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ABSTRACT

Planning is an important capability of artificial agents that perform long-horizon
tasks in real-world environments. In this work, we explore the use of pre-trained
language models (PLMs) to reason about plan sequences from text instructions
in embodied visual environments. Prior PLM based approaches for planning
either assume observations are available in the form of text (e.g., provided by a
captioning model), reason about plans from the instruction alone, or incorporate
information about the visual environment in limited ways (such as a pre-trained
affordance function). In contrast, we show that PLMs can accurately plan even
when observations are directly encoded as input prompts for the PLM. We show
that this simple approach outperforms prior approaches in experiments on the
ALFWorld and VirtualHome benchmarks.

1 INTRODUCTION

The ability to reason about plans is critical for performing long-horizon tasks (Erol, 1996; Sohn et al.,
2018; Sharma et al., 2022), compositional generalization (Corona et al., 2021) and generalization
to unseen tasks and environments (Shridhar et al., 2020). Consider a simple long-horizon planning
scenario where a robot is tasked with preparing a meal and serving it on the table. This presents a
non-trivial planning problem since the agent needs to understand the sequence of operations required
to perform the task and search for the relevant objects in the unfamiliar environment by interacting
with various objects.

Large language models have been recently shown to possess commonsense knowledge about the
world such as object affordances and physical dynamics (Ouyang et al., 2022; Chowdhery et al.,
2022). Early approaches considered text based environments and fine-tuned PLMs to predict actions
given the history of past observations and actions (Jansen, 2020; Micheli & Fleuret, 2021; Yao et al.,
2020). Recent work has used this ability to reason about plans from text instructions in simulated
household environments with simplifying assumptions such as text-only environment observations or
feedback (Huang et al., 2022; Ahn et al., 2022; Li et al., 2022; Logeswaran et al., 2022).

We focus on visually grounded planning with PLMs — the ability to adapt plans based on interaction
and visual feedback from the environment. While PLMs have strong planning commonsense priors,
predictions from a PLM may not be directly realizable in the environment since the observation and
action spaces are unknown. This requires grounding the PLM in the environment and adapting it to
observe visual feedback, which is highly non-trivial. Some prior works assume the availability of a
pre-trained affordance function (Ahn et al., 2022) or a success detector (Mirchandani et al., 2021).
Notably, SayCan (Ahn et al., 2022) completely decouples the PLM from observation information by
selecting actions that have both high affordability (through a pre-trained affordance model) and high
PLM likelihood. Although this partially addresses the grounding problem, the use of visual feedback
for action affordance alone is limited. Often an agent must choose one of many affordable actions
using information from observations. For example, a driving agent should re-navigate and possibly
turn around when encountering a “road closed” sign, but both turning around and driving forward are
indistinguishable to SayCan because they are both affordable and the PLM is blind to observations.

Another workaround explored in prior work is translating the information in the visual observations
to text using a pre-trained captioning system (Shridhar et al., 2021; Huang et al., 2022). However,
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it can be difficult to faithfully describe an image in words and information is lost in this inherently
noisy process, which limits the information available to the planner.

Recent work shows that PLMs can be adapted for various natural language tasks by inserting tunable
embeddings or soft prompts at the input of the PLM (also called prompt tuning or prefix tuning) (Li
& Liang, 2021; Lester et al., 2021). This approach also extends to multi-modal understanding tasks
such as image captioning (Mokady et al., 2021) and VQA (Tsimpoukelli et al., 2021) where images
are encoded as soft prompts and finetuned for the target task. Transformer based architectures have
also been successfully applied to offline Reinforcement Learning in recent work (Chen et al., 2021;
Janner et al., 2021; Li et al., 2022; Reid et al., 2022).

Taking inspiration from these works, we propose the simple approach of embedding visual observa-
tions (‘visual prompts’) and directly inserting them as PLM input embeddings. The visual encoder
and PLM are jointly trained for the target task, an approach we call Visual Prompt Planning (VP2).
By teaching the PLM to use observations for planning in an end to end manner, we remove the depen-
dency on external data such as captions and affordability information that was used in prior work. We
show that this simple approach performs better than prior PLM-based planning approaches on two
embodied planning benchmarks based on ALFWorld (Shridhar et al., 2021) and Virtualhome Puig
et al. (2018).

2 APPROACH

Problem Setting. We assume a goal-based MDP setting, parameterized by M = (S,A,G, P,RG):
a state space S, action space A, a goal space G, transition probabilities P , and reward RG . The
planner is given N expert demonstrations D = {(g(i), o(i)0 , a
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goals g(i) ∈ G and actions a(i) ∈ A are available as text and observations o(i) ∈ RH×W×C are
images of size H × W × C. Further, we do not assume the list of possible actions available to
the agent is known, or any pretrained admissibility or affordance function is known. Given goal
description g, past actions a1, . . . , at−1 and observations o1, . . . , ot, we seek to build a policy π
which models the next action probability π(at|g, a1···t−1, o1···t).

Visual Prompt Planning. If goal description, actions and observations are available in the form
of discrete token sequences, predicting the next action is similar to a language modeling task
and a PLM can be fine-tuned for next action prediction: maximize log pLM(at | cxtt), where
cxtt = concat (g, o1, a1, o2, a2, . . . , at−1, ot). However, observations may not be available in the
form of text or discrete tokens in practice and we attempt to tackle this scenario.

As we discuss in ??, PLMs are capable of processing a sequence of embeddings (which may not
necessarily correspond to actual text tokens). The context can be re-written in terms of embedding
sequences as cxtt = concat

(
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)
1 where ge, oei , a

e
i respectively represent

embedding sequences corresponding to the goal description, observations and actions. We assume
that the goal description and actions are available in the form of text and ge, aei can be obtained as the
corresponding token embedding sequences.

Observation Encoder. To obtain observation embeddings oei , we propose to learn an observation
encoder f : RH×W×C → Rm×E . f maps visual observations o to a sequence of m embeddings
each of size E, where m is a hyperparameter and E is the PLM’s embedding dimensionality. In our
experiments we consider an observation encoder of the form shown in Equation (1) where fpretrained is
a pre-trained visual encoder and fFFN is a feedforward network.

fobs-enc(o) = fFFN(fpretrained(o)) (1)

Training Objective. We learn to model the next action given previous actions, observations, and
the goal. Similar to prior approaches Micheli & Fleuret (2021); Huang et al. (2022), we define the
loss as in Equation (2), where cxt

(i)
t is a concatenation of goal, action and observation embeddings

as previously described.

LD = − 1

N

∑
i,t

log pLM(a
(i)
t | cxt(i)t ) (2)

1Note that each of ge, oei , a
e
i are embedding sequences and the concat operation concatenates these sequences.
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3 EXPERIMENTS

3.1 ENVIRONMENTS

We experiment with embodied agent tasks that involve navigating and manipulating objects in a
simulated household environment. The agent acts by feeding text commands to a low-level controller
that executes various pretrained skills (such as go to cabinet or take apple from cabinet).

VizALF. This environment is based on ALFWorld (Shridhar et al., 2021) and contains 6 types of
tasks that are compositional and contain multiple subgoals that must be completed. In contrast to
ALFWorld which is a purely text based environment, we consider the same set of tasks but with
only visual observations from the AI2-Thor simulator (Kolve et al., 2017). We used the training and
evaluation task split provided in ALFWorld which consists of 4620 training tasks, 187 in distribution
evaluation tasks, and 192 out of distribution evaluation tasks. However, we found 64/187 and 52/190
of the ID and OD evaluation tasks respectively were impossible to complete, due to errors in the
ALFWorld low level action implementations. So, we normalized the success rate of all agents by the
oracle agent’s success rate.

VirtualHome. We experiment with tasks from LID (Li et al., 2022) which are based on the
VirtualHome simulator (Puig et al., 2018). Each task is specified using a set of goal conditions that
must be met at the end of the episode (e.g., There must be two pancakes in the fridge and the stove
must be turned on). We use the in distibution and novel scene splits from LID. 2000 in distribution
tasks were used for training and 200 novel scene tasks were used for evaluation.

3.2 MODELS

Approach
VizALF VirtualHome

ID OD ID OD

Ignore (Jansen, 2020) 35.4 22.4 6.0 1.5
Captions (Shridhar et al., 2021) 53.2 20.3 7.0 2.5
SayCan (Ahn et al., 2022)

- GPT2med (Finetuned PLM, Trained affordance) 36.6 19.3 7.0 1.0
- GPT2med (Finetuned PLM, Oracle affordance) 51.2 27.8 13.6 5.0
- FLAN-T5xxl (Few-shot PLM, Oracle affordance) 40.6 26.1 3.9 0.0

VP2 (ours) 55.3 27.8 20.6 7.5

Table 1: Success rates of approaches on VizALF and VirtualHome (VH) benchmarks. We present the
average success rate for in distribution (ID) and out of distribution (OD) tasks.

We use the GPT2med language model (355M parameters) in all our experiments. We consider the
following baselines for comparison.

Ignore. A simple baseline inspired by Jansen (2020) that ignores the visual observations and
predicts the entire text action sequence only from the goal text description. This baseline is finetuned
with the same objective as in Equation (2) but without observations in the context.

Captions. Instead of feeding visual observations to the planner language model, we use text
captions predicted by a captioning model as a proxy (Shridhar et al., 2021). We train a ClipCap
(Mokady et al., 2021) model on ground-truth captions from the respective environment’s training
demonstrations and use them for captioning. The captioning model is trained on 70k and 60k captions
on VizALF and VirtualHome respectively.

SayCan. The SayCan (Ahn et al., 2022) architecture has two components: a) A PLM that ranks
actions and b) An affordance function that predicts what actions are affordable from a given state. Say-
Can evaluates a given action by combining its likelihood under the PLM (ignoring visual observations)
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Ablation
VizALF

ID OD

VP2 55.3 27.8

visual enc. resnet50 30.1 12.9

prompt CLIPCap 50.5 15.9

base LM
GPT2med Frozen 48.0 16.5
GPT2XL Frozen 48.0 16.7
GPTJ Frozen 50.0 15.8

Table 2: Select ablations on the VizALF benchmark,
with average success rate for in distribution (ID) and
out of distribution (OD) tasks. A full ablation table
is included in the appendix (Table 4).

Figure 1: Ablation on VizALF when changing the
number of training demonstrations and whether
the base language model GPT2med is pretrained.

with its affordance score as shown in Equation (3).

Score(at) = pLM(at|g, at−1, . . . , a1) · paff(at|ot) (3)

We consider different design choices for each of these components. We consider two variations for
the PLM: 1) A frozen FLAN-T5xxl (11B) model that is few-shot prompted similar to the original
work. 2) A GPT2med model fine-tuned for next action prediction (details in the appendix).

We also consider two variations for the affordance model: 1) An oracle affordance function which
assumes knowledge about ground-truth affordable actions. 2) A trained affordance function trained
to predict whether an action is affordable from a given visual observation using supervised learning
on training demonstrations annotated with affordance information. In both versions, we use a PLM
to predict action sequences from the goal text and select an action based on the SayCan score in
Equation (3).

3.3 RESULTS

Table 1 compares the performance of our method against baselines. Our simple approach (VP2)
performs better than all baselines, despite not using external data (caption and affordance information).
VP2 benefits from direct coupling between the planner language model and environment observations.

The Ignore baseline performs worse compared to other methods that make use of observations.
However, on out of distribution tasks it suffers less from domain-shift compared to some of the other
grounding baselines such as Captions. The Captions baseline performs better than Ignore, but suffers
from information loss in the captioning process.

In comparison, SayCan with oracle affordance is comparable to or better than Ignore and Captions
(slightly worse than Captions on VizALF ID) in spite of incorporating observation information
only through the affordance function (both FLAN-T5xxl and GPT2med). SayCan using the trained
affordance only performs slightly better than Ignore on in distribution, and similarly suffers from
domain-shift on out of distribution tasks. FLAN-T5xxl performs well on VizALF despite no training.
However, it performs poorly on VirtualHome due to demonstration trajectories in VirtualHome being
relatively long, which inhibits SayCan from using many examples for few-shot prompting.

3.4 ABLATIONS

Table 2 presents ablations we perform to identify the importance of each component of our approach.

Visual Encoder. Replacing the CLIP visual encoder with a Resnet50 (He et al., 2016) significantly
degrades the performance. This suggests that the image-text alignment pre-training of CLIP helps
produce observation features that are more easily interpreted by the language model. In contrast
to prior methods that consider auxiliary alignment objectives to match the distribution of inputs
(Reid et al., 2022), it could be more beneficial to use powerful encoders such as CLIP pre-trained for
image-text alignment.
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Pretrained Prompt Model. We also test how using pre-trained visual prompts can affect perfor-
mance. We used visual prompts pre-trained with the CLIPCap captioning objective on the Conceptual
Captions dataset (Sharma et al., 2018). However, using this pre-trained visual prompt hurts the
success rate. We hypothesize that the knowledge aquired by the LM during captioning isn’t directly
useful for action prediction.

Prompt Tuning on frozen language models. Finally, we consider an ablation where the language
model backbone is held fixed and only visual prompts and task prompt tokens are tuned (similar to
Frozen (Tsimpoukelli et al., 2021)). We found that freezing the language model generally performs
worse than fine-tuning it. The drop in performance can be attributed to the limited influence of prompt
tokens alone in controlling the language model’s behavior.

Effect of LM pre-training. We examine the benefit of LM pre-training by training a model from
scratch on varying amounts of training data in Figure 1. We find that the pre-trained model converges
faster and is more sample efficient compared to the model trained from scratch. This confirms findings
from prior work about how language model pre-training benefits learning sequential decision making
tasks (Reid et al., 2022).

4 CONCLUSION

We present a simple approach for planning from pixels building on the planning commonsense
knowledge acquired by large language models. Compared to prior work, which indirectly incorporates
observation information by captions or affordance, our approach is simpler, does not use external
data, and benefits from directly coupling the planner language model and environment observations.
Experimentally, we showed our approach performs better than these prior methods on two embodied
agent benchmarks.
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A APPENDIX

A.1 EXPERIMENTAL SETUP DETAILS

Visual Observations, Text Actions. VizALF uses the same action set defined in ALFWorld with
the following difference. ALFWorld is a text-based environment and it references multiple instances
of an object type with object identifiers (cabinet 1, cabinet 2, etc.). These object identifiers are
no longer meaningful in the visual setting as the grounding of cabinet 1 to the physical cabinet is
unknown to the agent. We thus removed these numeric identifiers in the action and ground-truth text
observation (e.g., “cabinet 1” becomes “cabinet”). The set of valid actions and objects is defined
in (Shridhar et al., 2021). We use the same procedure for removing object numeric identifiers from
VirtualHome.

Ground Truth Captions. Ground truth captions are needed to train the captions baseline and
needed for the captioning auxiliary task. In VizALF, we use the ground truth captions provided in
ALFWorld (Shridhar et al., 2021), which are generated from visible objects and a pre-defined template.
We define ground truth captions for VirtualHome using a similar template on the environment’s list
of interactable objects for each observation.

Ground Truth Affordability. Ground truth labels for affordability are needed to train the SayCan
trained affordance model. As the trained affordance is a binary classifier, we create a training set of
observation-action-affordability pairs. To do this, for each observation, we sampled all affordable
actions, and a subset of non-affordable actions (as there are vastly more non-affordable actions in
each state). We tested two methods for sampling non-affordable actions: 1) We used a hand-coded
heuristic that selects non-affordable actions based on actions that are likely to be predicted by the
LM but are not affordable. 2) We use actions that are predicted with high likelihood from the Ignore
baseline but are not affordable. We did not find a significant difference in non-affordable examples
on performance.
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A.2 SAYCAN BASELINE DETAILS

In the original SayCan (Ahn et al., 2022), the PLM gives a score for every possible action at each
timestep. When the oracle action affordances are known (around 15 actions affordable) at a given
time, we can evaluate the PLM score on all affordable actions. However, when oracle affordances are
not available, in our trained affordance setting, each step has thousands of possible actions (actions are
a combinatorial product on action type and objects). Evaluating the LM on each action is infeasible.
Instead, we use a beam search on the PLM to generate the top-k most likely actions, rank these likely
actions using the SayCan score. Specifically, for a given observation o, predict the next action a by:

1. Sample top-k actions a1, . . . , ak from PLM.
2. Compute

Score(at) = pLM(at|g, at−1, . . . a1) · paff(at|ot)

3. Return argmax(Score(a))

In addition, the original SayCan does not perform any finetuning on the PLM. However, we found
that SayCan improved in our environment tasks when finetuning a smaller model.

A.3 CODE IMPLEMENTATION DETAILS

Our approaches and baselines were implemented using the Huggingface Transformers Python
library Wolf et al. (2019). Code for the VizALF environment was modified from the ALFWorld
codebase Shridhar et al. (2021). Code for the VirtualHome environment was modified from the LID
codebase Li et al. (2022).

A.4 COMPUTATIONAL BUDGET

Experiments were conducted on A100 GPUs. Most approaches used a GPT2med as a base LM,
totalling 400M parameters. Prompt tuning ablations with larger frozen models had 1.5B and 6B
parameters in total. For the FLAN-T5xxl-SayCan experiments (using an 11B model) we did no
training.

A.5 HYPERPARAMETERS

In general we used similar hyperparameters for the PLM and visual prompts across approaches, but
adjusted the epochs to account for learning visual prompts vs. learning text only and number of
training samples.

Hyperparameter Value

Epochs 50
Batch Size 8
Seed {0, 1}
Grad Accum. Steps 1
LM GPT2med
LM learning rate 5e-5
LM weight decay 1e-3
Gradient clipping None
Weight decay 0.01
VP learning rate 1e-2
VP size 10
VP visual encoder CLIP ViT-B/32
VP arch. 2-hidden-layer MLP
Max context tokens 1000

Table 3: Hyperparameters for VP2 in VizALF and VirtualHome.

8



Published as a workshop paper at ICLR 2023

Task: put some cellphone on bed

VP1

t = 1 t = 2 t = 3 t = 4 t = 5

go to shelf

go to shelf

go to 
drawer

go to drawer

GPT2-medium

VP2 VP3

take 
cellphone 

from 
drawer

take cellphone 
from drawer VP4

go to bed

go to drawer VP5

put 
cellphone 
in/on bed

put cellphone 
in/on bed

On the shelf, you 
see a mug, a 
book, a mug, and 
a keychain.

On the shelf, you 
see a mug.

The drawer is open. In it, 
you see a desklamp, a 
alarmclock, a cd, a 
creditcard, and a pen.

The drawer is open. In it, 
you see a desklamp, a 
alarmclock, a cd, a 
creditcard, and a pen.

On the bed, you see 
a pillow, a laptop, a 
laptop, and a pillow.

Captioning Auxilliary TaskPredicted Captions

Figure 2: Example of VP2 with the captioning auxiliary task in VizALF. Each observation is encoded
into a visual prompt VPt and used to predict the next action. The LM is also trained to predict a
caption for each VPt.

VP2. We show relevant hyperparameters for VP2 in Table 3.

Ignore Baseline. We used the same hyperparameters as in Table 3 but remove visual prompt
parameters.

Caption Baseline. To train a captioning model, we use the same hyperparameters as Table 3 but
set {epochs = 10}. We train a separate PLM for the action prediction model (which uses predicted
captions as input) using the same hyperparameters as Table 3 but set {epochs = 20}. For the context
of the captions, we add goal text to encourage the PLM to produce captions: “Your task is to: caption
the following observation”. We also tested finetuning a CLIPCap captioning model for this baseline,
but found this decreased captioning performance.

SayCan Baseline. For the frozen FLAN-T5xxl-SayCan model, we performed prompt engineering
similar to Ahn et al. (2022). For every task, we sample k examples for few shot prompting (as many
can fit in the context length) in the following format:

Here are some step by step instructions
for example tasks.
Example: <g1>. 1. <a1> 2. [...] [...]
Example: <gk>. 1. <a1> 2. [...]
Give step by step instructions for the
following task.
<goal>

To retrieve examples, we sampled k samples from the training dataset that are similar to the current
goal. For VizALF, we took samples that are the same task type (pick-place, heat, etc. ) and for
VirtualHome, we took samples where the goals were most similar according to a simple bag of words
heuristic. We found the best value for k = 30 from a grid search on k ∈ {1, 5, 10, 15, 30}.

For the fine-tuned action prediction model GPT2med-SayCan, we use the same hyperparameters as
Table 3 but set {epochs = 20}. For the trained affordance model, we use the same hyperparameters as
Table 3 but set {epochs = 2}. For the context of the trained affordance, we add goal text to encourage
the PLM to predict affordance: “Your task is to: predict whether the following action is valid.” The
PLM must either output the token “valid” or “invalid”, given the observations and action contexts.

A.6 FULL ABLATIONS

We present more detailed ablations in Table 4 presents additional ablations for prompt size, training
samples, and LM pretraining (more comprehensive version of Table 2 in the main text).

Prompt Size. We tested visual prompt sizes {1, 5, 10, 20}, where 10 is the prompt size used in VP2.
Lowering the prompt size to 1 and 5 lowers the success rate in VizALF, as less visual information
can be contained in each prompt. However, raising the prompt size to 20 may allow more information
in a visual prompt, but also causes the LM’s context to increase. This can harm the LM as the context
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Ablation
VizALF

ID OD

VP2 55.3 27.8

visual enc. resnet50 30.1 12.9

prompt CLIPCap 50.5 15.9

base LM
GPT2med Frozen 48.0 16.5
GPT2XL Frozen 48.0 16.7
GPTJ Frozen 50.0 15.8

prompt size
1 48.8 14.9
5 54.4 17.1
20 54.8 20.0

aux. task inv-dyn. 58.8 20.7
captions 58.5 21.4
goal-pred. 52.9 17.8

samples
100 14.6 9.2
500 33.9 12.9
1000 44.7 17.6

samples, no
pre-train

100 4.6 1.1
500 15.5 14.3
1000 30.9 15.4
4620 (all) 56.4 22.2

Table 4: All ablations on the VizALF benchmark, with average success rate for in distribution (ID)
and out of distribution (OD) tasks. We tested our approach VP2 with various components added or
removed.

needs to be trimmed to fit within the limited context window. From Table 4, this seems to harm the
success rate.

A.7 AUXILIARY TASKS

In VP2, the LM is only trained on the action prediction loss function LD. We hypothesized that
auxiliary tasks that train visual prompts in additional ways can help ground and improve the visual
prompts for planning. To do this, we trained the LM concurrently on LD and a loss derived for
each auxiliary task. 1) Inverse Dynamics (inv-dyn. ). The LM must predict the action that is
executed between two observations: Linv-dyn = − 1

N

∑
i,t log pLM(a

(i)
t |o(i)t , o

(i)
t+1). 2) Captions. The

LM must predict the ground truth caption text for each observation. This is the same training
objective used in CLIPCap (Mokady et al., 2021): Lcap = − 1

N

∑
i,t log pLM(caption(i)

t |o(i)t ). 3)
Goal Prediction (goal-pred). The LM must predict the goal text given action-observation context.
Lgoal-pred = − 1

N

∑
i log pLM(g(i)|o(i)1 , a

(i)
1 , . . . , o

(i)
T , a

(i)
T ).

Results. We show an example of the captioning auxiliary task in Figure 2. We find auxiliary tasks
(inv-dyn. and captions) can help ground visual prompts and improve success rate for in distribution
tasks. However they also cause VP2 to overfit and perform worse on out of distribution tasks. The
last auxiliary task goal pred. seems to decrease performance in both ID and OD.

Hyperparameters. For auxiliary tasks, we add a tunable task embedding to each context, where
each task (action prediction vs. auxiliary task) has a separate task embedding. This embedding helps
the LM to learn multiple tasks. We used a task embedding length = 10. To compute the loss, we add a
weight parameter to control the loss between action prediction and auxiliary task: L = LD + αLaux.
In our experiments, we tested α = {0.1, 1.0} and found α = 0.1 works the best. Otherwise, we used
the same hyperparameters as Table 3.
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