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ABSTRACT

Brain tumor segmentation plays a critical role in clinical diagnosis and treat-
ment planning, yet the variability in imaging quality across different MRI scan-
ners presents significant challenges to model generalization. To address this, we
propose the Edge Iterative MRI Lesion Localization System (EdgeIMLocSys),
which integrates Continuous Learning from Human Feedback to adaptively fine-
tune segmentation models based on clinician feedback, thereby enhancing ro-
bustness to scanner-specific imaging characteristics. Central to this system is the
Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor Seg-
mentation (GMLN-BTS), which employs a Modality-Aware Adaptive Encoder
(M2AE) to extract multi-scale semantic features efficiently, and a Graph-based
Multi-Modal Collaborative Interaction Module (G2MCIM) to model complemen-
tary cross-modal relationships via graph structures. Additionally, we introduce a
novel Voxel Refinement UpSampling Module (VRUM) that synergistically com-
bines linear interpolation and multi-scale transposed convolutions to suppress ar-
tifacts while preserving high-frequency details, improving segmentation bound-
ary accuracy. Our proposed GMLN-BTS model achieves state-of-the-art (SOTA)
performance on both the BraTS2017 and BraTS2021 datasets among lightweight
models with only 4.58 million parameters, representing a 98% reduction com-
pared to mainstream 3D Transformer models, and significantly outperforms exist-
ing lightweight approaches. This work demonstrates a synergistic breakthrough
in achieving high-accuracy, resource-efficient brain tumor segmentation suitable
for deployment in resource-constrained clinical environments.

1 INTRODUCTION

Brain tumors, as life-threatening neurological disorders, have become a global research priority in
medicine due to their high mortality and disability rates [Louis et al.| (2016)). In clinical assessment
and diagnosis, automated, precise brain tumor segmentation serves as a core module of intelligent
lesion localization and disease diagnosis systems|Menze et al.|(2014). This technology not only sig-
nificantly enhances diagnostic efficiency but also provides critical quantitative lesion characteriza-
tion to inform individualized treatment planning. Owing to its superior soft-tissue resolution, multi-
modal imaging capabilities, and non-invasive advantages, Magnetic Resonance Imaging (MRI) has
been established as the gold standard for neurological disease diagnosis and lesion localization [Fil-
ipp1 & Agostal (2010). However, variations in image quality and measurement results arise when
imaging brain structures across different MRI scanners (from diverse manufacturers and models)
Shokouhi et al|(2011). Concurrently, discrepancies exist among different MRI machines in mea-
suring brain volume and cortical thickness, which may stem from device-related factors affecting
imaging artifacts and image quality [Le Bihan et al.|(2006). Furthermore, MRI field strength exerts
a certain influence on susceptibility artifacts [Farahani et al.| (1990). For MRI-based intelligent le-
sion localization systems, imaging quality plays a pivotal role in the system’s ability to accurately
segment and localize lesions. Therefore, enhancing the model’s adaptability to imaging from di-
verse MRI equipment is paramount. To this end, we integrate the Continuous Learning from Human
Feedback into our model-equipped devices, proposing an innovative system framework: The Edge
Iterative MRI Lesion Localization System (EdgeIMLocSys). Simultaneously, addressing the issues
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of existing multi-modal brain tumor segmentation models being either over-parameterized or un-
derperforming lightweight models, we propose a Graph-based Multi-Modal Interaction Lightweight
Network for Brain Tumor Segmentation (GMLN-BTS).

Brain tumor segmentation diagnosis typically employs multiple Magnetic Resonance Imaging
(MRI) modalities to identify tumor regions, such as Fluid-Attenuated Inversion Recovery (FLAIR),
contrast-enhanced T1-weighted (Tlc), Tl-weighted (T1), and T2-weighted (T2) Menze et al.
(2014), and each modality provides distinct structural and pathological contrast in the brain Havaei
et al.[ (2017). and different modalities contribute variably to the identification of distinct tumor
subregions: FLAIR is more sensitive to background information, T1ce is more sensitive to necro-
sis, non-enhancing tumor core (NCR/NET), and gadolinium-enhancing tumor (ET), while FLAIR
and T2 are more sensitive to peritumoral edema (ED). This characteristic indicates that different
modalities provide complementary information/features for tumor region segmentation. Building
upon this, we designed a Graph-based Multi-Modal Collaborative Interaction Module (G2ZMCIM),
which employs graph node interactions and graph edge relationship modeling to achieve interactive
modeling and enhancement of complementary features across modalities.

Precise reconstruction of the three-dimensional structure of brain tumors and their sub-regions is cru-
cial in brain tumor segmentation tasks, which highly depend on the decoder’s ability to effectively
upsample low-resolution feature maps Milletari et al.| (2016). Commonly used upsampling opera-
tions, such as linear interpolation and transposed convolution, exhibit complementary advantages.
Linear interpolation offers good stability; however, it lacks learnable parameters and relies solely on
mathematical weighted averaging of local pixel values. Although free from checkerboard artifacts,
its inherent smoothing operation on input and output features results in significant low-frequency
blurring, which can compromise the recovery of high-frequency details (e.g., tumor boundaries,
fine textures). In contrast, transposed convolution employs learnable kernels capable of learning
and restoring high-frequency details beneficial for segmentation, such as edges and textures. Nev-
ertheless, it may introduce checkerboard artifacts due to zero-padding and overlapping, potentially
undermining the smoothness and accuracy of segmentation boundaries/Odena et al.|(2016). To lever-
age the complementary strengths of both linear interpolation and transposed convolution, this paper
introduces a novel Voxel Refinement UpSampling Module (VRUM). By synergistically leveraging
the stability of interpolation and the detail-restoration capability of transposed convolution, VRUM
effectively suppresses artifacts while enhancing high-frequency feature representation.

In conclusion, our contributions are as follows: 1) The Edge Iterative MRI Lesion Localization Sys-
tem (EdgeIMLocSys) is proposed. It integrates the concept of Continuous Learning from Human
Feedback, periodically fine-tuning the model based on clinician feedback on segmentation results to
enhance its adaptability to specific MRI scanners. 2) A Modality-Aware Adaptive Encoder (M2AE)
is introduced. It incorporates 3D Inception blocks to expand multi-scale perception and utilizes
Group Normalization (GroupNorm) to stabilize single-modality feature distributions. Concurrently,
the output channels are set to 16, striking a balance between feature extraction capability and GPU
memory efficiency. 3) A Graph-based Multi-Modal Collaborative Interaction Module (G2MCIM) is
presented. This module constructs a modality relationship graph (T1/T1ce/T2/Flair) to learn cross-
modal feature interactions via adaptive weights, explicitly modeling the sensitivity differences of
different modalities to tumor sub-regions using a graph structure. 4) The Voxel Refinement UpSam-
pling Module (VRUM) is proposed. It aggregates linear interpolation and multi-scale transposed
convolution operations to eliminate artifacts while preserving high-frequency information (e.g., edge
textures), thereby improving segmentation boundary accuracy. 5) The proposed GMLN-BTS model,
utilizing only 4.58M parameters (a 98% reduction compared to nnFormer), achieves state-of-the-art
(SOTA) performance on both BraTS2017 and BraTS2021 datasets among lightweight models. This
performance significantly surpasses lightweight models such as SegFormer3D and SuperLightNet,
and approaches that of the 150M-parameter nnFormer model, demonstrating a synergistic break-
through in lightweight design and high accuracy.

2 RELATED WORK

2.1 MULTIMODAL BRAIN TUMOR SEGMENTATION

Multimodal brain tumor segmentation represents a significant research direction in the field of med-
ical image analysis. In recent years, deep learning techniques have achieved remarkable progress in
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this domain, giving rise to various mainstream model architectures. These primarily include Con-
volutional Neural Networks (CNNs), Transformers, state space models (e.g., Mamba |Gu & Dao
(2023)), and their diverse hybrid variants. CNNs, leveraging their powerful capability for local
feature extraction, dominated early research. For instance, 3D UNet |/Agrawal et al.| (2022)) effec-
tively captured hierarchical image features through its encoder-decoder structure and skip connec-
tions. However, relying solely on simple modality concatenation and implicit network learning for
inter-modal relationships may inadequately capture the complementary information present across
different modalities. Transformers possess a strong capacity for global context modeling, which is
beneficial for understanding the overall structure of tumors and their relationships with surround-
ing tissues. Nevertheless, their high computational complexity poses challenges for deployment in
clinical settings (e.g., TMFormer Zhang et al.| (2024)). Mamba, owing to its linear complexity and
global modeling capability, demonstrates considerable potential in the field of image segmentation.
However, research on Mamba-based multimodal fusion and segmentation is still in its nascent stage
and warrants further in-depth investigation. Hybrid models that combine the local feature extraction
prowess of CNNs with the long-range dependency modeling capabilities of Mamba/Transformers
(e.g., mmFormer [Zhang et al.| (2022), MedSegMamba |Cao et al.| (2024)) often struggle to effec-
tively interact complementary information from different modalities in practical studies and exhibit
a certain degree of computational redundancy.

2.2 MULTIMODAL INTERACTION OF BRAIN TUMOR CHARACTERISTIC INFORMATION

Current multimodal brain tumor feature interaction mechanisms are primarily achieved through at-
tention weighting, Transformer architectures, and customized modules. Among attention-based
methods, the Cross-Modal Attention Fusion (CMAF) module proposed in CMAF-Net [Sun et al.
(2024) facilitates feature interaction between modalities by learning cross-modal attention weights
and achieves adaptive fusion with noise suppression capability. However, its attention mecha-
nism design incurs substantial computational overhead. The DiffBTS Nie et al.| (2025)) approach
incorporates attention-weighted features while leveraging contextual constraints to ensure seman-
tic and spatial consistency. Nevertheless, this method exhibits heavy reliance on contextual con-
straints—inadequate constraints may introduce erroneous biases. In Transformer-based approaches,
MicFormer [Fan et al.| (2024) employs cross-modal Transformer blocks to integrate long-range de-
pendencies across modalities, yet suffers from high computational complexity. Its dual-stream ar-
chitecture additionally increases communication complexity. The Mamba architecture effectively
models long-range dependencies with significantly lower computational complexity than Trans-
formers. For instance, the Learnable Sequenced State-Space Model (LS3M) proposed by [Zhang
et al.| (2025) achieves efficient long-range dependency modeling through dynamic reordering of
modal sequences. However, the dynamic reordering mechanism may induce additional computa-
tional costs. ACMINet |[Zhuang et al.| (2022) introduces a cross-modal feature interaction module
enabling adaptive and efficient feature fusion/refinement, but its intricate design also results in high
computational complexity. These methods universally face challenges of elevated computational
complexity, which may trigger explosive memory consumption during practical deployment.

2.3 LIGHTWEIGHT MULTIMODAL BRAIN TUMOR SEGMENTATION MODEL

To enable deployment in resource-constrained clinical settings, a series of lightweight multimodal
brain tumor segmentation models has emerged. LATUP-Net|Alwadee et al.[(2025)) enhances multi-
scale feature extraction and small-target segmentation capabilities through parallel convolutions and
attention mechanisms. However, excessive reliance on attention mechanisms may result in over-
emphasis on local features while neglecting complementary inter-modal semantic information. LIU-
Net|Li et al.| (2024)) incorporates Inception modules to extract multi-scale features, yet its exclusive
use of parallel convolutional kernels with sizes 1, 3, and 5 potentially constrains the modeling ca-
pacity for complex features. LR-Net Zhang et al.| (2021)) employs shift convolutions and Roberts
edge enhancement to improve small-target segmentation, whereas spatial shift operations may lead
to insufficient feature capture for marginal small targets. SuperLightNet Yu et al. (2025) utilizes
a Random Multi-View Drop Encoder and Learnable Residual Skip Decoder to reduce computa-
tional load, though such lightweight designs may compromise feature extraction richness. While
SegFormer3D [Perera et al.|(2024) achieves balanced efficiency and accuracy in medical image seg-
mentation through lightweight design and multi-scale attention mechanisms, its strategy of fusing
multimodal features via direct concatenation before feeding into a lightweight Transformer may fail
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to preserve cross-modal complementary information critical for segmentation. Furthermore, most
existing models directly concatenate multimodal features before training, which inherently limits
inter-modal interactive modeling capabilities.

3 THE PROPOSED METHOD

3.1 THE EDGE ITERATIVE MRI LESION LOCALIZATION SYSTEM (EDGEIMLOCSYS)
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resulting images are uploaded to our designed Graph-based Multi-Modal Interaction Lightweight
Network for Brain Tumor Segmentation (GMLN-BTS). This model generates a predicted segmen-
tation map, which is then displayed on the screen of the intelligent terminal device. Subsequently,
physicians evaluate and filter the segmentation quality, assigning each case a rating categorized
as either “Adequate Segmentation” or “Inadequate Segmentation”. For each evaluated image, the
system stores the original multimodal images alongside the corresponding predicted segmentation
result locally. The model undergoes periodic fine-tuning—either weekly or monthly—using the ac-
cumulated new data stored locally. This fine-tuning aims to enhance the model’s adaptability to
the specific imaging characteristics of the individual MRI scanner, thereby facilitating more precise
segmentation. Implementing this system relies on a robust foundation of pre-training utilizing exten-
sive MRI brain tumor segmentation data. However, the scale of the BraTS 2017 dataset is inherently
limited (i.e., insufficient sample size). Consequently, if large-scale, open-source, multimodal brain
tumor segmentation datasets become available in the future, they can be leveraged for both model
training and system deployment.

3.2 GRAPH-BASED MULTI-MODAL INTERACTION LIGHTWEIGHT NETWORK FOR BRAIN
TUMOR SEGMENTATION (GMLN-BTS)

This paper proposes a Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor
Segmentation (GMLN-BTS) (as illustrated in Figure [2). The model first incorporates a Modality-
Aware Adaptive Encoder to achieve multi-scale perceptual encoding of information from different
modalities. Subsequently, the encoded multi-modal features are fed into the Graph-based Multi-
Modal Collaborative Interaction Module (G2ZMCIM) to facilitate feature interaction across modali-
ties via graph structures. Furthermore, a lightweight Transformer architecture is employed to cap-
ture and model global semantic information within the fused features. To enhance model perfor-
mance during the upsampling stage, a Voxel Refinement UpSampling Module (VRUM) is intro-
duced, which leverages the combined advantages of linear interpolation and transposed convolution
to achieve pixel-level enhanced upsampling.

3.3 MODALITY-AWARE ADAPTIVE ENCODER (M2AE)

Within the Modality-Aware Adaptive Encoder (M2AE), we introduce a 3D Inception Block (imple-
mented by extending the Inception V1 architecture to 3D space) for semantic-aware modeling of
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Figure 2: Architectural diagram of the proposed Graph-based Multi-Modal Interaction Lightweight
Network for Brain Tumor Segmentation (GMLN-BTS)

multi-scale features in individual modalities:

Y1 = BasicConvC;“fM(X),

Y2 = BasicConvgzgM(BasicConvS;l (X)),
Y3 = BasicConvS2/*( Cr (X)), (D

-
n=> n=1

Y4 = BausicConvc‘””'/4(A\/gP001n:3 (X)),

n=1

YModality = COHC&t(Yl, Yéa Y:“a, Y4)7

BasicConv

where the input tensor X € REXC1xDxHXW - GroupNorm is applied to stabilize feature distribu-
tions within individual modalities:

Y/Modality = GroupNorm(YModality)~ (2)

Residual connections and activation functions are incorporated to enhance representational capacity
and ensure training stability:
Z = Conv3D(ReLU(Ymodality))s

ZModality = £ + YModality -

3)

The output features Znrodatity € REXC2xDxHXW (0, — 16 to maximize multi-scale feature
extraction while minimizing GPU memory consumption), with Modality € {T1, T1ce, T2, Flair}.

3.4 GRAPH-BASED MULTI-MODAL COLLABORATIVE INTERACTION MODULE (G2MCIM)

Our proposed Graph-based Multi-Modal Collaborative Interaction Module (G2MCIM) leverages the
graph structure and its edge relationships to model the interaction of complementary features across
modalities for enhanced representation. First, features encoded by the Modality-Aware Adaptive
Encoder across modalities are concatenated to form the output Zp,,; € REX4XCaxDxHxW.

Zout = Concat(Zr1, Zr2, Z11ces ZFlair)- 4

To reduce GPU memory consumption, spatial average pooling is applied to compress spatial seman-
tics and extract channel-wise features:

D H W

1
V:DXHXWZZZZO"t' ©)

d=1h=1w=1
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The output features of the above equations are V' € RZ*4XC2_ Then the cross-modal relationship
pairs are constructed:

R = Concat(expand(V, dim = 1, copies = 4), expand(V7', dim = 1, copies = 4)).  (6)

The output features of the above equations are R € RB*4x4x2Cz

encoding network ¢;(+) is implemented via bilinear layers as:
¢i(2) = Wia - 0LeakyRerLU(Wi1 - 2 + bi1) + bia. (N

This network is then applied to the output features to generate adaptive relational weights for each
modality ¢ € {T1, Tlce, T2, Flair}:

. The modality-specific relation

Ai = ¢i(R:,i,:,:)7 ®)
Weight normalization is performed to standardize features and mitigate gradient explosion:
S; = softmax(4;) = M. )
k=1 xp(Aik)
The output features of the above equations are S; € RB*4XC2 Modal features are reshaped as:
F = Reshape(Zout), (10)

with M = D x H x W and the output features of the above equations are F' € REX4xC2xM
Cross-modal weighted fusion is conducted using relational weights:

4
Ui=)Y S,;0F, (11)

j=1

where © indicates channel-wise multiplication. The output features of the above equations are
U; € RBE*C2XM The final output is generated through a residual connection:

Y; = Z; + Reshape(U,, [B,Cs, D, H,W]). (12)

The output features of the above equations are Y; € REXC2xDxHxW

3.5 VOXEL REFINEMENT UPSAMPLING MODULE (VRUM)
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In the linear interpolation branch, a 2x upsam- Figure 3: Architecture diagram of the proposed
pling operation is applied to the input feature Voxel Refinement UpSampling Module (VRUM).

X € RBXCOx 2 X4 (We take the first Voxel
Refinement UpSampling Module (VRUM) as an example to illustrate its formulation.):

Xinterp = TrilinearUpsample(X; s = 2). (13)

Given that linear interpolation acts as a low-pass filter, we employ a Spatial Pixel Refinement mod-
ule to perform preliminary refinement on the interpolated features. This module enhances high-
frequency information while simultaneously calibrating and reinforcing spatial semantic features.
The Spatial Pixel Refinement module comprises a convolutional layer, LeakyReLU activation, and
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a transposed convolutional layer. The convolutional layer learns and recovers partially lost local
details and edge sharpness:

Xeonvy = Conv3D(Xinterp;  Weonv, kernel = 3, stride = 1, pad = 1). (14)

The transposed convolutional layer applies region-specific adjustments (e.g., edge sharpening and
flat region denoising) to selectively enhance edge features critical for segmentation:

Xitrans = ConvTranspose3D(LeakyReLU(Xcony; @ = 0.01);
Wirans, kernel = 4, stride = 2, pad = 1),

where Won, and Wy, .ns denote convolutional and transposed convolutional kernel weights, re-
spectively, with output channels maintained at C. This sequential convolution-transposed convo-
lution structure is computationally efficient, enhancing spatial detail quality while remaining de-
ployable on embedded devices. Although this module improves high-frequency information capture
in the linear interpolation branch, inherent limitations of linear interpolation still filter out crucial
high-frequency components (e.g., fine edges, textures, and details). As such components are vital
for segmentation quality, we design a parallel multi-scale transposed convolution branch to aug-
ment high-frequency information capture. In the multi-scale transposed convolution branch, we em-
ploy transposed convolutions with varying kernel sizes to enhance detail capture while mitigating
checkerboard artifacts: Small-kernel transposed convolution (kernel = 3) generates sharper outputs
with richer details. Its limited receptive field effectively captures local fine-grained variations but
increases susceptibility to checkerboard artifacts:

Xsmanl = ConvTranspose3D(X; Wpa, kernel = 3,
stride = s, pad = 1,out_pad = s — 1).

5)

(16)

Large-kernel transposed convolution (kernel = 5) produces smoother outputs with improved co-
herence. It’s expanded receptive field models long-range dependencies, significantly suppressing

artifacts at the cost of partial detail loss:
Xiarge = ConvTranspose3D(X; Wiarge, kernel = 5, (17)
stride = s, pad = 2, out_pad = s — 1).

Both branches output features with Cpniq = |Cout/2] channels (W, and Wi,,ee denote kernel
weights). Feature fusion proceeds as:

Xcat - Concat(xsmadb Xlarge)>
Xfuse = Conv3D(Xcat; Wiyse, kernel = 3, pad = 1),

18
Xpn = BatchNorm(Xgyse ), (18)
Xout = ReLU(Xpy,)  (channels = Chpiq).-
The final upsampled output is obtained through concatenation and convolutional fusion:
Yeat = Concat(xtransa Xout)v (19)

Yiina = Conv3D(Yeat; Wiusion, kernel = 1).

4 EXPERIMENTS

4.1 DATASETS

The Multimodal Brain Tumor Segmentation (BraTS) datasets are publicly released, multi-
institutional collections of pre-operative, multi-modal MRI scans (T1, T1-contrast enhanced/Tlce,
T2, and FLAIR) with expert manual segmentations of tumor sub-regions (enhancing tumor, tumor
core, whole tumor), standardized preprocessing (co-registration, skull-stripping, resampling) used
to benchmark segmentation algorithms with Dice. BraTS2017, an earlier edition of the challenge,
provided about 285 training cases; BraTS2021 is a later, larger release (the 2021 challenge provided
roughly 2,000 cases in total) that continues the same multi-modal format and evaluation protocol
while supporting the current state of the art in tumor segmentation. Aligned with state-of-the-art
methodologies, we employ identical datasets and evaluation protocols to ensure fair and consistent
comparisons across all architectures.

4.2 IMPLEMENTATION DETAILS
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Figure 4: Qualitative comparison of the segmentation performance of different models on the

BraTS2017 dataset.
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Figure 5: Qualltatlve comparison of the segmentation performance of dlfferent models on the

BraTS2021 dataset.

The experimental environment was estab-
lished on Ubuntu 23.10, utilizing Python
3.12.0 and PyTorch 1.10 accelerated by CUDA
12.1. Hardware configuration consisted of
an NVIDIA A800-SXM4-80GB GPU and In-
tel Xeon Platinum 8462Y+ CPU. Learning
rate settings followed Segformer3D: identical
scheduling policy with linear warm-up (from
4x107%to 4 x 10~*) followed by PolyLR de-
cay. We employed the widely adopted AdamW
optimizer with a base learning rate of 3 x 1075,
The loss function combined equally weighted

Method Params | Avg%T | WTT | ETT | TCT

TransBTS (Wenxuan et al.{2021 - 69.6 719 | 574 [ 73.5
CoTr (Xie et al. 419 68.3 74.6 | 74.6 | 74.8

CoTr w/o CNN Encoder (Xie et al.|2021] - 64.4 712 | 523 | 69.8
TransUNet (Chen et al.[[2021 96.07 64.4 70.6 | 54.2 | 68.4
SETR MLA (Zheng et al. 310.5 63.9 69.8 | 554 | 66.5
SETR PUP (Zheng et al.. 318.31 63.8 69.6 | 549 | 67.0
SETR NUP (Zheng et al. 305.67 63.7 69.7 | 54.4 | 66.9
nnFormer (Zhou et al. 150.5 86.4 91.3 | 81.8 | 86.0
UNETR (Hatamizadeh et al.|[2022! 92.49 71.1 789 | 58.5 | 76.1
SegFormer: erera et al. 4.51 82.1 89.9 | 74.2 | 822
SuperLightNet (Yu et al. 297 774 84.8 | 664 | 80.9
GMLN-B' urs) 4.58 85.1 90.5 | 81.2 | 83.5

Figure 6: Comparison of segmentation perfor-
mance across different tumor regions and model
parameter counts for various models on the
BraTS2017 dataset.

Dice loss and cross-entropy to accelerate convergence. All models were trained for 800 epochs with
a batch size of 2. All experiments were repeated three times under identical conditions, and the

mean Dice coefficient was averaged.
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4.3 STATE-OF-THE-ART COMPARISON

As quantitatively demonstrated in Figure[6] our proposed GMLN-BTS achieves performance break-
throughs with an ultra-lightweight architecture on the BraTS2017 dataset: It attains an average Dice
coefficient of 85.1% using merely 4.58M parameters, which is less than 3% of nnFormer and below
1.5% of typical SETR variants. Crucially, it outperforms other similarly-scaled models in key sub-
region segmentation—exceeding SegFormer3D by 7.0% in enhancing tumor (ET: 81.2% compared
to 74.2%) and by 1.3% in tumor core (TC: 83.5% compared to 82.2%), while also surpassing Su-
perLightNet (2.97M parameters) by 2.6% in TC segmentation. Moreover, its whole tumor segmen-
tation performance (WT: 90.5%) closely approaches that of nnFormer (91.3%), which uses 150.5M
parameters.The qualitative visualization comparison results of different models are presented in Fig-
ure

As quantitatively demonstrated in Figure[7} our Method Params | Avg%T [ WTT [ ETT [ TCT
proposed GMLN-BTS achieves state-of-the-art sy itk (i o] | 6010 | $94 | 927 | 653 | %02
(SOTA) performance among lightweight mod- il sy | 451 | 860 | 89 |si4 | 875
els on the BraTS2021 dataset. With a highly S“Pe‘éﬁ‘i‘ﬁf&?g‘&‘)ﬁ;ﬁ"25‘ e T SRR R R R

efficient parameter count of only 4.58M, it at- Figure 7: Comparison of segmentation perfor-

tains th? highest average Dice score O_f 88.7%, mance across different tumor regions and model
surpassing other compact models like Seg- . ameter counts for various models on the
Former3D (4.51M params / 86.0% Avg) and p..T9202] dataset.

SuperLightNet (2.97M params / 86.3% Avg).

Notably, GMLN-BTS also achieves top scores across all tumor sub-regions (WT: 90.3%, ET: 86.1%,
TC: 89.7%), outperforming not only its lightweight peers but also several larger models. This excep-
tional performance establishes GMLN-BTS as a new benchmark for accuracy-efficiency trade-offs
in medical image segmentation. The qualitative visualization comparison results of different models
are presented in Figure[3]

5 ABLATION STUDY

5.1 THE EFFECTIVENESS OF DIFFERENT COMPONENTS OF THE MODEL ARCHITECTURE

As shown in Figure [§] each component improves *
segmentation (Mean Dice%). G2MCIM raises per- 8.0 *

formance from 81.9% to 84.2%. Adding M2AE 84.5

(G2MCIM+M2AE) increases it to 84.7%, highlight- 5, x

ing M2AE’s role in extracting intra-modal seman-

tics. The full model (ALL) with VRUM reaches & %

85.1%, 0.4 points above G2ZMCIM+M?2AE, vali- 533.0

dating the synergy among G2MCIM, M2AE, and 625

VRUM and the superiority of the complete model '

(GMLN-BTS). This result definitively validates: (1) 82.01

the synergistic interaction among G2MCIM, M2AE, None G2MCIM  GZMCIM+M2AE ALL
and VRUM driving comprehensive performance Figure 8: The Impact of Model Components
gains; (2) the consistent and significant superiority on Performance

of the complete model (GMLN-BTS).

6 CONCLUSION

The proposed EdgeIMLocSys integrates Continuous Learning from Human Feedback to enhance
adaptability to diverse MRI scanners, and the GMLN-BTS model leverages modality-aware en-
coding, graph-based multi-modal interaction, and refined upsampling to achieve superior segmen-
tation accuracy with minimal parameter overhead. Experimental results on the BraTS2017 and
BraTS2021 datasets demonstrate that our lightweight model achieves state-of-the-art (SOTA) perfor-
mance among lightweight models with only 4.58 million parameters, striking a synergistic balance
between efficiency and accuracy, and providing a practical solution for embedded clinical deploy-
ment in brain tumor segmentation.
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A APPENDIX

A.1 EVALUATION METRICS

In brain tumor segmentation tasks, the mean Dice similarity coefficient (mean Dice) serves as the
core metric for evaluating segmentation performance. This metric objectively assesses segmentation
accuracy by quantifying voxel-level spatial overlap between predicted results and expert-annotated
ground truth. It is calculated using the Dice coefficient (DSC):

2XNY|

DSC =~ +——
X[+ Y]

(20)
where X and Y denote the voxel sets of predicted and ground-truth regions, respectively. Addressing
tumor heterogeneity (e.g., irregular morphology and blurred boundaries) and multi-subregion clin-
ical characteristics (enhancing tumor [ET], tumor core [TC], whole tumor [WT]) in BraTS tasks,
mean Dice independently computes DSC for ET, TC, and WT subregions and takes their arithmetic
mean as the comprehensive score. This design significantly enhances sensitivity to intra-tumoral
structural variations—particularly focusing on segmentation accuracy for the highly invasive, small-
volume ET region while evaluating overall tumor identification capability, thereby providing a stan-
dardized measure of algorithmic robustness in complex clinical scenarios.

A.2 LLM USE DECLARATION
Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of

English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.
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