
Under review as a conference paper at ICLR 2024

DUALITY OF INFORMATION FLOW: INSIGHTS IN
GRAPHICAL MODELS AND NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This research highlights the convergence of probabilistic graphical models and
neural networks, shedding light on their inherent similarities and interactions. By
interpreting Bayesian neural networks within the framework of Markov random
fields, we uncovered deep connections between message passing and neural
network propagation. Our exploration unveiled a striking equivalence between
gradients in neural networks and posterior-prior differences in graphical models.
Empirical evaluations across diverse scenarios and datasets showcased the efficacy
and generalizability of our approach. This work introduces a novel perspective on
Bayesian Neural Networks and probabilistic graphical models, offering insights
that could pave the way for enhanced models and a deeper understanding of their
relationship.

1 INTRODUCTION

Probabilistic graphical models and neural networks are two distinct paradigms for modeling data
generation within networks composed of fundamental computational units. A probabilistic graphical
model defines the joint probability distribution of a network of random variables by leveraging
conditional probabilities or clique potentials. In contrast, a neural network characterizes the
transformation of a tensor “particle” as it progresses through multiple layers, encompassing both
linear and nonlinear operations, to achieve specific outcomes defined by a loss function. In a
broader context, each computational graph, trained with a dataset sampled from a data distribution
via stochastic gradient descent, gives rise to a probabilistic graphical model. This model delineates a
joint probability distribution involving synaptic weights and the data. Conversely, every probabilistic
graphical model leads to a computational graph in which stochastic message passing strives to attain
detailed balance, ultimately resulting in a stationary joint probability distribution. While simulation-
based approaches are often more scalable for processing extensive datasets when compared to
analytical methods, the exploration of connections between deterministic and stochastic perspectives
within network-based computational models holds the promise of yielding enhanced models and
deeper insights (Bishop, 2006; Goodfellow et al., 2016).

In our research, we conceptualized a Bayesian neural network as a Markov random field (Neal,
1995), where the loss function serves as potential energy governing the trajectories of tensors
as they navigate through the computational graph and interact with synaptic weights. The
focus was on identifying mean parameters of tensors during forward propagation and computing
gradients with respect to their canonical parameters in backward propagation (Rockafellar, 1970;
Wainwright & Jordan, 2008; Khan & Rue, 2021). This process reveals the gradient as the
difference in mean parameters between the posterior and prior distributions, highlighting a parallel
between probabilistic graphical models’ message-passing and neural networks’ forward/backward
propagation. Furthermore, we formulated the mean parameters during forward propagation and
their sensitivities during backward propagation in terms of the statistics of tensor particles as they
advanced through the computational graph and the gradients of loss with respect to these tensors
as they propagated backward within the graph. This approach sheds light on the duality between
probabilistic graphical models and Bayesian neural networks, linking population dynamics and
distributions. In our paper, we use the term “particle” to describe a set comprising inputs, post-
activations, synaptic weights, and labels that collectively constitute the state of a Bayesian neural
network. This terminology is borrowed from Monte Carlo methods prevalent in statistical physics

1

Under review as a conference paper at ICLR 2024

and computational mathematics, where a particle represents a possible state of the system under
study, analogous to how physical particles behave and interact (Gardiner et al., 1985).

Our algorithm underwent extensive testing across various datasets including CIFAR 10/100, Tiny
ImageNet, and UCI regression, using neural network architectures like DenseNet, ResNet, and
others. We explored different learning algorithms, such as Bayes-by-backprop for Bayesian neural
networks (BNNs), and incorporated techniques like cosine learning rate scheduling and image
augmentation. We also addressed vanishing gradient issues in BNNs using the variational message
passing algorithm (Winn et al., 2005) and showcased BNNs’ superior generalization through test
error analysis and visualization of learned data distributions.

2 NOTATION

A neural network, as explained in Goodfellow et al. (2016), emulates decision-making processes
based on a training dataset D by minimizing a specific loss. This loss is essentially the empirical
mean of the loss function J(ŷ(x,W),y), calculated in the following manner:

argminW={W1...,WL}
1

|D|
∑

(x,y)∈D
J (ŷ(x,W),y) , (1)

where ŷ(x,W) = xL,xl = fl(al),al = Wl · xl−1 + bl for l = 1, . . . , L, and x0 = x.

In these equations, al, xl, Wl, and fl denote the pre-activation, post-activation, weights, and
activation function of each layer l, respectively. The size of the dataset |D| is the count
of training examples. Often, the loss function J is the negative log-likelihood, J(ŷ,y) =
− log p(y; ŷ), capturing the cross-entropy between the empirical distribution of training data and
the probabilistic model. In our notation, operators are applied from the left, meaning Wl · xl−1 =(∑

jl−1
Wil,jl−1

xjl−1

)
il

computes pre-activation elements at multi-index il as the weighted sum of

post-activation elements at multi-index jl−1. For ease of understanding, multi-indices can be treated
as standard integer indices, with synaptic weights represented as matrices and post-activation tensors
as vectors. The dimensionality of these indices depends on the layer’s architecture.

Let δl = ∇al
J(ŷ,y) denote the gradient of the loss with respect to the activation inputs

at layer l, commonly referred to as the sensitivity of activation inputs (Stork et al., 2000).
Backpropagation recursively computes these gradients for activation inputs and weights through
automatic differentiation: δL = f ′L ◦ ∇ŷJ(ŷ,y), δl−1 = f ′l−1 ◦

(
W⊤

l δl
)
, and ∇Wl

J(ŷ,y) =

δlx
⊤
l−1, for l ranging from L to 1. Here, ∇ represents the gradient, ◦ indicates element-wise

multiplication, •⊤ signifies matrix transpose, and f ′l represents the derivative of the activation
function.

A Bayesian neural network (Neal, 1995) mimics decision-making behavior in training data using an
ensemble of neural networks that share the same computational graph but have distinct synaptic
weights. In this paper, we frame the learning problem as the minimization of the following
variational principle over a set of variational posterior parameters θ:

Eq(W;θW)

∑
(x,y)∈D

J (ŷ(x,W),y) + log q(W;θW)
/
p(W). (2)

Here, W = {W1 . . . ,WL} represents the weights, p(W) is the prior probability, and q(W;θW) is
the variational posterior probability. All other symbols are consistent with those of a non-Bayesian
neural network. The objective is to minimize the negative evidence lower bound. The stochastic
weights introduce a probability distribution over ŷ(x). The ensemble decision is formulated as
Bayesian model averaging Eq(W;θW)ŷ(x|W), and model uncertainty can be assessed through the
entropy of the ensemble decision −Eq(W;θW) log p(ŷ|x,W).

Minimizing the variational free energy in the aggregated loss −
∑

(x,y)∈D log p(y|x) concurrently
minimizes the variational free energy in the negative log-likelihood of the training data
−
∑

(x,y)∈D log p(x,y), because log p(x) is independent of W. Therefore, optimizing Eq. 2
with respect to the variational parameters θW provides a sampling-free methodology (Tieleman
& Hinton, 2009; Friston, 2010; Lee & LeCun, 2017; Song et al., 2021) for learning complex
probability distributions over the data D. Here, the potential energy is defined as log p(x,y,W) =
J(ŷ(x,W),y)− log p(W) + constant.

2

Under review as a conference paper at ICLR 2024

As tensor “particles” traverse multiple layers of linear and nonlinear transformations within an
ensemble of neural networks during forward propagation, their probability distribution evolves
accordingly. Likewise, during backpropagation, as the loss gradient with respect to these tensors
traverses these transformation layers, it characterizes the sensitivity of the probability distributions.
This sensitivity, in turn, generates various probability kernels that guide the particles and modify the
probability distributions toward minimizing the loss. In this context, a duality (Gardiner et al., 1985)
emerges between the stochastic tensor flow within a Bayesian neural network and the deterministic
evolution of probability distributions within a probabilistic graphical model.

The case of particular interest is when the data-generating process from x0 to xl=1,...,L and y is
approximately Gaussian-linear. As suggested by Jacot et al. (2018), neural networks tend to remain
approximately linear throughout training in overparameterized regimes. This linear approximation
simplifies the analysis of convergence and generalization, as it essentially involves inferences using
multivariate normal distributions. In such scenarios, the activation function can be approximated
using its first-order Taylor expansion. Additionally, the synaptic weights are reparameterized using
weight parameters θWl

and a standard Gaussian random vector ωl. This leads to a Gaussian
Markov random field, as described by Rue & Held (2005), characterized by the following Langevin
process (describing the stochastic tensor flow) and the Fokker-Planck process (detailing the tensor
distribution evolution):

xl = fl(xl−1,Wl) ≈ x̂l + f̂ ′xl−1
· (xl−1 − x̂l−1) + f̂ ′Wl

·
(
Wl − Ŵl

)
,

y = g(xL,νL) ≈ g(x̂L, 0) + ĝ′
xL

· (xL − x̂L) + ĝ′
νL

νL,

p(xl|xl−1;θWl
) = N

(
x̂l + f̂ ′xl−1

· (xl−1 − x̂l−1), f̂
′
Wl

PWl
f̂ ′⊤Wl

)
, (3)

p(y|xL) = N
(
g(x̂L, 0) + ĝ′

xL
· (xL − x̂L),g

′
νL

g′⊤
νL

)
. (4)

In the above equations, the transformation fl, mapping post-activation xl−1 to post-activation xl,
is approximated using a first-order Taylor expansion centered around xl−1 = x̂l−1 and Ŵl.
Specifically, x̂l = fl(x̂l−1,Ŵl) represents the mean transformation, and f̂ ′xl−1

and f̂ ′Wl
are the

gradients of fl with respect to xl−1 and Wl, computed at this point. Similarly, the transformation
g that maps post-activation xL and the multivariate standard Gaussian noise generator νL to the
observation y is also approximated using a first-order Taylor expansion centered around xL = x̂L

and νL = 0.

Learning a Gaussian linear Bayesian neural network involves inferring the posterior distributions
for post-activations and weights through variational or MCMC methods. This process includes
a forward “filtering” pass, updating Bayesian beliefs α(xl;θl)

def
= p(xl|x0 = x) from the input

to higher-level post-activations and output, and a backward “smoothing” pass, refining the beliefs
γ(xl;θl|L)

def
= p(xl|x0,y), and q(Wl;θWl

) using information from the output and higher-level
post-activations, where θl, θl|L, and θWl

are variational parameters. The Kalman filter/smoother, a
deterministic algorithm, computes the mean and variance of post-activations and weights as follows:

α(xl) = N (x̂l, Pl),with Pl = f̂ ′xl−1
Pl−1f̂

′⊤
xl−1

+ f̂ ′Wl
PWl

f̂ ′⊤Wl
, (5)

γ (xl) = N
(
x̂l|L, Pl|L

)
, with x̂L|L = x̂L +KL(y − ŷ), PL|L = PL −KLSLKL, (6)

x̂l|L = x̂l +Gl

(
x̂l+1|L − x̂l+1

)
, Pl|L = Pl −Gl

(
Pl+1|L − Pl+1

)
G⊤

l ,

Ŵl|L = Ŵl +GWl

(
x̂l|L − x̂l

)
, PWl|L = PWl

−GWl

(
Pl|L − Pl

)
G⊤

Wl
,

where SL = ĝ′
xL

PLĝ
′⊤
xL

+ ĝ′
νL

ĝ′⊤
νL

represents the observation covariance, KL = PLg
′⊤
xL

S−1
L is

the Kalman gain from the observation, Gl = Pl f̂
′⊤
xl

P−1
l+1|L and GWl

= PWl
f̂ ′⊤Wl

P−1
l|L denote the

smoothing gains in backpropagation, and Ŵl|L, PWl|L , Ŵl, and PWl
are the posterior and prior

parameters of the weight Wl.

3 MARKOV RANDOM FIELD SPECIFIED BY BAYESIAN NEURAL NETWORK

In this section, we consider tensor transformations within a Bayesian neural network as a
stochastic process. We then formulate the forward propagation of tensor distributions and the

3

Under review as a conference paper at ICLR 2024

backpropagation of their sensitivities as a form of belief propagation. We establish a connection
between the stochastic perspective on tensor transformations and the deterministic perspective on
tensor distribution evolution. Lastly, we present an algorithm for converting a tensor layer into a
stochastic layer.

3.1 BACKPROPAGATION THROUGH STOCHASTIC LAYERS

We will explore the forward propagation of tensor distribution parameters in a Bayesian neural
network and the subsequent backward propagation of the loss gradient relative to these parameters
within the network’s computational graph. A theorem presented here establishes a profound
mathematical link between two pivotal concepts: backpropagation, essential in neural network
training, and belief propagation, commonly employed in probabilistic graphical models. This
theorem sheds light on the flow of information through a Bayesian neural network during both
forward and backward passes.

In its essential form, the filtering distribution α(xl;θl) = p(xl|x0 = x) is parameterized
by θl, while the smoothing distribution is γ(xl) = p(xl|x0,y). For the exponential family,
α(xl;θl) = exp(−θl · T(xl) − A(θl)), with canonical parameters θl, feature statistics T(xl),
and mean parameters µl = Eα(xl)T(xl) and µl|L = Eγ(xl)T(xl). In a Gaussian linear model
approximation of a Bayesian neural network, post-activation mean and variance are x̂l, Pl, x̂l|L,
and Pl|L, with canonical parameters ηl = P−1

l xl, Λl = −.5 · P−1
l for filtering, and ηl|L, Λl|L for

smoothing.
Theorem 1. Equivalence between Backpropagation and Belief Propagation in a Bayesian Neural
Network.

(1) Gradient of Loss with Respect to Parameters: In its most general form, the gradient of loss
with respect to the post-activation filtering distribution parameters θl and the variational weights
distribution parameters θWl

can be expressed as:
∇θl

J = −Eγ(xl)∇θl
logα(xl;θl), ∇θWl

J = −Eγ(xl−1,xl)∇θWl
log p(xl|xl−1;θWl

).

(2) Error Gradient for Canonical Parameters: When filtering distribution is in the exponential
family, error gradient for the canonical parameters is the difference in the mean parameters between
smoothing and filtering distributions. Backpropagation mirrors backward belief propagation:
∇θl

J = µl|L − µl, ∇θl
J = ∇θl

µl ∇µl
µl+1 ∇µl+1

θl+1 ∇θl+1
J, ∇θWl

J = ∇θWl
µl ∇µl

θl ∇θl
J.

(3) Error Gradient for Post-Activation Mean and Variance: In a Gaussian linear Bayesian neural
network, the error gradient for post-activation mean and variance is related to the difference
between smoothing and filtering mean and variance in the corresponding Gaussian linear dynamics.
Gradient backpropagation parallels belief backward propagation induced by smoothing gain Gl and
GWl

:

∇x̂l
J = −P−1

l

(
x̂l|L − x̂l

)
,∇Pl

J = −.5P−1
l

(
Pl|L − Pl + (x̂l|L − x̂l)(x̂l|L − x̂l)

⊤)P−1
l , (7)

∇x̂l
J = P−1

l GlPl+1 ·
(
∇x̂l+1

J
)
,∇Pl

J = P−1
l GlPl+1 ·

(
∇Pl+1

J
)
· Pl+1GlP

−1
l ,

∇Ŵl
J = P−1

Wl
GWl

Pl · (∇x̂l
J) ,∇σ2

Wl

J = diag (GWl
Pl (∇Pl

J)PlGWl
)
/
σ4
Wl

. (8)

The error gradient for the canonical parameters of post-activation filter distributions in a Gaussian
linear Bayesian neural network is the difference in the first and second moments between
smoothing and filtering distributions in the corresponding Gaussian linear dynamics. Gradient
backpropagation again parallels belief backward propagation induced by smoothing gain:

∇ηl
J = −

(
x̂l|L − x̂l

)
, ∇Λl

J = −
(
Pl|L + x̂l|Lx̂

⊤
l|L − Pl − x̂lx̂

⊤
l

)
,

∇ηl
J = Gl · ∇ηl+1

J, ∇Λl
J = Gl∇Λl+1

J G⊤
l − x̂l∇⊤

ηl+1
J G⊤

l −Gl∇ηl+1
J x̂⊤

l .

In the above, (1) is established through a common technique involving the manipulation of
logarithms within gradients. It allows us to compute the gradient of loss with respect to the
parameters of the filtering distribution.

∇θl
log p(y|x0) =

∇θl

∫
dxlp(y|xl, x0)p(xl|x0; θl)

p(y|x0)
=

∫
dxl

p(y|xl, x0)p(xl|x0)

p(y|x0)
∇θl

log p(xl|x0; θl).

4

Under review as a conference paper at ICLR 2024

The exponential family assumption in (2) generally holds as long as the joint probability density
of the random variables is strictly positive, as per the Hammersley-Clifford theorem (Hammersley
& Clifford, 1971). This assumption enables general forward-propagation of mean parameters and
backpropagation of canonical parameter sensitivities. The gradients of weight variational posterior
parameters can be computed using these mean parameters. In (3), sensitivity over mean and
variance is converted into canonical parameter sensitivity, backpropagated using the probability
kernel, and then reconverted into mean and variance sensitivity, as illustrated by expressions like
P−1
l GlPl+1 ·

(
∇x̂l+1

J
)

and P−1
l GlPl+1 ·

(
∇Pl+1

J
)
· Pl+1GlP

−1
l . Both forward and backward

propagation processes involve the exchange of ”innovations” between target and current distribution
mean parameters, represented as cross-entropy loss gradients in terms of the probability kernels.
Equation 8 is presented in a differential form due to its dependence on weight parameterization. A
detailed derivation of the natural gradient for Gaussian linear Bayesian neural networks is provided
in Section D.

The proof is presented in Section A. In Section C, we derive the backpropagation formula for
computing the gradient of the loss with respect to the filter distribution parameters in both a hidden
Markov model and a Gaussian linear model. This derivation allows us to draw comparisons between
backpropagation and backward message passing. Consequently, Theorem 1 serves a dual role: it
enables variational inferences within the deep learning framework for probabilistic graphical models
and contributes to the advancement of probabilistic graphical model techniques for Bayesian deep
learning.

3.2 DUALITY BETWEEN BAYESIAN NEURAL NETWORK AND PROBABILISTIC GRAPHICAL
MODELS

A Bayesian neural network represents a probabilistic ensemble of neural networks operating within a
common computational graph. These networks guide tensor “particles” through this graph, adjusting
their paths based on gradient information to minimize their respective losses. As they learn and
adapt, the probability distribution describing their trajectories evolves. The subsequent theorem
establishes a connection between the probabilistic perspective of tensor flow and the deterministic
perspective of tensor distribution evolution, focusing specifically on the first and second moments
of the gradient.
Theorem 2. Relationship between the Langevin and the Fokker-Planck Dynamics of a Bayesian
Neural Network.

(1) For post-activations distributed as per an exponential family, the error gradient relative to post-
activation equals the potential energy gradient, resulting from differences in canonical parameters
between filtering and smoothing distributions:

∇xl
log p(y|xl,x0 = x) = ∇xl

log
p(xl|y,x0 = x)

p(xl|x0 = x)
= (∇xl

T(xl))
⊤ (

θl − θl|L
)
.

This difference in canonical parameters defines the orthogonal projection from the Jacobian of the
sufficient statistics to the error gradient relative to post-activation. Here, •+ is the pseudo-inverse.

θl − θl|L = (Exl
∇xl

T(xl))
+
(Exl

∇xl
log p(y|xl,x0 = x)) .

(2) In Gaussian-linear Bayesian neural networks, drift and diffusion processes, defined by the error
gradient and Hessian, guide post-activations toward the variational posterior of Gaussian linear
dynamics as follows:
∇xl

log p(y|xl,x0 = x) = P−1
l (xl − x̂l)− P−1

l|L (xl − x̂l|L),

∇xlx⊤
l
log p(y|xl,x0 = x) = P−1

l − P−1
l|L ,

∇x̂l
log p(y|x0 = x) = Eγ(xl)∇xl

log p(y|xl,x0 = x),

∇Pl
log p(y|x0 = x) =∇

xlx
⊤
l

log p(y|xl,x0=x)+Eγ(xl)(∇xl
log p(y|xl,x0=x))(∇xl

log p(y|xl,x0=x))
⊤
.

(3) When the weight variance vanishes, making the state transition deterministic with p(xl+1|xl) =
δ(xl+1 − f(xl)), Bayesian back propagation degenerates into non-Bayesian back propagation:

∇xl
log p(y|xl) = ∇xl

xl+1∇xl+1
log p(y|xl+1).

5

Under review as a conference paper at ICLR 2024

The proof is provided in Section B. In (1), we compute ∇xl
log p(y|xl,x0 = x) by introducing

the filter probability distribution α(xl;θl). In (2), both ∇xl
J and ∇xlx⊤

l
J describe the drift and

diffusion of xl toward its posterior distribution. In (3), we calculate ∇xl
log p(y|xl) by introducing

the Dirac delta distribution for xl, which transfers the gradient onto its parameters, or by setting the
prior variance Pl of xl to 0.

This theorem unites probabilistic tensor flow with deterministic tensor distribution evolution,
showing that Langevin dynamics in Bayesian neural networks, particularly weight updates, are
equivalent to the Fokker-Planck equation governing weight distribution evolution. This insight holds
practical value for Bayesian deep learning, offering potential for novel optimization algorithms for
improved generalization and convergence. It also deepens our understanding of how deep neural
networks explore weight spaces during training.

As an illustrative example, approximating batch normalization as
(

w⊤x−µ
σ + V

)
U aligns with

variational Bayesian learning using stochastic scale-bias distributions q(U) and q(V), with a
uniform prior on w ensuring ∥w∥ = 1 (Shekhovtsov & Flach, 2019). This approach hints at using
Bayesian layers to streamline neural network designs by reducing dependency on normalization
layers (Zagoruyko & Komodakis, 2017; Brock et al., 2021). Additionally, gated recurrent unit-based
networks can be conceptualized as hierarchical graphical models, incorporating binary features for
input selection (Garner & Tong, 2020), paving the way for novel Bayesian recurrent neural network
designs and interpretations. Furthermore, treating Bayesian neural networks as Gaussian Markov
random fields offers new algorithmic possibilities and insights in Bayesian optimization, architecture
design, and generalization (Snoeyink & Picheny, 2012; Arora et al., 2019a;b).

3.3 A DETERMINISTIC BNN BACKPROPAGATION ALGORITHM

Given the dual relationship between forward-backward propagation and belief propagation, we
propose the following algorithm for propagating element-wise means and variances of hidden
features, along with their sensitivities, while simultaneously computing the gradient of the loss with
respect to the weight parameters.

Algorithm 1: Training BNN with backpropagation

Input: Gaussian linear Bayesian neural network (Eqs. 3, 4).

Output: mean parameters x̂l and Pl, their sensitivities ∇x̂l
J and ∇Pl

J , gradient over weight
distribution parameters ∇θWl

J .

Forward propagation: For l = 1, . . . , L, x̂l = f(x̂l−1,θWl
,ωl = 0), Pl = f̂ ′2xl−1

·Pl−1 + f̂ ′2ωl
· 1.

Backpropagation: For l = L, ..., 1, x̂l|L−x̂l=Gl(x̂l+1|L−x̂l+1), Pl|L−Pl=G2
l (Pl+1|L−Pl+1).

Gradient: Eq. 8.

x̂L|L=x̂L+PL

(
ĝ′⊤
xL

· y−g(x̂L,0)

SL

)
, PL|L=PL−P2

L

(
(ĝ′2

xL
)
⊤· 1

SL

)
, SL=ĝ′2

xL
·PL+ĝ′2

νL
·1, and Gl=

f̂
′⊤
xl
(Pl·P−⊤

l+1). “·” is matrix multiplication. P and •2 are element-wise. f ,
x̂l, Pl, f̂ ′xl

, f̂ ′ωl
, ĝ′

xL
, ĝ′

νL
are defined in Eqs. 3 and 4. 1 is a 1-vector.

In a computational graph defined as x0 = x, al = Wl·xl−1, and xl = fl(al) for layers l = 1, . . . , L,
along with a mean-field Gaussian variational posterior for synaptic weights Wl ∼ N (µWl

,σ2
Wl

),
implementing Algorithm 1 for Bayesian inference under these conditions is straightforward. The
process involves propagating the activation mean (x̂l−1) through the layer transformation (fl) once
to compute x̂l. Subsequently, activation variance (Pl−1) is propagated through these layer functions
twice: first as fl(µ2

Wl
·Pl−1) and then as fl(σ2

Wl
· x̂2

l−1). The final variance (Pl) is computed using
element-wise multiplications and a smooth max (log-sum-exp) operation within the max-pooling
process.

6

Under review as a conference paper at ICLR 2024

This algorithm is highly memory-efficient, involving element-wise gradient computations (f̂ ′xl
, f̂ ′ωl

,
ĝ′
xL

, ĝ′
νL

), as well as matrix-vector multiplications with a smoothing gain (Gl) to facilitate gradient
descent with second-order information. In addition to updating synaptic weights, this algorithm
simultaneously manages and updates weight variance on an element-wise basis. The power of
automatic differentiation comes into play, streamlining the entire process. All that’s required is
specifying Pl, a task that can also be automated to further enhance efficiency.

4 EXPERIMENTS

This section highlights belief propagation’s effectiveness in training Bayesian neural networks
for image classification, showing their competitive performance without normalization. We also
evaluate UCI regression datasets and use visualization to understand model behavior. Our code
demonstrates symbolic layers for probability distributions and gradients, revealing equivalence
between Bayesian neural networks and graphical models. This expands auto-differentiation in
TensorFlow, PyTorch, and JAX to support graphical models and variational inference techniques.

4.1 CLASSIFICATION

We demonstrate the effectiveness of the belief propagation algorithm in training various
neural network architectures for image classification, considering them as Bayesian neural
networks. Particularly, we show that incorporating natural gradient descent significantly improves
generalization, eliminating the need for normalization techniques to stabilize and expedite training.
Our experiments are designed for efficient one-day training cycles using Google Colab V100/A100.
We utilize datasets including CIFAR 10/100 (Krizhevsky, 2009) and Tiny ImageNet (Le &
Yang, 2015), along with architectural choices such as DenseNet-BC (Huang et al., 2017),
ResNet (He et al., 2016), WideResNet-28-10 (Zagoruyko & Komodakis, 2016), EfficientNet
B0 (Tan & Le, 2019), and MLP Mixer-S (Tolstikhin et al., 2021). Our training procedure
adopts state-of-the-art practices, featuring a cosine annealing learning rate schedule (Loshchilov
& Hutter, 2016) and image augmentation methods (Yun et al., 2019; Zhang et al., 2018b;
Cubuk et al., 2020). We compare different configurations, including SGD with normalization
layers (vanilla NN), Bayes-by-backprop (Blundell et al., 2015) with normalization layers
(reparam.), Bayes-by-backprop with multiple neural networks per mini-batch without batch
normalization (reparam./NF+NG+ensemble), belief propagation according to Algorithm 1
without batch normalization (BP/NF), and belief propagation with natural gradient without
normalization (BP/NF+NG).

Table 1 presents the test errors. We observe significant performance improvements with Bayesian
learning, particularly in less-regularized architectures. Natural gradient descent also enhances
performance (BP/NF vs. BP/NF +NG). Additionally, Bayes-by-backprop, combined with an
ensemble of neural networks and natural gradient descent, achieves competitive results, highlighting
the variational aspect of normalization. Notably, we find that Bayesian learning without weight
parameter sampling (Algorithm 1) exhibits faster convergence compared to methods involving
weight sampling.

To assess the impact of weight randomness and sample randomness on Bayesian neural network
(BNN) convergence and generalization, we analyzed empirical gradient variance with varying batch
sizes and the evolution of training/validation loss over epochs. We conducted these analyses using
MNIST and CIFAR 10 datasets, training a BNN with densely connected layers and a VGG16
model following the approach of (Wen et al., 2018). Our comparisons included our algorithm (BP)
against reparameterization (R) (Blundell et al., 2015), local reparameterization (L) (Kingma et al.,
2015), flipout (F) (Wen et al., 2018), and an ideal scenario with noise solely from mini-batching
(vanilla). We observed that weight-induced noise in BNNs is substantial compared to mini-
batch noise, and Bayesian learning with Algorithm 1 consistently achieved faster convergence than
weight-sampling and non-Bayesian methods (Fig. 1a,c,b,d).

4.2 REGRESSION

We utilized UCI regression datasets to assess the performance of Bayesian neural network learning
algorithms, aligning our experimental setup with the framework outlined in Hernández-Lobato

7

Under review as a conference paper at ICLR 2024

Table 1: A Bayesian neural network trained with belief propagation and natural gradient descent
(BP/NF + NG), along with Bayes-by-backprop using an ensemble of neural networks and
natural gradient descent (reparam./NF + NG + ensemble), achieves competitive image
classification performance without normalization on state-of-the-art architectures.

vanilla NN reparam. reparam./NF
+NG+ensemble

BP/NF BP/NF+NG
C

IF
A

R
10

DenseNet-BC 4.51 4.75 4.50 4.40 4.35
ResNet 5.46 5.70 4.75 4.35 5.10
WRN-28-10 3.50 3.65 3.50 3.40 3.30
Eff.NetB0 4.40 5.15 4.35 4.10 3.90
MLP Mixer-S 8.20 9.35 8.55 6.70 4.85

C
IF

A
R

10
0 DenseNet-BC 22.27 23.05 21.05 21.90 20.50

ResNet 27.22 29.55 28.35 27.10 25.90
WRN-28-10 18.80 18.95 18.90 18.30 17.70
Eff.NetB0 20.50 21.75 20.30 20.05 19.30
MLP Mixer-S 30.60 32.90 32.25 28.35 26.00

Ti
ny

Im
ag

eN
et DenseNet-BC 30.10 30.50 30.15 29.95 29.25

ResNet 31.50 33.00 32.00 31.50 30.70
WRN-28-10 28.70 29.15 28.75 28.55 27.30
Eff.NetB0 29.45 30.00 29.25 29.10 28.95
MLP Mixer-S 35.85 38.45 36.35 34.30 31.10

1 2 5 10 20 50 100 200

5e
−

05
5e

−
04

5e
−

03

1:200

La
ye

r
3

VBP
R
L

F
sample.var

1 2 5 10 20 50 100 200

1e
−

06
5e

−
06

5e
−

05

1:200

La
ye

r
2

1 2 5 10 20 50 100 200

1e
−

06
5e

−
06

5e
−

05

1:200

La
ye

r
1

Batch size

Gradient bias/variance per example

1 5 10 50 100 500

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01
1e

+
02

Steps

Lo
ss

VBP
VBP val
reparam.
reparam. val.
local reparam.
local reparam. val
flipout
flipout val
vanilla
vanilla val
Vadam
Vadam val

1 2 5 10 20 50 100 200 500

5e
−

08
5e

−
07

5e
−

06
5e

−
05

1:500

C
on

v
11

VBP
R
F

sample.var
mean.sq

1 2 5 10 20 50 100 200 500

2e
−

07
2e

−
06

2e
−

05

1:500

C
on

v
5

1 2 5 10 20 50 100 200 500

5e
−

04
5e

−
03

5e
−

02

1:500

C
on

v
1

0 10 20 30 40 50

0.
5

1.
0

1.
5

2.
0

Epoch

Lo
ss

VBP/no BN
R+BN
F+BN
BN
VBP+BN

VBP/no BN val
R+BN val
F+BN val
BN val
VBP+BN val

(a) (b) (c) (d)

Figure 1: Gradient Variance vs Batch Size for Dense and VGG16 Networks (a and c) and Learning
Algorithm Convergence (b and d). Bayesian Neural Formulation Enhances Convergence.

& Adams (2015). Our model (Algorithm 1) is compared against a deep ensemble model
(Lakshminarayanan et al., 2017) and the local parameterization algorithm (Kingma et al., 2015).
Table 2 presents a comparison of the three approaches based on root mean square error and log
probability.

Table 2: Log Probability and RMSE of Belief Propagation, Deep Ensemble, and Local
Reparameterization on UCI Data.

BP DE Reparam
logprob rmse logprob rmse logprob rmse

boston −2.6± 0.4 3.5± 1.0 −2.5± 0.1 3.3± 1.0 −3.2± 0.7 3.5± 1.1
concrete −3.2± 0.3 6.1± 0.8 −3.4± 0.1 7.7± 0.6 −3.9± 0.2 6.8± 0.5
energy −2.2± 0.2 2.7± 0.4 −2.2± 0.1 2.7± 0.3 −3.0± 0.3 2.9± 0.3
kin8nm 1.1± 0.0 0.1± 0.0 0.4± 0.0 0.2± 0.0 −2.3± 0.5 0.1± 0.0
naval 4.0± 2.1 0.0± 0.0 2.9± 0.1 0.0± 0.0 4.9± 0.1 0.0± 0.0
power −2.8± 0.0 4.1± 0.2 −3.0± 0.0 4.3± 0.2 −3.2± 0.1 4.2± 0.2
protein −2.9± 0.0 4.4± 0.1 −3.0± 0.0 5.1± 0.1 −3.5± 0.1 4.5± 0.0
wine −1.0± 0.1 0.6± 0.0 −0.9± 0.1 0.6± 0.0 −1.4± 0.2 0.6± 0.0
yacht −2.8± 0.4 64 + 19 −2.7 + 0.2 59 + 17 −2.5 + 0.3 4.1 + 0.9

Different from previous works, we also visualize the observation-label distribution of a Bayesian
neural network through Monte Carlo simulations and 2D projections (Fig. 2). Starting with slight
perturbations to the training data, we employ Hamiltonian Monte Carlo (Neal et al., 2011) to target
uncalibrated probabilities (Eq. 2) and monitor convergence with the Gelman-Rubin diagnostic. This
produces simulated feature-label patterns representing typical model observations and loss.

8

Under review as a conference paper at ICLR 2024

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

p(ŷ(x), y) specified by trained BNN

ŷ(x)

y

 68.2%

 95.6% 99.8%

 99.8%

 99.8%

Test data
Confidence region

−4 −2 0 2 4

−
4

−
3

−
2

−
1

0
1

2
3

p(PC1(x), PC2(x)) specified by trained BNN

PC1

P
C

2

 −1.5

 −1 −0.5

 −0.5

 −0.5

 0

 0

 0.5
 1

 1.5

 2

 68.2%

 68.2%

 95.6%

 95.6%

 99.8%

 99.8%

 99.8%

 9
9.

8%

Test data
ŷ(x)
Confidence region

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

p(ŷ(x), y) specified by 2 NNs

ŷ(x)

y

 68.2%

 95.6%

 99.8%

 99.8%

 99.8%

 68.2%

 95.6%

 99.8%

 99.8%

 99.8%

 68.2%

 95.6%

 99.8%

 99.8%

 99.8%

 68.2%

 95.6%

 95.6%

 99.8%

 99.8%

 99.8%

Test data
Confidence region NN1+NN2
Confidence region NN1
Confidence region NN2

−4 −2 0 2 4

−
4

−
3

−
2

−
1

0
1

2
3

p(PC1(x), PC2(x)) specified by 2 adversarially trained NNs

PC1

P
C

2

 −1.5

 −1

 −1

 −1
 −1

 −0.5

 −0.5

 −0.5

 −0.5

 0

 0.5

 1

 1

 1.5

 68.2%

 68.2%

 95.6%

 99.8%

 99.8%

 99.8%

Test data
ŷ(x)
Confidence region

(a) (b) (c) (d)

Figure 2: Joint Distributions from Neural Network Ensembles on Boston Housing Data. Projections:
Predicted vs. True Labels (a, c) and Principal Components of Largest Variance (b, d). (a, b) Bayesian
NN (Algorithm 1), (c, d) Adversarial NNs.

In Fig. 2 (a) and (c), we project this distribution onto predicted vs. true labels. Ideal models
concentrate probability on the diagonal, indicating accurate predictions, especially for unfamiliar
cases. Bayesian neural networks trained with Algorithm 1 tightly cluster observations around
the diagonal (Fig. 2 (a)), whereas independently trained networks diverge off-diagonal due to
limited data (Fig. 2 (c)). Ensembles produce predictions closer to the diagonal. In Fig. 2 (b) and
(d), we project observations onto the two principal components, outlining confidence regions and
marking predictions. Bayesian neural networks focus observations where predictions incur less loss
(Fig. 2 (b)), while non-Bayesian networks have scattered, less smooth expectations. These insights
contribute to understanding model behavior, robustness, and susceptibility to adversarial attacks.

5 RELATED WORKS

This paper presents a novel perspective on Bayesian neural networks (BNNs) by establishing
their equivalence to Markov random fields and linking backpropagation with belief propagation.
It distinguishes itself from prior work, which mainly focused on deriving learning algorithms
via MCMC and variational inference, using BNNs in NLP and computer vision, and
formulating Bayesian learning biases. Bayesian deep learning encompasses both deterministic
and MCMC-based methods, including Hamiltonian Monte Carlo (Neal et al., 2011), Stochastic
Gradient Langevin Dynamics (Welling & Teh, 2011), and stochastic weight averaging (Maddox
et al., 2019). Deterministic techniques like Bayes by backpropagation (Blundell et al.,
2015), Laplace approximation (MacKay, 1992; Barber & Bishop, 1998), and natural gradient
approximations (Zhang et al., 2018a; Khan et al., 2018) coexist with deep learning-specific methods
such as probabilistic backpropagation (Hernández-Lobato & Adams, 2015), deep ensembles
(Lakshminarayanan et al., 2017), dropout (Gal & Ghahramani, 2016), and variance-reduction
enhancements (Kingma et al., 2015). The revealed equivalence between BNNs and Markov random
fields enables the sharing of learning algorithms. BNNs are also versatile, capturing diverse deep
learning inductive biases, including adversarial learning (Guo et al., 2017; Ye & Zhu, 2018), semi-
supervised learning (Gordon & Hernández-Lobato, 2020), meta-learning (Ravi & Beatson, 2018;
Yoon et al., 2018), transfer learning (Maddox et al., 2019), and continual learning (Pan et al., 2020;
Daxberger et al., 2021), with robustness against adversarial attacks (Uchendu et al., 2021; Pang et al.,
2021). Applications span natural language processing (Shi et al., 2020; Yu et al., 2022), computer
vision (Wang et al., 2017), graph learning, time series analysis, and reinforcement learning.

6 CONCLUSIONS

Our research illuminates the noteworthy parallels between probabilistic graphical models and
Bayesian neural networks, highlighting their synergistic roles in theoretical and practical realms.
These similarities foster a reciprocal enhancement of methodologies across both fields. Our
empirical validations across diverse scenarios underscore the effectiveness of our approach. This
work presents a novel perspective on Bayesian Neural Networks and probabilistic graphical models,
fostering advancements in model development and enriching our understanding of their interrelation.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Sanjeev Arora, Helmut Bolcskei, Lechao Lee, and Meisam Razaviyayn. Neural network
architectures and the complexity of learning. arXiv preprint arXiv:1911.07455, 2019a.

Sanjeev Arora, Roman Novak, and Lechao Lee. Optimization and generalization of deep learning
algorithms with neural tangents. arXiv preprint arXiv:1912.04759, 2019b.

David Barber and Christopher M Bishop. Ensemble learning in bayesian neural networks. Nato ASI
Series F Computer and Systems Sciences, 168:215–238, 1998.

Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Andrew Brock, Soham De, Xiyang Zhuang, and Karen Simonyan. Normalizer free nets
(nfnets): High performance large scale image recognition without normalisation. arXiv preprint
arXiv:2102.06171, 2021.

Ekin D Cubuk, Barret Zoph, and Dandelion Mane. Randaugment: Practical automated data
augmentation with a reduced search space. arXiv preprint arXiv:1909.13719, 2020.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information
Processing Systems, 34:20089–20103, 2021.

Karl Friston. A free energy principle for the brain. Neural Computation, 2010.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Crispin W Gardiner et al. Handbook of stochastic methods, volume 3. springer Berlin, 1985.

Philip N Garner and Sibo Tong. A bayesian approach to recurrence in neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 43(8):2527–2537, 2020.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Jonathan Gordon and José Miguel Hernández-Lobato. Combining deep generative and
discriminative models for bayesian semi-supervised learning. Pattern Recognition, 100:107156,
2020.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

J. M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpublished
Manuscript, 1971.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In International conference on machine learning, pp. 1861–
1869. PMLR, 2015.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

10

Under review as a conference paper at ICLR 2024

Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Srivastava. Fast
and scalable bayesian deep learning by weight-perturbation in adam. In International Conference
on Machine Learning, pp. 2611–2620. PMLR, 2018.

Mohammad Emtiyaz Khan and Håvard Rue. The bayesian learning rule. arXiv preprint
arXiv:2107.04562, 2021.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In Proceedings of the 28th International Conference on Neural
Information Processing Systems-Volume 2, pp. 2575–2583, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. In Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Dong Hyun Lee and Yann LeCun. Noise-contrastive priors for energy-based models. In Advances
in Neural Information Processing Systems (NeurIPS), 2017.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2016.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. Advances in Neural Information
Processing Systems, 32, 2019.

Radford M Neal. BAYESIAN LEARNING FOR NEURAL NETWORKS. PhD thesis, University of
Toronto, 1995.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard Turner, and
Mohammad Emtiyaz E Khan. Continual deep learning by functional regularisation of memorable
past. Advances in Neural Information Processing Systems, 33:4453–4464, 2020.

Yutian Pang, Sheng Cheng, Jueming Hu, and Yongming Liu. Evaluating the robustness of bayesian
neural networks against different types of attacks. arXiv preprint arXiv:2106.09223, 2021.

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International Conference on
Learning Representations, 2018.

R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

Havard Rue and Leonhard Held. Gaussian Markov Random Field Theory and Applications. CRC
press, 2005.

Alexander Shekhovtsov and Boris Flach. Stochastic normalizations as bayesian learning. In
Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia,
December 2–6, 2018, Revised Selected Papers, Part II 14, pp. 463–479. Springer, 2019.

Wenxian Shi, Hao Zhou, Ning Miao, and Lei Li. Dispersed exponential family mixture vaes for
interpretable text generation. In International Conference on Machine Learning, pp. 8840–8851.
PMLR, 2020.

Jack Snoeyink and Victor Picheny. Practical bayesian optimization of machine learning algorithms.
In Proceedings of the 29th International Coference on International Conference on Machine
Learning, pp. 1339–1346, 2012.

11

Under review as a conference paper at ICLR 2024

Yang Song, Zhishen Huang, Aurick Zhou, Serge Belongie, and Mohammad Norouzi. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations (ICLR), 2021.

David G. Stork, Peter E. Hart, and Richard O. Duda. Pattern Classification (2nd ed). Wiley-
Interscience, 2000.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Tijmen Tieleman and Geoffrey Hinton. Contrastive divergence training energy-based models: A
unifying view. Machine Learning, 2009.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:
An all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Adaku Uchendu, Daniel Campoy, Christopher Menart, and Alexandra Hildenbrandt. Robustness
of bayesian neural networks to white-box adversarial attacks. In 2021 IEEE Fourth International
Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 72–80. IEEE, 2021.

Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families, and
Variational Inference. Now Publishers Inc., 2008.

Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Relational deep learning: A deep latent variable
model for link prediction. In Thirty-first AAAI conference on artificial intelligence, 2017.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688.
Citeseer, 2011.

Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient pseudo-
independent weight perturbations on mini-batches. In International Conference on Learning
Representations, 2018.

John Winn, Christopher M Bishop, and Tommi Jaakkola. Variational message passing. Journal of
Machine Learning Research, 6(4), 2005.

Nanyang Ye and Zhanxing Zhu. Bayesian adversarial learning. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, pp. 6892–6901, 2018.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. Advances in neural information processing systems,
31, 2018.

Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia, Bo Pang, Ruiqi Gao, Yixin Zhu, Song-Chun Zhu,
and Ying Nian Wu. Latent diffusion energy-based model for interpretable text modelling. In
International Conference on Machine Learning, pp. 25702–25720. PMLR, 2022.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, and Sanghyuk Chun. Cutmix: Regularization
strategy to train strong classifiers with localizable features. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Sergey Zagoruyko and Nikos Komodakis. Residual networks behave like ensembles of relatively
shallow networks. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient as
variational inference. In International Conference on Machine Learning, pp. 5852–5861. PMLR,
2018a.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2018b.

12

	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:

