) approach couldbe considered intrusive as it includes thediscrepancy functionwithin the chemical rate
expressions; resulting in a set of stochastic differential equations. Such an approach allows for easily prop-
agating uncertainty by propagating the joint model parameter and discrepancy posterior into the larger-
scale system of rate expressions. The broad UQ framework presented here could be applicable to virtually
all areas of sciencewheremultiscalemodeling is used. Supplementarymaterials for this article are available
online.

1. Introduction

The Carbon Capture Simulation Initiative (CCSI) sponsored by
the U.S. Department of Energy is focused on accelerating the
adoption of new carbon capture technology usingmodeling and
simulation to reduce the amount of physical testing required for
development of larger-scale power plants (Miller et al. 2014).
This effort relies heavily on computer models for upscaling.
These computer models are used to analyze phenomena in car-
bon capture systems from the quantum scale up through to the
industrial macroscale.

The multi-scale uncertainty quantification effort in this arti-
cle is illustrated on a simple carbon capture process for a “bub-
bling fluidized bed” adsorber (Lee and Miller 2012), which is
built using Aspen Custom Modeler (Aspen 2011). The major
driver of the uncertainty in the system is the chemical sor-
bent model, characterized by one (or more) chemical reac-
tions, dependent on several chemical parameters that describe
the equilibrium and kinetic facets of the reactions. In addition,
there are certain system conditions (or physical inputs, e.g., tem-
perature and pressure) that affect the behavior of the system.
The small-scale model takes in temperature and pressure inputs
(describing possible system conditions) and a set of chemistry
model parameters and then outputs the sorbent weight gain.
Experimental data are collected using thermogravimetric analy-
sis (TGA, e.g., seeMebane et al. 2013, 2014)with the same inputs
and outputs. Figure 1 displays the output (sorbent weight gain)
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of the small-scale sorbent model as a function one of the inputs
(temperature). An important characteristic here is that both
the inputs and outputs of the model are functional (in time).
Both the small-scale sorbent model, isolated to only a chem-
ical reaction with no fluid dynamics (small scale), and the
fully coupled model for a process system (large scale) are gov-
erned by the solution of one or more rate-based differential
equations.

Computer models such as that in Figure 1 are widely used by
scientists and engineers to understand and predict the behav-
ior of complex physical processes (e.g., climate change, nuclear
reactor performance, fluid transport, and carbon capture sys-
tems) when direct experimentation is difficult, expensive, or
impossible. While these computer models are often grounded
in scientific theory, they will still have various forms of uncer-
tainty that must be treated appropriately when they are used to
predict the behavior of the physical process. These uncertainties
may come from many sources, for example, incomplete infor-
mation about physical constants and/or inadequate quantitative
models to describe the physical behavior. Hence, uncertainty
quantification (UQ) is widely recognized as essential to analy-
sis of complex computer models (Currin et al. 1991; Kennedy
and O’Hagan 2001; Oakley and O’Hagan 2004; Higdon et al.
2008; Storlie et al. 2009). Many of these uncertainties arise in
a multi-scale system context, and uncertainties at a small scale
may greatly impact the accuracy and reliability of large system
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Figure . Functional input (temperature) in green, functional output (sorbent
weight gain) in blue.

predictions. Therefore, it is crucial that this small-scale uncer-
tainty be appropriately represented.

Two major sources of uncertainty in predictions from
computer models are parameter uncertainty and model form
discrepancy; statistical calibration of the model to experimental
(or field) data provides ameans to formally quantify these uncer-
tainties. Kennedy and O’Hagan (2001) developed a framework
for calibration of computer models, which includes a model dis-
crepancy term describing the deviation from the model to real-
ity. Failure to properly account for model discrepancy can lead
to overfitting of the model parameters (Bayarri et al. 2007b),
and hence inaccurate predictions. Constructing the model form
discrepancy using expert scientific knowledge about how the
model does not to conform to reality will improve inference and
resulting model predictions (Brynjarsdóttir and O’Hagan 2014)
as well as alleviate confounding issues between the parameters
and discrepancy (Liu, Bayarri, and Berger 2009). Furthermore,
the discrepancy provides a representation of how the model is
flawed, which could be useful for model improvement. In this
article, we propose an efficient, rigorous approach to propagate
forward the uncertainty in model form discrepancy, along with
parameter uncertainty, resulting frommodel calibration at small
scale, when making predictions at large scale.

Upscaling uncertainty for a multi-scale system via forward
propagation of both the model parameter and discrepancy
sources of uncertainty presents a major challenge. Many cur-
rent approaches for forward uncertainty propagation to a new
system (e.g., large scale) do not fully propagate model discrep-
ancy (Miki et al. 2012; McDonnell et al. 2015; Hadjidoukas et al.
2015; Engel et al. 2016). This may be problematic since the cali-
brated model output, even at the “true” parameters, may not be
an accurate representation of the system as it ignores the effect of
model form discrepancy. Strong and Oakley (2014) discussed a
framework for determining the sensitivity to submodel discrep-
ancies, andCallahan (2016) discussed accounting formodel dis-
crepancies between fine and coarse scale models. One approach
to propagate model discrepancy is to use a fully nonintrusive
“black-box” approach for calibration, that is, obtain a joint dis-
tribution of the model parameters and discrepancy, and propa-
gate that distribution to the large-scale system (Bhat et al. 2012).
However, this approach is not always feasible in practice. In
addition, the estimated model discrepancy at small scale may
not be directly applicable to that at large scale. For instance, often
the inputs and even the quantity of interest are not comparable
from the calibration data to the desired system prediction.

We propose a novel approach to describe the dynamic dis-
crepancy between the small-scale model and reality, which has
a clear scientific interpretation about the model shortcomings
and is efficient for both calibration and upscaling. Our approach
uses an intrusive uncertainty quantification (UQ) approach by
including the stochastic discrepancy function within the small-
scale sorbent model equations, resulting in a stochastic differen-
tial equation(s) (SDE). In addition, the discrepancy terms may
be interpreted as a ”correction” for a specific deficiency in the
small-scale sorbent model (e.g., deviation from the ideal gas
assumption). Model form discrepancy here is represented using
a Gaussian process with a Bayesian smoothing spline (BSS)-
ANOVA covariance. The BSS-ANOVA framework has many
advantages within this context; it provides an approximate para-
metric form that is very convenient for both calibration and
upscaling, accounts for the uncertainty due to extrapolation
while upscaling, and provides substantial computational gains
requiring only O(N) computational time by eschewing matrix
inversions.

Using a Bayesian approach, the small-scale sorbent model is
calibrated to data; resulting in a joint sample-based distribution
of both model parameters and discrepancy basis function coef-
ficients. The uncertainty in model parameters and discrepancy
are then easily propagated to scale by passing these posterior
samples into the large-scale system of rate expressions and
solving them in a Monte Carlo fashion. The output from the
large-scale system provides both a quantity of interest (such
as the proportion of CO2 captured) as well as a functional
profile of the system conditions (which may also be seen as
inputs to the small-scale sorbent model). There currently is
not an uncertainty quantification approach that incorporates a
stochastic discrepancy in a calibration framework with func-
tional inputs and forward propagates both parameter andmodel
form uncertainty across scales in an efficient manner.

The rest of this article is organized as follows. In Section 2,
a broad overview of the proposed framework to upscale uncer-
tainty with dynamic discrepancy is provided, while the details
of the proposed calibration, dynamic discrepancy, and upscaling
approach are in Section 3. In Section 4, the methodology is then
used to provide a UQ analysis on the problem that motivated its
design; a bubbling fluidized bed carbon capture system with a
chemical kinetics sorbent model. Finally, a discussion, caveats,
and avenues for future research are provided in Section 5.

2. UQ for a Multi-Scale System

This section contains a broad overview of our approach to
upscaling uncertainty in a multi-scale system. The goal is to
make upscaled predictions (with uncertainty) in a large-scale
system, with (potentially) many small-scale physical processes
embedded in it; where the behavior of both the large-scale sys-
tem and the small-scale processes are simulated with determin-
istic computer models. In this article, a single small-scale model
is used for the ease of demonstration. A big picture overview
of the coupled model for a simple carbon capture system is
shown in Figure 2. The uncertainty in this system is largely
driven by the uncertainty in the adsorption of CO2; however
direct calibration of this large-scale system to learn about this
uncertainty is often not feasible due to a dearth of relevant data
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Figure . Diagram for upscaling uncertainty for a carbon capture system.

and/or computational challenges. However, there is experimen-
tal data from the laboratory at a set of system conditions that
can be used to constrain the small-scale sorbent model (which
describes the adsorption of CO2 in the same manner in the
carbon capture system). Hence, the small-scale sorbent model
(with the dynamic discrepancy embedded in the rate equation
as described in Section 3) can be calibrated to this data, and
the uncertainties (both parametric andmodel discrepancy)may
then be propagated in aMonteCarlo fashion through the carbon
capture system.

The details of the small-scale sorbent model and the large-
scale carbon capture process system are discussed in Sections 2.1
and 2.2, respectively. In Section 2.3, an overview of the proposed
Bayesian dynamic discrepancy approach used for UQ analysis is
provided, which has several advantages in this particular frame-
work; incorporation of functional inputs, convenience in propa-
gating information across scales, and the inclusion of a dynamic
discrepancy function to describe shortcomings of the model.

2.1. Basic Chemical Kinetics CO2 AdsorptionModel

The basic chemistry model describes the adsorption of CO2 by
a solid Amine-based sorbent. It was determined in the course
of an ab initio study documented by Mebane et al. (2013) that
this adsorption of CO2 takes place through the formation of car-
bamic acid according to the reaction:

2R2NH + CO2(g)� R2NCOOH : R2NH (1)

A summary of the inputs and outputs may be found in
Table 1. There are five model parameters to be estimated: θ =
[�H,�S,�H‡, γ , nv]. The equilibrium parameters are �H ,
�S, and nv and the kinetic parameters are�H‡ and γ . The gov-
erning equations of this sorbent model are,

∂x
∂t

= κK[(1 − 2x)2p− x2/κE], x(0) = x0,

w = M̃nvx/ρ (2)
κE = exp (�S/R) exp (−�H/RT )/P
κK = γT exp (−�H‡/RT ). (3)

Table . Summary of inputs, outputs, and small-scale sorbent parameters.

Experimental outputs and state variables (a function of time) y.
y: Weight fraction of sorbent.w.

Functional input profile (potential system conditions) ζ(t ).
ζ1 : Temperature T ∈ [310, 380] K
ζ2 : Partial pressure ofCO2, p ∈ [0, 100]%

Sorbent model parameters θ.
θ1 : Reaction enthalpy�H ∈ [−120,−30] kJ/mol
θ2 : Reaction entropy�S ∈ [−450,−200] J/mol-K
θ3 : Activation energy (kinetic)�H‡ ∈ [−150,−50] kJ/mol
θ4 : Kinetic entropy plus other parameters γ ∈ [0, 10]
θ5 : Amine site density nv ∈ [1000, 2351]mol/m3

The rate equation in (2) is solved on a temporal grid; potential
system conditions, temperature (T ), and partial pressure (p)
of CO2, are functional inputs over time (see Figure 1 for an
example temperature input), resulting in a functional response
w(t ) (the weight increase of the sorbent). The response w(t ) is
a multiple of the chemical state x, or the fraction of amine sites
occupied by carbamic acid. The initial condition x(0) = x0,
where x0 is often assumed to be 0 (no carbamic acid).

Additional constants within the model are (i) M̃: the molar
weight of CO2, (ii) ρ: the sorbent density, (iii) R: the ideal gas
constant, and (iv) P: the total pressure. The equilibrium constant
κE (which informs on howmuch of the reaction in (1) has com-
pleted) is a function of �S and �H (equilibrium parameters),
while the reaction rate constant κK (speed of reaction) is a func-
tion of γ and �H‡ (kinetic parameters). As can be seen from
Figure 1, as temperature decreases there is an increase in sorbent
uptake of CO2 and a resulting increase in the weight of the sor-
bent. Similarly, an increase in partial pressure would result in an
increase in sorbent uptake of CO2 and in the weight of the sor-
bent. The experimental apparatus used to obtain the data here
requires a constant partial pressure over time, so the functional
pressure input is a constant line. However, several time series
observations are collected at different (constant over time) par-
tial pressures.

2.2. Overview of Large-Scale Carbon Capture Process
Model

The coupled large-scale system is introduced here with a
single quantity of interest x, which in this article is the
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chemical state. However, this frameworkmay be easily extended
to the multivariate case. The system conditions are ζ(t ) =
[ζ1(t ), . . . , ζq(t )], where ζi(t ) represents the curve for the ith
condition at time t . The function space for these system condi-
tions is very large as it must include any combination of phys-
ically feasible curves for all system conditions. A general rate
equation describing the small-scale sorbent model is provided
below in (4) for convenience, where x represents a state variable
and fs(x, ζ(t ); θ) is the chemical rate function:

∂x
∂t

= fs(x, ζ(t ); θ). (4)

The large-scale system may be generally expressed as a set
of differential equations below in (5)–(6); these equations are
solved on a one-dimensional spatial grid (i.e., the vertical loca-
tion in the carbon capture system, denoted by the variable z).
For direct comparison with the inputs and outputs to the small-
scale sorbent model, it is convenient to represent these func-
tional curves as functions of time (as opposed to z), which is
accomplished numerically using an Eulerian–Langrangian con-
version along the flow-velocity field (see supplementarymaterial
for details).While the equations for this systemwill be expressed
in terms of z for reasons of scientific rigor, in practice the system
is run in the time domain for this article, and upscaled results
will be presented as functions of t . Note that the system condi-
tions ζ (e.g., temperature and pressure) are outputs for the large
scale, but are inputs for the small-scale model in (4).

∂x
∂z

= f	(x, ζ(z); θ) (5)

g1(x, ζ(z); θ) = 0 (6)
...

gq(x, ζ(z); θ) = 0. (7)

The outputs from the large-scale system are functional curves
of the quantity of interest x and the system conditions ζ (as a
function of z), other possible inputs to this adsorber such as inlet
temperature and gas flow rate are fixed. Note here that Equa-
tion (5) represents the same CO2 adsorption process as the sor-
bent model (as described in Equation (4)) in the carbon capture
system.

2.3. Framework for Upscaling Uncertainty

A road map for the upscaling methodology is provided here.
As shown in the top half of Figure 3, the small-scale model is
calibrated to experimental data (see Section 3). The small-scale
model inputs and outputs are functional in nature and experi-
mental data observations are usually only available at a handful
of different profiles. Thus, the functional input space will typi-
cally be only sparsely covered by the experimental design.

A Bayesian calibration approach following the Kennedy–
O’Hagan framework (Kennedy and O’Hagan 2001) is employed
to calibrate the small-scale model to data (see Section 3). In
this approach, prior distributions (using domain expertise and
previous results whenever possible) are placed on the uncer-
tain model parameters and a prior distribution is also placed
on the discrepancy function (usually a Gaussian Process (GP)).

Figure . Overview of the upscaling process.

However, it is infeasible to use the conventional GP approach
to model discrepancy for forward propagation, in this case, due
to the functional inputs and an entirely different fully coupled
system at large scale. Therefore, a novel dynamic discrepancy
approach is introduced in Section 3.2 where the discrepancy is
embedded within the rate equations as in (4) of the small-scale
model.

The end result from calibration is a joint sample-based distri-
bution representing the model parameters and the discrepancy,
which is then propagated to the large-scale system, as seen in the
bottom half of Figure 3. For each sample, the large-scale system
model simultaneously solves for the rate equations, for example,
(5)–(6), describing the system response and system conditions at
each step, resulting in functional curves for both the system con-
ditions and response. The collection of these solutions (from the
sample-based distribution) provides a set of probabilistic predic-
tions of the system conditions and response, while incorporat-
ing uncertainty. Aggregated output quantities of interest (such
as % CO2 captured by the system) may then be derived from
the response, resulting in probabilistic predictions, characteriz-
ing the uncertainty of the output quantities of interest. These
predictions are made for the CO2 capture system described in
Sections 4.3 and 4.4. In making upscaled predictions, the sys-
tem conditions experienced at scale may be far different than
those from the small-scale experiments. Thus, it may become
important to limit the amount this extrapolation to the extent
possible.

3. Calibration with Dynamic Discrepancy

3.1. ComputerModel Calibration for Functional Data

Computer model calibration is often used to constrain the com-
puter model to be consistent with experimental data. Hence, the
primary goal of calibration is to find a set of model parameter
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values that best reproduce the reality of experimental (or field)
data. In the traditional computer model calibration (i.e., inverse
problem) setup (Kennedy and O’Hagan 2001), an output y from
the physical system is observed (with observational error) at
several (N) locations of a “controllable” vector of inputs ζ =
[ζ1, . . . , ζq]. This physical reality can be approximated by a sim-
ulator (i.e., a computer model), η(ζ, θ), where θ = [θ1, . . . , θP]
is a vector of model parameters. If fixed at an appropriate
(unknown) value of θ = θ∗, then η(ζ, θ) will approximate the
reality at ζ. The framework also includes a model form discrep-
ancy function δ that admits the possibility of model bias (from
reality). Therefore, a generalmodel for the experimental data is

Yn = ρη(ζn, θ
∗)+ δ(ζn)+ εn, (8)

n = 1, . . . ,N, whereYn, ζn, εn are the experimental data, inputs,
and observation error for the nth observation, respectively, and
ρ is a regression parameter, representingmultiplicative bias.Due
to identifiability issues, ρ =1 will be assumed here. The goal
is to estimate θ∗ (which is just denoted by θ from now on for
ease of notation) and possibly the discrepancy function δ. This
is typically done within a Bayesian framework (Higdon et al.
2004), where a prior distribution is placed on θ and δ and then
updated by conditioning on the experimental data. A Gaussian
process (GP) prior is often selected for the model discrepancy δ
(Kennedy and O’Hagan 2001), which will be discussed in more
detail in the next section.

For the work in this article, both the inputs ζn and the out-
put Yn are functional in nature. The domain of the functional
input/output space consists of a single variable, time, in this
case, but the methodology to be discussed is easily generaliz-
able to a higher dimensional domain. Thus, the nth functional
output curve(s) is expressed asYn(t ), t ∈ [0,T ], and the inputs
are written as ζn(t ) = [ζn,1(t ), . . . , ζn,q(t )]′, that is, ζn,i(t ) rep-
resents the input curve at time t for the ith input of the nth
observation. In practice, the functional input/output for the
nth observation is recorded at a dense grid of discretized time
points, tn = [tn,1, . . . , tn,Mn]′. The simulator output evaluated
at model parameters θ, inputs ζn, and time t can be expressed
as η(t; ζn, θ). The data model for the calibration framework is
then

Yn(t ) = η(t; ζn, θ)+ δ(t; ζn)+ εn(t ), t ∈ [0,T ], (9)

where the observation error ε(t ) is assumed to be a white-noise
process with variance σ 2. In the model to follow, independence
is assumed a priori between δ, η, and ε. Several others have con-
sidered the problem of computer model calibration in the pres-
ence of functional output (Bayarri et al. 2007a; Higdon et al.
2008). However, the problem considered here is distinctly differ-
ent due the functional input. In general, η(t; ζn, θ) and δ(t; ζn)

are dependent on the entire input curves ζn, not just the inputs
at time t .

3.2. Dynamic Discrepancy

Model discrepancy is considered here, not merely for better
model parameter inference, but also in the context of propaga-
tion of uncertainty due to model shortfall in a large-scale sys-
tem. For this effort, the discrepancy must incorporate scientific

understanding of the deficiencies of the model as well as flexi-
bility to be applicable for a wide range of functional responses
and account for extrapolation. Due to the functional nature of
the inputs, δ(t; ζ) in (9) is a function of the entire input curve ζ.

The immediate approach would be to construct an appro-
priate discrepancy function, calibrate the simulator to experi-
mental data, and upscale the joint posterior distribution π(θ, δ)
to the large-scale system. Bhat et al. (2012) developed such an
approach; a small-scale sorbent model was calibrated to data
using the framework in (9). The model discrepancy represents
deficiencies in the sorbent model for both equilibrium and
kinetic behavior. The development of this discrepancy assumed
a concurrent functionalmodel (see Ramsay and Silverman 2005,
pp. 280–293), that is, δ(t; ζ) depends only on ζ(t ), which overly
simplifies the functional nature of the input/output. The joint
posterior π(θ, δ) was then upscaled by differentiating the pos-
terior realizations of δ w.r.t time, and including them in the rate
equations of the large-scale process model in (5)–(6). However,
the differentiated posterior discrepancy realizations were very
noisy and required heavy, ad hoc smoothing to avoid solver fail-
ures.

We now present a novel alternative approach that alleviates
the issues mentioned above. The main idea is to include the dis-
crepancy δ within the rate equation of the small-scale model in
(4), that is,

∂x
∂t

= fs(x, θ, ζ(t ))+ δ(x, ζ(t );β), (10)

where β denotes the hyperparameters, that is, variance and
range parameter(s), of the traditional GP. In (10), δ is referred
to as a dynamic discrepancy since it allows the dynamic system
to change its path depending on the value of δ. The main advan-
tage of this approach is that unlike the output x(t ), the rate ∂x

∂t
must be a function of the forcing inputs at only time t , that is,
ζ(t ), and not dependent on the entire curve ζ. Thus, implement-
ing the discrepancy in the rate equation allows us to justify the
use of a concurrent functional model, and sidestep the compli-
cations of dependence on the entire functional input.

If a GP prior is placed on δ, then (10) is a stochastic differen-
tial equation (SDE). If δ were a traditional GP then, even for a
fixed θ and β, (10) would result in an SDE. To avoid these com-
plications, a BSS-ANOVA GP (discussed in more detail below
in Section 3.3) is used as prior on δ, which among other things,
has the advantage of admitting a convenient, approximate para-
metric form, thus containing its entire stochasticity in its param-
eters β. In other words, when β is fixed, δ is entirely specified,
and the SDE in (10) becomes an ODE. In a Bayesian calibra-
tion framework, the SDE can then be easily integrated within
the Markov chain Monte Carlo (MCMC) routine as follows: at
each MCMC iteration (i) propose a set of model and discrep-
ancy parameters, (ii) obtain a solution of the state variable(s)
from theODE, (iii) evaluate the likelihood, and (iv) accept/reject
the sample. This framework provides an avenue to estimate the
joint posterior distribution π(θ, δ) (or equivalently π(θ,β)) of
model parameters and discrepancy, and allows for the forward
propagation of uncertainty in the usual sample-based manner.
Furthermore, such an approach is generalizable to a broad class
of problems. We note that there have been previous efforts to
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Figure . First eight eigenfunctions for a main effect from the BSS-ANOVA GP.

incorporate model “lack of fit” in a similar manner as in Equa-
tion (10) using a B-spline basis for δ (Varziri, McAuley, and
McLellan 2008; Hooker 2009), however they were more appro-
priate for an optimization context instead of upscaling uncer-
tainty.

3.3. BSS-ANOVAModel

The discrepancy function δ is formulated using the BSS-
ANOVA GP model (Reich, Storlie, and Bondell 2009; Storlie
et al. 2013); using a covariance function that directly uses the
functional components from a functional ANOVA decomposi-
tion (Gu 2002). TheBSS-ANOVAapproach has been used previ-
ously to model the emulator and discrepancy in the traditional
computer model calibration problem (Storlie et al. 2014). This
approach has two very useful properties for modeling dynamic
discrepancy: (i) it provides a convenient parametric form, which
allows the SDE in (10) to be represented as an ODE for each
MCMC iteration, providing for easy calibration and uncertainty
propagation, and (ii) improves computational efficiency sub-
stantially, scaling linearly with the number of data points, as
opposed toO(N3) for a traditional GP. In this section, only the
details of BSS-ANOVA model necessary to formulate the dis-
crepancy are provided; further details may be found in the sup-
plementary material and Storlie et al. (2014).

For ease of notation in defining the discrepancy function, let
the inputs to the discrepancy function in (10) at a given time
t be denoted as ω = [x(t ), ζ1(t ), . . . , ζq(t )]′. The discrepancy
may then be represented as

δ(ω) = β0 +
q+1∑
j=1

δ j(ω j)+
q+1∑
j<k

δ j,k(ω j, ωk)+ · · · , (11)

where β0 ∼ N(0, ς2
0 ) and each of the main effect functions δ j

and the two-way interaction functions δ j,k are mean 0 GPs with
the BSS-ANOVA covariance function described by Reich, Stor-
lie, and Bondell (2009). Three-way or higher order interaction
functional components can be included as well. Under the BSS-
ANOVA construction, the resulting component GPs are such
that they will satisfy the functional ANOVA constraints, for
example,

∫
δr(u)du = 0 and

∫
δr,r′ (u, v )du = 0, almost surely.

Any realization from this GP also lies in first-order Sobolev
space, that is, absolutely continuous with derivative in L2.

It was further demonstrated by Storlie et al. (2012) that
each functional component in (11) can be further written as an
orthogonal basis expansion, for example,

δ j(ω j) =
∞∑
l=1

β j,lφl (ω j), β j,l
iid∼ N (

0, τ 2j
)
. (12)

The φl terms in the expansion are the eigenfunctions (scaled
by the eigenvalues) in the Karhunen–Loéve (KL) expan-
sion (Berlinet and Thomas-Agnan 2004, pp. 65–70). The
φl get increasingly higher frequency and have decreasingly
less magnitude as l increases (as depicted in Figure 4),
so the expansion in (12) can be truncated at some value
L. The choice of L is not critical, as the model will be
nearly identical for different L provided it is large enough;
our experience suggests that L ≥ 25 is sufficient for most
problems.

The same decomposition in (12) is used for two-way and
higher interactions as well. In fact, the φl for two-way interac-
tions are simply pairwise products of the corresponding main
effect basis functions and similarly for three-way and higher
interactions. In many problems, it is sufficient to include only
main effects and two-way interactions. A few preselected three-
way interactions, selected in consultation with domain experts,
are included in the model as well for the analysis presented
below. Hence, the overall model in (11) can be written in
general as

δ(ω) =
M∑

m=1

Lm∑
l=1

βm,lφm,l (ω), (13)

βm,l
ind∼ N (

0, τ 2m
)
, (14)

where (i)m indexes over theM functional components included
in the discrepancy model, and (ii) l indexes over the number of
basis functions Lm used for themth functional component of the
discrepancy representation. The βm,l , φm,l , and τm would corre-
spond to a particular term in the expansion of (12) for the mth
functional component. More specific details of the decomposi-
tion of the BSS-ANOVA GP into the linear model in (13) are
provided in the supplementary material.
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3.4. Dynamic Discrepancy for SorbentModel

While the additive dynamic discrepancy approach detailed in
Section 3.2 can be useful in many situations, there were a large
number of solver failures due to either a lack of convergence
or solutions outside the physical bounds (x ∈ [0, 0.5]) for the
model in this article. Further, the manner in which the chemical
model could be deficient was deemed by the modelers (as dis-
cussed further below) to be more appropriately modeled with a
multiplicative discrepancy for the equilibrium and kinetic pro-
cesses. This approach, thus, has two advantages; (i) improved
convergence of the solver and guarantee physical solutionswhen
the discrepancy is added, and (ii) the multiplicative discrepancy
has a clear physical interpretation for sorbent models.

We first derive the model form discrepancy for the equi-
librium process. The rate equation and the equilibrium and
kinetic constants κ and k for an ideal reaction (which assumes
no interaction energy for adsorbates and equivalence among all
adsorption sites) are described in (2). Under the assumption of
thermodynamic ideality,�H and�S, the enthalpy and entropy,
respectively, are constant with respect to the thermodynamic
state space ζ = {p,T}. However, when this assumption violated,
one frequent way of representing this nonideality is by allowing
�H and�S to depend on the state space ζ, that is, (2) becomes

∂x
∂t

= κKnew
[
(1 − 2x)2p− x2/κEnew

]
, (15)

where

κEnew = exp
(
�S
R

)
exp

(−�H
RT

+ δE (p,T )
)

= exp
(−�S

R

)
exp

(−�H
RT

)
exp[δE (p,T )]

= κE exp[δE (p,T )]. (16)

Equation (16) shows an equilibrium constant κEnew that allows
for deviations from an ideal reaction, where δE (p,T ) is a
stochastic function that represents this discrepancy. It is clear
from this formulation that for any realization of δE (p,T ), the
chemical state x ∈ [0, 0.5]. The same idea is applicable for the
reaction rate constant, that is,

κKnew = γT exp
(−�H‡

RT
+ δK (x, p,T )

)

= κK exp[δK (x, p,T )]. (17)

The kinetic rate discrepancy δk in (17) is a function of p, T , and
x, since the rate of reaction via κKnew will necessarily depend on
the current value of x as opposed to the equilibrium constant
κEnew, which only depends on p and T .

The two discrepancy functions are expressed using a Gaus-
sian process with a BSS-ANOVA covariance function using (12)
as follows,

δE (p,T ) =
ME∑
m=1

LEm∑
l=1

βE
m,lφ

E
m,l (p,T ), δ

K (x, p,T )

=
MK∑
m=1

LKm∑
l=1

βK
m,lφ

K
m,l (x, p,T ). (18)

The BSS-ANOVA formulation in (11) includes a constant
term β0, which is completely confounded with the model
parameters�S and γ (for δE and δK); thus β0 is set to zero. The
modified rate equation for the toy sorbent model, with the dis-
crepancies δE and δK embedded is then,

∂x
∂t

= f ∗
s (x, ζ(t ); θ,β) = κE (θ) exp[δK (x, p,T )]((1 − 2x)2p

− x2/[κK (θ) exp[δE (p,T )]]). (19)

3.5. Calibration at Small Scale and Upscaling Uncertainty

Here, the Bayesian approach to infer a joint posterior prob-
ability distribution of the model parameters and discrepancy
parameters of the small-scale model is described. Let y =
[yT1 , . . . , yTN]′ be the (stacked) vector of experimental observa-
tions where yn is the output for a functional input ζn (over
the time points tn = [tn,1, . . . , tn,Mn]). Also let δ = [δE, δK]
denote both discrepancy functions. Define the stacked vec-
tors of model output with discrepancy at θ to be η(θ, δ) =
[η(θ, δ, ζ1), . . . , η(θ, δ, ζN )], and the observation error vari-
ance ε = [ε1, . . . , εN]′ ∼ N(0, σ 2IN∗ ); where N∗ = ∑N

i=1 Mi.
Incorporating the dynamic discrepancy in Section 3.4, the

model for y is

y = η(θ, δ)+ ε. (20)

The goal is to estimate {θ, δ, σ 2} given y. Prior distributions
are required for θ, δ, and σ 2 to complete the Bayesian model
specification. Priors for some of the model parameters θ are
derived fromab initio quantumchemistry calculations and from
prior scientific studies or expert judgment. The model for δ in
(18) requires a prior specification for τ j ’s from (14). A diffuse
inverse Gamma prior is chosen for both the τ j ’s and σ 2, which
results in conjugate updates for these parameters withinMCMC
procedure. Further discussion regarding the prior specification
of θ is provided in Section 4.

Let the variance parameters for the discrepancies be denoted
as τ = [τ E1 , . . . τ EME , τ

K
1 , . . . τ

K
MK ] and all of the basis func-

tion coefficients β = [βE,βK] = [βE
1 , . . . ,β

E
ME ,β

K
1 , . . . ,β

K
MK ],

where βE
m and βK

m are the vectors of the regression parameters
for themth functional component of the respective discrepancy.
The posterior distribution,

π(θ,β, τ, σ 2 | y) ∝ L(y | θ,β, σ 2)p(β | τ)p(θ)p(τ)p(σ 2)

is obtained through simulation usingMarkov chainMonteCarlo
(MCMC). The MCMC routine is a hybrid sampling scheme
of Gibbs and Metropolis–Hastings (MH) updates, where Gibbs
updates are viable for τ and σ 2 with appropriate conjugate pri-
ors and MH updates are necessary for θ and β. The updates
for β are performed by updating each component separately,
for example, all the coefficients for a given main effect (or
interaction) component are updated simultaneously. That is,
βm = [βm,1, . . . , βm,Lm] is updated using a multivariate normal
proposal for each m = 1, . . . ,ME + MK . Block updating with
joint proposals rather than updating each parameter individu-
ally improves mixing and reduces the number of sorbent model
evaluations necessary (each proposal requires a model evalua-
tion), which in turn reduces computational time for the MCMC
procedure.
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The result of the MCMC is a sample-based distribution of
π(θ,β | y). A sample of sizeV can then be drawn from the pos-
terior distribution of (θ,β) for the purpose of upscaling to the
large-scale system. Let θ(v ),β(v ) be the vth value of this sample
and denote by δ(β(v )) the discrepancy realization for vth sam-
ple. Each sample is then propagated forward to the large-scale
system model, which involves solving a set of differential equa-
tions shown in (21)–(23), where the dynamic discrepancy δ(β)
has been embedded into the rate expression ∂x

∂z , as in (19) (sub-
ject to a space to time conversion),

∂x
∂z

= f ∗
s (x, ζ(z); θ,β) (21)

g1(x, ζ(z); θ) = 0 (22)
...

gq(x, ζ(z); θ) = 0. (23)

The solution to this set of equations for the vth sample
(θ(v ),β(v )) is x(v ) and ζ(v ), which are the system response (i.e.,
chemical state) and system conditions (i.e., temperature andpar-
tial pressure), respectively, and are presented as a function of
time t (Equations (21)–(23) can be converted to be solved on
a time grid, see Section 2.2). The final output of the upscaling is
a sample-based distribution, {(ζ(1), x(1)), . . . , (ζ(V ), x(V ))}, that
may be used to approximate the distribution of certain quanti-
ties of interest, for example, CO2 capture fraction.

4. Application to a Simple Carbon Capture System

In this section, we apply our methodology on a simple process
model, the “bubbling fluidized bed” adsorber (Lee and Miller
2012), driven by a single small-scale chemical sorbent model
described in Section 2.1. A post-combustion CO2 capture sys-
tem consists of two parts; the adsorber that takes upCO2 and the
regenerator that lifts CO2 off the sorbent and passes it along for
sequestration. This application focuses on just the bubbling bed
adsorber. The methodology is first illustrated on a truth known
example so that its performance can be assessed. The small-scale
model is calibrated to a “reality” function, which is actually a
more complicated sorbent adsorption process with two chemi-
cal reactions with the same inputs and outputs as the single reac-
tion sorbent model. The calibration results are then upscaled to
the process model by propagating the uncertainty forward. The
reality function is also upscaled to provide the upscaled “truth”
to assess the performance of the proposed approach. Note that
the system conditions (temperature and pressure curves over
time) are outputs from the process model, but are inputs for the
small-scale sorbent model. Finally, the entire analysis is then
applied to actual TGA data in Section 4.4. This section only pro-
vides a brief overview of the “reality” function and the carbon
capture process; more information about this process model is
available in the supplementary materials.

4.1. Synthetic Data Generation and ProcessModel
Description

In the synthetic data example, the “reality” function plus iid
Gaussian noise is used as a proxy for the experimental data.

This exercise is used here to illustrate the proposed methodol-
ogy without data complications and provide a validation of the
upscaled results. However, this is not a “perfect model experi-
ment;” parameters of this reality function and the sorbentmodel
are not directly comparable. This function is based on a two-step
adsorption process of CO2 by the sorbent according to the reac-
tions below. This is amore complicated process than the sorbent
model discussed in Section 2.1 in that the single reaction in (1)
is in ”reality” two separate reactions:

CO2 + R2NH− −→ R2NH+ − COO− (24)
R2NH+ − COO− + R2NH � R2NCOO− : R2NH+

2 .(25)

There are nine parameters that need to be specified;�Hx,�Sx,
�Hz, �Sz are enthalpies and entropies for the two reactions,
�H‡

x , �H‡
z , γx, and γz are the activation energies and pre-

exponential factors for the two reaction, and nv is the num-
ber of active amine sites per unit volume of sorbent; θ =
[�Hx,�Sx,�H‡

x , γx, nv,�Hz,�Sz,�H‡
z , γz]. The rate equa-

tions of this two-step adsorption model are,

∂xz
∂t

= κKz
(
sp− xz/κEz

) − κKx
(
sxz − x2c/κ

E
x
)

∂xc
∂t

= κKx
(
sxz − x2c/κ

E
x
)
, xz(0) = xz0, xc(0) = xc0

s = 1 − 2xc − xz, w = M̃nv(xc + xz)/ρ

κEx = exp
(
�Sx
R

)
exp

(
−�Hx

RT

)
,

κEz = exp
(
�Sz
R

)
exp

(
−�Hz

RT

)
/P

κKx = γx exp
(

−�H‡
x

RT

)
, κKz = γz exp

(
−�H‡

z

RT

)
. (26)

The rate equations in (26) are solved on a temporal grid, result-
ing in a functional response w(t ) (the sorbent weight gain)
with temperature (T ) and partial pressure (p) of CO2 as func-
tional inputs over time (see Figure 1 for an example tempera-
ture input). The sorbent weight gain w(t ) is a multiple of the
sum of xc and xz, or the fraction of amine sites occupied by car-
bamic acid and zwitterions, respectively, M̃ is the molar weight
of CO2, and ρ is the sorbent density, R is the ideal gas constant,
and P is the total pressure; the latter four are constant within the
model. The equilibrium constants for the two reactions are κEx
and κEz , and the reaction rate constants for the two reactions are
κKx and κKz . The initial conditions are xc0 = xz0 = 0.

For a given set of functional input profiles for partial pres-
sure and temperature, alongwithmodel parameters θ, the reality
model solves for output curve w(t ). The reality model parame-
ters used here are

θ = [−88671,−67.056, 35148, 141.22, 2000,−32055,
− 87, 53594, 25657].

These values were selected to ensure favorable convergence and
system behavior properties when upscaled to the carbon cap-
ture process. Upscaling the reality function consists of using this
reality function to represent the chemistry in the carbon capture
process (i.e., replacing (5) with (26) in Section 2.2).

Since the synthetic data selected should be consistent with
the behavior of the experimental apparatus, input profiles with
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Figure . Temperature input profile for synthetic data.

constant partial pressure and declining temperature over time
are selected. In particular, five sets of different inputs, with par-
tial pressures 1, 4, 7.5, 10, and 18.5% CO2, which are consistent
with partial pressures in an adsorber process. All five inputs have
a temperature profile shown in Figure 5 where t goes from 1 to
60 sec. A small amount of white noise (with standard deviation
of 10−4) is added to mimic the effect of observation error to the
output of the “reality function.” The output from the five input
profiles are stacked together to create the synthetic data vector,
resulting in a total of N = 305 data points (see Figure 7). The
small-scale sorbent model was also run at these same five input
profiles in the calibration process.

The upscaled physical process, modeled in Aspen Custom
Modeler (Aspen 2011), consists of a single device: a one-
dimensional, three region “bubbling fluidized-bed” adsorber
with internal heat exchangers, through which the sorbent and
a mixture of CO2 and N2 flow in a co-current configuration;
both the sorbent and the gas get injected at the bottom and flow
upward. The model predicts the hydrodynamics of the bed and
provides axial profiles for all temperature, concentration, and
velocities as given by Lee and Miller (2012). Adsorption of CO2
by the sorbent produces heat in accordancewith the heat of reac-
tion, which is equivalent to the adsorption enthalpy �H . This
heat is removed by a heat exchanger that runs along the length
of the adsorber, thereby regulating the temperature within the
bed. The full process model is presented in the supplementary
material, along with all of the (fixed) process model parameters.

4.2. Implementation for Calibration and Upscaling

The calibration approach discussed in Section 3 is now applied
to the synthetic data generated in Section 4.1 using (20). This
calibration approach requires embedding the discrepancy func-
tions within the model solver as described in (19), which use
(16)–(17). The BSS-ANOVA basis functions are not analytical;
they are numerically evaluated on a dense grid and represented
as continuous functions using linear interpolation. This choice
of interpolant enables the function itself as well as its derivatives
to be calculated at any point on its domain. A Crank–Nicolson
scheme is used to discretize the ordinary differential equation
in (19), meaning that the system can be solved given the input

functions p and T along with the parameter sets θ and β using
Newton’s method.

As discussed in Section 3.5, MCMC methods are deployed
to obtain the posterior distributions of θ, β, and σ 2. For three
model parameters, �H , �S, and nv, priors were derived using
previous scientific studies; ab initio calculations from quantum
chemistry calculations were used to derive the following priors,

�H ∼ N(−60.84, 125) KJ/mol,
�S ∼ N(−250, 625) J/mol-K, truncated at −200 J/mol-K,
nv ∼ N(1469, 86362) mol/m3.

More information about the derivation of the priors may be
found in Mebane et al. (2013). An empirical approach using a
sensitivity study onmodel convergencewas used to obtain priors
for the kinetic parameters �H‡ ∼ Unif (−150,−50) kJ/mol,
and γ ∼ Unif (0, 5). To improve mixing and account for the
likely dependency between certain pairs of parameters sug-
gested by the rate equations, we use an adaptive Metropolis pro-
posal (Haario, Saksman, and Tamminen 2001) to update both θ

and each βm.
As discussed in Section 3.5, conjugate prior distributions are

selected for τ and σ 2 to ensureGibbs sampling for these parame-
ters during the MCMC procedure. A sufficiently diffuse inverse
gamma parameters was selected for the elements of τ, specifi-
cally τ j ∼ IG(0.5, 30) to allow for adequate flexibility and pro-
mote mixing of β. An inverse gamma prior for the observation
error parameter is specified as ψ ∼ IG(1, 10−8).

The MCMC was run for 200,000 iterations, allowing for
a burn-in of 50,000 samples; the results were confirmed by
running two separate chains which gave similar results. Con-
vergence was also confirmed by small Monte Carlo standard
errors using batch means (Flegal, Haran, and Jones 2008). The
computer code for the MCMC was implemented in MATLAB
using a 2.66 GHz 6-Core Intel Xeon on a Mac Pro desktop
with 16GB of RAM. Obtaining the 200,000 samples using
MCMC required approximately 190 hr of computer time, the
overwhelming majority of which was required to execute the
sorbent model. The sorbent model and “reality” function were
implemented in C++, with a MATLAB executable file; each
run of the sorbent model (with the discrepancy embedded)
approximately took 6 sec for each execution. The carbon capture
process model is augmented with the discrepancy functions
within Aspen Custom Modeler (ACM) following (21)–(23)
to facilitate the upscaling of the calibration results. Multiple
posterior samples are simulated simultaneously by exploiting
the multiple parallel ACM run capability offered by CCSI Tur-
bine Gateway developed as part of CCSI project at Lawrence
Berkeley National Laboratory (LBNL) facility.

4.3. Synthetic Data Results

This section presents results from the calibration of the small-
scale sorbent model to the reality function described in
Section 4.1, and the subsequent upscaling of the calibration
results to the simple carbon capture process system. The pos-
terior distribution of the model parameters is displayed via
bivariate distributions in Figure 6. The mean and 95% credible
regions for the sorbent model parameters (see Table 2) were
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Table . Posterior mean and % credible regions for sorbent model parameters.

Parameter Mean  % Lower bound  % Upper bound

�H − . KJ/mol − . − .
�S − . J/mol − . − .
�H‡ . KJ/mol . .
γ . . .
nv . mol/m3 . .

calculated using the highest posterior density (HPD) method
(Chen, Shao, and Ibrahim 2000). There are strong correlations
between certain pairs of model parameters in the posterior
distribution. The correlation between the equilibrium param-
eters �H and �S is 0.82, suggesting a very strong relationship
between the equilibrium enthalpy and entropy, which seems

Figure . Bivariate marginal posterior distributions for the sorbent model parame-
ters on the off-diagonals, univariate marginal posterior distributions on the diago-
nals. The parameters are in displayed in the following order:�H,�S,�H‡ , γ , nv .

consistent with the equilibrium analysis of this TGA dataset by
Mebane et al. (2013). In addition, there is a correlation of 0.91
between the kinetic parameters�H‡ and γ . There are no “true”
parameters here, as the parameters of the reality model are usu-
ally not directly comparable with those of the sorbent model.

Posterior predictions and 95% bounds obtained from the
full calibration approach with the dynamic discrepancy are
shown in Figure 7. These bands were created by obtaining
predictions and point-wise bounds at a grid of 61 time locations
for each of the five CO2 composition ratios (1%, 4%, 7.5%,
10%, 18.5%). Thirty randomly chosen posterior prediction
curves are also provided in each case. It is clear that when the
dynamic discrepancy is included in making predictions, the
data are well represented by the predictions. The discrepancy
due to equilibrium and kinetic effects, δE and δK , respectively,
are functions of their inputs (p(t ), T (t ), and x(t )). However,
the posterior realizations of δE and δK given the functional
inputs used for calibration (temperature input T (t ) in Figure 5
and constant p(t ) corresponding to the CO2 composition
ratio) may be expressed as a function of time and suggest
a significant nonzero discrepancy that increases over time
(see Figures 8 and 9).

The results of upscaling the uncertainty from the model
parameters and discrepancy to the carbon capture system, hence
obtaining a distributions of the capture fraction and the system
conditions are presented below.One thousandposterior samples
are propagated from the joint distribution of the model param-
eters and discrepancy to the carbon capture process, as well as
implementing the reality function into the carbon capture pro-
cess. The 95% credible region for the carbon capture fraction is
between 0.79 and 0.90, which clearly covers the “reality” cap-
ture rate of 0.85 (see Figure 10). The carbon capture system
conditions for both temperature and partial pressure are also
displayed in Figure 10; the distribution of the upscaled model
results for both system conditions cover the reality system con-
ditions. There appears to be a sizeable uncertainty in the predic-
tion of the upscaled condition for pressure, however, this does
not translate into large uncertainty in the primary quantity of
interest (i.e., capture fraction).

Figure . Posterior fitted plots for sorbent weight gain for all five CO2 partial pressures. The data (black open circles), reality (black line), and  posterior realizations (green
lines), calibrated model predictions without discrepancy (blue lines) and % credible bands (dashed red lines) are provided for model plus discrepancy predictions.
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Figure . Posterior equilibrium model discrepancy realizations (posterior mean (blue) along with  realizations (green) and % credible bands (red)); zero line (dotted
black line). Plots correspond to T (t ) in Figure  and a constant p(t ) determined by CO2 composition.

Figure . Posterior kinetic model discrepancy realizations (posterior mean (blue) along with  realizations (green) and % credible bands (red)); zero line (dotted black
line). Plots correspond to T (t ) in Figure  and a constant p(t ) determined by CO2 composition.

Figure . Results from upscaling posterior distributions obtained from calibrating (to the reality function) small-scale sorbent model to the large-scale carbon capture
system. Distribution of carbon capture rate (left) with reality capture rate (red dot), alongwith distributions of system conditions; temperature (middle); and partial pressure
(right). Reality function system conditions (black line) and  realizations of system conditions frommodel (red lines) are shown.
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Figure . Left: entire output from the TGA experiment at .% CO2 (blue line) and temperature (green line), red lines denote boundaries of the selected snippet. Right:
Data from the selected snippet, note that the response shows substantial change over time.

4.4. Analysis and Results for Application to
Thermogravimetric (TGA) Data

In this section, the calibration and upscaling with dynamic dis-
crepancy approach in this article is applied to real experimental
data obtained from thermogravimetric analysis (TGA) to pre-
dict the capture fraction of CO2 in a large-scale process model.
TGA was used to obtain the experimental data to constrain
the model; these experiments were conducted at the following
ratios, 4%, 7.5%, 10%, 18.5%, and 100% CO2 (vs. N2), each has
an associated partial pressure that is constant over time. The
inputs to the TGA experiment consist of that constant partial
pressure and a functional temperature curve. More information
about the mechanics about the TGA experiment may be found

inMebane et al. (2013). Since the entire TGA response curve for
any particular experiment has a domain of up to 200,000 sec and
consists largely of plateau regions (see Figure 11), which yield
little information about the kinetics; snippets of the response to
large temperature changes are analyzed instead. In particular, 12
snippets have been carefully chosen from the TGA experiments
with partial pressure less than 100%.

Posterior predictions and 95% bounds were computed at
the 12 previously selected snippets from the TGA experimental
data. When the dynamic discrepancy is included in the frame-
work, the data appear to be largely covered by the 95% inter-
vals (see Figure 12 for two snippets). The results of upscaling
the uncertainty from the model parameters and discrepancy to

Figure . Posterior fitted plots for snippets of TGA data. The data (black open circles), reality (black line), and  posterior realizations (green lines), and % credible bands
(dashed red lines) are provided for model plus discrepancy predictions.

Figure . Results from upscaling posterior distributions obtained from calibrating (to the TGA data) small-scale sorbent model to the large-scale carbon capture system.
Distribution of carbon capture rate (left) alongwith distributions of system conditions; temperature (middle); and partial pressure (right). Realizations of system conditions
frommodel (red lines) are shown.
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Figure . Plot of input combinationsof (p, T ) and (x, p, T ) thatwereobserved in theexperimental data for constraining the small-scalemodel (blue) and in thefinal system
conditions in the large scale (red) to determine if predictions at scale are an extrapolation. Some of the system conditions appear to be at slightly higher temperatures than
the experimental data; so extrapolation may be a concern.

the carbon capture system are presented here. One hundred pos-
terior samples are propagated from the joint distribution of the
model parameters and discrepancy to the carbon capture pro-
cess. It is noted that 18 of these samples failed to converge dur-
ing upscaling, resulting in 82 samples. It is also possible that
the numerical discretization issues may have contributed to the
some of these failures (Chkrebtii et al. 2016), although chang-
ing the discretization step is difficult in practice here and there
are no known subgrid processes that are resolved at a finer
resolution.

The mean carbon capture fraction (of the converged sam-
ples) is 0.68, and the 95% credible region for the carbon capture
fraction is between 0.32 and 0.85 (see Figure 13). The carbon
capture system input conditions for both temperature and
partial pressure are also described in Figure 13. Certain system
design features (such as flow rate) for the carbon capture are
treated as fixed here. However, the prediction of performance
with uncertainty could easily be explored over the system design
space by incorporating these design parameters into the sample
of upscaled predictions. A full system design optimization
under the presence of uncertainty is a natural next step, but
beyond the scope of this article.

5. Conclusions and Future Directions

A novel approach for upscaling uncertainty for a multi-scale
system with functional inputs has been presented and demon-
strated here. The small-scalemodel is calibrated to data and then
the results of the calibration, a joint distribution of both parame-
ter and dynamic model form discrepancy, are propagated to the
large-scale system. The model form uncertainty is represented
by a dynamic discrepancy embedded within the rate equation(s)
in the small-scale model, and has a clear physical understand-
ing of the deficiency of the model. The dynamic discrepancy is
modeled with a BSS-ANOVA framework, which provides a con-
venient form for calibration and upscaling, accounts for extrap-
olation uncertainty and has linear complexity with the number
of data points. The methodology was demonstrated for a simple
carbon capture system driven by a small-scale chemical sorbent
model.

One major issue with the proposed approach is the compu-
tational time that is required to compute the sorbent model,

which is the bottleneck in obtaining the posterior distribu-
tion for the model parameters and discrepancy. Each evalu-
ation of the sorbent model requires approximately 6 sec for
the synthetic data, and each iteration of MCMC requires 15
model evaluations, requiring ∼ 1 week to obtain the full pos-
terior. Both the speed of the sorbent model and the num-
ber of model evaluations are a function of the number of
inputs and discrepancy coefficients needed. When more com-
plicated models are involved with multiple outputs, the number
of differential equations to be solved increases, which in turn
increases the number of inputs and discrepancy functions and
coefficients. In addition, the computational bottleneck requires
us to make difficult choices to reduce the size of the TGA
data. The end result is that the computational time required
for this approach in the current implementation may be pro-
hibitive. The computational efficiency of this approach may be
improved in three ways. First, sorbent models can be imple-
mented using graphics processing units (GPU); GPUs often
speed up computer models several-fold. Also, other adaptive
proposals to reduce the number ofMCMC iterations required to
reach convergence may be investigated. Finally, dynamic emu-
lation may be considered as a surrogate for the sorbent model,
which would reduce the computational costs of the model
evaluations.

Extrapolation over the input function space during upscal-
ing is a difficult challenge; there may be a risk of extrapolation
in the upscaling predictions due to different system conditions
at scale than the small-scale experimental conditions. However,
our dynamic discrepancy approach described in Section 3.4
reduces the large functional input space (e.g., x(t ),T (t ), p(t ))
to the space of scalar (x, p,T ) input combinations for the rate
equation. Hence, we only need to “train” the discrepancy δE and
δK on the space of scalar (p,T ) or (x, p,T ) input combina-
tions (obtained from the experiments), respectively; Figure 14
compares these input combinations for the upscaling of the syn-
thetic data results. This does not entirely prevent extrapolation
(as the solution of large-scale model may be still dependent on
the entire curve), but it may account for a large source of it. Our
proposed approach demonstrates the inclusion of the extrapo-
lation uncertainty in the conditions and quantities of interest
of the large-scale model. If the uncertainties due to extrapo-
lation are unacceptable, one possible approach to ameliorating
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this uncertainty due to extrapolation is using a three-step iter-
ative method, which is analogous to the upscaling framework
suggested in this article. Data could be gathered at a set of inputs
drawn from the sample-based posterior distribution of system
conditions after the initial calibrationwas performed. This could
then be followed by a second calibration of small-scale results
using data collected at inputs resembling these upscaled system
conditions. The second calibration results could then be used to
once again upscale to the large-scale system. The entire process
could be repeated if necessary, each time producing more rele-
vant small-scale experiments.

SupplementaryMaterials
The supplementary material consists of three sections that required more
detail than could be provided in the manuscript. They are intended to give
the reader a more in-depth understanding of these concepts. Section A of
the supplementary material describes the derivation of the BSS-ANOVA
basis decomposition discussed in Section 3.3. SectionBdescribes the details
of the process model, the one-dimensional bubbling fluidized bed (BFB)
absorber. The reaction rate equations for the kinetics are provided both
for integration of the small-scale sorbent model and the “reality” function
into the BFB, as well as the important device parameters and operating
conditions. Section C describes the details of the numerically representing
the large scale system (rate equation and constraints) using the Eulerian–
Langrangian conversion along the flow-velocity field.
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