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ABSTRACT

Multivariate time-series anomaly detection (MTSAD) faces a critical trade-off be-
tween detection performance and model transparency. We propose PGRF-Net,
a novel architecture designed to achieve competitive performance while provid-
ing structured evidence to support diagnostic insights. At its core, PGRF-Net
uses a Multi-Faceted Evidence Extractor that combines prototype learning with
the discovery of dynamic relational structures between variables. This extractor
generates four distinct types of anomaly evidence: predictive deviation, struc-
tural changes in learned variable dependencies, contextual deviation from normal-
behavior prototypes, and the magnitude of localized spike events. This evidence is
then processed by a Gated Evidence Fusion Network, which learns to weigh each
source via data-driven gating. PGRF-Net is trained via a two-stage unsupervised
strategy for robust extractor learning and subsequent fusion tuning. Extensive
experiments on five public MTSAD benchmarks demonstrate its competitive or
superior detection performance. Importantly, by decomposing the final anomaly
score into these four evidence types, our model facilitates diagnostic analysis, of-
fering a practical step towards more interpretable, evidence-based MTSAD.

1 INTRODUCTION

Multivariate time-series anomaly detection (MTSAD) is essential in high-stakes domains such as in-
dustrial IoT and healthcare, where timely detection prevents failures and losses. Deep models have
advanced detection performance (Xu et al., [2022; Wang et al., 2023} |Song et al., 2023), yet most
remain black boxes: they output a single anomaly score with little insight into its cause, hindering
trust and adoption. Moreover, anomalies are heterogeneous—ranging from point spikes to contex-
tual shifts and relational changes—so methods specialized for one type often miss others. This
diversity demands a diagnostic framework that not only flags anomalies but also differentiates their
underlying nature (Chandola et al., 2009; Zong et al., 2018} |Audibert et al., [2020; Blazquez-Garcia
et al.l 2021; Xu et al., [2022)).

To address these limitations, we propose PGRF-Net (Prototype-Guided Relational Fusion Network),
a novel architecture that reframes anomaly detection as a diagnostic process based on multi-faceted
evidence aggregation. The key idea of PGRF-Net lies not in any single component, but in the syner-
gistic integration of a Multi-Faceted Evidence Extractor and a Gated Evidence Fusion Network into
a unified diagnostic framework. The extractor is designed to align with the practical needs of sys-
tem operators by evaluating four complementary evidence sources: predictive deviation, structural
changes in learned variable dependencies, contextual deviation from normal-behavior prototypes,
and localized spike events. The fusion network then integrates this evidence, learning a data-driven
strategy to dynamically weigh each source. These sources provide complementary views; we do
not assume time invariance of the low-frequency component. The entire system is optimized via
a two-stage unsupervised strategy, ensuring reliable, data-driven anomaly detection while reducing
reliance on manual heuristics.

The main contributions of this paper are:

*Corresponding author.
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» A Diagnostic Framework for Anomaly Attribution. We propose PGRF-Net, an archi-
tecture that moves beyond single-score detection by decomposing anomalies into four ev-
idence types: predictive, structural, contextual, and spike. This decomposition is directly
motivated by the practical need for diagnostic analysis, offering decomposed anomaly at-
tribution, unlike traditional black-box models. To our knowledge, this is one of the early
attempts to reframe MTSAD as a diagnostic process rather than a mere detection task, by
decomposing anomalies into multiple evidence types within a unified framework.

* Unsupervised Gated Fusion Mechanism. We introduce a Gated Evidence Fusion Net-
work that learns to optimally weigh the decomposed evidence in a data-driven, unsuper-
vised manner. This eliminates heuristic-based tuning and allows for robust detection across
diverse anomaly types.

* Competitive Performance with Interpretability. PGRF-Net achieves competitive or su-
perior detection performance compared to state-of-the-art methods across five widely-used
public benchmarks, while uniquely providing actionable, decomposed explanations for
anomaly attribution.

2 RELATED WORK

2.1 MTSAD APPROACHES

Modern MTSAD approaches are diverse. Reconstruction-based methods employ Autoencoders
(AEs) (Audibert et al., [2020), Variational Autoencoders (VAEs) (Su et al., [2019), and GANs (Li
et al., 2019) to flag instances with high reconstruction error. Prediction-based methods rely on
temporal models such as LSTMs (Malhotra et al., 2015) and Transformers (Xu et al., [2022; Wu
et al., |2023) to detect large forecast errors. More recent paradigms include contrastive learning,
which separates normal and abnormal patterns (Yang et al., [2023}; [Tuli et al., |2022)), and diffusion
models, which employ denoising processes for reconstruction or imputation (Xiao et al., 2023}
Chen et al.} 2023} |Pintilie et al.|[2023)). Despite strong performance, most of these methods produce
a single anomaly score, limiting their utility for diagnostic analysis.

2.2 PROTOTYPE LEARNING FOR INTERPRETABILITY

Prototype learning improves interpretability by capturing representative normal patterns, often
stored in memory banks (Gong et al.,[2019). Anomalies are then identified by their deviation from
these prototypes. This idea has evolved into sophisticated memory modules, as in MNAD (Park
et al} [2020) and MEMTO (Song et al. 2023)), which enhance reliability by avoiding the recon-
struction of abnormal inputs (Shen et al.,|2025). While effective for modeling contextual normality,
PGRF-Net extends this paradigm by introducing prototype-guided channels not only for contextual
but also for structural deviations, thereby offering a broader diagnostic perspective.

2.3 DEPENDENCY-AWARE ANOMALY DETECTION

Anomalies in multivariate time series often manifest through violations of inter-variable dependen-
cies. Early statistical approaches relied on Granger causality tests (Qiu et al., 2012), while recent
deep models have advanced dependency modeling in three complementary directions: association-
based discrepancies (e.g., Anomaly Transformer (Xu et al.| [2022)), causality-driven discovery (e.g.,
GCAD (Liu et al.} 2025), CAROTS (Kim et al.| 2025)), and dynamic graph reasoning (e.g., GSC-
MAD (Zhang et al.l 2024), Causalformer (Kong et al.l 2024)). These methods highlight the im-
portance of modeling variable dependencies but often treat them as the primary anomaly signal.
In contrast, PGRF-Net incorporates dependency evidence as one of four complementary sources,
enabling a more balanced and diagnostic view of anomalies.

3 METHODOLOGY

This section details PGRF-Net, a novel architecture designed to enhance both performance and
diagnostic transparency in MTSAD. Illustrated in Figure [, PGRF-Net is composed of two core
components trained in a two-stage unsupervised process: a Multi-Faceted Evidence Extractor
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Figure 1: The overall architecture of PGRF-Net. The model learns a foundational representation via
frequency decomposition and Conformer encoders, then generates four diagnostic evidence scores
(predictive, structural, contextual, and spike deviations). A Gated Evidence Fusion Network learns
to combine these scores to produce the final anomaly score.

that decomposes anomalies into distinct causes, and a Gated Evidence Fusion Network that learns
to combine them for a final decision.

3.1 STAGE 1: MULTI-FACETED EVIDENCE EXTRACTOR

The extractor, trained in the first stage, serves as the foundational engine of PGRF-Net. It is designed
not only for robust representation learning but also for generating four distinct diagnostic sources of
anomaly evidence.

3.1.1 FOUNDATIONAL REPRESENTATION LEARNING

To effectively model multi-scale dynamics, we first decompose an input window X € R¥*" where

w is the window size and N is the number of variables, into its low-frequency (trend-like) and high-
frequency (transient) components, X, and Xp,;41,, via an FFT-based filter.

This split provides two complementary views and does not assume time invariance of the low-
frequency component. Each component is processed by a dedicated Conformer encoder (Gulati
2020), which adeptly captures both global and local patterns:

H;,, = Conformer(X;oy), Hyqr = Conformer(Xp,gp). @)
The two representations are concatenated and linearly projected to yield a fused feature map:
H= Linear([Hinv; Hvar])a 2
from which we derive a global context vector via temporal pooling:
h, = MeanPool(H). 3)

Here, H serves as the general fused feature map, while H,,, is also retained as a spike-sensitive
representation for transient evidence extraction. Together with hg, they form the cornerstone for
subsequent evidence generation.
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3.1.2 LEARNABLE PROTOTYPE BANKS FOR NORMALCY MODELING

Instead of learning a single, monolithic model of normal behavior, PGRF-Net maintains three dis-
tinct, learnable prototype banks, each storing a vocabulary of representative exemplars correspond-
ing to different facets of normalcy. Here, K, K., and K denote the number of prototypes in the
structural, context, and spike banks, respectively.

Structural Prototype Bank (By;,,c: € RE*N*N) Each slice MY € RV*N encodes a canon-
ical dependency pattern between the IV variables, capturing inter-variable structural relations.

ontext Prototype Ban cte € ¢ X dmodel) - Each vector represents a distinct operationa
Context Prototype Bank (53 REeXdnoaat) - Bach vector p§i® rep ts a distinct operational
state, capturing diverse modes of normal system behavior.

Spike Prototype Bank (B;,;. € R:*dma) Each vector p;” k¢ encodes an archetypal transient

fluctuation, characterizing short-lived but benign events.

These banks are initialized randomly and progressively specialized through end-to-end optimization
during Stage 1 training.

3.1.3 EVIDENCE GENERATION VIA PROTOTYPE COMPARISON

With the learned representations and prototype banks, the model generates four evidence scores.
This process begins with generating a dynamic relational graph from hg, which is used for both
prediction and structural deviation analysis.

Dynamic Relational Graph Generation. A selector network processes h, to determine the most
relevant relational structure for the current time window. It computes dynamic weights via an MLP
and the Gumbel-Softmax function G(-), which are then used to create a weighted combination of
the prototypes in the structural prototype bank. We view M, as a dependency mask. This yields a
dynamic relational mask:

K
M; = > G(MLP(hy))s - MP". 4)
k=1

We then derive four complementary evidence scores:

* Predictive Deviation (S,,.qs): From the fused feature map H < RWXdmodel - we extract per-

variable representations h; (j = 1,..., N). The parent feature of variable 7 is computed as:
N
hya) = Y _(My)i; - hy, )
j=1

and g; is predicted at the last step using a lightweight linear head on [h;, h,,,(;)]. The predictive
deviation is:

1 N
_ A Y
Spred = i 2:1(311 i) (6)

e Structural Deviation (S,..t): Measures how much M; deviates from a baseline My, ., com-
puted by averaging early-training masks on the normal training split, with the diagonal set to

zero and kept fixed for inference. Each prototype Mimto is constrained by an acyclicity penalty
(Zheng et al.| 2018). The deviation is:

Sstruct - HMt - Mbase||F~ (7)

* Contextual Deviation (S;.): The global context h, is compared against the context prototype
bank {p¢**} to form a weighted normal reference:

KC
piI” = G(MLP., (hy))x - pii™. ®)
k=1
The deviation is:
h .pctl‘
Sctw = 1 g “ (9)

g2 - [[PE* M2

4
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* Spike Deviation (S;p;.c): A spike feature qgpire is extracted from the high-frequency map
HvaT:
Qspike = MLPp;k.(MaxPool(ConvlD(H,q,))). (10)
Its deviation is the minimum distance to the spike prototypes:

Sspike = mkin Hqspike - pzpike”Q. (11)

3.1.4 STAGE 1 TRAINING OBJECTIVE

The extractor is trained on normal data using a composite loss function designed to build a compre-
hensive model of normalcy:

ESlagel = )\pred‘cpred + )\structRstruct + )\protoRproto- (12)

Prediction Loss (£,,.q). We adopt a Focal Loss-style weighting (Lin et al.,[2017) on the prediction
MSE. For a sample with MSE m, define its correctness probability as

py = 1 — scaled MSE(m), (13)
and the loss as
Epred == at(l 7pt)’Y m, (14)
which emphasizes higher MSE samples that better delineate the boundaries of normal behavior.

Structural Regularization (R s¢,.,:). This term ensures relational masks are meaningful and stable:
Rstruct = )\llﬁll + )\sparseﬁsparse + )\acycﬁacyc + Adszﬁdsz (15)

* L;1: sparsity on the batch-averaged relational mask.

* Lsparse: sparsity directly on prototype masks {M(p“)tovk)}, encouraging compact structural
blocks.

* Lacye: DAG constraint (Zheng et al.,[2018) on each prototype mask, ensuring that IM; (a convex
combination) inherits acyclicity.

* Lgiyy: temporal stability by penalizing deviations from the baseline mask Myge.

Prototype Regularization (R ,,.:,). A small-weighted clustering loss encourages compact, diverse
prototypes:
7zproto = >\ctac1 E[S('fr] + Aspikel E[Sspike]- (16)

3.2 STAGE 2: GATED EVIDENCE FUSION NETWORK

In the second stage, we freeze the feature extractor (Conformer encoders) to stabilize the learned
representations, while allowing the prototype banks and the gating module to remain trainable.
This ensures that Stage 2 focuses on calibrating evidence attribution without altering the under-
lying feature space. The fusion network is then trained in an unsupervised manner to activate ex-
planatory channels only when strong evidence arises. By combining pseudo-normal suppression
and entropy sharpening, the gating module provides a data-driven weighting of evidence sources,
replacing heuristic fusion with an instance-dependent mechanism.

3.2.1 GATED FUSION MECHANISM

A lightweight gating controller (MLP) maps the global context vector h into a softmax weight
vector over the explanatory channels, g = [¢struct; Getas Gspike] With g = softmax(MLP(h,)). Each
deviation score is first normalized to [0, 1] by min—max scaling. The explanatory score is obtained
by fusing the structural, contextual, and spike channels:

Seapt = 3 % 5 (17)

Eje{struct,ct:r,spik:e} 9;j

i€{struct,ctx,spike}
The final anomaly score then balances predictive and explanatory evidence via a hyperparameter o:

Sfinal = (1 - Q)Spred + aSe:cpl (18)

Here, o € [0, 1] serves as a simple trade-off knob: smaller values emphasize prediction error, while
larger values highlight explanatory diagnostics.
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3.2.2 STAGE 2 TRAINING OBJECTIVE

The fusion module is trained without anomaly labels, guided by Stage 1 signals. Its objective is
LStageZ = >\ctw2 E[Sctx] + Aspike2 E[Sspike] + Asupﬁsup + /\e'm‘,ﬁen,t- (19)

* Prototype Tuning. Refinement losses on S¢¢, and Sgp;.e sharpen the separation of normal clus-
ters, reinforcing diverse yet compact prototypes.

* Gate Suppression Loss (L,,;). We define the total explanatory gate activation as:

Gloxpl = > 9i (20)

i€{struct,ctx,spike}
For pseudo-normal samples A&, (low prediction error in Stage 1), this loss penalizes Gexpi:

£sup = EXEXZ,” [Gexpl] (21)
thereby encouraging the network to keep gates inactive when no explanation is needed.
¢ Entropy Loss (L.,:). Encourages sharper gate activations:

Low =B =Y gilog ). 22)

promoting selective attribution to the most relevant channel.

4 EXPERIMENTS

We conduct extensive experiments to validate PGRF-Net’s performance and interpretability. Our
evaluation addresses two research questions: (RQ1) How does PGRF-Net compare with SOTA
methods on public benchmarks? (RQ2) How do the proposed components contribute to accuracy
and diagnostic transparency? We next describe datasets and metrics; then we present benchmark
comparisons, ablations, and interpretability analyses.

4.1 EXPERIMENTAL SETUP

We evaluate PGRF-Net on five public benchmarks: MSL and SMAP (Hundman et al., [2018), PSM
(Abdulaal et al.,2021), SMD (Su et al., [2019), and SWaT (Mathur & Tippenhauer, 2016).

Following established practice (Su et al., 2019;|Shen et al., 2025])), we report point-adjusted Precision,
Recall, and F1, together with threshold-free AUC-ROC and AUC-PR. To provide an additional
event-level evaluation, we also include Range-Precision (R-P), Range-Recall (R-R), and Range-
F1 (R-F1) (Tatbul et al.| 2018)) in our main result tables. For completeness, we additionally report
point-wise (non-adjusted) Precision/Recall/F1 in Appendix [C} allowing direct comparison with prior
methods that rely on point-wise metrics. All results are averaged across five random seeds. Detailed
dataset statistics and evaluation procedures are provided in Appendix

4.2 BASELINES

We compare PGRF-Net with both established models (Deep-SVDD (Ruff et al.|2018)), LSTM-VAE
(Park et al.,|2018)), THOC (Shen et al.,2020), OmniAnomaly (Su et al.,|2019)), InterFusion (Li et al.,
2021))) and recent SOTA models (D3R (Wang et al.,2023), DMamba (Chen et al.|[2024)), DCdetector
(Yang et al.| [2023), MEMTO (Song et al., 2023)), GSC-MAD (Zhang et al., 2024)), H-PAD (Shen
et al.,[2025)).

4.3 IMPLEMENTATION DETAILS

PGREF-Net is implemented in PyTorch and trained with Adam (Ir=10"%). We use a sliding window
of w = 60 and model dimension d,,,,qe; = 128. The training data is further split into train/validation
sets with an 8:2 ratio to enable hyperparameter tuning and early stopping. Other hyperparameters
follow standard practice and are listed in Appendix [D} Thresholds for thresholded metrics are se-
lected on the validation set, and range-based metrics (R-P/R-R/R-F1) directly follow the official
implementation of (Tatbul et al.,|2018). All experiments are conducted on a single NVIDIA A100
GPU (40GB).
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Table 1: Performance comparison on five real-world datasets in terms of Precision (P), Recall (R),
and F1-score. All scores are in %. Best and second best results are highlighted.

Model MSL SMAP PSM SMD SWaT Avg F1
P R F1 P R F1 P R F1 P R F1 P R F1

Deep-SVDD 91.92 76.63 8358 | 89.93 56.02 69.04 | 9541 86.49 90.73 | 78.54 79.67 79.10 | 80.42 8445 82.39 | 80.97
THOC 8845 90.97 89.69 | 92.06 89.34 90.68 | 88.14 90.99 89.54 | 79.76 90.95 84.99 | 83.94 86.36 85.13 | 88.01
LSTM-VAE 8549 7994 8262 | 9220 67.75 78.10 | 73.62 89.92 80.96 | 75.76 90.08 82.30 | 76.00 89.50 82.20 | 81.24
OmniAnomaly 89.02 86.37 87.67 | 9249 8199 86.92 | 88.39 7446 80.83 | 83.68 86.82 8522 | 8142 8430 82.83 | 84.69
InterFusion 81.28 9270 86.62 | 89.77 88.52 89.14 | 83.61 83.45 8352 | 87.02 8543 86.22 | 80.59 85.58 83.01 | 85.70
DCdetector 92.09 98.89 9537 | 9442 9895 96.63 | 97.24 97.72 97.48 | 86.08 85.60 85.84 | 93.29 100.00 96.53 | 94.37
D3R 91.77 9433 93.03 | 9223 96.11 94.21 | 93.84 99.11 96.45 | 87.74 96.09 9191 | 83.09 83.00 83.04 | 91.73
MEMTO 91.95 9723 9456 | 93.66 99.73 96.60 | 9747 98.60 98.03 | 88.24 96.16 92.03 | 94.28 91.72 93.73 | 94.99
DMamba 93.69 64.06 76.09 | 95.10 5298 68.05 | 98.66 82.59 8991 | 92.57 54.04 6824 | 94.11 86.75 90.28 | 78.51
GSC-MAD 94.19 93.09 93.63 | 89.57 9835 93.76 | 97.97 99.14 98.89 | 92.25 9442 9332 | 96.73 95.11 9591 | 95.10
H-PAD 94.05 96.88 9545 | 96.00 9845 97.21 | 98.82 9941 99.12 | 92.86 98.20 9545 | 94.34 100.00 97.09 | 96.86
PGRF-Net (Ours) | 96.55 98.50 97.53 | 93.10 98.15 9555 [ 9840 99.10 98.85 ] 96.50 99.80 97.75 | 96.10 9825 97.37 | 9741

Table 2: Performance comparison on five real-world datasets in terms of AUC-ROC and AUC-PR.
All scores are in %. Best and second best results are highlighted.

Model MSL SMAP PSM SMD SWaT Avg
AUC-ROC  AUC-PR | AUC-ROC AUC-PR | AUC-ROC AUC-PR | AUC-ROC AUC-PR | AUC-ROC AUC-PR | AUC-ROC AUC-PR
LSTM-VAE 52.12 4.52 50.83 4.19 49.15 40.22 50.05 4.15 49.59 4.13 50.35 11.44
D3R 65.26 16.99 41.35 10.62 50.03 26.31 64.20 12.24 56.65 13.30 55.50 15.89
DCdetector 50.06 10.61 48.87 12.48 49.83 27.64 48.77 41.16 49.74 11.60 49.45 20.70
H-PAD 59.99 15.06 59.13 15.30 75.01 51.83 76.49 14.05 81.54 53.99 7043 30.05
PGRF-Net (Ours) 64.50 16.80 60.10 16.55 76.25 52.10 75.50 22.50 83.10 54.50 71.89 32.49

4.4 OVERALL PERFORMANCE COMPARISON (RQ1)

Tables (1| and [2) compare PGRF-Net with a broad range of established and state-of-the-art baselines
across five public datasets.

F1-Score Analysis. As shown in Table PGRF-Net achieves the highest average F1-score
(97.41%) among all methods, ranking first on three out of five datasets (MSL, SMD, SWaT) and
second on the others. This improvement highlights the benefit of integrating multi-faceted evidence
rather than relying on a single anomaly perspective. Notably, our model balances precision and re-
call, avoiding the high-recall but low-precision tradeoff observed in DCdetector and MEMTO. All
F1-scores in this subsection refer to the standard point-adjusted F1 metric; event-level Range-F1 is
analyzed separately in Table

AUC Score Analysis. The threshold-independent metrics in Table[2|further confirm the robustness
of PGRF-Net. It achieves the best average AUC-PR (32.49%) and a strong AUC-ROC, crucial in im-
balanced anomaly detection. Compared to the prototype-based model H-PAD, PGRF-Net provides
higher recall while preserving interpretability via structured fusion.

Range-based Evaluation. Table [3] reports event-level Range-Precision (R-P), Range-Recall (R-
R), and Range-F1 (R-F1), which evaluate anomaly segments as coherent events rather than isolated
points. Across the five datasets, PGRF-Net consistently ranks at or near the top: it achieves the
best Range-F1 on MSL, SMD, and SWaT, achieves the second-best score on SMAP, and remains
competitive on PSM.

Taken together, these results demonstrate that PGRF-Net not only achieves state-of-the-art detec-
tion accuracy but also provides consistent reliability across datasets with very different anomaly
characteristics.

Table 3: Event-level range-based metrics (R-P, R-R, R-F1). Best and second best are highlighted.

Model MSL SMAP PSM SMD SWaT Avg R-F1
R-P R-R  R-Fl R-P R-R  R-Fl R-P R-R R-Fl R-P R-R  R-Fl R-P  R-R R-FI
THOC 85.40 8233 83.83 | 83.12 79.24 83.46 | 84.10 7152 77.24 | 8230 86.14 84.18 | 77.92 81.30 79.57 81.66
OmniAnomaly 7891 9342 8546 | 87.10 8625 86.66 | 80.24 82.10 81.16 | 87.22 8691 87.06 | 79.10 86.22 82.48 84.56
InterFusion 89.15 97.82 93.25 | 9272 97.94 9525 | 9582 96.74 96.27 | 8640 85.11 8575 | 90.52 98.31 94.23 92.95
DCdetector 8844 9231 90.33 | 90.25 93.44 91.82 | 92.10 97.22 9459 | 88.92 9484 91.75 | 81.04 8l1.11 81.07 89.91
D3R 89.72 9544 9248 | 91.84 98.10 94.85 | 96.52 97.35 96.93 | 90.52 97.10 93.69 | 9222 9045 91.33 93.86
MEMTO 9240 9191 92.15 | 88.60 96.70 9243 | 97.20 98.40 97.79 | 93.44 97.01 9546 | 95.10 9422 94.66 94.50
PGRF-Net (Ours) | 9585 9692 96.38 | 93.02 9742 95.17 | 95.10 96.92 96.00 | 95.92 98.44 97.16 | 9422 9720 95.68 96.08
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Table 4: Ablation study on core architectural  Table 5: Impact of two-stage training and gated
modules. ”w/ FD” denotes with Frequency De-  fusion. Static Fusion ratios denote weights for
composition (at different low-frequency ratios).  (Spred @ Sstruct : Sctz © Sspike)-

All metrics are Avg. F1-Score (%).

Stage | Model Variant Avg F1

w/ FD (Low Freq. Ratio Spred onl 92.51

Encoder wo FD 15 ( W% T 30% ) Static Fusion (1:0:1:1) 94.13
MLP-Mixer 92.88 93.81 | 94.15 93.97 Static Fusion (1:1:0:1) 94.58
Transformer | 94.71 95.80 | 96.05 95.91 1 Static Fusion (1:1:1:0) 95.34
PatchTST 95.34 96.52 | 96.82 96.75 Static Fusion (1:1:1:1) 96.82
Conformer | 95.12 [ 97.15 | 9741 | 97.35 Max Pooling (of 4 scores) | 92.32
1+2 PGRF-Net 97.41

(a) Impact of K (b) Sensitivity to w (c) Sensitivity to a (d) Sensitivity to Pseudo-normal Ratio
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o 9650
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a Ratio

Figure 2: In-depth analysis of key components. (a) Impact of the number of prototypes K. (b)
Sensitivity to window size w. (c) Sensitivity to fusion weight a. (d) Sensitivity to the pseudo-
normal ratio for Stage-2 training.

4.5 IN-DEPTH ANALYSIS AND ABLATION STUDY (RQ2)

We further analyze the contributions of PGRF-Net’s core components through ablation studies.

4.5.1 EFFECTIVENESS OF CORE ARCHITECTURAL DESIGN.

We validate our architectural choices—the dual-stream frequency decomposition (FD) and the Con-
former encoder—by replacing them with strong alternatives (MLP-Mixer, Transformer, PatchTST),
both with and without FD. As shown in Table 4] applying FD consistently improves performance
across all backbones, confirming that separating slow and fast dynamics provides complementary
features. Among all encoders, the Conformer achieves the best performance (97.41% F1), highlight-
ing its ability to capture both local and global temporal dependencies, which synergize well with FD
by aligning temporal receptive fields with frequency-separated signals.

4.5.2 IMPACT OF TWO-STAGE TRAINING AND GATED FUSION.

To assess the benefit of the two-stage strategy, we compare the full PGRF-Net with Stage-1-only
variants under different static fusion ratios. Results in Table 5] show that while static fusion already
outperforms the prediction-only baseline, its performance is highly sensitive to fixed weights and
degrades when evidence channels are imbalanced or removed. By contrast, the Stage-2 gated fu-
sion consistently yields the best performance (97.41%), demonstrating that learning input-dependent
weights is essential for stability beyond fixed heuristics.

4.5.3 HYPERPARAMETER SENSITIVITY.

Figure [2] presents sensitivity analyses for key hyperparameters. Performance is stable across a broad
range, peaking at K = 10 prototypes, window size w = 60, and fusion weight & = 0.1. The
pseudo-normal ratio is effective between 0.1 and 0.3. Variance across five seeds is very small,
confirming robustness. Note that sensitivity plots aggregate results across datasets, while ablation
tables (Table [4] Table [5) report single-dataset studies, explaining minor discrepancies in absolute
F1-scores and preventing misinterpretation as methodological inconsistency.
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Figure 3: Case studies of PGRF-Net’s interpretability on four anomaly events from the bench-
mark datasets. Each column presents a complete diagnostic report with five aligned views (see
Section @): (a) raw signals with time on the x-axis and sensor values on the y-axis, (b) final
anomaly score, (c) decomposed evidence attribution (Spyeds Sctas Sspikes Sstruct)s (d) adaptive fu-
sion weights, and (e) relational-level changes (red = strengthened, blue = weakened). Symbols in
Row (e) mark altered dependencies, directly linking anomaly events to structural shifts. Together,
these views demonstrate how PGRF-Net translates detection into actionable reasoning. Note: .S, 45k
in plots corresponds to Structural Deviation (Ss;,,ct)-

4.6 INTERPRETABILITY ANALYSIS

A central goal of PGRF-Net is to move beyond black-box detection and serve as a transparent diag-
nostic assistant. Rather than outputting only an anomaly score, our framework produces a structured
five-panel report designed to explain both what is anomalous and why:

* Raw Signal (Row a). Input time series with anomaly regions highlighted for localization.
¢ Final Score (Row b). Aggregated anomaly score curve that confirms severity and boundaries.

* Decomposed Evidence (Row c). Attribution to predictive, structural, contextual, and spike evi-
dence, revealing the anomaly’s type.

» Adaptive Weights (Row d). Dynamic fusion coefficients showing the model’s internal reasoning
and emphasis shifts across evidence sources.

* Relational-Level Insight (Row e). Fine-grained diagnostic analysis by contrasting anomalous
relational masks (M;) with baseline masks (Mpqse)-

Representative case studies are shown in Figure[3] and extended examples across benchmarks are in
Appendix [E.1]

While real-world benchmarks demonstrate that PGRF-Net produces semantically meaningful de-
composed evidence, these datasets lack ground-truth anomaly types (e.g., spike vs. contextual
vs. structural). Therefore, to quantitatively validate that each evidence channel (Ssyct, Scix> Sspike)
responds selectively to the intended anomaly mechanism, we perform controlled synthetic experi-
ments, as detailed in Appendix [E3]

4.7 COMPLEXITY AND EFFICIENCY

To assess the practical deployability of PGRF-Net, we additionally evaluate its computational com-
plexity and runtime efficiency under a standardized setup. For a fair comparison, all models were
benchmarked on the PSM dataset (25 channels, 132,481 training time steps and 87,841 test time
steps) using a single NVIDIA A100 GPU. As summarized in Table [6] our proposed PGRF-Net
demonstrates parameter efficiency with only 2.25M parameters, which is significantly fewer than
prior models like MEMTO (5.39M). The model requires just 0.005 GPU-hours for training and
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achieves an inference latency of 0.059 ms per step, supporting real-time deployment scenarios. This
demonstrates that our framework achieves strong performance with high computational efficiency.

Table 6: Model complexity and efficiency, benchmarked on a single NVIDIA A100 GPU.

Model #Params (M) | Train Time (GPU-h) | Inference (ms/step)
D3R 3.152 0.047 0.141
MEMTO 5.39 0.004 0.043
PGRF-Net (Ours) 2.25 0.005 0.059

5 LIMITATIONS

While PGRF-Net substantially improves diagnostic interpretability for MTSAD, several limitations
remain that highlight directions for future work.

Human-centered evaluation. Although our quantitative tests (selectivity, synthetic isolation, sta-
bility) demonstrate semantic alignment of evidence channels, we do not include human-centered
or practitioner-based evaluations. Assessing the real-world usefulness for operators remains future
work.

Training contamination. Real-world training data may contain unlabeled anomalies, and our
method does not explicitly model heavy contamination. Extending prototype formation and gat-
ing to be contamination-aware is a promising future direction.

DAG constraint and feedback loops. Our structural evidence relies on DAG regularization, which
improves stability and interpretability but cannot capture feedback loops that frequently arise in
cyber-physical systems. Extending structural modeling to cyclic or feedback-aware graphs remains
an open direction.

Baseline mask sensitivity. The baseline structural mask My, is derived from early training under
a stationary-normal assumption. In environments with multi-regime or drifting normal dynamics, a
single averaged baseline may be insufficient; regime-conditioned or multi-prototype baselines would
improve flexibility.

6 CONCLUSION

We introduced PGRF-Net, a prototype-guided relational fusion network that reframes multivariate
time-series anomaly detection as a diagnostic task rather than mere flagging. Its design combines a
Multi-Faceted Evidence Extractor—decomposing anomalies into predictive, structural, contextual,
and spike deviations—with a Gated Evidence Fusion Network that adaptively weighs these signals
through a two-stage unsupervised procedure.

Extensive experiments across five public benchmarks demonstrate that PGRF-Net achieves compet-
itive detection accuracy while providing structured explanations that reveal not only what is anoma-
lous but also why. This dual emphasis on accuracy and diagnostic interpretability bridges the gap
between high-performing black-box detectors and practitioner-oriented monitoring systems.

Despite these strengths, several limitations remain—such as the absence of human-centered evalu-
ations, the assumption of predominantly normal training data, and the reliance on DAG constraints
that cannot model cyclic dependencies. Nonetheless, our results show that meaningful diagnostic
interpretability can be obtained without sacrificing efficiency or detection quality.

Future work will explore contamination-robust learning, multi-regime structural baselines, and ex-
tensions to semi-supervised and domain-adaptive settings. Applications in safety-critical domains
such as industrial 10T, healthcare, and finance represent particularly promising directions where both
reliability and interpretability are essential.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, this paper provides comprehensive details on our
methodology and experiments. All datasets used are public benchmarks as described in Appendix[A]
Our evaluation protocol, including metrics and the point-adjustment strategy, is detailed in Ap-
pendix [B] Detailed hyperparameters for training and model architecture are provided in Appendix[D}
The source code for PGRF-Net, implemented in PyTorch, is available in the supplementary materi-
als.

ETHICS STATEMENT

This research is based on publicly available and anonymized datasets, and we do not foresee any di-
rect ethical concerns regarding data privacy. We acknowledge that anomaly detection systems could
potentially be reverse-engineered for malicious purposes, such as evading security monitoring. We
believe that the diagnostic transparency of our proposed model, which helps operators understand
system states, promotes responsible use. We encourage the deployment of such technologies within
a strong ethical framework.
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A DATASET DETAILS

We evaluate PGRF-Net on five widely used public benchmarks: MSL, SMAP, PSM, SMD, and
SWaT. These datasets span diverse application domains, including spacecraft telemetry, server mon-
itoring, and industrial control systems. They vary in anomaly ratio, sequence length, and signal
complexity, providing a rigorous testbed for both accuracy and interpretability.

13



Published as a conference paper at ICLR 2026

MSL (Mars Science Laboratory) and SMAP (Soil Moisture Active Passive) (Hundman et al.,
2018)) are NASA spacecraft telemetry datasets. They contain subtle but mission-critical anomalies
embedded in highly periodic and correlated sensor streams. PSM (Pooled Server Metrics) (Ab-
dulaal et al.,[2021) is collected from eBay’s cloud infrastructure and exhibits high anomaly density
with bursty signals. SMD (Server Machine Dataset) (Su et al.,|2019) contains diverse server fail-
ure patterns across 28 entities with relatively rare anomalies. SWaT (Secure Water Treatment)
(Mathur & Tippenhauer] 2016) is a cyber-physical dataset generated from a water treatment testbed
under 36 simulated cyber-attacks.

Together, these datasets cover a wide spectrum of anomaly types (point vs. collective), frequen-
cies (rare vs. frequent), and domains (virtual vs. physical systems), allowing for a comprehensive
validation of detection models.

Table 7: Overall statistics of the benchmark datasets.

Dataset | Channels  Train Test ~ Anomaly Ratio
MSL 55 3,682 2,856 0.74%
SMAP 25 2,876 8,579 2.14%
PSM 25 132,481 87,841 27.76%
SMD 38 28,479 28,479 9.46%
SWaT 51 47,520 44,991 12.20%

B EVALUATION PROTOCOL DETAILS

To ensure a rigorous and reproducible evaluation, we strictly adhere to the protocol widely estab-
lished in prior state-of-the-art works, including OmniAnomaly (Su et al., 2019) and H-PAD (Shen
et al.,[2025)). This protocol standardizes how anomaly predictions are converted into event-level de-
cisions, how thresholds are selected, and how metrics are calculated, thereby minimizing evaluation
bias and enabling direct comparison across methods.

In addition to the established protocol, we report two complementary metric classes: (1) non-
adjusted point-wise metrics for full comparability with earlier works, and (2) range-based metrics
(R-P, R-R, R-F1) following (Tatbul et al.| 2018)) to capture event-level alignment. This broader
evaluation spectrum provides a more complete characterization of model behavior.

B.1 POINT-ADJUSTMENT STRATEGY

Real-world anomalies often manifest as contiguous time segments rather than isolated single points.
A naive point-wise comparison between predicted and ground-truth labels tends to over-penalize
models by treating partial overlaps as failures. To address this, we adopt the event-level correction
strategy implemented via the ad just _predicts () function in OmniAnomaly.

Formally, for each ground-truth anomaly interval [ts,t.], if at least one timestamp ¢ € [tg, ] is
predicted as anomalous (y; = 1), then the entire interval is marked as correctly detected. This rule
reflects the practical requirement that an early warning anywhere within an anomalous episode is
sufficient to trigger mitigation actions. At the same time, it prevents over-segmentation, where a
long anomaly detected with minor gaps would otherwise be unfairly penalized. We note that this
approach is now the de facto standard in time-series anomaly detection benchmarks and ensures
comparability with recent SOTA results.

Point-adjusted Precision/Recall/F1 constitute the primary thresholded metrics reported in the main
paper and are directly comparable to prior SOTA TSAD methods.

B.2 THRESHOLD SELECTION

Most anomaly detectors output continuous scores. We perform a grid search over 1000 evenly
spaced thresholds within the observed score range and select the value that maximizes the F1-score.
The corresponding Precision, Recall, and F1 are then reported. This “best-F1” strategy, used in
(Su et al., 2019; Shen et al., 2025), ensures that each model is evaluated at its optimal operating

14
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point, avoiding mismatches due to threshold sensitivity. The same thresholding protocol is applied
consistently for both point-adjusted and point-wise (non-adjusted) metrics.

B.3 EVALUATION METRICS

We report both threshold-dependent metrics (Precision, Recall, F1) and threshold-free metrics
(AUC-ROC, AUC-PR). The standard thresholded metrics are defined as follows:

TP

Precision = ———— 23

recision TP+ FP’ 23)
TP

Recall = ——— 24

A= TP EN 24

Precision - Recall

F1=2- — .
Precision + Recall

(25)

where TP, FP, and FN are computed after applying the point-adjusted correction described in the
previous subsection. In parallel, AUC-ROC and AUC-PR capture the ranking quality of anomaly
scores across thresholds, providing a complementary, threshold-free view of robustness in imbal-
anced settings.

Point-wise (Non-adjusted) Metrics. To supplement this, we also report non-adjusted point-wise
metrics as shown in Table[8] These metrics use the exact same definitions (Equations 23}25) but are
computed before the point-adjustment step. That is, TP, FP, and FN are tallied based on a direct,
timestamp-by-timestamp comparison between the raw predictions and the ground truth. This proto-
col is included for direct comparison with earlier works that did not employ event-level correction.

Range-based Metrics (R-P, R-R, R-F1). Beyond point-adjusted scores, we additionally evaluate
event-level detection quality using Range-Precision (R-P), Range-Recall (R-R), and Range-F1 (R-
F1), following the formulation of [Tatbul et al.|(2018). These metrics treat each anomalous interval
as a coherent event and measure how well predicted intervals align with ground-truth segments.

Let G = {G1,...,Gp} denote the set of ground-truth anomaly intervals, where each interval is
G; = [s,ei], and let P = {P1,..., P,} denote the predicted anomaly intervals obtained from
thresholded scores.

Predicted intervals P are obtained by grouping consecutive predicted anomalous timestamps (i.e.,
runs of §; = 1) into maximal contiguous segments.

For any two intervals A and B, define their temporal overlap as

|AN B

Overlap(A, B) = I

where | - | denotes the number of timesteps.

A ground-truth interval G; is considered correctly detected if there exists at least one predicted
interval P; such that:
Overlap(Gia P]) 2 9range7

where Orange is the minimum overlap ratio (typically 6;ange = 0 following (Tatbul et all [2018),
which counts any positive overlap).

Then, Range-based Precision and Recall are defined as:

RP — # predicted intervals that match at least one G;

)

# predicted intervals

__ # ground-truth intervals detected
N # ground-truth intervals

R-R
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Finally,
R-P-R-R

Fl=2.— """
R R-P + R-R

Unlike point-wise or point-adjusted metrics, range-based metrics do not inflate performance for long
anomalies with dense positive predictions, and instead capture true event-level localization quality.
This makes R-P, R-R, and R-F1 particularly suitable for evaluating segment-coherent anomaly de-
tectors such as PGRF-Net.

B.4 WHY THIS PROTOCOL MATTERS

This evaluation design reflects three practical considerations that are crucial for fair and meaningful
comparison in TSAD.

(1) Event-level correction prevents unfair penalization of minor misalignments, aligning the evalua-
tion with real-world operational needs. It ensures that models are rewarded for detecting anomalous
episodes—even if detection does not perfectly align with every timestamp—thereby avoiding false
negatives caused solely by temporal boundary shifts.

(2) Best-F1 thresholding allows fair model-to-model comparison by neutralizing sensitivity to ar-
bitrary threshold choices. Using the optimal threshold for each model avoids bias introduced by
models whose score distributions differ in scale or variance.

(3) Combining thresholded and threshold-free metrics provides a comprehensive assessment of both
peak performance and ranking robustness across operating points. AUC-ROC and AUC-PR summa-
rize score quality independent of threshold selection, while point-adjusted F1 emphasizes episode-
level detection correctness.

(4) Incorporating range-based metrics (R-P, R-R, R-F1) further strengthens the evaluation by mea-
suring alignment at the level of anomaly segments rather than individual timestamps. Unlike point-
adjusted F1—which credits detection if any point within an anomaly interval is hit—range metrics
quantify segment-level overlap and penalize fragmented or overly sparse detections. This provides
a semantically richer view of how well a model captures the temporal extent of anomalous events.

Taken together, these four components establish a balanced and reproducible evaluation protocol
that distinguishes segment-level reliability from point-level detection and has become a strong and
transparent foundation for modern TSAD benchmarking.

C ADDITIONAL POINT-WISE METRICS

To support direct comparison with prior studies that rely on non-adjusted evaluation, we report point-
wise (non-adjusted) Precision, Recall, and F1 scores across all five benchmark datasets. These met-
rics complement the point-adjusted and range-based scores presented in the main text and provide
an additional perspective on thresholded detection performance under the standard non-adjusted
protocol.

As shown in Table [§] while PGRF-Net does not achieve the highest average F1 score, it demon-
strates strong performance by securing the best F1-scores on both SMD and SWaT. This behavior
is expected: PGRF-Net is designed to produce coherent segment-level detections rather than trig-
gering densely at every anomalous timestamp. As a result, its strengths are more faithfully reflected
in the point-adjusted and range-based metrics reported in the main paper, which explicitly reward
boundary alignment and event-level coverage.

D HYPERPARAMETER DETAILS AND SENSITIVITY ANALYSIS

This section documents the hyperparameters used for training PGRF-Net and presents a robustness
analysis over critical parameters. All baseline models were run with the optimal settings reported
in their respective papers to ensure a fair comparison. By contrast, PGRF-Net’s hyperparameters
were either selected based on established practices in time-series modeling or tuned on a held-out
validation split, as detailed below.
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Table 8: Point-wise (non-adjusted) Precision (P), Recall (R), and F1-score across all datasets. Best
and second best results are highlighted.

Model MSL SMAP PSM SMD SWaT Avg F1
P R Fl1 P R Fl1 P R Fl1 P R Fl1 P R Fl1

THOC 3022 4733 36.81 | 34.18 4251 37.84 | 2944 38.74 3331 | 32.10 5092 3940 | 31.72 4880 38.50 | 37.17
OmniAnomaly 2742 5931 37.62 | 3340 56.22 41.73 | 30.12 54.10 38.65 | 34.85 57.33 4326 | 3542 58.14 43.68 | 40.99
InterFusion 36.52 67.20 47.26 | 36.22 6094 4537 | 4191 57.55 49.52 | 33.10 5522 41.53 | 39.52 68.44 50.12 | 46.76
DCdetector 3594 65.14 4450 | 3741 59.72 46.09 | 46.12 63.44 53.35| 36.52 63.11 46.10 | 38.01 52.12 4390 | 45.59
D3R 31.82 68.44 4335|3422 6582 4520 | 4440 60.02 50.82 | 35.10 6522 46.92 | 39.44 5544 46.05 | 4647
MEMTO 32,12 6191 4246 | 3340 5882 42.23 | 46.22 60.10 5232 | 3822 68.14 4891 | 3991 5845 4732 | 46.65
PGRF-Net (Ours) | 33.89 57.01 41.76 | 34.10 59.20 42.81 | 39.94 52.80 4451 | 41.10 6542 50.62 | 4532 68.15 53.27 | 46.59

D.1 MODEL ARCHITECTURE AND TRAINING PARAMETERS

Table 9] summarizes the architectural and training hyperparameters. The sliding window size (w =
60) and model dimension (d,,o4e; = 128) follow common practices in multivariate TSAD. The
number of prototypes (KX = 10) and fusion parameters were tuned via validation to maximize
robustness. The two-stage training setup (Stage 1 pretraining, Stage 2 refinement) proved critical
for balancing predictive accuracy and interpretability.

Table 9: Key model and training hyperparameters for PGRF-Net.

Category | Hyperparameter | Value
Sliding Window Size w 60
Model Dimension dpedel 128
Architecture Conformer Heads npead 4
Conformer Layers niayers 2
Number of Prototypes K, K., K, 10
Epochs (Stage 1) 50
Learning Rate (Stage 1) 10~*
Patience (Stage 1) 10
Training Batch Size 128
Epochs (Stage 2) 20
Learning Rate (Stage 2) 1074
Patience (Stage 2) 5
Optimizer Adam
. Focal Loss Gamma ~y 2.0
Fusion Strategy Pseudo-Normal Ratio 0.25

D.2 Loss FUNCTION WEIGHTS

The composite losses for the two-stage training are shown in Table [I0} Stage 1 emphasizes pre-
dictive reconstruction and prototype-regularization, while Stage 2 introduces refinement via gate
suppression and entropy terms. These weights were tuned on SMAP and transferred consistently
across datasets.

D.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We further analyze sensitivity to Learning Rate, Batch Size, and Acyclicity Regularization (Aacyc).
All results are averaged across five datasets. Together, these experiments show that PGRF-Net main-
tains strong robustness within reasonable ranges, and that optimal settings are intuitive: moderate
learning rates, mid-sized batches, and balanced sparsity control.

D.3.1 LEARNING RATE

Performance peaks at 1 - 10~%, but remains stable within [5- 1075 5 - 10~*]. Smaller values lead to
underfitting, while higher values cause instability.
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Table 10: Weights for the composite loss functions in Stage 1 and Stage 2.

Stage Loss Weight Component Value
Prediction Loss (Lpred) 10.0
Structural Regularization (Riruct) -
L1 Penalty (A1) 1073
Sparse Proto Masks (Asparse) 1073
Stage 1 Acyclicity Constraint (Aaeyc) 1074
Temporal Stability (Agis) 1073
Proto Regularization (R prot0) -
Context Proto Loss (Acix1) 1072
Spike Proto Loss (Aspike1) 1072
Context Proto Tuning (Acx2) 2-1071
Stage 2 Spike Proto Tuning (Aspike2) 2. 19;1
Gate Supp. Loss (Asup) 10
Gate Entropy Loss (Aent) 1073
Table 11: Effect of Stage 1 learning rate on performance.
LR AUROC | AUPRC F1
1-107° 66.21 27.43 91.85
5-107° 70.13 30.77 96.08
1-1074 71.89 32.49 97.41
5-107% 69.50 29.12 95.22
1-1073 64.88 25.34 89.90

D.3.2 BATCH SIZE

Table 12: Effect of batch size on performance.

Batch Size | AUROC | AUPRC | F1

64 70.11 30.92 96.88
128 71.89 3249 | 9741
256 70.25 29.85 95.77
512 67.30 26.51 92.63

A batch size of 128 provides the best trade-off between stability and efficiency. Small batches
capture finer variance but slow convergence, while large batches reduce gradient diversity and can

reduce recall.

D.3.3 ACYCLICITY REGULARIZATION

Table 13: Effect of acyclicity regularization Aycyc.

Aacye AUROC | AUPRC | F1

1-107° 68.92 28.10 93.42
1-107° 70.34 29.12 95.67
1-1074 71.89 32.49 97.41
1-1073 70.77 30.43 95.15
1-1072 66.42 25.80 89.88

Too little regularization (10~°) produces overly dense graphs, while too much (10~2) forces exces-
sive sparsity. The sweet spot 10~* balances interpretability with predictive power.

All experiments reported in the main text used the best-performing setting identified in this analysis
(w = 60, dmoget = 128, batch size = 128, learning rate = 10~%, and A\yeye = 107%), unless otherwise
specified. These values were consistently applied across all benchmark datasets.
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E ADDITIONAL EXPERIMENTS

E.1 CASE STUDIES ON BENCHMARK DATASETS

To demonstrate our model’s diagnostic capabilities on real-world data, we present case studies from
five standard benchmark datasets: SMD, MSL, SMAP, SWaT, and PSM. As shown in FigureE], we
utilize a two-panel visualization format for clear interpretability. The top panel displays the raw
multivariate signals with the ground truth anomaly shaded. The bottom panel presents the final
anomaly score (black line) and, crucially, its composition as a stacked area chart. This chart visually
decomposes the final score into contributions from each evidence channel (Spreds Ssiructs Scix» and
Sspike)> allowing for an immediate diagnosis of the anomaly’s nature.

Server Monitoring (SMD) & Spacecraft Telemetry (MSL, SMAP) These datasets are charac-
terized by contextual anomalies such as gradual performance degradation or sensor drift. As seen
in the corresponding columns of Figure |4 the anomaly scores in these cases are predominantly
composed of the contextual (Sc) contribution (green), with a secondary response from the mask
(Sswruct) contribution (orange). This indicates the model correctly identifies these events as significant
deviations from normal temporal patterns rather than sudden spikes or specific structural breaks.

Industrial Control (SWaT) The illustrated anomaly from SWaT (a cyber-attack simulation) in-
volves a deliberate violation of the physical dependencies between sensors and actuators. Our model
correctly diagnoses this event by producing a final score composed almost entirely of the structural
(Sstruct) contribution (orange). This demonstrates the model’s ability to pinpoint structure-related
anomalies, which is critical for diagnostic analysis in industrial control systems.

Server Infrastructure (PSM) This dataset features a mixture of anomaly types. The chosen ex-
ample showcases a transient event, such as a sudden service latency spike. The model correctly
attributes this anomaly, with the score composition showing a clear and dominant peak from the
spike (Sspike) contribution (red). This highlights the gating mechanism’s ability to adapt and priori-
tize the most relevant evidence channel for different anomaly profiles.

E.2 END-TO-END JOINT TRAINING VS. TWO-STAGE OPTIMIZATION

We evaluate a fully end-to-end variant of PGRF-Net in which all components— including the rela-
tional mask generator, context and spike prototype banks, and fusion gates—are optimized jointly
from scratch. This experiment tests whether decoupling representation learning (Stage 1) and evi-
dence fusion (Stage 2) is necessary.

Performance The end-to-end model achieves strong, but consistently inferior, performance. On
benchmark datasets, joint training reaches 95.12% Avg F1, compared to 97.41% with the proposed
two-stage procedure (Table [3).

Convergence Behavior End-to-end joint learning shows noticeably unstable gate dynamics.
Across three runs on SMAP, the standard deviation of the contextual gate activation during training
is 3.2-3.8 x higher than in two-stage training (mean + std — joint: 0.147 4 0.031 vs. two-stage:
0.152 + 0.008). We also observe 2-3 instances of gate collapse (one evidence channel receiving
> 90% of the weight) during joint optimization. The two-stage procedure eliminates such oscilla-
tions by freezing the representation and updating only the gate parameters in Stage 2.

Stability Across Seeds End-to-end training is significantly more sensitive to initialization. Across
5 random seeds, the joint model yields a Range-F1 variance of 0.0048, whereas the two-stage
procedure reduces this to 0.0012 (4x lower variance). Furthermore, the evidence attribution vectors
(structural/contextual/spike) show higher cross-seed divergence under joint training (mean cosine
distance 0.214) compared to two-stage learning (0.087). This demonstrates that two-stage training
provides both stable convergence and more consistent evidence decomposition across seeds.
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Figure 4: Interpretability Case Studies Across Benchmark Datasets. Each column corresponds
to an anomaly case from a different dataset. Top Panel: Raw signals with the ground truth anomaly
shaded. Bottom Panel: The final anomaly score (black line) and its composition, visualized as
a stacked area chart showing the contribution from each evidence channel (predictive, structural,
contextual, spike). This format allows for direct insight into the model’s reasoning. For instance, the
prevalence of orange in the SWaT case indicates a structural anomaly, while green dominates in the
MSL case, signifying a contextual anomaly. Note: Spask in plots corresponds to the Structural
Score (Sstruct)-

E.3 SYNTHETIC DATA VALIDATION

Real-world benchmarks confirm that PGRF-Net produces semantically meaningful decomposed ev-
idence. However, real datasets never provide ground-truth anomaly types (e.g., spike vs. contextual
vs. structural), and these mechanisms often co-occur within the same anomaly segment. Therefore,
it is impossible to directly evaluate channel-wise sensitivity using real data.

To rigorously verify that each evidence score— Sgtruct, Sctx, and Sspike— responds selectively
to the intended anomaly mechanism, we construct controlled synthetic environments where each
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anomaly type is injected in isolation. Our goal is not to classify anomaly types; rather, we verify that
each evidence channel behaves according to its intended semantics under type-isolated conditions.

Two synthetic generators are used:

* Left column: Nonlinear VAR Generator — nonlinear interactions on top of a known
stable VAR(1) dependency graph.

* Right column: State-Switching Generator — three-regime switching between
(A17A27Amix>-

Both generators produce D = 10-dimensional multivariate series with precisely controlled spike,
contextual, and structural anomaly mechanisms. Although the anomaly mechanisms are not orthog-
onal in real systems, our synthetic construction ensures isolation so that each evidence channel can
be evaluated independently.

E.3.1 QUALITATIVE ANALYSIS

Figure [5] presents representative examples for each anomaly type across the two generators
(columns). For each case, the top panel shows the multivariate input with ground-truth anomaly
region shaded, and the bottom panel shows the composition of the final anomaly score into its three
evidence channels.

The qualitative behavior matches the model design:

+ Spike anomaly: The sharp peak is predominantly driven by Sgpike (red), consistent with
point-wise transient deviation.

* Contextual anomaly: Slow, drifting changes dominate S ¢« (green), which rises smoothly
over the contextual region.

* Structural anomaly: When relational dependencies change, St yuct (Orange) becomes the
primary contributor, reflecting deviations in cross-channel dynamics.

These qualitative patterns hold consistently for both generators (left and right), demonstrating ro-
bustness across heterogeneous dynamics.

E.3.2 QUANTITATIVE EVIDENCE VALIDATION

This appendix provides quantitative validation of PGRF-Net’s multi-evidence decomposition.
Rather than enforcing strict orthogonality between evidence channels—which is unrealistic for com-
posite anomalies—we aim to show that each channel is (i) selectively activated under its intended
anomaly mechanism and (ii) robust to small perturbations. To this end, we conduct two controlled
synthetic evaluations:

1. Evidence selectivity via synthetic isolation tests — does each anomaly mechanism dom-
inantly activate the intended evidence channel?

2. Evidence stability — are evidence trajectories robust to small additive noise?

These tests verify that the learned evidence channels exhibit semantic alignment, selective activation,
and robustness across controlled variations.

Evidence Selectivity via Synthetic Isolation Tests. To quantitatively validate that each evidence
channel selectively responds to its intended anomaly mechanism, we conduct synthetic isolation
tests. We construct three controlled environments, each containing exactly one anomaly type, using
nonlinear VAR generators (structural perturbation), regime-switching level shifts (contextual drift),
and impulsive outliers (spike events).

For each environment, we compute the Evidence Amplification Ratio (EAR):

maxye 4 Sk(t)

EAR; = (26)

mediange Sk (t) + €
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Figure 5: Qualitative validation of evidence decomposition on synthetic datasets. Rows corre-
spond to spike, contextual, and structural anomalies. Columns correspond to the Nonlinear VAR
generator (left) and the State-Switching generator (right). In each case, the bottom stacked-bar plot
shows that the intended evidence channel is selectively activated in the anomaly region.

Table 14: Evidence Amplification Ratio (EAR) across isolated anomaly types. Diagonal domi-
nance demonstrates strong evidence-type selectivity.

GT Anomaly Type | Sstruct Sctx Sspike

Structural anomaly 33 1.8 1.3
Contextual anomaly 2.1 4.7 1.7
Spike anomaly 1.6 2.3 6.2

Interpretation. Structural perturbations trigger global increases in Sgyruct, contextual drifts in-
duce smooth elevation in Sgx, and impulsive outliers cause sharp localized peaks in Sgpike. Minor
off-diagonal activation is expected due to natural interactions between mechanisms. These results
confirm semantic alignment and quantitative selectivity of PGRF-Net’s evidence channels.

Evidence Stability Test Interpretability requires that evidence be stable under small input per-
turbations. We evaluate robustness by injecting mild Gaussian noise (std = 0.05) into clean
sequences and computing the Kendall rank correlation between trajectories of clean and noisy evi-
dence.
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Table 15: Evidence stability under Gaussian noise (Kendall’s 7). Structural and spike evidence are
highly stable; contextual deviation shows moderate robustness.

Evidence Type | Kendall 7 p-value

Sstruct 0.9450 0.0000
Sspike 0.9204 0.0000

Interpretation. Structural and spike evidence remain stable even under noise, confirming that
PGRF-Net’s diagnostic attribution is not fragile. Contextual evidence shows moderate robustness as
it naturally responds to distributional drifts.

Behavior Under Predictable-but-Abnormal Contextual Drift Stage 2 incorporates a suppres-
sion mechanism designed to down-weight contextual evidence on pseudo-normal windows. A nat-
ural question is whether this mechanism might also suppress predictable yet abnormal contextual
drifts—i.e., cases where Spreq is low but Scix remains high. Such scenarios could in principle
generate false negatives if the contextual gate activation g.ty is incorrectly reduced.

To examine this potential failure mode, we construct a controlled synthetic setting where the drift
remains highly predictable but is distributionally abnormal:

Ty =Ti_1 4+ 0+, §=0.02, n ~N(0,0.01%), 27)

producing a smooth, monotonic shift that remains forecastable by an AR predictor while departing
from the normal prototype regime.

We compare two configurations: (i) the full model with suppression (Ag,p = 0.1), and (ii) a variant
without suppression (Agyp = 0). The contextual gate behaviors and detection metrics are summa-
rized below.

Table 16: Effect of suppression under predictable contextual drift. Suppression reduces g.¢x only
mildly and does not collapse contextual evidence into the normal range.

Setting \ Avg gcix(Normal)  Avg geox(Drift)  Drift Recall  Drift F1
No suppression 0.2296 0.2848 0.3100 0.4733
With suppression 0.1683 0.2628 0.1688 0.2888

Interpretation. Suppression decreases contextual gate activation under drift by only ~ 8%, while
maintaining a clear separation between normal and drift windows (0.1683 vs. 0.2628). Thus, pre-
dictable contextual shifts are not interpreted as normal, and contextual evidence is preserved rather
than collapsed.

The decrease in recall and F1 reflects an inherent precision—recall trade-off: Stage 2 biases the
model toward more conservative, high-precision anomaly filtering on pseudo-normal windows. This
behavior aligns with the design objective of preventing over-activation on stable segments, but may
reduce sensitivity to gradual contextual shifts.

Overall, the stress test confirms that Stage 2 suppression preserves contextual evidence for
predictable-but-abnormal drifts, while introducing a precision—-recall trade-off that we explicitly ac-
knowledge as a limitation.

E.4 RUNTIME SCALABILITY WITH RESPECT TO SEQUENCE LENGTH AND THE NUMBER OF
VARIATES

To address reviewer concerns regarding runtime scalability, we evaluate how PGRF-Net scales with

(1) the sequence length 7" and (ii) the number of variates D. Because real-world datasets have fixed
resolutions, we perform controlled synthetic tests where 7" and D can be varied independently. All
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experiments use w=~60, batch size 128, dpoge1=128, two Conformer layers, and are measured on a
single A100 GPU with synchronized timing.

E.4.1 SCALING WITH SEQUENCE LENGTH T’

We fix D=25 and vary T' € {1k, 5k, 10k, 50k, 100k}. As shown in Table training time grows
nearly linearly in 7', while inference latency remains constant (= 0.07 ms/window), since the per-
window encoder computation is independent of global sequence length. Peak memory also stays
stable (377-381 MB), indicating that no 7-dependent activations accumulate across windows.

Table 17: Runtime scalability w.r.t. sequence length T (fixed D = 25).

T | Train (s/epoch) | Infer (ms) | Mem (MB)

1k 0.32 0.0765 381.3
Sk 1.46 0.0694 379.8
10k 2.79 0.0690 377.8
50k 13.95 0.0690 380.2
100k 27.59 0.0695 377.5

E.4.2 SCALING WITH DIMENSIONALITY D

We fix T=50k and vary D € {5,10,25,50,100}. As summarized in Table training time in-
creases smoothly with D, matching the expected cost of multi-channel attention and prototype scor-
ing. Inference latency increases moderately (0.05—0.14 ms/window), and memory remains below
500 MB even for D=100, demonstrating scalability to high-dimensional industrial MTS settings.

Table 18: Runtime scalability w.r.t. number of variates D (fixed 7" = 50k).

D | Train (s/epoch) | Infer (ms) | Mem (MB)

5 9.03 0.0495 362.6
10 10.22 0.0550 365.3
25 13.88 0.0694 380.0
50 19.87 0.0939 405.7
100 31.87 0.1421 466.6

Summary. Across both experiments, PGRF-Net shows: (i) near-linear scaling w.r.t. T, (ii) mod-
erate scaling w.r.t. D, and (iii) stable memory usage. These results confirm that the architecture is
computationally efficient and well suited for long-horizon and high-dimensional MTS applications.

USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, a large language model was utilized as a writing aid. Its
role was strictly limited to improving grammar, rephrasing for clarity, and correcting typographical
errors. The LLM did not contribute to the core research ideas, experimental design, or the analysis
of the results presented in this paper.
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