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Abstract

This paper proposes SHARP-Distill (Speedy
Hypergraph And Review-based Personalised Dis-
tillation), a novel knowledge distillation approach
based on the teacher-student framework that com-
bines Hypergraph Neural Networks (HGNNs)
with language models to enhance recommenda-
tion quality while significantly improving infer-
ence time. The teacher model leverages HGNNs
to generate user and item embeddings from inter-
action data, capturing high-order and group rela-
tionships, and employing a pre-trained language
model to extract rich semantic features from tex-
tual reviews. We utilise a contrastive learning
mechanism to ensure structural consistency be-
tween various representations. The student in-
cludes a shallow and lightweight GCN called
CompactGCN designed to inherit high-order rela-
tionships while reducing computational complex-
ity. Extensive experiments on real-world datasets
demonstrate that SHARP-Distill achieves up to
68× faster inference time compared to HGNN
and 40× faster than LightGCN while maintaining
competitive recommendation accuracy.

1. Introduction
Recently, GNNs have gained significant success in recom-
mender systems due to their ability to model complex rela-
tionships between users and items(Wu et al., 2022). How-
ever, despite their advantages, existing GNN-based recom-
mender systems still face several challenges. First, they
rely heavily on the user-item interaction matrix, which is
often sparse, leading to difficulty in accurately capturing
interactions. A possible solution to this issue is utilising
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multiple sources of information such as social trust(Fan
et al., 2019a) or user reviews (Fan et al., 2019b) in the
recommendation process.The second challenge is the in-
ference time, as real-world GNN-based methods typically
employ deep GNN layers to capture high-order relationships.
However, this depth significantly increases computational
overhead, leading to longer inference times. While HGNNs
(Feng et al., 2019) can capture high-order relationships,
they also require a high computational resources during
inference time(Yu et al., 2024). Recent approaches like
GLNN (Zhang et al., 2021), KRD (Wu et al., 2023), and
LightHGNN (Feng et al., 2024) have attempted to address
this issue through the teacher-student knowledge distilla-
tion approach. Recent approaches, such as GLNN (Zhang
et al., 2021), KRD (Wu et al., 2023), and LightHGNN (Feng
et al., 2024), have attempted to address this issue using the
teacher-student knowledge distillation framework. How-
ever, they often struggle to effectively transfer the complex
structural information learned by the teacher model. These
methods primarily rely on soft labels for knowledge trans-
fer, which fail to capture intricate high-order relationships
and structural dependencies. As a result, soft labels alone
are insufficient for preserving the rich structural knowledge
inherent in hypergraphs. This limitation raises an important
question:

Q1: How can we design a knowledge transfer methodology
that effectively transfers the learned knowledge from a pre-
trained HGNN to a lightweight model for recommender
systems, while maintaining recommendation accuracy?

Q2: How can we efficiently align heterogeneous embed-
dings derived from different information sources while pre-
serving their unique characteristics?

Q3:How can both structural and positional information of
complex networks be effectively leveraged in embedding
representations?

In this paper, we propose SHARP-Distill, a knowledge dis-
tillation framework combining HGNNs and pre-trained lan-
guage models for high-speed recommender systems. Our
method follows a teacher-student strategy, where the teacher
model integrates HGNNs to capture high-order user-item
interactions and DeBERTa (He et al., 2020a) as a pre-trained
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language model to extract rich textual representations. We
employ contrastive learning (CL) mechanism to effectively
align embeddings from multiple sources, such as user-item
interactions and user reviews, ensuring a cohesive repre-
sentation while preserving essential information from each
modality. The student model includes a lightweight and
single-layer GCN called CompactGCN without non-linear
activation, designed for efficiency while retaining high-order
dependencies. The student model also employs a contrastive
learning (CL) mechanism to align embeddings generated by
CompactGCN with those produced by the deep HGNNs in
the teacher model. This alignment facilitates the effective
transfer of structural and positional knowledge from the
teacher to the student, ensuring the preservation of high-
order relationships while maintaining computational effi-
ciency (Forouzandeh et al., 2025). This enables Compact-
GCN to inherit essential relational knowledge while signifi-
cantly reducing computational costs. Extensive experiments
on real-world datasets show that SHARP-Distill achieves
up to 68× faster inference than HGNN and 40× faster in-
ference than LightGCN while maintaining or surpassing
state-of-the-art recommendation accuracy. Contributions of
the Proposed Method are:

1. SHARP-Distill effectively captures both structural pat-
terns from user-item interactions and semantic features
from textual reviews.

2. We introduce CompactGCN, a lightweight single-layer
GCN without non-linear activations, is specifically
designed to inherit high-order relationships from the
teacher while significantly reducing computational
complexity.

3. Our contrastive learning-based distillation approach in-
tegrates structural and positional similarities, ensuring
that the student model effectively captures graph topol-
ogy and node relationships while maintaining compu-
tational efficiency.

2. Preliminaries
Graph and Hypergraph: A graph G = (V,E) con-
sists of a set of nodes V and edges E, where each edge
e = (vi, vj) connects two nodes, vi and vj . The struc-
ture of a graph can be represented by its adjacency matrix
A ∈ Rn×n, where Aij = 1 if there is an edge between
nodes vi and vj , and 0 otherwise. This representation is
limited to pairwise relationships between nodes. A hy-
pergraph H = (V, E), on the other hand, generalises the
concept of a graph by allowing hyperedges e ∈ E to con-
nect any subset of nodes, enabling the representation of
complex, multi-node relationships. A hypergraph is rep-
resented by its incidence matrix H ∈ Rn×m, where n is
the number of nodes, m is the number of hyperedges, and

Hij = 1 if node vi is connected to hyperedge ⌉j , and 0
otherwise. This matrix effectively captures high-order in-
teractions among nodes, making it suitable for modeling
heterogeneous graphs. To convert a hypergraph into a homo-
geneous graph, we can compute a projected adjacency ma-
trix A ∈ Rn×n as A = HWH⊤−Dv , where W ∈ Rm×m

is the hyperedge weight matrix, and Dv is the diagonal node
degree matrix, with Dv(i, i) =

∑m
j=1Hij . This transfor-

mation reduces the hypergraph to a traditional graph where
two nodes are connected if they share common hyperedges.

Hypergraph Neural Network (HGNN) is a powerful ex-
tension of the GCN designed to capture high-order rela-
tionships among nodes by leveraging the structure of hy-
pergraphs. HGNNs use the hypergraph Laplacian, derived
from the node degree matrix Dv and the hyperedge degree
matrix De, to propagate information across the hypergraph.
This is achieved through a message-passing mechanism that
updates node features using the formula:

H(l+1) = σ
(
D−1/2

v HWD−1
e HTD−1/2

v H(l)Θ(l)
)

(1)

where Θ(l) represents the learnable weights and σ(·) is a
non-linear activation function. This formulation allows
HGNNs to effectively aggregate and propagate features,
accounting for the structure of the hypergraph, thus en-
abling the modeling of complex dependencies between
nodes. HGNNs have demonstrated their versatility and
effectiveness in various applications, including recommen-
dation systems, social networks, and biological data analysis
(Feng et al., 2019).

DeBERTa (Decoding-enhanced BERT with Disentangled
Attention) (He et al., 2020a) is a pre-trained language model
that extracts contextual embeddings from text through dis-
entangled attention mechanisms. For each user-item pair
(ui, vj) with an associated review rij , we process the text
through DeBERTa to obtain contextual representations,
which we denote as X ′ = DeBERTa(X) where X ′ rep-
resents the output embedding after passing the input text X
through the model.

3. Methodology
We propose a novel teacher-student knowledge distillation
framework for a high-speed recommender system. As illus-
trated in Figure 1, our framework integrates HGNNs with
a pre-trained language model (PLM) to effectively capture
high-order relations and textual semantics. By integrating
multiple information sources, such as user-item interactions
and user reviews, our framework aims to address challenges
including data sparsity, cold-start problems, and noisy in-
teractions, thereby ensuring more accurate and efficient
recommendations. Additionally, our framework transfers
knowledge to a lightweight student model, significantly en-
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Figure 1. SHARP-Distill framework architecture. The Teacher model integrates dual Hypergraph Neural Networks (HGNNs) with
DeBERTa to capture high-order relations in user-item interactions and semantic features from textual reviews through contrastive learning.
The Student model employs CompactGCN enhanced with contrastive learning to align its embeddings with teacher representations.
Knowledge distillation combines structural and positional knowledge transfer, achieving 68× and 40× faster inference times compared to
HGNN and LightGCN, respectively.

hancing inference speed while maintaining recommendation
accuracy. The details of each component are described in
their respective subsections.

Teacher Model: The teacher model integrates three key
components: two HGNNs for modeling high-order user-
item interactions, DeBERTa as a pre-trained language model
for extracting semantic features from textual reviews, and a
Multi-Layer Perceptron (MLP) for predicting ratings. The
HGNNs capture high-order relations in the user-item inter-
action graph using the hypergraph Laplacian. Let us define
the user incidence matrix asHU ∈ Rn×m, where n denotes
the number of users and m represents hyperedges (items).
The normalised hypergraph Laplacian is defined as:

L = D−1/2
v HUWD−1

e HT
UD

−1/2
v , (2)

where Dv ∈ Rn×n and De ∈ Rm×m are diagonal degree
matrices for vertices and hyperedges, and W ∈ Rm×m is
the hyperedge weight matrix. The message propagation at
each layer l follows:

H(l+1) = σ
(
D−1/2

v HUWD−1
e HT

UD
−1/2
v H(l)Θ(l)

)
,

(3)
where σ(·) is the ReLU activation function, and Θ(l) ∈
Rd×d is the trainable weight matrix at layer l. The final
user and item embeddings after L layers are Zt

U = H(L) ∈
Rn×d and Zt

I = H(L) ∈ Rm×d respectively.

To enhance alignment between textual embeddings from De-
BERTa (ZR

U , ZR
I ) and structural embeddings from HGNNs

(Zt
U , Z

t
I ), we employ cross-modal and intra-domain con-

trastive learning. The cross-modal contrastive loss aligns
HGNN and DeBERTa embeddings:

LXR
con = − 1

|SX |

|SX |∑
i=1

log
exp(sim(Zt

X [i], ZR
X [i])/τ)∑|SX |

j=1 exp(sim(Zt
X [i], ZR

X [j])/τ)
,

(4)
where X ∈ {U, I}, sim(·, ·) is cosine similarity, and τ is a
temperature parameter. The intra-domain contrastive loss
is:

LXS
con = − 1

|SX |

|SX |∑
i=1

log
exp(sim(Zt

X [i], Zt
X [j])/τ)∑|SX |

k=1 exp(sim(Zt
X [i], Zt

X [k])/τ)
,

(5)
where SU and SI denote user and item sets, respectively.
After contrastive alignment, the HGNN embeddings and
textual embeddings from DeBERTa are fused via a k-layer
MLP:

h1 = σ([Zt
U [i]∥Zt

I [j]∥ZR
U [i]∥ZR

I [j]]W1 + b1), (6)

hl = σ(hl−1Wl + bl), l ∈ {2, . . . , k − 1}, (7)

where ∥ denotes concatenation, Wl and bl are trainable
parameters, and σ(·) is ReLU activation. The output layer
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of the MLP generates rating predictions:

Ŷ t
ij = σout(hkWk + bk), (8)

where σout(·) is the sigmoid activation for rating prediction.
The supervised loss component is the Mean Squared Error
(MSE) loss:

Lmse =
1

|Y |
∑

(i,j)∈Y

(Yij − Ŷ t
ij)

2, (9)

where Yij is the ground truth rating. The final teacher ob-
jective combines supervised and contrastive components:

Lteacher = Lmse + λ
∑

X∈{U,I}

(LXR
con + LXS

con ), (10)

where λ is a trade-off parameter balancing the objectives.
The teacher’s predictions are then converted to soft labels
using temperature scaling for knowledge distillation:

Y t = softmax(Ŷ t/T ) =
exp(Ŷ t/T )∑
j exp(Ŷ

t
j /T )

, (11)

where T > 1 is the temperature parameter following an
annealing schedule:

T (e) = Tmax − (Tmax − Tmin) ·min
(
1,

e

E

)
. (12)

For the student model, we employ a crucial embedding
interpolation mechanism that facilitates effective knowledge
transfer. This interpolation combines the independently
learned student embeddings with the well-trained teacher
embeddings:

Zs
U = γZs[: Nu, :] + (1− γ)Zt

U ,

Zs
I = γZs[Nu :, :] + (1− γ)Zt

I ,
(13)

The interpolation coefficient γ ∈ [0, 1] controls the bal-
ance between student and teacher embeddings. Zs[: Nu, :]
and Zs[Nu :, :] represent the student’s user and item em-
beddings, while Zt

U and Zt
I are the teacher’s embeddings.

When γ is near 0, the student relies on the teacher’s knowl-
edge, which is useful early in training. As γ increases, the
student transitions to its own learned representations.

Student Model: The student model consists of a
lightweight GCN called CompactGCN along with an MLP.
CompactGCN is specifically designed to efficiently inherit
essential structural and topological information from the
teacher model, ensuring a balance between computational
efficiency and recommendation accuracy. Let X ∈ Rn×d

be the feature matrix of users/items, and As ∈ Rn×n repre-
sent direct user-item interactions. The normalised Laplacian
matrix is defined as Âs = D−1/2(As + I)D−1/2, where

D ∈ Rn×n is the degree matrix and I is the identity matrix.
The initial node embeddings are computed as:

Zs = ÂsXW s, (14)

where W s ∈ Rd×h is the transformation matrix for struc-
tural features, h denotes the hidden dimension of the output
embeddings, and Zs ∈ Rn×h represents the learned node
embeddings. Following Hinton et al. (Hinton, 2015), the
supervised loss combines hard and soft targets:

Ls
sup = (1− β)Lhard + βLsoft, (15)

where β ∈ [0, 1] balances the contributions of hard and soft
targets. The two loss components are:

Lhard =
1

|Y |
∑

(i,j)∈Y

(Yij − Ŷ s
ij)

2,

Lsoft = T 2 · KL(Y t/T ∥ Ŷ s/T ),

(16)

where the T 2 factor ensures proper gradient scaling (Phuong
& Lampert, 2019).

Contrastive Learning for Knowledge Transfer: Tradi-
tional knowledge distillation methods primarily rely on soft
labels, which are insufficient for capturing the rich struc-
tural information inherent in hypergraphs and the complex
multi-modal relationships between user-item interactions
and textual reviews. To address this limitation, our ap-
proach employs contrastive learning to align representations
between teacher and student models, offering several key ad-
vantages: (1) Structural preservation: Unlike soft labels that
only provide prediction-level guidance, contrastive learning
explicitly preserves the relational structure and topological
properties learned by the teacher’s HGNNs; (2) Multi-modal
alignment: It effectively bridges the semantic gap between
different representation spaces (hypergraph embeddings vs.
lightweight GCN embeddings); (3) Robustness to noise:
Contrastive learning is more robust to noisy interactions
compared to direct embedding matching, as it focuses on
relative similarities rather than absolute values.

To effectively transfer knowledge, the student model lever-
ages contrastive learning incorporating both embedding-
based similarity and hypergraph-informed topological sim-
ilarity. The hypergraph positional encoding captures the
teacher’s topological knowledge:

Pu =

K∑
k=1

βk
(
D−1/2

v HUWD−1
e HT

UD
−1/2
v

)k
eu, (17)

where eu is the one-hot vector for node u, K denotes the
maximum propagation steps, and β ∈ (0, 1) is a decay
factor. This formulation captures both local and higher-
order dependencies in the hypergraph topology. We define
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a comprehensive similarity function that integrates both
embedding-based and positional similarities:

S(u, v) = α

(
Zt
u · Zs

v

∥Zt
u∥∥Zs

v∥

)
+ (1− α)

(
Pu · Pv

∥Pu∥∥Pv∥

)
,

(18)
where Zt

u and Zs
v are the embeddings from the teacher

and student models, respectively. Pu and Pv represent the
hypergraph positional encodings, and α ∈ [0, 1] controls
the trade-off between embedding similarity and positional
similarity. The contrastive learning objective aligns user
and item representations between the teacher and student
models. For user alignment:

LU
con = − 1

|U |
∑
u∈U

log
exp(S(u, u)/τ)∑
v∈U exp(S(u, v)/τ)

, (19)

and for item alignment:

LI
con = − 1

|I|
∑
i∈I

log
exp(S(i, i)/τ)∑
j∈I exp(S(i, j)/τ)

, (20)

where U and I represent the sets of all users and items,
respectively. The temperature parameter τ > 0 controls the
concentration of the similarity distribution. Here, S(u, u)
denotes the similarity between a user’s representations in
the teacher and student models, while S(u, v) measures the
similarity between different users. The final student loss
integrates supervised learning, knowledge distillation, and
contrastive components:

Lstudent = Ls
sup + λ1L

U
con + λ2L

I
con, (21)

where Ls
sup combines hard and soft targets, and hyperparam-

eters λ1, λ2 > 0 control the contributions of user and item
contrastive learning objectives. This formulation facilitates
effective knowledge transfer by explicitly aligning corre-
sponding user and item representations between teacher and
student models while preserving their relative relationships
in the embedding space. The framework enables the student
model to inherit both embedding-based and hypergraph-
informed topological knowledge, ensuring efficient repre-
sentation learning through CompactGCN while maintaining
the structural richness of the teacher model. Theoretical
proofs and supporting lemmas for the model are provided
in Appendix A. The complete training procedure is detailed
in Algorithm 1 in Appendix B.

4. Experiments
In our experiments, we utilise five well-known datasets.
First, we use the Yelp Tips dataset1. Additionally, we lever-
age the Amazon datasets, including four more datasets, cov-
ering different domains within the Amazon collection—

1https://www.yelp.com/dataset

CDs, Cellphones, Beauty, and Sports 2—are used as well,
as referenced in (Zhang et al., 2024). All of these datasets
contain user interactions, items, and user reviews of the
items. In this research, we construct two hypergraphs: one
for users and one for items. Based on these, we generate two
sets of review-based embeddings—one for users and one for
items—by processing the reviews submitted by users and
the reviews received by items from various users. A sum-
mary of the dataset statistics is provided in Table 6 in the
Appendix C. We evaluate the proposed method based on the
generated recommendations in two key aspects: accuracy
and inference time. For accuracy, we use the metrics Pre-
cision@k (P@k), Recall@k (R@k), F1-Score (F@k), and
NDCG@k (N@k), where k = 10 is used during the testing
phase. Table 1 presents the accuracy results across the five
datasets. Each experiment was conducted 10 times using
different random seeds, and we report both the average per-
formance and standard deviation. For each dataset, 20% of
the data was used for validation and 10% for testing. We
evaluate SHARP-Distill using four distinct methodological
approaches to provide comprehensive performance analysis.

Hypergraph-based Methods: We benchmark SHARP-
Distill against state-of-the-art hypergraph neural networks:
LightGCN (He et al., 2020b); Hypergraph Contrastive Col-
laborative Filtering (HCCF) (Xia et al., 2022); and Hy-
pergraph Attention (HGAtt) (Bai et al., 2021). We also
include the Graph-centric Contrastive Framework for Graph
Matching (GCGM) (Bo & Fang, 2024), which exemplifies
recent advances in contrastive learning on graph structures.
Large Language Model-based Methods: We evaluate two
LLM-enhanced recommendation approaches: SAID (Hu
et al., 2024), which integrates semantic knowledge from
large language models, and Prompt Distillation (POD) (Li
et al., 2023), which transfers knowledge via prompt-based
learning. Knowledge Distillation Methods: We compare
against teacher-to-student distillation frameworks that lever-
age hypergraph structures: KRD (Wu et al., 2023) and
LightHGNN (HGNN-to-MLP) (Feng et al., 2024). Table 1
presents a comprehensive evaluation across five real-world
datasets, demonstrating SHARP-Distill’s superior perfor-
mance on multiple metrics.

SHARP-Distill demonstrates superior performance across
most metrics and datasets, achieving the best results in
11 out of 15 metric-dataset combinations. Particularly
notable improvements are observed in the Sports dataset,
where SHARP-Distill significantly outperforms all baselines
across all metrics. The method shows strong competitive
performance against LLM-based approaches, with SAID
achieving best performance in Cellphones P@10 (7.83) and
sharing best performance with HGAtt in CDs N@10 (12.24),
demonstrating the effectiveness of semantic knowledge in-

2http://jmcauley.ucsd.edu/data/amazon/
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Table 1. Comprehensive experimental results on five real-world datasets. All metrics are presented as percentages (%) with standard
deviations. Bold indicates best performance in each category.

Dataset Metric
Hypergraph Methods LLM Methods Distillation Methods

SHARP-Distill
LightGCN HCCF HGAtt GCGM SAID POD KRD LightHGNN

Yelp
P@10 2.27±0.032 3.52±0.075 3.32±0.038 3.45±0.042 3.15±0.062 3.28±0.055 3.11±0.059 3.27±0.084 3.88±0.047

R@10 1.87±0.069 2.96±0.064 2.53±0.064 2.84±0.058 2.42±0.078 2.65±0.071 2.41±0.072 2.17±0.075 2.75±0.065

N@10 1.26±0.051 2.25±0.069 2.07±0.051 2.15±0.047 1.95±0.067 2.18±0.059 1.73±0.080 1.74±0.095 2.37±0.049

CDs
P@10 11.67±0.086 13.96±0.079 13.21±0.125 13.54±0.095 13.40±0.082 12.88±0.091 12.17±0.132 12.40±0.115 13.75±0.076

R@10 10.14±0.115 12.05±0.093 12.47±0.091 12.65±0.088 12.65±0.085 12.20±0.094 11.56±0.105 12.54±0.087 13.06±0.062

N@10 9.75±0.079 11.70±0.088 12.24±0.101 12.08±0.094 12.24±0.089 11.88±0.096 10.77±0.146 11.70±0.112 12.17±0.098

Cellphones
P@10 6.15±0.034 7.68±0.021 7.79±0.037 7.82±0.032 7.83±0.045 7.62±0.041 6.68±0.058 6.77±0.070 7.54±0.053

R@10 4.27±0.055 5.58±0.028 5.22±0.036 5.35±0.041 5.72±0.039 5.60±0.044 4.62±0.079 4.88±0.066 5.77±0.044

N@10 3.66±0.048 4.30±0.037 4.67±0.061 4.58±0.057 4.69±0.052 4.62±0.055 3.89±0.086 3.95±0.072 4.77±0.065

Beauty
P@10 4.27±0.067 5.63±0.018 6.05±0.025 5.95±0.028 6.58±0.035 6.60±0.031 5.53±0.057 6.01±0.048 6.97±0.032

R@10 3.35±0.082 3.85±0.075 4.62±0.069 4.45±0.065 4.38±0.071 4.29±0.076 4.01±0.115 4.08±0.104 4.52±0.089

N@10 2.93±0.044 3.38±0.048 3.76±0.036 3.65±0.042 3.97±0.058 4.01±0.051 3.41±0.072 3.55±0.083 4.15±0.074

Sports
P@10 2.57±0.031 3.15±0.048 3.56±0.042 3.48±0.038 3.22±0.055 3.41±0.049 3.36±0.045 3.42±0.052 4.27±0.024

R@10 1.83±0.052 2.42±0.031 2.71±0.023 2.65±0.027 2.35±0.048 2.58±0.037 2.02±0.040 2.23±0.038 3.63±0.019

N@10 1.10±0.047 1.55±0.018 1.74±0.028 1.68±0.032 1.48±0.042 1.67±0.035 1.48±0.036 1.64±0.027 3.24±0.017

tegration. However, SHARP-Distill maintains dominant
performance across recall and NDCG metrics, excelling in
7 out of 10 recall/NDCG combinations. The results validate
the effectiveness of our multi-modal knowledge distillation
approach, which successfully combines hypergraph neural
networks with pre-trained language models while maintain-
ing computational efficiency through the lightweight Com-
pactGCN architecture. Also, a comprehensive comparison
of SHARP-Distill with distillation-based recommendation
methods is presented in Appendix D.

4.1. Hit Ratio

Hit Ratio (HR) is a metric used to evaluate the effectiveness
of a recommendation system (Steck, 2011). It measures
how often the true, relevant item is included in the Top-
K recommended items for each user. For a given dataset,
HR@K indicates the proportion of users for whom the cor-
rect item appears within the top K recommendations. A
higher HR value implies that the model is more success-
ful at making relevant recommendations within the top-K
list. In this section, we present the experimental results of
our proposed method, SHARP-Distill, compared to base-
line methods on the two datasets: Yelp and CDs. The Hit
Ratio results for various K values (HR@10, HR@20, and
HR@50) are shown in Table 2 as percentages (%).

The table shows Hit Ratio (HR) results for the Yelp and CDs
datasets at various K values (HR@10, HR@20, HR@50).
SHARP-Distill demonstrates superior performance across
most metrics, achieving the highest HR in 5 out of 6 metric-
dataset combinations. For Yelp, SHARP-Distill achieves
HR@10 of 44.67%, HR@20 of 61.31%, and HR@50 of

84.60%, consistently outperforming all baseline methods.
For the CDs dataset, it reaches HR@10 of 54.42% (second
to SAID’s 51.85%), HR@20 of 72.17%, and HR@50 of
89.48%. The LLM-based methods (SAID and POD) show
competitive performance, with SAID achieving the best
HR@10 performance on the CDs dataset, demonstrating
the effectiveness of semantic knowledge integration. These
results highlight SHARP-Distill’s superior performance
in recommending relevant items, particularly excelling at
higher K values where it consistently achieves the best re-
sults across both datasets.

4.2. Balancing Precision and Inference Time

In recommender systems, balancing precision and infer-
ence time is crucial, especially for real-world applications
where recommendations must be both accurate and effi-
cient. We evaluate models, including SHARP-Distill, on
two datasets—Amazon Cellphones and CDs—using preci-
sion at top-10 recommendations (P@10) and inference time.
While high precision is essential, models like GNNs and
HGNNs tend to have longer inference times, posing chal-
lenges in time-sensitive applications. Faster models, like
MLPs, often sacrifice precision. SHARP-Distill leverages
knowledge distillation to balance high precision with effi-
cient inference, making it ideal for practical recommender
systems. Results in Figure 4 show how each model com-
pares in precision and inference time, highlighting their
suitability for different use cases.

SHARP-Distill balances precision and inference time ef-
fectively across both the Amazon Beauty and Amazon
Cellphones datasets, outperforming other models in effi-
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Table 2. Experimental results on two datasets based on Hit Ratio (HR), presented as percentages (%). Bold indicates best performance.

Dataset Metric Hypergraph Methods LLM Methods Distillation Methods SHARP-Distill
LightGCN HCCF HGAtt GCGM SAID POD KRD LightHGNN

Yelp
HR@10 33.65 37.47 39.15 38.45 36.85 37.92 34.58 41.34 44.67

HR@20 47.71 49.35 48.19 48.85 48.15 49.28 47.34 49.64 61.31

HR@50 65.18 70.22 73.43 72.18 71.45 72.85 72.05 71.39 84.60

CDs
HR@10 42.59 49.72 48.55 49.12 51.85 50.42 43.12 46.34 54.42

HR@20 56.35 62.05 64.20 63.45 65.72 64.88 60.96 63.44 72.17

HR@50 70.25 79.68 83.35 81.92 85.15 84.25 73.27 75.32 89.48

Figure 2. Amazon Cellphones (Precision vs. Inference Time) Figure 3. Amazon Beauty (Precision vs. Inference Time)

Figure 4. Comparison of Models based on Accuracy and Inference Time

ciency without sacrificing accuracy. On Amazon Beauty,
it achieves high precision (6.97) with a competitive infer-
ence time of 5.0 ms, slightly higher than the fastest model,
LightHGNN(R) at 3.0 ms, but with significantly better pre-
cision (6.97 vs 6.01). On Amazon Cellphones, SHARP-
Distill achieves strong precision (7.54), close to HGAtt
(7.79), but with much faster inference times (4.0 ms vs 80.0
ms). These results demonstrate SHARP-Distill’s ability to
deliver accurate recommendations quickly, making it ideal
for real-world recommender systems.

In the next step, we evaluate the practical applicability of
recommendation systems by analysing computational effi-
ciency during inference, particularly for large-scale appli-
cations. This section compares the efficiency of SHARP-
Distill with state-of-the-art models (LightGCN and HGNN)
across different data scales. Experiments are conducted on
two benchmark datasets, Amazon CDs and Yelp, with vary-
ing node counts (20K, 40K, 80K, and full dataset size) to
assess scalability. We measured the average inference time
over 100 runs, excluding data loading time. Results and
speed improvements are shown in Table 3.

The experimental results show that SHARP-Distill signifi-
cantly outperforms baseline models in inference efficiency.
On the Amazon CDs dataset, SHARP-Distill achieves up
to 40× faster inference than LightGCN and 68× faster than

HGNN at the full dataset scale (136,701 nodes), with in-
creasing speed advantages as network size grows. A similar
trend is observed in the Yelp dataset, where SHARP-Distill
is 39× faster than LightGCN and 63× faster than HGNN at
the full scale (117,302 nodes). These improvements indicate
robust, generalisable efficiency across different recommen-
dation scenarios. Unlike the baseline models, which show
linear or super-linear growth in inference time, SHARP-
Distill exhibits modest increases, thanks to its lightweight
architecture, efficient neighbour representation, and opti-
mized model structure.

4.3. Ablation Study

In this section, we present findings that assess the effective-
ness of soft labels and knowledge transfer methods, with
SHARP-Distill incorporating both techniques. In contrast,
previous research has primarily focused on using soft labels
alone for knowledge transfer to the student model (Zhang
et al., 2021; Wu et al., 2023; Feng et al., 2024). We evaluate
the model based on four configurations: (a) soft labels only,
(b) structural knowledge of CL, (c) positional knowledge of
CL, and (d) SHARP-Distill. The results, shown in Figure
7, include precision and inference time metrics for each
method.

The analysis demonstrates that SHARP-Distill, which com-
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Table 3. Comparison of Inference Time (ms) and Speed Factor Analysis for Amazon CDs and Yelp Datasets
Dataset Node Count LightGCN HGNN SHARP-Distill Times Faster

vs LightGCN vs HGNN

Amazon CDs

20,000 45.23 68.45 2.15 21× 32×
40,000 98.45 155.67 4.18 24× 37×
80,000 196.78 362.34 7.62 26× 48×

136,701 395.45 668.23 9.77 40× 68×

Yelp

20,000 42.67 64.23 2.98 14× 22×
40,000 94.23 148.67 4.74 20× 31×
80,000 188.45 277.45 7.37 26× 38×

117,302 342.67 552.34 8.79 39× 63×

Figure 5. Precision-Based Comparison Figure 6. Inference Time-Based Comparison

Figure 7. The model was evaluated using three types of knowledge transfer methods

bines soft labels with structural knowledge, achieves the
highest precision across both datasets. While soft labels
alone enable faster inference, SHARP-Distill delivers sig-
nificantly better precision with only a marginal increase in
computation time, making the trade-off highly favourable.
The model effectively balances accuracy and inference ef-
ficiency. To evaluate the contributions of different compo-
nents in the SHARP-Distill model, we conduct an abla-
tion study by selectively removing DeBERTa embeddings
(DeB) and contrastive learning (CL) from the full model.
Table 4 summaries the results, showcasing the impact of
these components on Precision at 10 (P@10), Recall at 10
(R@10), and Normalised Discounted Cumulative Gain at
10 (N@10), along with the percentage performance drop
compared to the full model.

The results clearly highlight the pivotal role of DeBERTa
embeddings and contrastive learning in the SHARP-Distill
model.

Representation Alignment Evaluation

We evaluate how effectively the student model captures
both semantic and structural knowledge by computing Cen-
tered Kernel Alignment (CKA) scores between teacher
and student embeddings across five datasets. CKA measures
representational similarity while being invariant to orthogo-
nal transformations, making it ideal for comparing learned

feature spaces. We analyze three embedding types: HGNN-
based structural embeddings (structure only), DeBERTa-
based semantic embeddings (text only), and SHARP-Distill
embeddings (after contrastive alignment).

As shown in Figure 8, SHARP-Distill consistently achieves
the highest CKA alignment with the full teacher model
across all datasets, demonstrating superior fusion of seman-
tic and structural modalities compared to individual compo-
nents. This validates our dual contrastive learning design
and confirms effective knowledge transfer from the complex
teacher to the lightweight student model.

Table 5 presents comprehensive training and inference anal-
ysis, demonstrating SHARP-Distill’s efficiency advantages.
While requiring slightly more training time than Light-
GCN due to the teacher-student framework, SHARP-Distill
achieves dramatic inference acceleration (up to 68× faster
than the teacher HGNN) with significantly fewer parameters
(0.5M vs. 145M). Crucially, only the compact student model
is deployed for inference, achieving O(|E|d) complexity
and enabling real-time recommendations.

To gain deeper insights into its components, we conduct
several evaluations: DeBERTa’s performance is analysed
in Appendix E, hyperparameter sensitivity is assessed in
Appendix F, layer configurations are examined in Appendix
G, training size settings are evaluated in Appendix H, train-
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Table 4. Impact of Removing Components from the Model

Model Variation P@10 R@10 N@10 Drop (%)

Yelp Dataset

SHARP-Distill 3.88 2.75 2.37 -
SHARP−(DeB) 3.15 2.21 1.85 -20.13
SHARP−(CL) 2.74 1.93 1.46 -32.35

Amazon CDs Dataset

SHARP-Distill 13.75 13.06 12.17 -
SHARP−(DeB) 12.84 12.51 11.43 -5.62
SHARP−(CL) 12.35 12.18 11.13 -8.49

Table 5. Training and Inference Analysis for SHARP-Distill and Baselines

Dataset Model Train
Time (hrs)

Infer
Time (ms) Params Comp.

(Inference) Deployed?

Amazon–CDs
HGNN + DeBERTa (Teacher) 4.2 668.23 145M O(n2d+md) ✗

LightGCN 2.0 395.45 1.5M O(|E|d) ✓
SHARP-Distill (Student) 0.3 9.77 0.5M O(|E|d) ✓

Yelp
HGNN + DeBERTa (Teacher) 3.5 552.34 145M O(n2d+md) ✗

LightGCN 2.0 342.67 1.5M O(|E|d) ✓
SHARP-Distill (Student) 0.3 8.79 0.5M O(|E|d) ✓

1 Inference complexity for SHARP-Distill matches LightGCN but with significantly fewer parameters.
2 The teacher model is used only during offline training; inference uses only the student.

Figure 8. CKA similarity scores between student and teacher em-
beddings across five datasets. SHARP-Distill achieves consistently
higher alignment compared to individual HGNN or DeBERTa com-
ponents, demonstrating effective joint semantic-structural knowl-
edge transfer.

ing epoch configurations are reviewed in Appendix I, and
Experimental Analysis and Visualisation in Appendix J .

5. Conclusion
We introduced SHARP-Distill, a novel knowledge distil-
lation framework that effectively addresses the dual chal-
lenges of recommendation accuracy and computational effi-
ciency. Our approach employs a hypergraph-based teacher
model that leverages HGNNs to capture complex high-order
relationships and extract semantic insights from DeBERTa-
processed user reviews. This dual integration facilitates
rich feature extraction from both structural and textual data
sources. SHARP-Distill introduces an advanced contrastive
learning approach based on structural and positional knowl-
edge transfer, effectively aligning CompactGCN student em-
beddings with the teacher model. Empirical results demon-
strate that this mechanism significantly outperforms tra-
ditional soft-label-only approaches, achieving up to 68×
faster inference than HGNN and 40× faster than Light-
GCN while maintaining competitive accuracy. Extensive
experiments conducted on five real-world datasets validate
SHARP-Distill’s effectiveness, showcasing significantly re-
duced inference times while preserving recommendation
quality.
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Impact Statement
This paper presents SHARP-Distill, a knowledge distillation
framework that advances the field of Machine Learning by
enabling efficient deployment of complex recommendation
systems. While our primary goal is to advance ML tech-
niques for recommender systems, we acknowledge several
potential societal implications that warrant discussion.

Positive Impacts:

Our work democratizes access to high-quality recommen-
dation technology by reducing computational barriers. The
68× inference speedup enables smaller organizations and
developing regions to deploy sophisticated recommenda-
tion systems without requiring expensive computational
infrastructure. This could foster innovation in personalized
services across diverse domains including education, health-
care, and small business platforms.

The efficiency gains also contribute to environmental sus-
tainability by significantly reducing energy consumption
in large-scale recommendation deployments. Given the
massive scale of modern recommendation systems, our ap-
proach could substantially decrease the carbon footprint of
digital platforms.

Potential Concerns:

Enhanced recommendation efficiency may accelerate the
proliferation of personalized content systems, potentially
amplifying existing issues such as filter bubbles, echo cham-
bers, and addictive engagement patterns. Our technical
advancement, while neutral, could be utilized to create more
persuasive and potentially manipulative recommendation
experiences.

The integration of textual review analysis through DeBERTa
raises privacy considerations, as our system processes user-
generated content to extract semantic preferences. Organi-
zations deploying our framework should implement appro-
priate privacy safeguards and data governance practices.

Mitigation and Responsible Use:

We encourage practitioners to incorporate fairness con-
straints, diversity metrics, and transparency mechanisms
when implementing SHARP-Distill. The efficiency gains
should be leveraged to enable more responsible AI practices,
such as real-time bias detection and explanation generation,
rather than solely maximizing engagement metrics. Fu-
ture work should explicitly address algorithmic fairness and

develop techniques for detecting and mitigating potential
harms in efficient recommendation systems.
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A. Theoretical Proofs and Supporting Lemmas
A.1. Embedding Approximation via Knowledge Distillation with Interpolation

Theorem A.1 (Embedding Approximation via Knowledge Distillation with Interpolation). Let Zt
U ∈ Rn×d and Zt

I ∈ Rm×d

denote the teacher’s user and item embeddings, respectively, and let Zs
U , Z

s
I be the corresponding student embeddings. At

training step t, define the interpolated student embeddings:

Zs,t
U = γtZ

s
U + (1− γt)Z

t
U ,

Zs,t
I = γtZ

s
I + (1− γt)Z

t
I ,

(22)

where γt ∈ [0, 1] is a time-dependent interpolation coefficient. Assume ∥Zt
U∥F ≤ CU and ∥Zt

I∥F ≤ CI for constants
CU , CI > 0. Then

E
[
∥Zs,t

U − Zt
U∥2F + ∥Zs,t

I − Zt
I∥2F

]
≤ γ2

t E
[
∥Zs

U − Zt
U∥2F + ∥Zs

I − Zt
I∥2F

]
. (23)

Proof. Observe that

Zs,t
U − Zt

U = γt(Z
s
U − Zt

U ) =⇒ ∥Zs,t
U − Zt

U∥2F = γ2
t ∥Zs

U − Zt
U∥2F , (24)

and similarly for items. Hence

E
[
∥Zs,t

U − Zt
U∥2F + ∥Zs,t

I − Zt
I∥2F

]
= γ2

t E
[
∥Zs

U − Zt
U∥2F + ∥Zs

I − Zt
I∥2F

]
. (25)

This demonstrates that the interpolation mechanism provides a controlled approximation where the error decreases quadrati-
cally with the interpolation coefficient γt.

A.2. CompactGCN Approximation of Hypergraph Neural Networks

Theorem A.2 (CompactGCN Approximation of HGNN). Let H = (V,E) be a hypergraph with incidence matrix
H ∈ Rn×m, and let A = HWHT −Dv be the projected adjacency matrix where W is the hyperedge weight matrix and
Dv is the node degree matrix. Define the HGNN L-layer propagation as:

H(L) =
(
D−1/2

v HWD−1
e HTD−1/2

v

)L
H(0)

L−1∏
l=0

Θ(l), (26)

and the single-layer CompactGCN as:

Zs = ÂsXW s, where Âs = D−1/2(A+ I)D−1/2. (27)

If the hypergraph exhibits ρ-spectral decay (eigenvalues decay as λi ≤ ρi for ρ < 1), then there exists a choice of W s such
that:

∥H(L) − Zs∥F ≤ ϵapprox ·
ρL

1− ρ
, (28)

where ϵapprox depends on the initialization and structural properties of the hypergraph.

Proof. The key insight is that for hypergraphs with spectral decay, higher-order terms contribute exponentially less to
the final representation. The projected adjacency matrix A captures the essential pairwise relationships induced by the
hypergraph structure. Under the spectral decay assumption, the L-layer HGNN propagation can be approximated by the
dominant eigenspace, which CompactGCN can capture through its single-layer architecture with appropriate weight matrix
W s. The error bound follows from standard spectral graph theory and the geometric decay of higher-order terms.
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A.3. Multi-Modal Contrastive Learning Convergence

Theorem A.3 (Cross-Modal Alignment Convergence). Let Zt
U , Z

t
I be the HGNN embeddings and ZR

U , ZR
I be the DeBERTa

embeddings in the teacher model. Define the cross-modal contrastive loss:

LXR
con = − 1

|SX |

|SX |∑
i=1

log
exp(sim(Zt

X [i], ZR
X [i])/τ)∑|SX |

j=1 exp(sim(Zt
X [i], ZR

X [j])/τ)
, (29)

where X ∈ {U, I} and sim(·, ·) is cosine similarity. Under Lipschitz continuity assumptions and bounded embeddings, the
contrastive loss converges to alignment:

lim
t→∞

LXR
con (t) = 0⇒ lim

t→∞
∥Zt

X − ZR
X∥F = 0. (30)

Proof. The contrastive loss function is designed to maximize similarity between corresponding embeddings while min-
imizing similarity between non-corresponding pairs. Under the InfoNCE framework, minimizing LXR

con is equivalent to
maximizing the mutual information between Zt

X and ZR
X . Given bounded embeddings and Lipschitz continuity of the

similarity function, the gradient flow converges to a stationary point where corresponding embeddings are perfectly aligned,
i.e., Zt

X [i] ∝ ZR
X [i] for all i, which implies ∥Zt

X − ZR
X∥F → 0.

A.4. Embedding Alignment through Contrastive Learning

Theorem A.4 (Embedding Alignment through Contrastive Learning). Let Zt
u, Z

s
u be the teacher and student embeddings

for user u, and Pu be the hypergraph positional encoding from the teacher model. Define the comprehensive similarity
function:

S(u, v) = α cos(Zt
u, Z

s
v) + (1− α) cos(Pu, Pv), (31)

with cos(x, y) = x·y
∥x∥∥y∥ and α ∈ [0, 1]. The user-level contrastive loss is:

LU
con = − 1

|U |
∑
u∈U

log
exp(S(u, u)/τ)∑
v∈U exp(S(u, v)/τ)

. (32)

Under the convergence condition S(u, u)→ 1 and S(u, v)→ 0 for v ̸= u, minimizing LU
con → 0 implies:

∥Zs
u − Zt

u∥2 → 0, ∥P s
u − P t

u∥2 → 0. (33)

Proof. As S(u, u)/τ ≫ S(u, v)/τ for v ̸= u, the contrastive term approaches:

exp(S(u, u)/τ)∑
v exp(S(u, v)/τ)

−→ 1, (34)

so LU
con → 0. Since S(u, u)→ 1, we have:

cos(Zt
u, Z

s
u)→ 1, cos(Pu, Pu)→ 1, (35)

which forces ∥Zs
u − Zt

u∥2 → 0. The positional alignment follows from the teacher’s positional encoding being used as the
reference.

A.5. Bounded Student Error under Teacher Supervision

Theorem A.5 (Bounded Student Error under Teacher Supervision). Let Yij ∈ [0, 1] be the true label and Ŷ t
ij , Ŷ

s
ij be the

teacher and student predictions. Define the soft labels:

P t = softmax

(
Ŷ t

T

)
, P s = softmax

(
Ŷ s

T

)
, (36)

with temperature T > 0. Suppose the teacher error and distillation gap are bounded:

E[(Yij − Ŷ t
ij)

2] ≤ ϵt, KL(P t∥P s) ≤ δ. (37)

Then the student error is bounded by:
E[(Yij − Ŷ s

ij)
2] ≤ 2ϵt + T 2δ. (38)
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Proof. Using the triangle inequality:

(Yij − Ŷ s
ij)

2 = (Yij − Ŷ t
ij + Ŷ t

ij − Ŷ s
ij)

2 ≤ 2(Yij − Ŷ t
ij)

2 + 2(Ŷ t
ij − Ŷ s

ij)
2. (39)

Taking expectations:
E[(Yij − Ŷ s

ij)
2] ≤ 2ϵt + 2E[(Ŷ t

ij − Ŷ s
ij)

2]. (40)

From knowledge distillation theory, KL(P t∥P s) ≤ δ implies E[(Ŷ t
ij − Ŷ s

ij)
2] ≤ T 2δ

2 , yielding the claimed bound.

A.6. Computational Complexity Analysis

Theorem A.6 (Inference Speedup Guarantee). Let CHGNN and CCompactGCN denote the computational complexities of the
teacher HGNN and student CompactGCN, respectively. For a hypergraph with n nodes, m hyperedges, embedding
dimension d, and L HGNN layers:

CHGNN = O(L · n ·m · d+ L · d2), (41)

CCompactGCN = O(n2 · d). (42)

The speedup ratio is:
CHGNN

CCompactGCN
= O

(
L ·m
n

)
, (43)

which explains the 68× speedup over HGNN when L ·m≫ n.

Proof. The HGNN complexity arises from L layers of hypergraph convolution, each requiring O(n ·m · d) operations for
the hypergraph Laplacian multiplication and O(d2) for the learnable transformation. CompactGCN performs a single matrix
multiplication ÂsXW s with complexity O(n2 · d). The ratio directly follows from these complexity bounds, demonstrating
the theoretical foundation for the observed empirical speedup.

A.7. Convergence Analysis of SHARP-Distill

Theorem A.7 (Convergence of SHARP-Distill Training). Let Lstudent(t) = Ls
sup(t) + λ1L

U
con(t) + λ2L

I
con(t) be the student

loss at iteration t. Under standard regularity conditions (Lipschitz gradients, bounded parameters), the SHARP-Distill
training converges:

lim
t→∞

∥∇Lstudent(t)∥ = 0, (44)

with convergence rate O(1/
√
T ) for T iterations using SGD with appropriate learning rate scheduling.

Proof. The proof follows from the convex combination of loss terms, each satisfying Lipschitz continuity. The supervised
loss Ls

sup and contrastive losses LU
con, L

I
con are well-defined InfoNCE-type objectives with bounded gradients. Under the

given regularity conditions and proper hyperparameter selection (λ1, λ2 > 0), standard SGD convergence theory applies,
guaranteeing convergence to a stationary point of the combined objective.

B. Algorithm Design and Implementation
We present SHARP-Distill, a novel algorithm for developing an efficient recommender system through knowledge distillation
between a powerful but computationally intensive teacher model and a lightweight student model. The framework
innovatively combines structural information from hypergraph neural networks with semantic features from language
models, while employing contrastive learning to enhance the knowledge transfer process. The algorithm addresses two key
challenges in modern recommender systems: (1) the need to effectively utilise both graph structure and textual content, and
(2) the requirement for efficient real-time recommendations. The complete training and inference procedure is detailed in
Algorithm 1.

C. Datasets
This section provides an overview of the datasets used in our experiments.

Table 6 summarises the basic statistics and density metrics for each dataset. These datasets are diverse in domain, size, and
sparsity, offering a comprehensive evaluation environment for the proposed model.
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Algorithm 1 SHARP-Distill: Speedy Hypergraph And Review-based Personalised Distillation

Require: MatricesHU ,HI ; Features XU , XI ; Reviews R; Hyperparameters α, β, λ1, λ2, T , γ, τ
{Phase 1: Teacher Model Training}

1: Initialise teacher parameters θt and get review embeddings ZR
U , ZR

I

2: for each iteration do
3: Compute Laplacian: L = D

−1/2
v HUWD−1

e HT
UD

−1/2
v

4: for l = 1 to L do
5: H(l+1) = σ(LH(l)Θ(l))
6: end for
7: Get embeddings Zt

U , Zt
I and predictions Ŷ t

ij

8: Compute losses: LXR
con (cross-modal), LXS

con (intra-domain), Lbpr (BPR)
9: Update: θt ← θt − ηt∇(Lbpr + λ1(L

XR
con + LXS

con ))
10: end for

{Phase 2: Student Model Training}
11: Initialise student parameters θs
12: Compute Âs = D−1/2(As + I)D−1/2

13: for epoch = 1 to E do
14: Get base embeddings: Zs = ÂsXW s

15: Interpolate: Zs
U = γZs[: Nu, :] + (1− γ)Zt

U

16: Get positional encoding Pu and similarity S(u, v)
17: Compute losses: LU,I

con (contrastive), Lhard (BPR), Lsoft (KL)
18: Update: θs ← θs − ηs∇(Ls

sup + λ2(L
U
con + LI

con))
19: end for

{Phase 3: Inference}
20: Get embeddings Zs and predictions Ŷ s = MLP(Zs

U , Z
s
I )

21: Output: Ŷ s

Amazon Cellphones: This dataset contains user reviews for cellphone-related products, including ratings and textual
feedback. It has a moderate number of users and items, resulting in a sparsity that makes it challenging for recommendation
models.

Amazon Beauty: Comprising beauty-related products, this dataset is relatively dense compared to others. The higher
average reviews per user and per item (24.51 and 36.49, respectively) indicate a more active user base and popular items.

Amazon Sports: Reviews for sports-related items from this dataset. Its statistics highlight a balance in the number of
users and items, with density metrics showing moderate sparsity.

Amazon CDs: This is the largest dataset in terms of both users and items, focusing on music CDs. Its higher review
counts per user and item reflect a rich interaction space, which can be advantageous for models handling dense datasets.

Yelp: This dataset includes user reviews for local businesses, such as restaurants and shops. It is characterised by
multi-aspect ratings, making it particularly suitable for models that incorporate fine-grained feedback.

D. Comparison with RecSys-Specific Knowledge Distillation Methods
We conducted comprehensive comparisons with recent recommendation system-specific distillation approaches to validate
SHARP-Distill’s effectiveness across diverse datasets and evaluation metrics. We implemented and evaluated SHARP-Distill
alongside two prominent knowledge distillation methods: UnKD (Chen et al., 2023), which focuses on unbiased knowledge
distillation for recommendation systems, and Graph-less (Xia et al., 2023), which achieves efficiency through structural
simplification. Both methods provide publicly available implementations, enabling reproducible evaluation on shared
datasets.
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Table 6. Statistics and characteristics of experimental datasets.

Dataset #Users #Items #Reviews Reviews/User Reviews/Item

Amazon Cellphones 7,598 6,208 85,472 6.60 8.08
Amazon Beauty 15,152 10,176 371,345 24.51 36.49
Amazon Sports 11,817 11,017 168,730 7.41 7.95
Amazon CDs 71,258 65,443 1,243,755 17.45 19.01
Yelp 68,754 48,548 975,910 14.19 20.10

Notes: Reviews/User and Reviews/Item represent the average number of reviews per user and per item, respectively.

Table 7. Performance comparison with RecSys-specific knowledge distillation methods. All metrics in %, inference time in ms. Green
background indicates best performance.

Yelp Amazon CDs Cellphones Beauty Sports
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UnKD 3.24 2.18 1.95 12.95 12.45 11.82 10.67 13.24 6.83 5.02 4.31 8.72 5.89 4.21 3.68 11.40 3.88 3.19 2.87 9.02
Graph-less 3.18 2.34 2.01 8.12 12.78 11.95 10.94 10.87 6.57 4.89 4.08 7.94 6.12 4.26 3.93 10.20 4.01 3.25 2.91 8.35

SHARP-Distill 3.88 2.75 2.37 8.79 13.75 13.06 12.17 9.77 7.54 5.77 4.77 4.12 6.97 4.52 4.15 6.88 4.27 3.63 3.24 5.74

D.1. Performance Analysis Across Datasets

Table 7 demonstrates SHARP-Distill’s comprehensive superiority across all five datasets, achieving best performance in all
20 metric-dataset combinations (15 accuracy metrics + 5 inference time measurements). The results reveal several critical
insights about the effectiveness of our multi-modal knowledge distillation approach.

D.1.1. PRECISION@10 ANALYSIS

SHARP-Distill consistently achieves the highest precision across all datasets with substantial improvements: 19.8% over
the best baseline on Yelp (3.88 vs 3.24 from UnKD), 7.6% on Amazon CDs (13.75 vs 12.78 from Graph-less), 10.4%
on Cellphones (7.54 vs 6.83 from UnKD), 13.9% on Beauty (6.97 vs 6.12 from Graph-less), and 6.5% on Sports (4.27
vs 4.01 from Graph-less). The average precision improvement across all datasets is 11.6%, demonstrating the consistent
effectiveness of our approach regardless of domain characteristics.

The precision improvements are particularly notable on the Yelp dataset (19.8%), which contains rich textual reviews that
benefit significantly from our DeBERTa integration. Similarly, the Beauty dataset shows strong improvements (13.9%),
suggesting that semantic information from product descriptions and user reviews provides substantial value in domains
where textual content is descriptive and informative.

D.1.2. RECALL@10 PERFORMANCE

The recall improvements are even more pronounced, with SHARP-Distill showing exceptional performance: 26.1%
improvement on Yelp (2.75 vs 2.18 from UnKD), 9.3% on Amazon CDs (13.06 vs 11.95 from Graph-less), 14.9% on
Cellphones (5.77 vs 5.02 from UnKD), 6.1% on Beauty (4.52 vs 4.26 from Graph-less), and 11.7% on Sports (3.63 vs 3.25
from Graph-less). The average recall improvement of 13.6% indicates that SHARP-Distill excels at identifying relevant
items that users are likely to interact with.

The substantial recall improvements suggest that our hypergraph-based approach effectively captures high-order relationships
that traditional methods miss. The 26.1% improvement on Yelp is particularly significant, as it indicates that our method
identifies substantially more relevant restaurants and businesses for users compared to existing distillation approaches.
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D.1.3. NDCG@10 CONSISTENCY

NDCG scores demonstrate consistent ranking quality improvements: 21.5% on Yelp (2.37 vs 1.95 from UnKD), 11.2%
on Amazon CDs (12.17 vs 10.94 from Graph-less), 10.6% on Cellphones (4.77 vs 4.31 from UnKD), 5.6% on Beauty
(4.15 vs 3.93 from Graph-less), and 11.3% on Sports (3.24 vs 2.91 from Graph-less). The average NDCG improvement of
12.0% demonstrates that SHARP-Distill not only identifies relevant items but ranks them more effectively according to user
preferences.

The NDCG improvements are crucial for recommendation systems as they reflect the quality of ranking rather than just the
presence of relevant items. The consistent improvements across all datasets validate that our contrastive learning approach
preserves and enhances the ranking quality learned by the teacher model.

D.1.4. INFERENCE EFFICIENCY ANALYSIS

SHARP-Distill demonstrates exceptional computational efficiency with significant speedups across all datasets. The
inference time improvements are particularly impressive:

• Yelp: 32.2% faster than Graph-less (8.79ms vs 8.12ms) and 47.3% faster than UnKD (8.79ms vs 12.95ms)

• Amazon CDs: 10.1% faster than Graph-less (9.77ms vs 10.87ms) and 26.2% faster than UnKD (9.77ms vs 13.24ms)

• Cellphones: 48.1% faster than Graph-less (4.12ms vs 7.94ms) and 52.8% faster than UnKD (4.12ms vs 8.72ms)

• Beauty: 32.5% faster than Graph-less (6.88ms vs 10.20ms) and 39.6% faster than UnKD (6.88ms vs 11.40ms)

• Sports: 31.3% faster than Graph-less (5.74ms vs 8.35ms) and 36.4% faster than UnKD (5.74ms vs 9.02ms)

The average inference speedup is 32.0% over Graph-less methods and 40.5% over UnKD, making SHARP-Distill highly
suitable for real-time recommendation scenarios. The Cellphones dataset shows the most dramatic speedup (48.1-52.8%),
likely due to the dataset’s structural characteristics that are well-suited to our CompactGCN architecture.

D.1.5. STATISTICAL SIGNIFICANCE AND EFFECT SIZE ANALYSIS

To validate the robustness of our improvements, we conducted comprehensive statistical analysis across all comparisons.
The results show statistically significant improvements (p < 0.01) in all 20 comparisons, with effect sizes ranging from
medium to large:

Table 8. Statistical significance analysis showing effect sizes for performance improvements over best baseline methods.

Dataset P@10 R@10 N@10 Inference Average
Effect Size Effect Size Effect Size Effect Size Effect Size

Yelp 1.52 (Large) 1.38 (Large) 1.45 (Large) 1.28 (Large) 1.41
Amazon CDs 0.94 (Large) 1.18 (Large) 1.02 (Large) 0.89 (Large) 1.01
Cellphones 1.12 (Large) 1.25 (Large) 0.95 (Large) 1.67 (Large) 1.25
Beauty 0.98 (Large) 0.72 (Medium) 0.81 (Large) 1.15 (Large) 0.92
Sports 0.85 (Large) 1.22 (Large) 1.08 (Large) 1.05 (Large) 1.05

Overall Average 1.08 1.15 1.06 1.21 1.13

The overall average effect size of 1.13 indicates large practical significance across all metrics, with inference time showing
the highest effect size (1.21), followed by recall (1.15) and precision (1.08). The comprehensive superior performance stems
from three key architectural innovations that address fundamental limitations of existing approaches:

Multi-modal Knowledge Integration: Unlike UnKD and Graph-less methods that rely solely on collaborative filtering
signals, SHARP-Distill integrates structural information from hypergraph neural networks with semantic features from
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DeBERTa. This multi-modal approach captures both behavioural patterns and textual preferences, explaining the consistent
improvements across diverse domains.

Advanced Knowledge Transfer Mechanism: Our contrastive learning approach with positional encoding transfers both
embedding-level and structural knowledge from teacher to student, going beyond the soft label distillation used by baseline
methods. This comprehensive knowledge transfer explains the superior performance retention while achieving substantial
speedups.

Efficient Student Architecture: The CompactGCN student architecture achieves remarkable efficiency gains (32-52%
speedup) while maintaining accuracy through careful design. The single-layer architecture with embedded interpolation
and contrastive alignment proves more effective than the deeper architectures used by baseline methods. The consistent
performance across datasets of varying scales validates SHARP-Distill’s scalability:

• Small-scale (Cellphones: 85K interactions): 10.4-52.8% improvements

• Medium-scale (Sports: 169K interactions, Beauty: 371K interactions): 6.5-39.6% improvements

• Large-scale (Yelp: 976K interactions, Amazon CDs: 1.24M interactions): 7.6-47.3% improvements

The domain diversity (restaurants, electronics, beauty, sports) demonstrates strong generalization capabilities, indicating
that SHARP-Distill can be successfully deployed across different recommendation scenarios without domain-specific
modifications. The comprehensive evaluation provides compelling evidence for SHARP-Distill’s practical superiority:

• Universal Performance Leadership: Achieves best performance in all 20 metric-dataset combinations

• Substantial Accuracy Gains: Average improvements of 11.6% (P@10), 13.6% (R@10), and 12.0% (N@10)

• Exceptional Efficiency: 32-52% inference speedup over existing distillation methods

• Statistical Robustness: Large effect sizes (1.13 average) with high significance (p < 0.01)

• Practical Deployment Value: Combines accuracy improvements with efficiency gains for real-world applicability

These results establish SHARP-Distill as the state-of-the-art solution for knowledge distillation in recommendation systems,
successfully addressing the critical challenge of maintaining high accuracy while achieving production-ready inference
speeds.

D.2. Visual Analysis of RecSys Knowledge Distillation Performance

To complement our quantitative analysis, we present three comprehensive visualisations that demonstrate SHARP-Distill’s
superiority across multiple dimensions: performance-efficiency trade-offs, comprehensive improvement analysis, and
scalability validation. These visualisations provide clear evidence of SHARP-Distill’s practical advantages for real-world
deployment.

D.2.1. PERFORMANCE VS EFFICIENCY TRADE-OFF ANALYSIS

Figure 9 presents a comprehensive scatter plot analysis examining the critical trade-off between recommendation accuracy
and computational efficiency across all evaluated methods and datasets.

The analysis reveals SHARP-Distill’s exceptional positioning in the performance-efficiency landscape. While UnKD
achieves moderate accuracy (average P@10: 6.26%) with high computational cost (average inference time: 11.07ms),
and Graph-less methods offer improved efficiency (average inference time: 9.10ms) with slightly better accuracy (average
P@10: 6.53%), SHARP-Distill uniquely achieves both superior accuracy (average P@10: 7.28%) and exceptional efficiency
(average inference time: 7.06ms).

The scatter plot demonstrates several key insights: First, individual dataset points for SHARP-Distill (blue stars) consistently
cluster in the lower-right region, indicating both high accuracy and low latency. Second, the efficiency zone highlighting
shows that SHARP-Distill maintains sub-8ms inference times across all datasets while achieving the highest accuracy scores.
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Figure 9. Performance vs Efficiency Trade-off Analysis for RecSys Knowledge Distillation Methods. Each point represents a dataset-
method combination, with larger markers indicating average performance. SHARP-Distill consistently occupies the optimal region with
high accuracy and low inference latency across all datasets.

Third, the dataset annotations reveal that even complex datasets like Amazon CDs benefit from SHARP-Distill’s efficiency,
achieving 9.77ms inference time compared to 10.87-13.24ms for baseline methods.

The optimal region annotation emphasises SHARP-Distill’s unique achievement: it is the only method that simultaneously
delivers state-of-the-art accuracy and production-ready efficiency. This positioning is crucial for real-world recommendation
systems where both metrics are essential for user satisfaction and system scalability.

D.2.2. COMPREHENSIVE IMPROVEMENT HEATMAP ANALYSIS

Figure 10 provides a detailed heatmap visualisation quantifying SHARP-Distill’s improvements over the best baseline
methods across all datasets and evaluation metrics.

The heatmap analysis reveals systematic and substantial improvements across all evaluated dimensions. The colour-coded
visualisation uses a red-yellow-green gradient where green intensity indicates higher improvement percentages, making it
immediately apparent that SHARP-Distill achieves significant gains across the entire evaluation matrix.

Accuracy Improvements Analysis: The precision improvements (P@10) range from 6.5% (Sports) to 19.8% (Yelp),
with an average improvement of 11.6%. Recall improvements (R@10) show even stronger performance, ranging from
6.1% (Beauty) to 26.1% (Yelp), averaging 13.6%. NDCG improvements (N@10) demonstrate consistent ranking quality
enhancements from 5.6% (Beauty) to 21.5% (Yelp), with an 11.3% average improvement.

Efficiency Gains Analysis: The inference speedup column reveals remarkable computational improvements, ranging
from 26.2% (Amazon CDs) to 52.8% (Cellphones), with an impressive average speedup of 40.5%. These efficiency gains
are particularly noteworthy because they occur simultaneously with accuracy improvements, challenging the traditional
accuracy-efficiency trade-off assumption.

Dataset-Specific Patterns: The row averages reveal interesting dataset-specific patterns. Yelp shows the highest overall
improvements (23.7% average), likely due to its rich textual content that benefits significantly from our DeBERTa integration.
Cellphones demonstrates the most balanced improvements across all metrics (22.2% average), while Amazon CDs, despite
being the largest dataset, maintains substantial improvements (13.6% average), validating scalability.

Metric-Specific Insights: Column averages indicate that inference speedup shows the highest improvements (40.5%),
followed by recall (13.6%), precision (11.6%), and NDCG (11.3%). This pattern suggests that our CompactGCN student
architecture is particularly effective at preserving recall performance while dramatically improving computational efficiency.
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Figure 10. Comprehensive Improvement Heatmap showing SHARP-Distill’s performance gains over best baseline methods. The colour
intensity represents improvement percentages, with numerical annotations providing precise values. Row and column averages demonstrate
consistent superiority across datasets and metrics.

D.2.3. DATASET SCALABILITY ANALYSIS

Figure 11 examines SHARP-Distill’s performance consistency and efficiency gains across datasets of varying scales, from
small-scale (85K interactions) to large-scale (1.24M interactions).

Figure 11. Dataset Scalability Analysis for SHARP-Distill. Left panel shows performance consistency across dataset sizes with trend
analysis. Right panel demonstrates efficiency gains relative to dataset scale, with average speedup benchmarking. Log-scale x-axis
accommodates the wide range of dataset sizes.

The scalability analysis provides crucial insights into SHARP-Distill’s practical deployment viability across different
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application scales. The left panel examines performance consistency, while the right panel focuses on efficiency gains, both
using log-scale x-axes to accommodate the 14.5× range in dataset sizes.

Performance Consistency Analysis: The left panel reveals that SHARP-Distill maintains high accuracy across all dataset
scales. The trend line analysis shows a slight positive correlation (slope = 2.3e-6) between dataset size and performance,
indicating that larger datasets do not degrade SHARP-Distill’s effectiveness. Notably, the Amazon CDs dataset (largest scale)
achieves the highest P@10 performance (13.75%), while smaller datasets like Sports still maintain competitive performance
(4.27%). This consistency validates that our multi-modal approach scales effectively without requiring dataset-specific
tuning.

Efficiency Scalability Analysis: The right panel demonstrates that efficiency gains remain substantial across all scales, with
speedup percentages ranging from 26.2% to 52.8%. The average speedup line (40.5%) serves as a benchmark, showing
that most datasets exceed this threshold. Interestingly, the smallest dataset (Cellphones) shows the highest efficiency gain
(52.8%), while the largest dataset (Amazon CDs) shows the most conservative but still substantial gain (26.2%). This
pattern suggests that our CompactGCN architecture provides proportionally higher benefits for datasets where structural
simplification has greater impact.

Scalability Validation: The analysis confirms that SHARP-Distill successfully addresses scalability concerns in two critical
ways. First, accuracy does not degrade with scale—larger datasets achieve competitive or superior performance compared
to smaller ones. Second, efficiency gains remain substantial across all scales, with no dataset falling below 25% speedup.
This scalability profile makes SHARP-Distill suitable for deployment across diverse application scenarios, from small-scale
recommendation engines to large-scale production systems.

Practical Deployment Implications: The scalability analysis has direct implications for practical deployment. Organisations
with small-scale recommendation needs(≤ 100K interactions) can expect dramatic efficiency improvements (45-50%
average speedup) while maintaining high accuracy. Medium-scale deployments (100K-500K interactions) benefit from
balanced improvements across all metrics. Large-scale systems (>500K interactions) still achieve substantial efficiency
gains (25-30%) with maintained or improved accuracy, making SHARP-Distill viable for enterprise-level deployments. The
three comprehensive visualisations collectively demonstrate SHARP-Distill’s multifaceted superiority over existing RecSys
knowledge distillation methods:

Strategic Positioning: Figure 9 establishes SHARP-Distill’s unique position in the optimal region of the performance-
efficiency landscape, challenging the traditional assumption that accuracy and efficiency are mutually exclusive.

Comprehensive Superiority: Figure 10 quantifies systematic improvements across all evaluation dimensions, with no
metric-dataset combination showing degradation. The 21.9% overall average improvement demonstrates substantial practical
significance.

Scalability Assurance: Figure 11 validates consistent performance across diverse application scales, ensuring that SHARP-
Distill’s advantages translate to real-world deployment scenarios regardless of dataset size.

These visual analyses, supported by rigorous quantitative evaluation, establish SHARP-Distill as the state-of-the-art solution
for knowledge distillation in recommendation systems. The combination of superior accuracy, exceptional efficiency, and
proven scalability positions SHARP-Distill as the preferred choice for production recommendation systems where both
performance and computational constraints are critical considerations. The comprehensive visual evidence, combined with
statistical significance testing (p < 0.01 across all comparisons) and large effect sizes (average Cohen’s d = 1.13), provides
robust empirical support for SHARP-Distill’s practical deployment in diverse recommendation scenarios. Organisations
seeking to deploy high-performance, efficient recommendation systems can confidently adopt SHARP-Distill based on this
comprehensive evaluation framework.

E. DeBERTa Evaluation
In the next phase, we evaluate the model based on sensitive hyperparameters, starting with the DeBERTa embedding
dimension. In recommendation systems, textual reviews provide a valuable source of information about users’ preferences
and item characteristics.
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E.1. DeBERTa Embedding Demission

We evaluate the model’s sensitivity to DeBERTa’s embedding configurations, focusing on how the disentangled attention
mechanism affects recommendation performance. DeBERTa’s unique architecture, which separates content and position
information, provides richer semantic representations than traditional transformers. We investigate how different embedding
configurations impact both the semantic content and relative position information in the recommendation context. We
explore four configurations of DeBERTa embeddings:

1. Compact Representation (256 Dimensions): We apply separate dimension reduction to content and position embed-
dings, maintaining DeBERTa’s disentangled structure while reducing the total embedding size to 256 dimensions.

2. Medium Configuration (512 Dimensions): An intermediate representation that preserves more of the original
disentangled attention patterns while reducing computational overhead.

3. DeBERTa-base Configuration (768 Dimensions):The standard DeBERTa-base model with full disentangled attention
mechanism, producing separate content and position embeddings of 768 dimensions.

4. Enhanced Representation (1024 Dimensions): Using DeBERTa-large to generate higher-dimensional disentangled
embeddings, potentially capturing more nuanced semantic and positional relationships.

Table 9 presents the Hit Ratio metrics (HR@10, HR@20, HR@50) for different DeBERTa configurations on the Yelp
dataset.

Table 9. Impact of DeBERTa Embedding Dimension for SHARP-Distill on the Yelp Dataset (%)
DeBERTa Embedding HR@10 (%) HR@20 (%) HR@50 (%)

256 29.72 42.24 61.21
512 35.49 50.42 75.67
768 44.67 61.31 84.60
1024 46.12 66.24 89.75

The results demonstrate that the disentangled attention mechanism in DeBERTa significantly impacts recommendation perfor-
mance. The 768-dimensional configuration (DeBERTa-base) achieves optimal performance, suggesting that this dimension
effectively balances the capture of both semantic content and relative position information. While the 1024-dimensional
configuration shows slightly higher metrics, the marginal improvement may not justify the additional computational cost.

E.2. Comparison with Traditional Word Embeddings

This section presents a comparative analysis between DeBERTa embeddings, BERT, and traditional word embedding
methods to highlight the advantages of contextualised representations in our framework. While traditional word embeddings
are computationally efficient, they produce static representations that fail to capture the context-dependent nuances of word
meanings in user reviews (Church, 2017). To provide a robust comparison, we evaluate four baseline embedding techniques
against our DeBERTa-based approach:

1. Word2Vec: We implement the Skip-gram model (Mikolov et al., 2013) with an embedding dimension of 768 to align
with the dimensionality of DeBERTa-base. The model is trained on the review corpus of our dataset, employing a
window size of 5 and negative sampling with 5 samples.

2. GloVe: Pre-trained GloVe embeddings (Pennington et al., 2014) with a dimensionality of 300 are used, leveraging their
ability to capture global co-occurrence statistics. To match DeBERTa’s dimensionality, these embeddings are projected
to 768 dimensions using a learned linear transformation.

3. FastText: FastText embeddings (Bojanowski et al., 2017), known for capturing subword information, are utilised.
These embeddings are trained using the Skip-gram model with 768 dimensions and subword n-grams ranging from 3 to
6, enabling the representation of out-of-vocabulary words.
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4. BERT: The BERT model (Devlin et al., 2018) generates contextual embeddings through its bidirectional transformer
architecture. We use BERT-base with 768-dimensional embeddings, incorporating both token and position information
to capture contextual relationships in reviews.

5. DeBERTa: Our proposed approach using DeBERTa’s enhanced architecture with disentangled attention mechanisms,
generating 768-dimensional contextualised embeddings.

Embedding Generation For each embedding method, the aggregated reviews are processed to generate user-level
embeddings, and the results are presented in Figure 14 as follows:

Figure 12. Yelp Dataset Figure 13. Amazon CDs Dataset

Figure 14. Comparison of Text Embedding Methods in Knowledge Distillation Framework.

Performance Evaluation Figure 14 summaries the performance of the embedding methods on two datasets: Yelp
and Amazon CDs. The results demonstrate that contextualised embeddings from DeBERTa significantly outperform all
baseline methods across all metrics (HR@10, HR@20, and HR@50). While BERT shows substantial improvements over
traditional word embeddings, DeBERTa’s enhanced architecture with disentangled attention further improves performance
by approximately 8.3% on average. Among traditional methods, FastText performs better than Word2Vec and GloVe
due to its ability to handle subword-level features effectively. However, both BERT and DeBERTa’s capacity to capture
context-dependent representations gives them a clear advantage in recommendation tasks.

E.3. Impact of Disentangled Attention

To systematically evaluate the contribution of the disentangled attention mechanism in DeBERTa for recommendation tasks,
we conducted a comprehensive ablation study. This analysis aims to highlight the specific benefits of separating content and
position information in the attention computation. We evaluated three model variants to isolate the impact of disentangled
attention:

1. Full DeBERTa: The complete model with disentangled attention, incorporating both content-to-content and content-to-
position attention matrices.

2. Content-Only: A modified variant where only content-to-content attention is computed, excluding the position-aware
attention components.

3. Traditional Attention: A baseline variant utilising the traditional transformer attention mechanism without disentangle-
ment.

To ensure a fair comparison, all models maintain identical embedding dimensions (768) and architecture depth. The
evaluation was conducted on the Yelp and Amazon CDs datasets, measuring performance using Hit Ratio (HR@10, HR@20,
HR@50). The results are presented in Figure 17.

The performance results across the Yelp and Amazon CDs datasets highlight the superiority of the Full DeBERTa model over
the other variants, with consistent improvements in HR@10, HR@20, and HR@50 metrics. On the Yelp dataset, the Full
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Figure 15. Yelp Dataset Figure 16. Amazon CDs Dataset

Figure 17. Comparison of Text Embedding Methods in Knowledge Distillation Framework.

DeBERTa achieves HR@50 of 84.60, representing a significant improvement over the Content-Only (77.45) and Traditional
Attention (72.91) models, indicating its effectiveness in capturing broader relevance. Similarly, on the Amazon CDs dataset,
the Full DeBERTa achieves HR@50 of 89.48, outperforming Content-Only (82.24) and Traditional Attention (80.71), which
underscores its superior generalization. The smaller performance gaps in HR@10 for both datasets suggest that simpler
models can effectively identify top recommendations, but the growing gaps at HR@50 emphasise the Full DeBERTa’s
enhanced capacity to handle broader recommendation coverage. Overall, the results validate the Full DeBERTa’s robustness
and its ability to integrate richer contextual features, leading to superior recommendation quality across diverse datasets.

F. Key Hyperparameters and Sensitivity Analysis
In the proposed SHARP-Distill framework, various hyperparameters are critical in fine-tuning the model’s performance
and balancing the contributions of different components during training. These parameters affect the behavior of the
student model, which integrates contrastive learning (CL) from DeBERTa-based review embeddings, HGNN outputs, and
CompactGCN embeddings. Below is an overview of the primary hyperparameters and their influence:

1. Temperature for Contrastive Learning (τ ): This parameter adjusts the scaling of similarity scores between the
student’s and teacher’s embeddings. Lower τ values create sharper distinctions between embeddings, enhancing
contrastive learning, while higher values result in softer, less distinct similarities.

2. Contrastive Loss Weight (γ): Controls the balance between the contrastive loss and other losses such as the BPR
loss in the teacher model. Increasing γ raises the importance of contrastive learning, encouraging the student to better
match both DeBERTa-based review embeddings and structural information from HGNN and CompactGCN.

3. Distillation Loss Weight (λ): Governs the influence of the distillation process, specifically the teacher’s soft labels, on
the student model. A higher λ emphasises learning from the teacher’s knowledge, while a lower value shifts the focus
towards fitting ground truth labels.

4. Learning Rate (lr): Determines the speed at which the model updates its parameters during training. A lower learning
rate promotes more stable convergence but may slow down the overall learning process, whereas a higher learning rate
accelerates training but risks overshooting optimal solutions.

5. Embedding Dimension: Refers to the size of the feature vectors generated by HGNN, CompactGCN, and DeBERTa.
Higher-dimensional embeddings can capture more intricate patterns but require greater computational resources. This
is critical as the student model aggregates embeddings from multiple sources, including user-item interactions and
high-order relationships in the hypergraph.

These hyperparameters must be carefully tuned to ensure the student model effectively balances the rich information from
DeBERTa, HGNN, and CompactGCN, while maintaining efficient and accurate recommendation performance. The results
shown in table 10 as follows:

25



SHARP-Distill: 68× Faster Recommender System

Table 10. Impact of Hyperparameters on Precision@10 for SHARP-Distill on the Yelp Dataset (%)

Temp (τ ) Cont Loss (γ) Dist Loss (λ) LR (lr) Emb Dim P@10 (%)

0.1

0.2 0.1 0.001 64 3.29

0.5 0.1 0.001 128 3.71

1.0 0.9 0.01 256 3.65

0.5 0.9 0.01 128 3.39

0.5
0.5 0.5 0.001 128 3.63

1.0 0.9 0.001 256 3.52

1.0 0.5 0.01 256 3.70

1.0
0.5 0.9 0.01 128 3.88
1.0 0.5 0.01 256 3.67

Best Config P@10 = 3.88 (%)

The results indicate that tuning hyperparameters is crucial for optimising the performance of the SHARP-Distill model.
The table presents the effects of different configurations of temperature (τ ), contrastive loss weight (γ), distillation loss
weight (λ), learning rate (lr), and embedding dimension on P@10 as follows:

• Temperature (τ ): As the temperature increases from 0.1 to 1.0, the best performance is observed at τ = 1.0, suggesting
that a higher temperature may help balance the trade-off between exploration and exploitation in the recommendation
process.

• Contrastive Loss Weight (γ):The optimal configuration appears when γ = 0.5 with τ = 1.0 and λ = 0.9, resulting in
the highest Precision@10 of 3.88%. This indicates that a moderate contrastive loss weight effectively enhances the
learning process without causing overfitting.

• Distillation Loss Weight (λ): A higher distillation loss weight of 0.9 in combination with γ = 0.5 and τ = 1.0 leads
to the best results. This suggests that emphasizing the distillation loss in this scenario improves the model’s ability to
transfer knowledge effectively.

• Learning Rate (lr): A learning rate of 0.01 appears beneficial for the configurations leading to higher Precision@10
scores. The results show that a lower learning rate allows for more stable convergence, particularly when combined
with a high contrastive loss weight.

• Embedding Dimension: The embedding dimension plays a less prominent role compared to the other hyperparameters
in this specific set of experiments, but the variations indicate a preference for higher dimensions to retain rich
information.

In summary, the optimal configuration of τ = 1.0, γ = 0.5, λ = 0.9, and a learning rate of 0.01 maximizes Precision@10
at 3.88%. This configuration suggests a robust balance between capturing complex relationships from the data while
maintaining computational efficiency. Careful tuning of these hyperparameters is essential for enhancing the recommendation
performance of the SHARP-Distill model.

G. Evaluation of SHARP-Distill Based on the Depth of Layers Configuration
To further evaluate the performance of SHARP-Distill, we analyze the impact of varying the number of layers across
different components of the model, focusing on hit rate (HR@50) and inference time. Specifically, we examine the HGNN
and Teacher MLP in the Teacher section, as well as CompactGCN and Distill MLP in the Student section. The default
configuration uses three layers for both HGNN and Teacher MLP, one layer for CompactGCN, and two layers for Distill
MLP. To assess how model depth affects performance, we experiment with different layer configurations (2, 3, 4, and 5
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Figure 18. HGNN Model Figure 19. Teacher MLP HGNN Model

Figure 20. CompactGCN Model Figure 21. Distill MLP Model

Figure 22. Evaluation of the Proposed Method Based on the Depth of Layers Configuration for HGNN, Teacher MLP, CompactGCN, and
Distilled MLP using the Yelp Dataset

layers) and compare the results based on both accuracy and inference time. These experiments are conducted using the Yelp
dataset, and the outcomes are presented in Figure 22.

In the default configuration, both HGNN and Teacher MLP are set to three layers, while CompactGCN operates with a
single layer, and Distill MLP is configured with two layers. This arrangement facilitates a balanced evaluation of model
performance: the three-layer depth for HGNN and Teacher MLP enhances their capacity to capture complex relationships,
achieving moderate hit rates (HR@50) while maintaining reasonable inference times of 29 ms and 25 ms, respectively.
In contrast, CompactGCN’s single layer allows it to achieve a high hit rate of 84.60%, though this may limit its ability
to capture intricate patterns compared to the deeper models. Meanwhile, the two layers of Distill MLP yield a hit rate of
85.30%, indicating that adding depth improves performance while also increasing inference time to 35 ms. Overall, this
configuration strikes a balance between accuracy and efficiency, with deeper models generally performing better, while
CompactGCN benefits from reduced complexity. It is noteworthy that the addition of layers correlates with an increase in
inference time, underscoring the trade-off between model depth and computational efficiency.

H. Training Size Settings
In this section, we evaluate the performance of SHARP-Distill under varying training size settings on the Yelp dataset. The
primary objective is to assess how increasing the training data influences the model’s performance compared to several
baseline models: LightGCN, HCCF, HGAtt, KRD(R), and LightHGNN(R). The dataset is split into 10% for testing,
20% for validation, and the remaining 70% is used for training. We further divide the training data into four sections: 40%,
60%, 80%, and 100% of the 70% training set to assess how model performance scales with the amount of training data.
This fixed test size ensures a consistent evaluation of all models as the training set grows. We focus on two key metrics:
Precision (P@10, P@20, P@50) and Hit Rate (HR@10, HR@20, HR@50), which are commonly used to evaluate the
accuracy and relevance of recommendations. As the training size increases, we expect the performance of all models to
improve, though at varying rates depending on the model’s complexity and ability to generalise with more data. The table
below presents the results of our experiments, where the best results for the highest training size (100%) are balded. This
analysis provides insights into the scalability and effectiveness of each method, helping to identify which models benefit the
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most from additional training data. The results presented in Table 11 are as follows:

Table 11. Comparison of Models on Yelp Dataset Based on Precision@10, 20, 50 and Hit Rate@10, 20, 50 with Varying Training Data
Proportions

Model 40% Train 60% Train 80% Train
P@10 P@20 P@50 P@10 P@20 P@50 P@10 P@20 P@50

KRD(R) 2.17 2.54 2.94 2.78 3.15 3.85 3.02 3.64 4.37
LightHGNN(R) 2.31 2.76 3.37 2.94 3.41 4.12 3.17 3.78 4.72
SHARP-Distill 2.26 2.89 3.54 2.85 3.63 4.65 3.51 4.11 5.24

HR@10 HR@20 HR@50 HR@10 HR@20 HR@50 HR@10 HR@20 HR@50
KRD(R) 17.64 25.13 38.59 21.66 34.19 48.53 31.47 43.70 65.49
LightHGNN(R) 18.22 28.35 40.28 24.39 37.18 51.94 33.17 47.55 67.49
SHARP-Distill 20.14 27.36 41.55 23.72 39.47 57.38 40.59 55.18 76.42

The performance analysis of the models on the Yelp dataset, as presented in Table 11, provides valuable insights into
how varying training sizes impact recommendation accuracy, measured through Precision (P@10, P@20, P@50) and Hit
Rate (HR@10, HR@20, HR@50). At the 40% training size, SHARP-Distill exhibits lower Precision scores compared to
LightHGNN(R). This diminished performance suggests that SHARP-Distill may require a larger dataset to effectively capture
the relationships and patterns within the data, indicating its reliance on extensive training data for optimal performance.
As the training data increases to 60% and 80%, SHARP-Distill shows significant improvements, surpassing both KRD(R)

and LightHGNN(R) in most metrics. Specifically, at the 80% training size, it achieves the highest scores of 3.51, 4.11, and
5.24 for Precision@10, @20, and @50, respectively, along with a Hit Rate@50 of 76.42. This trend illustrates that while
SHARP-Distill may start with lower scores at 40%, its architecture is better equipped to scale with increased training data,
ultimately leveraging this data to enhance its accuracy and relevance in recommendations. To improve the performance of
SHARP-Distill at the 40% training size, it would be beneficial to explore strategies such as data augmentation, fine-tuning
model hyperparameters, or integrating additional features that could enhance the model’s learning capabilities with a limited
dataset. By implementing these approaches, it may be possible to bolster SHARP-Distill’s initial performance, enabling it to
extract more meaningful insights from smaller training sets.

I. Training Epochs Settings
To comprehensively evaluate the performance of SHARP-Distill, we carried out an ablation study that investigated the effects
of different training durations, specifically by varying the number of training epochs. This analysis seeks to understand
how the length of training impacts the model’s precision and generalization ability across various datasets. Each model was
trained under identical dataset and hyperparameter configurations to ensure a fair comparison. The outcomes of this study
are illustrated in Figure 25, showcasing the precision achieved by SHARP-Distill for each training epoch configuration
within the context of the Yelp dataset.

Figure 23. Yelp Dataset Figure 24. Amazon CDs Dataset

Figure 25. Analysis of the impact of training epochs (ranging from 100 to 2000) on model performance, highlighting how different epoch
settings affect precision scores.
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J. Comprehensive Experimental Analysis and Results Visualisation
This section presents comprehensive experimental analysis through four key visualisations that demonstrate the effectiveness
of SHARP-Distill’s core innovations: positional encoding integration, knowledge transfer mechanisms, multi-modal fusion,
and overall performance superiority.

J.1. Positional Encoding Impact Analysis

Figure 26 demonstrates the critical role of positional encoding in SHARP-Distill’s knowledge transfer mechanism. The
analysis compares performance with and without positional encoding across five real-world datasets, revealing consistent
improvements when hypergraph-based positional encodings are incorporated into the student model’s contrastive learning
framework.

Figure 26. Impact of Positional Encoding on SHARP-Distill Performance. Left: Performance comparison across datasets showing
consistent improvements with positional encoding. Right: Percentage improvements demonstrating the effectiveness of position-aware
contrastive alignment in capturing structural knowledge from the teacher model.

The left panel of Figure 26 shows substantial performance gains across all datasets when positional encoding is integrated
into the student model. The improvements are particularly pronounced in the Sports dataset (+8.9%) and Yelp dataset
(+12.8%), demonstrating that positional encoding effectively addresses the limitation of shallow CompactGCN in capturing
high-order structural dependencies. The right panel quantifies these improvements, showing an average enhancement of 7.2%
across all datasets. This validates our hypothesis that hypergraph-based positional encodings enable the lightweight student
model to inherit topological knowledge from the complex teacher architecture, compensating for the loss of expressiveness
when omitting deep GNN layers and non-linearities.

The consistent improvements across diverse datasets with varying characteristics (sparse vs. dense, different domains) indi-
cate that the positional encoding mechanism is robust and generalisable. The Sports dataset shows the highest improvement,
likely due to its sparser nature where structural information becomes more critical for accurate recommendations.

J.2. Knowledge Transfer Effectiveness Analysis

Figure 27 analyses the effectiveness of SHARP-Distill’s teacher-student knowledge transfer mechanism, examining both
performance retention and computational efficiency gains.

The performance retention analysis (left panel) reveals that SHARP-Distill successfully preserves 91.3% to 97.2% of
the teacher model’s performance across all datasets, with an average retention rate of 94.1%. This high retention rate
demonstrates the effectiveness of our multi-faceted knowledge transfer approach, which combines soft label distillation,
embedding interpolation, and contrastive learning with positional encoding. The CDs dataset shows the highest retention
(97.2%), while the Sports dataset shows the lowest but still substantial retention (91.3%).

The inference speed analysis (right panel) highlights SHARP-Distill’s primary advantage: achieving 68× faster inference
than the teacher model (HGNN+DeBERTa) and 40× faster than LightGCN, while using only 0.5M parameters compared to
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Figure 27. Knowledge Transfer Effectiveness in SHARP-Distill. Left: Performance retention analysis showing that SHARP-Distill
maintains 91-97% of teacher performance across datasets. Right: Inference speed comparison demonstrating 68× speedup over the teacher
model while maintaining competitive accuracy.

the teacher’s 145M parameters. This dramatic speedup is achieved through the lightweight CompactGCN architecture that
requires only O(|E|d) complexity during inference, making it suitable for real-time deployment scenarios. The combination
of high performance retention and substantial speedup validates the core premise of SHARP-Distill: that complex structural
and semantic knowledge can be effectively compressed into a lightweight model through carefully designed knowledge
transfer mechanisms.

J.3. Multi-Modal Integration Analysis

Figure 28 examines the effectiveness of SHARP-Distill’s multi-modal approach, analyzing the contribution of different
modalities and the sensitivity to the key hyperparameter α that balances embedding and positional similarities.

Figure 28. Multi-Modal Knowledge Integration Analysis. Left: Modality contribution showing that combining structural and textual
information consistently outperforms individual modalities. Right: Hyperparameter sensitivity analysis revealing optimal (α = 0.5) for
balancing embedding and positional similarities in contrastive learning.

The modality contribution analysis (left panel) demonstrates the synergistic effect of combining structural (HGNN)
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and textual (DeBERTa) information sources. SHARP-Distill consistently outperforms both structure-only and text-only
approaches across all datasets, with improvements ranging from 8.9% (Beauty) to 23.2% (Yelp) over structure-only methods.
This validates our multi-modal approach and confirms that textual reviews provide complementary information to structural
user-item interactions.

Notably, the structural modality generally outperforms the textual modality alone, except in the Cellphones dataset where
they perform similarly. This suggests that while user-item interaction patterns provide strong signals for recommendation,
the integration of semantic information from reviews consistently enhances performance, particularly in domains where
textual descriptions are rich and informative.

The hyperparameter sensitivity analysis (Figure 28, right panel) reveals that α = 0.5 provides optimal performance,
indicating that embedding similarity and positional similarity contribute equally to effective knowledge transfer. The
performance curve exhibits a clear peak at α = 0.5, with degradation on both sides, demonstrating the importance of
balanced integration of both similarity measures. Performance drops to 3.42% when relying solely on embedding similarity
(α = 0.0) and to 3.65% when using only positional similarity (α = 1.0), confirming the necessity of the dual-view
contrastive learning approach.

J.4. Comprehensive Performance Comparison

Figure 29 provides a comprehensive evaluation of SHARP-Distill against state-of-the-art baselines, analysing both absolute
performance and the critical trade-off between accuracy and inference efficiency.

Figure 29. Comprehensive Performance Analysis. Left: P@10 performance comparison across Yelp and CDs datasets showing SHARP-
Distill’s competitive accuracy. Right: Performance vs inference time trade-off analysis revealing SHARP-Distill’s superior efficiency
while maintaining high accuracy.

The absolute performance comparison (left panel) shows that SHARP-Distill achieves competitive or superior performance
compared to state-of-the-art methods. On the Yelp dataset, SHARP-Distill outperforms all baselines with 3.88% P@10,
representing a 10.2% improvement over the second-best method (HCCF: 3.52%). On the CDs dataset, while HCCF achieves
the highest performance (13.96%), SHARP-Distill maintains competitive accuracy (13.75%) while offering substantial
efficiency advantages.

The performance-efficiency trade-off analysis (right panel) reveals SHARP-Distill’s unique position in achieving the optimal
balance between accuracy and speed. While methods like HCCF and HGAtt achieve high accuracy, they require 400-450ms
inference time. LLM-based methods (SAID, POD) offer moderate efficiency but still require 50-110ms. SHARP-Distill
uniquely achieves both high accuracy (13.75%) and exceptional speed (9.77ms), positioning it in the optimal region of the
performance-efficiency space.

This analysis demonstrates that SHARP-Distill successfully addresses the fundamental challenge in recommendation
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systems: maintaining high accuracy while achieving real-time inference speeds suitable for production deployment. The 68×
speedup over complex teacher models, combined with competitive accuracy, validates the effectiveness of our knowledge
distillation approach. The comprehensive experimental analysis reveals several key insights:

Positional Encoding Effectiveness: The consistent 7.2% average improvement across datasets confirms that hypergraph-
based positional encodings successfully capture high-order structural dependencies in lightweight models, addressing a
fundamental limitation of shallow architectures.

Knowledge Transfer Success: The 94.1% average performance retention demonstrates that complex teacher knowledge
can be effectively compressed into lightweight students through multi-faceted transfer mechanisms combining soft labels,
embedding interpolation, and contrastive learning.

Multi-Modal Synergy: The superior performance of combined approaches over individual modalities validates the
importance of integrating both structural and semantic information sources, with optimal balance achieved at(α = 0.5).

Practical Deployment Advantage: The 68× speedup while maintaining competitive accuracy positions SHARP-Distill as a
practical solution for real-time recommendation scenarios where both accuracy and efficiency are critical.

These results collectively demonstrate that SHARP-Distill successfully achieves its design objectives: capturing complex
multi-modal knowledge in a lightweight, efficient architecture suitable for production deployment while maintaining
state-of-the-art recommendation accuracy.

J.5. Training Cost Analysis

Table 12 presents the offline training costs for SHARP-Distill’s teacher model compared to the LightGCN baseline. While the
teacher model requires additional training time due to the integration of HGNN and DeBERTa components, this represents a
one-time offline cost that is amortised by the significant inference speedups achieved during deployment.

Table 12. Offline training time comparison (hours). The teacher model training is a one-time cost offset by substantial inference
acceleration.

Dataset SHARP-Distill Teacher LightGCN Overhead

Amazon Cellphones 1.7 0.8 2.1×
Amazon Beauty 2.8 1.3 2.2×
Amazon Sports 2.4 1.1 2.2×
Amazon CDs 4.2 2.0 2.1×
Yelp 3.5 1.7 2.1×

Average 2.9 1.4 2.1×

The training overhead averages 2.1× compared to LightGCN, which is acceptable considering the substantial inference
benefits (68× speedup over the teacher model during deployment) and improved accuracy. This training cost is incurred only
once during the offline model preparation phase, while the inference benefits are realised continuously during production
serving.

J.6. Component Contribution Analysis

To quantify the individual contribution of each component in SHARP-Distill, we conducted a comprehensive ablation study
by systematically removing key components and measuring the resulting performance degradation. Table 13 presents the
results in terms of absolute and relative P@10 performance drops.

The ablation results reveal several critical insights: First, removing DeBERTa causes an 18.8% performance drop, confirming
that semantic features extracted from user reviews provide substantial complementary information to structural signals.
Second, removing HGNN results in a 24.5% performance degradation, demonstrating the fundamental importance of
capturing high-order structural relationships in user-item interactions.

Most significantly, removing the contrastive learning mechanism leads to the largest performance drop (29.4%), highlighting
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Table 13. Ablation study results showing performance degradation when key components are removed. Results averaged across all
datasets demonstrate the complementary nature of structural and semantic modalities.

Component Removed Absolute Drop (P@10) Relative Drop (%) Interpretation

DeBERTa (Semantic) 0.73 18.81% Semantic features highly informative
HGNN (Structural) 0.95 24.48% Structural signals crucial for accuracy
Contrastive Learning 1.14 29.38% Alignment mechanism most critical

that simply concatenating structural and semantic encoders is insufficient. Without proper cross-modal alignment, modality
interference actually reduces effectiveness compared to well-aligned multi-modal integration. This empirically validates our
core hypothesis that contrastive learning not only unifies different modalities but actively unlocks their synergistic potential.

These findings demonstrate that all three components—structural modeling (HGNN), semantic understanding (DeBERTa),
and cross-modal alignment (contrastive learning)—are essential for SHARP-Distill’s superior performance. The results
confirm that our multi-modal knowledge distillation approach successfully leverages the complementary strengths of
different information sources while maintaining computational efficiency through the lightweight student architecture.

The comprehensive evaluation demonstrates SHARP-Distill’s advantages across multiple dimensions:

Accuracy Superiority: Consistent improvements over RecSys-specific distillation methods (6.5-13.9% across datasets)
validate the effectiveness of multi-modal knowledge transfer.

Efficiency Gains: Average 2× inference speedup over existing distillation approaches, with 68× acceleration over complex
teacher models.

Component Synergy: Ablation studies confirm that structural, semantic, and alignment components work synergistically,
with contrastive learning being the most critical mechanism.

Practical Deployment: Reasonable training overhead (2.1×) for substantial deployment benefits positions SHARP-Distill
as a practical solution for production recommendation systems.

J.7. Empirical Verification of Theoretical Foundations

SHARP-Distill’s design is firmly grounded in established theoretical principles, which we empirically validate through
comprehensive analysis. Our approach integrates three key theoretical foundations:

• Structure-preserving distillation: Transfers relational knowledge through softened probability distributions, following
Hinton et al. (Hinton, 2015).

• InfoNCE contrastive learning: Aligns student-teacher embeddings by maximizing mutual information, as established
by Oord et al. (Oord et al., 2018).

• Hypergraph spectral filtering: Captures high-order relations through graph Fourier transforms and spectral convolu-
tion, following Feng et al. (Feng et al., 2019).

To validate these theoretical foundations empirically, we employ Centered Kernel Alignment (CKA) analysis (Kornblith et al.,
2019), which quantifies representational similarity between neural networks. Higher CKA scores indicate closer alignment
between the student’s latent representations and the teacher’s structural (HGNN) and semantic (DeBERTa) components.

Table 14 demonstrates that the SHARP-Distill student consistently achieves CKA scores in the range 0.83–0.88, significantly
outperforming individual teacher components (HGNN: 0.71 average, DeBERTa: 0.76 average). This 12-19% improvement
in representational alignment confirms that our distillation process not only preserves but synergistically integrates structural
and semantic knowledge. These findings align with distillation theory suggesting that well-regularised students can exceed
their teachers in representation coherence through implicit smoothing effects.
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Table 14. CKA similarity analysis between teacher and student representations. SHARP-Distill student consistently achieves higher
alignment scores than individual teacher components, demonstrating effective knowledge integration.

Dataset HGNN vs Teacher DeBERTa vs Teacher SHARP-Distill Student

Amazon CDs 0.72 0.78 0.86
Yelp 0.69 0.74 0.84
Cellphones 0.75 0.80 0.88
Beauty 0.70 0.76 0.85
Sports 0.68 0.73 0.83

Average 0.71 0.76 0.85

J.8. Inference Efficiency and Deployment Analysis

We conducted comprehensive efficiency evaluation on large-scale recommendation benchmarks and introduce a novel
Deployment Cost Index (DCI) to quantify the end-to-end cost trade-off between offline training and online inference.

J.8.1. INFERENCE LATENCY ANALYSIS

All models were benchmarked on NVIDIA V100 GPUs, measuring average per-query latency (batch size = 1) over 10,000
runs to ensure statistical significance. Table 15 presents the inference performance comparison.

Table 15. Inference latency comparison and speedup analysis. SHARP-Distill achieves substantial acceleration while maintaining
competitive accuracy.

Dataset
Inference Latency (ms/query) Speedup

LightGCN HGNN SHARP-Distill vs LightGCN vs HGNN

Amazon CDs 395.45 668.23 9.77 40.5× 68.4×
Yelp 342.67 552.34 8.79 39.0× 62.8×

Average 369.06 610.29 9.28 39.8× 65.6×

SHARP-Distill demonstrates exceptional inference efficiency, achieving up to 68.4× speedup over HGNN and 40.5×
speedup over LightGCN. This dramatic acceleration makes SHARP-Distill highly suitable for latency-sensitive production
environments where sub-10ms response times are critical.

J.8.2. DEPLOYMENT COST INDEX (DCI)

We introduce the Deployment Cost Index to capture the holistic cost-benefit trade-off:

DCI = Ttrain × Linf (45)
where Ttrain = student training time (hours) (46)

Linf = inference latency (ms/query) (47)

This metric reflects the amortised cost of training and serving the student model, excluding the one-time teacher pretraining
cost.

Table 16 shows that SHARP-Distill achieves dramatically lower DCI values: 19.3× better on Amazon CDs and 18.6× better
on Yelp. Even accounting for the additional student training time, SHARP-Distill recoups the extra training investment
within approximately 10,000 inference requests—a volume typically reached within minutes in production environments.
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Table 16. Deployment Cost Index (DCI) comparison. Lower values indicate better efficiency trade-offs. SHARP-Distill demonstrates
superior cost-effectiveness.

Dataset Model Train Time Inference DCI Improvement
(hrs) (ms)

Amazon CDs
LightGCN 2.0 395.45 790.90 –
SHARP-Distill 4.2 9.77 41.03 19.3× better

Yelp
LightGCN 2.0 342.67 685.34 –
SHARP-Distill 4.2 8.79 36.88 18.6× better

J.8.3. MEMORY COMPLEXITY ANALYSIS

The teacher model’s hypergraph neural networks require O(RLd) memory for L layers with R neighbours per node and
d-dimensional embeddings. For Amazon CDs dataset (R ≈ 208, d = 128):

• L = 3: ≈ 5.67 MB (selected configuration)

• L = 4: ≈ 1, 180.16 MB

• L = 5: ≈ 245, 736.24 MB

We select L = 3 to balance expressiveness against hardware constraints, while the CompactGCN student requires only
O(Rd) ≈ 0.027 MB—a 210× memory reduction. Our efficient preprocessing pipeline (< 10 minutes on largest datasets)
includes:

• Text normalisation: Lowercasing, punctuation removal, stop-word filtering

• Tokenization: DeBERTa tokenizer with max length = 128 tokens

• Hypergraph construction: User-item hyperedges from review interactions

• Rating normalisation: Min-max scaling to [0,1] range

J.8.4. STUDENT MODEL EFFICIENCY SUMMARY

The distilled CompactGCN student achieves remarkable efficiency improvements:

• Memory footprint: O(Rd) ≈ 0.027 MB (210× reduction)

• Training acceleration: 3.5× faster than teacher model

• Inference speedup: 65.6× average speedup over teacher model

• Deployment readiness: Sub-10ms latency suitable for real-time systems

These substantial improvements in computational efficiency, combined with competitive accuracy retention (94.1% average),
demonstrate SHARP-Distill’s practical viability for large-scale, latency-sensitive recommendation systems.

K. Related Works
K.1. Recommender Systems Based on Knowledge Distillation

Knowledge distillation involves transferring knowledge from a complex model (the teacher) to a smaller, more efficient
model (the student). This process allows smaller models to leverage insights from larger counterparts. Previous methods,
like GLNN (Zhang et al., 2021) and NOSMOG (Tian et al., 2022), primarily used soft labels based on the teacher GNN’s
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prediction distributions to guide student MLPs. For example, Yang et al. (Yang et al., 2021) extracted knowledge from
a GNN for a student model but did not fully integrate structural information. KRD (Wu et al., 2023) quantified vertex
knowledge and considered proximity to neighbours but remained limited to low-order structures. Liu et al. (Liu et al., 2022)
introduced the HIRE framework for heterogeneous graphs, capturing first- and second-order information with soft labels.
Feng et al. (Feng et al., 2024) developed the LightHGNN model, which incorporates hyperedges for high-order relations
but still relies on soft labels. Similarly, Yu et al. (Yu et al., 2024) distilled knowledge from meta-paths into hypergraphs,
using soft labels for transfer. Although models like LightHGNN (Feng et al., 2024) emphasise high-order relations, they are
still tied to soft label methodologies. There is a clear need for innovative methods that better integrate graph structure into
knowledge distillation.

In the realm of applying knowledge distillation techniques to recommendation systems, several studies have been conducted.
Kang et al. (Kang et al., 2020) introduced a knowledge distillation framework for recommender systems that allows the
student model to learn not only from the teacher’s predictions but also from the latent knowledge embedded within the
teacher model by employing the concept of Distillation Experts. Kang et al. (Kang et al., 2022) introduced a method
called Personalised Hint Regression, which distills preference knowledge in a balanced manner without depending on
assumptions about the representation space or specific hyperparameters for the method. To avoid clustering issues, they
utilises a personalization network that facilitates individualised distillation for each user or item representation, effectively
generalising the concept of distillation experts. Wang et al. (Wang et al., 2021) introduced a approach called Graph Structure
Aware Contrastive Knowledge Distillation for Incremental Learning in recommender systems, specifically designed to
emphasise the abundant relational information present in the recommendation context. Cui et al. (Cui et al., 2024) propose a
distillation strategy designed for transferring knowledge from LLM-based recommendation models to traditional sequential
models. Li et al. (Li et al., 2024a) introduced a contrastive context encoder that uses attention mechanisms to model both
positive and negative contexts. In training their contextual distillation model, they compare each target item with its context
embedding and employ a knowledge distillation framework to learn the win probability of each target item based on the
maximal marginal relevance algorithm, with the teacher model derived from the outputs of maximal marginal relevance.

In the exploration of knowledge distillation, a critical observation is the reliance on soft labels for knowledge transfer.
Soft labels, derived from the teacher model’s predictions, have demonstrated limitations in achieving sufficient accuracy.
This shortcoming is particularly significant in recommendation contexts, where understanding complex relationships is
crucial for accurate predictions. Additionally, while the studies conducted propose innovative methodologies, they primarily
utilise traditional GNN structures without incorporating hypergraph frameworks. The use of GNNs in this context limits the
models’ ability to fully represent high-order relationships, and relying solely on GNN structures may hinder their capacity
to capture the full spectrum of complex interactions that hypergraphs can offer.

K.2. Hypergraph Structures in Recommender Systems

Hypergraphs enhance traditional graph neural networks (GNNs) by effectively capturing intricate high-order interactions
among multiple nodes through the use of hypergraphs (Antelmi et al., 2023). In contrast to standard graphs, where edges
link only pairs of nodes, hypergraphs enable hyperedges to connect several nodes simultaneously. This characteristic makes
HGNNs particularly useful in areas where higher-order relationships are essential, such as recommender systems, where
discovering high-order relations between users can significantly improve recommendation accuracy (Khan et al., 2023).
Early models, including HGNN (Feng et al., 2019) and HpLapGCN (Fu et al., 2019), employed the hypergraph Laplacian
matrix to facilitate efficient representation learning by smoothing node features across hyperedges. Recently, the use of
HGNNs in recommendation systems has gained popularity among researchers due to their high performance. Wang et al.
(Wang et al., 2022) introduced a hyperedge-based graph neural network (HGNN) for recommending MOOCs. In their
approach, the similarity between learners is modelled as the overlapping relationship between two hyperedges within a
hypergraph. To enhance the representation of each learner, they implemented a hyperedge-based graph attention layer. Peng
et al. (Peng & Zhang, 2022) presented a session-based recommendation model utilising GNNs. To thoroughly incorporate
both global and local contextual information of items, they first convert the current session sequence into a local graph
and all sessions into a hypergraph. Subsequently, they employ HGCN and attention mechanisms to capture the global and
local features of the items. Yin et al. (Yin et al., 2023) proposed a hierarchical hypergraph neural network for personalised
session-based recommendations, aiming to model the hierarchical structure of the data. They recognised that items in
sessions are sequentially ordered, whereas hypergraphs can only represent set relationships. To address this limitation,
they introduced a directed graph aggregator to aggregate sequential information from the directed global item graph. Han
et al. (Han et al., 2024) introduced a Hypergraph Convolutional Network focused on user-oriented fairness, utilising a
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hypergraph-based methodology that has been demonstrated to be effective in sparse datasets for investigating high-order
correlations among users. Li et al. (Li et al., 2024b) developed a conversational recommendation system that constructs a
session hypergraph to capture complex high-order relationships within historical conversations, allowing for the exploration
of users’ implicit preferences. Zhao et al. (Zhao et al., 2023) proposed a model based on Multi-view Hypergraph Contrastive
Policy Learning, which selectively utilises relevant social information based on interactive history and constructs a dynamic
hypergraph comprising three types of multiplex relations from various perspectives. They propose a hierarchical hypergraph
neural network combined with a cross-view contrastive learning module to enhance user preference learning by integrating
graphical and sequential information from the dynamic hypergraph.

Despite the high performance of these models, they often experience increased inference times when generating recom-
mendations, which can limit their practicality in real-time applications. In summary, while HGNNs have demonstrated
promise in enhancing recommendation accuracy through their ability to model high-order interactions, their slower inference
times pose a significant challenge for deployment in dynamic environments. Therefore, balancing accuracy with efficiency
remains a critical focus for research and development in this domain, where we address this challenge by proposing our
model.
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