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ABSTRACT

Image-text representation learning forms a cornerstone in vision-language models,
where pairs of images and textual descriptions are contrastively aligned in a shared
embedding space. Since visual and textual concepts are naturally hierarchical,
recent work has shown that hyperbolic space can serve as a high-potential manifold
to learn vision-language representation with strong downstream performance. In
this work, for the first time we show how to fully leverage the innate hierarchical
nature of hyperbolic embeddings by looking beyond individual image-text pairs.
We propose Compositional Entailment Learning for hyperbolic vision-language
models. The idea is that an image is not only described by a sentence but is itself
a composition of multiple object boxes, each with their own textual description.
Such information can be obtained freely by extracting nouns from sentences and
using openly available localized grounding models. We show how to hierarchically
organize images, image boxes, and their textual descriptions through contrastive
and entailment-based objectives. Empirical evaluation on a hyperbolic vision-
language model trained with millions of image-text pairs shows that the proposed
compositional learning approach outperforms conventional Euclidean CLIP learn-
ing, as well as recent hyperbolic alternatives, with better zero-shot and retrieval
generalization and clearly stronger hierarchical performance. Code to be released.

1 INTRODUCTION

Vision-language modeling has witnessed rapid progress in recent years with innovative approaches
such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) using extensive vision-language data
to train encoders for understanding visual and textual content simultaneously. Such encoders align
visual scenes with textual descriptions in a shared high-dimensional Euclidean space, facilitating
semantic understanding (Radford et al., 2021). While effective, conventional vision-language models
only take a holistic approach to image-text representation learning, neglecting the intrinsic hierarchy
and composition of elements within images. Indeed, a visual scene is commonly composed of
multiple objects interacting with one another to form a precise context. See for example Fig. 1b
with description: “Mineral water with fresh herbs in a glass carafe on a garden table”. Individually,
these objects provide limited semantic meaning. Only through the interactions between these do
we understand the specific context of both the scene and its parts, characterizing the single entities
(cf. Fig. 1a). This object-scene hierarchy is analogous to a parent-child connection in a discrete
tree where broader concepts are closer to the root while specific concepts reside deeper in the tree.
These tree-like structures cannot be well represented in Euclidean space due its polynomial volume
growth (Matoušek, 1999), whereas hyperbolic geometry does accommodate the exponential growth
of trees (Gromov, 1987), making it more suitable for representing hierarchies.

Recently, Desai et al. (2023) introduced MERU, a hyperbolic contrastive vision-language model.
MERU projects Euclidean embeddings from image and text encoders onto hyperbolic space and
enforces inter-modal (text to image) partial ordering (Vendrov et al., 2016) using an entailment
loss (Ganea et al., 2018a; Le et al., 2019) when optimizing encoder weights. Such hyperbolic
image-text alignment has demonstrated strong quantitative performance on zero-shot downstream
tasks, as well as increased interpretability of the shared embedding space. They, however, ignore the
intra-modal hierarchical compositions of image-text pairs. Indeed, there is hierarchical semantics
in language (Everaert et al., 2015), which has been leveraged to embed textual data in hyperbolic
space (Dhingra et al., 2018). In the vision domain, work by Ge et al. (2023) uses object-centric scene
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Apple cider cocktail infused 

with fresh herbs 

Fresh herbs used to cook

(a)

Mineral water with fresh herbs in a 

glass carafe on a garden table

Image, I

Image

Local box, Ibox

Text, T

Text of 

Local box, Tbox

(b) (c)

Figure 1: Compositional Entailment Learning for hyperbolic vision-language models. (a) same
object appearing in different vision-language contexts (b) Visual-semantic ordering for an
image-text pair: I (whole image) and T (full caption) provide context to the more general
Ibox (image local box) and T box (text local box). (c) This specific-general ordering between
(I, T ), (Ibox, T box), (I, Ibox), (T, T box) is enforced in hyperbolic space using entailment cones.
The external angle ϕ of a specific concept (T ) is pushed to be within the aperture threshold ηω of the
general concept (T box).

hierarchies to learn a hyperbolic space where visually similar objects are clustered near the origin and
scenes consisting of them are descendants. Zhong et al. (2022) propose RegionCLIP that only learns
regional representations using contrastive learning and knowledge distillation. These prior works beg
the question of what strategy can be adapted to compound the individual benefits of the inter-modal
hierarchy and the two intra-modal hierarchies to encompass scene and region level understanding.

To this end, we introduce Hyperbolic Compositional CLIP (HyCoCLIP), a contrastive learning
method that accounts for compositional orders in both inter-modal and intra-modal settings in
hyperbolic space. We approach the problem by using explicit hierarchies while training the encoders.
This hierarchy is constituted of object crops (image boxes) within an image and corresponding
nouns/phrases (text boxes) within the text as broader concepts of the whole image-text concept. We
outline a robust hierarchical learning objective by using both entire images and image boxes, as well
as complete captions and text boxes. This strategy involves both inter-modal hierarchies, where text
generally provides broader context than images, and intra-modal hierarchies, where we consider the
“boxes” more general than the complete image. In the hierarchical spatial representation, broader
concepts are embedded near the origin of the metric space, while more fine-grained concepts are
positioned towards the border, akin to tree graphs, see Fig. 1c.

We show that HyCoCLIP outperforms CLIP and MERU on zero-shot image classification and is
competitive on zero-shot retrieval and object detection when trained on a 20M pre-training dataset.
Additionally, we show that HyCoCLIP improves on hierarchical classification tasks compared to
the baselines and that its representation space is more interpretable and hierarchically aligned. Our
contributions are summarized as follows: (1) We introduce HyCoCLIP for learning vision-language
representations in a shared hyperbolic space using scene compositions that are semantically and
hierarchically aligned. (2) We propose Compositional Entailment Learning, where image-text
compositions are optimized through hyperbolic contrastive and entailment cone losses. (3) We
demonstrate empirically that HyCoCLIP is more hierarchically aware and is highly competitive to
existing vision-language models.

2 HYPERBOLIC COMPOSITIONAL CLIP - HYCOCLIP

We propose a compositional learning scheme that enforces the semantic alignment of latent represen-
tations in the hyperbolic space, explicitly modeling intra- and inter-modal relationships of visual and
language data by leveraging their joint hierarchical nature. Here, we first provide a short background
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Figure 2: An overview of HyCoCLIP. Text and image boxes are extracted offline from image-text
datasets (sides). Next, HyCoCLIP’s encoder modules embed the images and texts, projecting the
representations in the hyperbolic latent space. HyCoCLIP preserves the inter-modal and intra-modal
relationships by accommodating broader/finer concepts close to the center/border and by using
entailment cones to give an interpretable structure to the learned latent space (cf. Fig. 1c).

with the required hyperbolic functions to make such compositional learning possible. Afterward, we
outline our compositional encoding of image-text pairs.

2.1 BACKGROUND

Hyperbolic geometry is a non-Euclidean geometry characterized by a constant negative curvature.
The resulting space has the desirable property that volumes of subsets can grow exponentially as
a function of their radius, making it an ideal choice for learning representations of data with an
inherent hierarchical or tree-like structure (Sarkar, 2011; Nickel & Kiela, 2017; Krioukov et al., 2010).
While several isometric models are used in literature for modeling hyperbolic space, we limit our
background discussion to the Lorentz (or hyperboloid) model used in this work and refer to Cannon
et al. (1997); Peng et al. (2022) for detailed information on the other models.

The Lorentz model, denoted by Ln, is an n-dimensional manifold represented as the upper sheet of a
two-sheeted hyperboloid in (n+ 1)-dimensional Minkowski spacetime. For each vector p ∈ Rn+1,
the first dimension is taken as the time-axis, denoted p0, and the remaining n dimensions as the
spatial-coordinates, denoted p̃ ∈ Rn. This model is described as

Ln =
{
p ∈ Rn+1 : ⟨p,p⟩L = − 1

κ
, p0 =

√
1/κ+ ∥p̃∥2, κ > 0

}
, (1)

where −κ ∈ R is the curvature of the space and ⟨., .⟩L is the Lorentzian inner product defined for
p,q ∈ Ln as

⟨p,q⟩L = −p0q0 + ⟨p̃, q̃⟩E, (2)
with ⟨., .⟩E denoting the Euclidean inner product. The Lorentzian distance between two points in Ln

is the length of the shortest path (geodesic) connecting them, which can be computed as

dL(p,q) =
√

1/κ · cosh−1
(
− κ⟨p,q⟩L

)
, p,q ∈ Ln. (3)

This metric induces the Lorentzian norm ∥p∥L = ⟨p,p⟩L. The tangent space TpLn is well-defined
for all the points p ∈ Ln, and the exponential map represents the projecting map from the tangent
space to the hyperboloid. Given a point v ∈ TpLn the exponential map can be computed as

expκp(v) = cosh(
√
κ∥v∥L)p+

sinh(
√
κ∥v∥L)√

κ∥v∥L
v. (4)

Such a map can be used to move from Euclidean space to hyperbolic space by considering Euclidean
vectors to be tangent vectors at the origin 0 = (

√
1/κ, 0, . . . , 0)T of the hyperbolic space and using

expκ0 to project these onto the hyperboloid (Khrulkov et al., 2020).
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2.2 COMPOSITIONAL ENTAILMENT LEARNING

We strive to learn the hierarchical compositional relations of images, boxes, and textual descriptions.
Our idea is based on the following observation: the content inside a box of an image is hierarchically
more general than the entire image. While counter-intuitive at first glance, Fig. 1b shows why this
is the case: the box shows an object and the entire image additionally shows the context in which
the object occurs, making it a semantically more specific scenario. From a hyperbolic perspective,
semantically general/broad concepts are embedded closer to the origin, while more fine-grained
concepts are positioned towards the border, akin to tree graphs (cf. Fig. 1c).

In this work, we are given a dataset D = {(Ik, Tk)}Kk=1 of K image-text pairs. Our goal is to train
image and text encoders with a shared embedding space to align the visual and semantic inputs. The
method is summarized in Fig. 2. Let (Ibox

k , T box
k ) be the local box with a short description from an

image-text pair obtained following the automated procedure detailed in Appendix A. We propose
a Compositional Entailment Learning objective in hyperbolic space to optimize the hierarchical
compositions. Our approach consists of two parts, namely a compositional contrastive loss and a
compositional entailment loss which we discuss next.

Hierarchical Compositional Contrastive (hCC) learning. Image-text models commonly rely
on contrastive objectives to align and distribute the multi-modal data. In our approach, we rely on
hyperbolic embeddings to align visuals and text. Let fI(·) and fT (·) denote arbitrary encoders for the
image and text inputs respectively. And, let gI(Ik) = expκ0(fI(Ik)) and gT (Tk) = expκ0(fT (Tk))
denote the hyperbolic representation of image Ik and textual description Tk respectively. To compute
the contrastive loss over image-text pairs in a batch B, we take the negative Lorentzian distance as
our similarity metric and formulate it with the softmax, using temperature τ , for a batch of size (B)
containing images (I) and text (T ) as

L∗
cont(I, T ) = −

∑
i∈B

log
exp
(
dL(gI(Ii), gT (Ti))/τ

)∑B
k=1,k ̸=i exp

(
dL(gI(Ii), gT (Tk))/τ

) , (5)

where negatives for an image are picked from the texts in the batch. Similarly, we can define the
loss when picking negatives for a text from images in the batch as L∗

cont(T, I). To extend such a
contrastive setup with our image-text compositions, we have to consider that due to the generalized
information in a box, different images in a batch can have similar box-level information. To avoid
unwanted negatives in a batch, we only contrast the box image with other entire images, and vice
versa which have specific information. This avoids negative alignment between image-box pairs
and boxes from different images. The final hierarchical Compositional Contrastive (hCC) loss is
formulated as

hCC(I, T, Ibox, T box) =
1

4

(
L∗
cont(I, T ) + L∗

cont(T, I)︸ ︷︷ ︸
specific-info contrast

+L∗
cont(I

box, T ) + L∗
cont(T

box, I)︸ ︷︷ ︸
general-info contrast

)
.

(6)

Hierarchical Compositional Entailment (hCE) learning. Ganea et al. (2018a) introduced hyper-
bolic entailment cones that generalize the idea of partial order embeddings (Vendrov et al., 2016) by
using the inherent hierarchical structure of the hyperbolic space. Entailment cones define a region
ℜq for every possible point q in the space such that all points p ∈ ℜq are semantically linked to
q as its child concepts. As such, points in ℜq are expected to contain specific information for the
general concept q. Considering the Lorentz model Ln, the half-aperture of these conical regions (ℜq)
is formulated by Le et al. (2019); Desai et al. (2023) as

ω(q) = sin−1

(
2K√
κ∥q̃∥

)
, (7)

where −κ is the curvature of the space and a constant K = 0.1 is set to limit values near the origin
(see Ganea et al. (2018a)). The aperture inversely depends on the norm ∥q̃∥. Inferring from this, a
general concept with a wider aperture would lie closer to the origin. A specific concept would have a
narrower aperture and lie further from the origin in the hyperbolic space.

To learn partial orders in this space, specific concepts p must be pushed to be within the aperture ω(q).
This is done by penalizing encoders with the angular residual of outward point p having an exterior
angle ϕ(p,q) as shown in Fig. 1c. This is formulated by Le et al. (2019); Desai et al. (2023) as
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Figure 3: Aperture threshold
η scaling the aperture ω to in-
crease or decrease the width of
the entailment cone.

Lent(p,q) = max(0, ϕ(p,q)− ω(q)), (8)

where the exterior angle is given by,

ϕ(p,q) = cos−1

(
p0 + q0κ⟨p,q⟩L

∥q̃∥
√
(κ⟨p,q⟩L)2 − 1

)
. (9)

However, intuitively observing the entailment loss presented in
Eq. 8 shows that this loss would push any outward point p only
towards the ℜq region’s border. Hence, we add a threshold to the
half-aperture ω(q) effectively making it flexible to accommodate
p at various spatial distances from q, see Fig. 3. We reformulate
Eq. 8 with half-aperture threshold η as

L∗
ent(p,q) = max(0, ϕ(p,q)− ηω(q)). (10)

Entailment cones enable us to enforce the hierarchical image-text relations given by the compositions.
We formulate the Hierarchical Compositional Entailment (hCE) loss by considering that images
and textual descriptions are not identical, but that text precedes image, akin to Desai et al. (2023).
We additionally consider the relation whole ⇒ box for both images and texts. Hence, the hCE loss
would comprise both image-text inter-modality entailments and text-text, image-image intra-modality
entailments as

hCE(I, T, Ibox, T box) = L∗
ent(I

box, T box) + L∗
ent(I, T )︸ ︷︷ ︸

inter-modality entailment

+L∗
ent(I, I

box) + L∗
ent(T, T

box)︸ ︷︷ ︸
intra-modality entailment

.

(11)
In Fig. 1c we visualize how the image-text compositions should be organized in hyperbolic composi-
tional entailment.

Hierarchical Compositional (hC) learning. We aggregate the losses to form the overall hierarchi-
cal Compositional (hC) loss for HyCoCLIP by taking a weighted sum of the two loss components:

hC = hCC + γhCE. (12)

In Appendix B, we detail all hyperparameters, thresholds, and further implementation details.

Computational complexity. Our approach enables us to double the amount of visual and textual
data to learn from. The training time scales linear with the increase in training volume; for ViT-B/16,
HyCoCLIP requires 73 hours of training, compared to 46 hours for MERU and 45 hours for CLIP.
We note that our method inference maintains the same efficiency as CLIP and MERU and allows for
scalable deployment.

3 EXPERIMENTS

3.1 BENCHMARK

Datasets We develop our models using grounded vision-language pairs. This could be human-
annotated such as the Localized narratives subset of Open Images (Pont-Tuset et al., 2020) or
the Flickr30K Entities dataset (Plummer et al., 2015). However, the sizes of these datasets are
fairly limited considering the intensive efforts of manual labelling. Hence, we depend on auto-
matic grounded information generated by pre-trained phrase grounding models. Several large-scale
grounded language-vision datasets are publicly available by Li et al. (2023) and Peng et al. (2023).
We train our models using the large-scale training corpus - Grounded Image-Text Pairs (GRIT) dataset
(Peng et al., 2023) containing 20.5 million grounded vision-language pairs which are processed from
the even larger COYO-700M (Byeon et al., 2022) dataset. Information on the grounding procedure is
added in Appendix A. We similarly use the grounding procedure on the RedCaps dataset (Desai et al.,
2021) originally used to train MERU. Additionally, we use the smaller-scale grounded Conceptual
Captions 3M (CC3M) (Li et al., 2023; Sharma et al., 2018) dataset for hyperparameter search.
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Table 1: Zero-shot image classification evaluation. † denotes reproduced results from MERU.
When using boxes during pre-training, numbers in squared brackets represent the additional box-pairs
counts. For RedCaps, we find results for CLIP and MERU consistent with Desai et al. (2023) even
when trained with lower batch size. Bold-face numbers are the best overall performances, for GRIT.
Our method outperforms baselines on 15 out of the 16 evaluation datasets.
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RedCaps
CLIP† ✗ 11.4 32.5 66.7 35.8 26.7 60.8 89.8 72.5 29.8 11.1 1.3 72.5 44.9 16.4 30.1 27.7 5.0
CLIP ✓ 11.4 [6.3] 30.2 76.5 42.4 25.8 62.3 89.5 69.6 25.7 8.5 2.2 65.3 38.6 13.6 36.6 28.5 4.6

MERU† ✗ 11.4 31.4 65.9 35.2 26.8 58.1 89.3 71.4 29.0 8.3 1.6 71.0 40.9 17.0 29.9 29.3 4.7
ViT
S/16

MERU ✓ 11.4 [6.3] 29.9 76.4 39.9 26.6 62.3 89.5 68.4 25.4 8.9 1.2 67.2 37.6 13.0 30.5 27.6 4.3

GRIT
CLIP ✗ 20.5 36.7 70.2 42.6 49.5 73.6 89.7 44.7 9.8 6.9 2.0 44.6 14.8 22.3 40.7 40.1 5.1
CLIP ✓ 20.5 [35.9] 36.2 84.2 54.8 46.1 74.1 91.6 43.2 11.9 6.0 2.5 45.9 18.1 24.0 32.4 35.5 4.7

MERU ✗ 20.5 35.4 71.2 42.0 48.6 73.0 89.8 48.8 10.9 6.5 2.3 42.7 17.3 18.6 39.1 38.9 5.3
MERU ✓ 20.5 [35.9] 35.0 85.0 54.0 44.6 73.9 91.6 41.1 10.1 5.6 2.2 43.9 15.9 24.5 39.3 33.5 4.8

ViT
S/16

HyCoCLIP ✓ 20.5 [35.9] 41.7 85.0 53.6 52.5 75.7 92.5 50.2 14.7 8.1 4.2 52.0 20.5 22.3 33.8 45.7 5.2

CLIP ✗ 20.5 40.6 78.9 48.3 53.0 76.7 92.4 48.6 10.0 9.0 3.4 45.9 21.3 23.4 37.1 42.7 5.7
MERU ✗ 20.5 40.1 78.6 49.3 53.0 72.8 93.2 51.5 11.9 8.6 3.7 48.5 21.2 22.2 31.7 44.2 5.6ViT

B/16 HyCoCLIP ✓ 20.5 [35.9] 45.8 88.8 60.1 57.2 81.3 95.0 59.2 16.4 11.6 3.7 56.8 23.9 29.4 35.8 45.6 6.5

Baseline Comparisons We compare HyCoCLIP against CLIP and MERU. We reproduce the CLIP
and MERU models by training on the RedCaps dataset, reducing the batch size to 768 to fit on our
available compute. We further retrain CLIP and MERU from scratch on the GRIT dataset. To fairly
evaluate the impact of including image-text boxes, we also retrain CLIP and MERU when image-text
boxes are included as additional pre-training samples.

3.2 DOWNSTREAM TASKS

To assess performance, we evaluate HyCoCLIP on several downstream tasks. For zero-shot image
classification, the label set is fitted to multiple prompts which are embedded using the text encoder
and then averaged to obtain a single embedding per label. The closest text embedding is picked
from the collection as the predicted class for an image. We report the model’s accuracy on 16 image
classification datasets. Similarly, we assess our method on zero-shot retrieval tasks to determine if
complex concepts, like scenes and captions, are accurately preserved in the representation space.
Further, we evaluate the models on object detection task to analyze the regional understanding of
HyCoCLIP. We also evaluate the hierarchical nature of HyCoCLIP using multiple hierarchical metrics.
Additionally, we assess the scene understanding capability of HyCoCLIP on two compositional
benchmarks - VL-Checklist (Zhao et al., 2022) and VG Attribution (Yüksekgönül et al., 2023).

0.00 0.25 0.50 0.75 1.00
ratio of sizes box/image
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GRIT
RedCaps

Figure 4: Histogram of ra-
tios of box area wrt the full
image for GRIT and Red-
Caps. The latter reports gen-
erally larger crops, indicating
lower precision in grounding
concepts.

Zero-shot image classification From Table 1, we find our repro-
duced results for CLIP and MERU are fairly consistent with Desai
et al. (2023) even when trained with smaller batch size on RedCaps.
On grounding RedCaps and filtering noise, we notice only 5.8 million
image-text pairs are retained containing 6.3 million boxes. Training
the baselines with these additional boxes also demonstrates reduced
performance. Alternatively, the quantity of data is significantly higher
for GRIT with 20.5 million image-text pairs and 35.9 million boxes
in total. To differentiate between the datasets, we compare the ratio
of the box area with the image area of all data points and plot a
histogram in Fig. 4. A lower ratio signifies that phrases have more
localized information in the image and constitute a better semantic
parent for the whole image. This is evident for GRIT while boxes
generated for RedCaps do not seem to localize well. We, therefore,
recommend GRIT over RedCaps for grounded pre-training and thus
report the results of models pre-trained on GRIT. We find that HyCo-
CLIP performs best across a wide range of datasets and settings when
pre-training is done on GRIT. We especially note the performance on
ImageNet, where we obtain an accuracy of 45.8% compared to 40.1%
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Table 2: Zero-shot retrieval, detection, and hierarchical classification. HyCoCLIP performs
best in image retrieval, and hierarchical classification and is competitive in text retrieval and object
detection. Bold figures indicate the best results overall.

Text retrieval Image retrieval Hierarchical metrics

COCO Flickr COCO Flickr WordNetVision
encoder Model w/ boxes R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 TIE(↓) LCA(↓) J(↑) PH (↑) RH (↑)

CLIP ✗ 69.3 79.1 90.2 95.2 53.7 65.2 81.1 87.9 4.02 2.39 0.76 0.83 0.84
CLIP ✓ 60.7 71.8 84.2 91.3 47.1 58.6 73.1 82.1 4.03 2.38 0.76 0.83 0.83

MERU ✗ 68.8 78.8 89.4 94.8 53.6 65.3 80.4 87.5 4.08 2.39 0.76 0.83 0.83
MERU ✓ 72.7 81.9 83.5 90.1 46.6 58.3 60.0 71.7 4.08 2.39 0.75 0.83 0.83

ViT
S/16

HyCoCLIP ✓ 69.5 79.5 89.1 93.9 55.2 66.6 81.5 88.1 3.55 2.17 0.79 0.86 0.85

CLIP ✗ 71.4 81.5 93.6 96.9 57.4 68.5 83.5 89.9 3.60 2.21 0.79 0.85 0.85
MERU ✗ 72.3 82.0 93.5 96.2 57.4 68.6 84.0 90.0 3.63 2.22 0.78 0.85 0.85ViT

B/16 HyCoCLIP ✓ 72.0 82.0 92.6 95.4 58.4 69.3 84.9 90.3 3.17 2.05 0.81 0.87 0.87

(MERU) and 40.6% (CLIP). Interestingly, adding image-text boxes to CLIP and MERU training does
not improve performance, despite nearly doubling the training samples.

Zero-shot retrieval For the retrieval task, the top-k image/text embeddings are picked from a
collection for input text/image embedding based on the distance score (Eq. 3). We perform this
task zero-shot on the COCO validation set (Lin et al., 2014) and the Flickr30K test set (Young et al.,
2014; Karpathy & Fei-Fei, 2015). We show the retrieval results in Table 2. We find that our method
performs slightly worse on Flickr text retrieval while demonstrating increased performance on image
retrieval over CLIP and MERU. We also note a significant decrease in the performance of CLIP and
MERU when adding local information. These results further highlight the need for our approach.
Naively adding these boxes as additional samples is not effective because the boxes are often without
broader context, and the text is highly generic compared to the whole images. Only by optimizing for
their hierarchical compositional nature as done in our approach is it possible to get better performance.
Our method aims to obtain a hierarchically aligned representation space, but this is not necessarily
beneficial for the task of retrieval, where proximity of text and image embeddings is key. Regardless,
our approach remains highly competitive.

Hierarchical Classification A characteristic feature of hyperbolic spaces is their ability to represent
hierarchical structures present in data. We evaluate our models for this property on several hierarchical
classification metrics (Kosmopoulos et al., 2015) described in Appendix C. We use the WordNet
hierarchy (Miller, 1994) of the ImageNet class labels (Deng et al., 2009; Russakovsky et al., 2015) for
the hierarchical classification task. The image classification setup is kept similar and the final scores
are averaged over the validation set. Table 2 reports the results of HyCoCLIP and other baselines on
these metrics. We observe a consistent improvement, confirming that the hierarchy of the class labels
is better represented in its embedding space.

Table 3: Zero-shot object detec-
tion with ground-truth boxes evalu-
ated on COCO 17 novel categories
split (Bansal et al., 2018). HyCoCLIP
shows the best average precision (AP).

Model AP

CLIP 51.2
MERU 55.8
RegionCLIP 65.2
HyCoCLIP 68.5

Zero-shot object detection We utilize pre-trained vision-
language models to recognize proposed object regions.
Specifically, we evaluate the scenario where ground-truth
bounding boxes from the COCO detection dataset are used
as region proposals and predict the correct categories with
a setup similar to image classification. We compare our
method with RegionCLIP (Zhong et al., 2022) whose vision
encoder (ResNet50x4) was trained on CC3M with a frozen
text encoder (originally trained on CLIP400M). We report
the average precision (AP) on the 17 novel categories data
split (Bansal et al., 2018). As shown in Table 3, HyCoCLIP
outperforms the baselines, surpassing RegionCLIP on the
novel categories. We believe this highlights a key advantage
of our approach—its ability to leverage inherent hierarchies
for more effective semantic concept alignment.

Scene Understanding Given the compositional pre-training strategy, we expect HyCoCLIP to
be provisioned with localized object/noun information in both vision and language and improve
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Table 4: Ablation study on loss terms during
pre-training of HyCoCLIP-ViT-S/16 on grounded
CC3M evaluated for image classification and
Flickr image/text retrieval. Lower accuracy/R@5
indicates a more influential loss term.

classification retrieval

Pre-training losses Im
ag

eN
et

Fo
od

-1
01

M
ea

n(
16

)

Te
xt

Im
ag

e

HyCoCLIP 16.7 10.6 22.3 56.2 46.4
hCC loss
−L∗

cont(I, T ) 16.0 9.4 22.5 55.2 46.2
−L∗

cont(T, I) 16.1 10.2 22.2 55.2 45.4
−L∗

cont(I
box, T ) 13.8 8.7 19.3 49.1 42.9

−L∗
cont(T

box, I) 15.2 7.6 20.4 55.9 44.5
hCE loss
−L∗

ent(I, T ) 14.9 9.9 21.8 54.3 46.1
−L∗

ent(I
box, T box) 16.1 9.3 22.3 54.8 45.4

−L∗
ent(I, I

box) 16.1 10.1 21.5 55.0 45.6
−L∗

ent(T, T
box) 16.3 9.2 22.3 55.6 45.1

Table 5: Scene understanding evaluation.
HyCoCLIP show better performance on both
benchmarks indicating good object compre-
hension of the visual scene.

Model VL-CO VG-A

CLIP 49.3 63.3
MERU 50.5 61.8

HyCoCLIP 59.8 68.4

Table 6: Ablation study on batch size shows
saturation after 768.

Batch size ImageNet

512 11.1
640 11.3
768 12.2
896 12.2
1024 12.1
1536 12.1

upon such aspects. The setup for these benchmarks is the same, for a given image the model has to
pick between the correct caption and a hard negative caption. For more information on the methods
used to generate the hard negative captions, we refer to Appendix E. From Table 5, we see that
CLIP and MERU give near-random performance for the VL-Checklist-Object (VL-CO) (Zhao et al.,
2022) benchmark in which object information in the captions is perturbed. HyCoCLIP improves
considerably on these experiments reaching 60% accuracy indicating good object comprehension
of the visual scene. HyCoCLIP also performs well on VG-Attribution (VG-A) (Yüksekgönül et al.,
2023) reporting a mean accuracy of 68.4% surpassing other methods. We refer to Appendix E for
further analysis.

3.3 ABLATION STUDY

Pre-training loss terms We examine the impact of the terms in hCC (Eq. 6) and hCE (Eq. 11)
losses by pre-training the model several times, each time turning off a single loss term. We use the
grounded CC3M dataset and train for 40k steps. Table 4 shows the results of this experiment. A lower
accuracy and recall on image classification and retrieval respectively, indicate a higher influence of
corresponding loss term. For hCC loss, we find that our hypothesis of contrasting the generalized

(a) (b) (c)

Figure 5: Visualizing the learned hyperbolic space of HyCoCLIP in lower dimensions using
samples from GRIT. (a) distribution of embedding distances from the origin, HyCoCLIP embeds
text data closer to the origin wrt the images and boxes samples with a smaller radius wrt full
images/captions. On the right, (b) HoroPCA and (c) CO-SNE visualizations of the latent space in L2.
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information in boxes against entire images and text is indeed beneficial. For hCE loss, we see that the
terms entailing the image (I) are most influential.

Scaling w.r.t batch size We train our models using a batch size 768 according to available compute
(Appendix B). To study the influence of this hyperparameter, we train our primary baseline MERU-
ViT-S using CC3M for various batch sizes and report their zero-shot performance on ImageNet
classification. Table 6 indicates no empirical benefits when working with larger batch sizes. In
the contrastive setting, the number of positives grows linearly, and the number of negatives grows
quadratically in a batch. When using softmax, the ratio of positives to negatives affects loss functions
differently depending on the type of similarity metric that is being used. This can explain the
difference in batch size behavior of our approach. The saturation of softmax loss with increasing
batch size has been previously discussed by Zhai et al. (2023), and the entailment loss may also
contribute to this early saturation.

4 ANALYZING THE HYPERBOLIC SPACE

Figure 6: Interpolation between
points. Multimodal retrieval results
when moving from (top) an image to
(left) another image or (right) the ori-
gin, as depicted in the (bottom-right)
circle.

Visualizing the learned hyperbolic space We visualize
the learned hyperbolic space in lower dimensions to see if
the image, text, and corresponding box embeddings are dis-
tributed in a proper semantic hierarchy. To this end, we plot
the distribution of the spatial norms of 128k random sam-
ples of training data in a histogram. Furthermore, we use
HoroPCA (Chami et al., 2021) for reducing the dimension-
ality for 200 image-text pairs along with their boxes. Lastly,
we extract 50 principal components to suppress noise and use
CO-SNE (Guo et al., 2022) to bring the embeddings to the
low-dimensional space.

Fig. 5a shows that the embedding distributions of texts and
their corresponding boxes are well separated, while images
and their box representations display similar norms. This
spatial contraction in image embeddings arises from the con-
vergence of contrastive loss within a confined entailment
cone, as noted by Ramasinghe et al. (2024). Furthermore,
many image boxes are almost identical to the full image (cf.
Fig. 4), making it challenging for the network to differentiate
between them. Nonetheless, the bottom plot in Fig. 5a shows
that the box embeddings distribute closer to the origin, thus
displaying hierarchical ordering. From Fig. 5b and 5c, we
observe the semantic separation in the two principal compo-
nents of HoroPCA and in the 2D space formed with CO-SNE,
indicating an apparent hierarchy between the components.

Interpolating between points in hyperbolic space We in-
terpolate the geodesic connecting an image (source) with an-
other image (target) and also with the origin similar to Desai
et al. (2023), which have been visualized on the bottom-right
of Fig. 6. This intuitively represents traversing between nodes
in a discrete tree. This is useful in visualizing the ancestors
of any given image and qualitatively verifying the hierarchi-
cal properties of the learned hyperbolic space. We do the
shortest path traversal in the tangent space details of which
are in Appendix G. We use grounded Flickr30K (Li et al.,
2023) to generate the collection of representations of images,
texts, and corresponding boxes. Fig. 6 shows the result of
100 points being interpolated between two randomly selected images from pexels.com as well
as to the origin. We observe that HyCoCLIP can fetch representations of both data modes in a very
rational hierarchy. More interpolation examples are added in Appendix H.
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5 RELATED WORK

Vision-language models Currently expanding at a rapid pace, this topic has been in focus for multi-
ple decades with initial works in image retrieval (Mori et al., 1999), semantic segmentation (Barnard
et al., 2003), and object classification (Wang et al., 2009) leveraging natural language descriptors
for computer vision. Later works (He & Peng, 2017) utilized more expressive representations from
multi-modal neural network encoders. The advent of transformers (Vaswani et al., 2017) and vision
transformers (Dosovitskiy et al., 2021) helped construct a highly semantic embedding space for
texts and images, respectively. Recent works have explored creating a shared embedding space by
leveraging various pre-training strategies to integrate text and image information. We refer the reader
to the survey by Gan et al. (2022) for a comprehensive overview. Many approaches use contrastive
learning as a core method, like CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021). Zhao
et al. (2022) advanced this with RegionCLIP, which aligns image regions with textual concepts for
object detection. More recently, MERU (Desai et al., 2023) combines entailment learning (Ganea
et al., 2018a; Le et al., 2019) with the CLIP approach to learn embeddings in hyperbolic space
capturing latent visual-semantic hierarchies. We extend this to include image patches and caption
parts, enforcing an ordering that reflects the hierarchy shared by both modalities.

Learning in hyperbolic space Hyperbolic space for representation learning has desirable properties
for data with an inherent hierarchical or tree-like structure (Nickel & Kiela, 2017; Chamberlain et al.,
2017). When generating embeddings in hyperbolic space from such data, its innate hierarchical
structure can be retained with minimal distortion. As a result, hyperbolic deep learning has rapidly
gained traction (Peng et al., 2022; Mettes et al., 2023). Recent works have developed methods
for building neural networks that operate in hyperbolic space (Ganea et al., 2018b; Shimizu et al.,
2021) and corresponding optimization algorithms (Bécigneul & Ganea, 2019; Bonnabel, 2013). This
led to the use of hyperbolic models in many different modalities such as graphs (Liu et al., 2019),
text (Dhingra et al., 2018; Tifrea et al., 2019), images (van Spengler et al., 2023; Atigh et al., 2022),
videos (Long et al., 2020), etc. Other recent work has focused on combining embedding spaces of
different modalities (Liu et al., 2020; Desai et al., 2023). Our work similarly learns multimodal
representations in hyperbolic space to benefit from its inductive hierarchical bias.

Hierarchies in vision and language Vendrov et al. (2016) use a visual-semantic hierarchy over
words, sentences, and images to learn representations in a supervised fashion. They consider
hypernym-hyponym relations in language to construct a hierarchy. This concept has been used in
hypernymy detection tasks (Nguyen et al., 2017; Vulic & Mrksic, 2018). Hierarchies formed by
constituency-based parse trees have been used to learn embeddings in hyperbolic space by Dhingra
et al. (2018). In vision, several works sought to connect scenes to objects and parts of objects within
the scene. Early works have used such information for pose estimation, image segmentation, and
object and contour detection (Bourdev & Malik, 2009; Arbeláez et al., 2011). Recently, un-/self-
supervised methods have been used for representation learning leveraging hierarchical segmentation
of an image by Zhang & Maire (2020) and object-scene hypernymy by Xie et al. (2021); Ge et al.
(2023). We combine hypernymy relations of vision and language.

6 CONCLUSION

The idea of this work is to use object compositions within a scene and its description, along with
the visual-semantic ordering between image and text to learn hyperbolic representations that are
semantically and hierarchically aligned. Our proposed HyCoCLIP improves over standard CLIP
and its recent hyperbolic extension MERU in zero-shot classification. Moreover, our approach has
increased scene understanding and better hierarchical structuring. Further, we qualitatively analyze
the space by visualizing representations and through point-to-point interpolation which substantiates
HyCoCLIP’s ability to embed multi-modal hierarchies in a shared space. The method has certain
limitations, with a key challenge being the need to generate bounding box information from image-
caption pairs during training. This increases the volume of visual and textual data processed by
HyCoCLIP, though it still preserves scalability during inference. Additionally, while our hierarchical
training strategy improves interpretability by separating images and texts into distinct regions in the
embedding space, it may not be optimal for tasks like large-scale retrieval.
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A GENERATING BOX INFORMATION

We derive box information using an image grounding pipeline similar to Peng et al. (2023). Given
an image-caption pair, noun entities are initially extracted from the caption into a list using spaCy
(Honnibal et al., 2020). To minimize noise, we remove abstract nouns such as {life, humor, love, ...}
from the list. We then predict the bounding boxes of the extracted entities within the image using the
pre-trained grounding model GLIP (Li et al., 2022; Zhang et al., 2022). We exclude boxes with sizes
lower than 32× 32. We also threshold the predictions to at least 0.65 CLIP confidence score for the
generated bounding box with the corresponding noun entity. Image-caption pairs for which no boxes
could be generated or retained while filtering, are dropped. Further, referring expressions for noun
chunks taken from the dependency tree of the caption using spaCy, are also included as text boxes.
This increases the robustness of the stem towards linguistic complexities.

B IMPLEMENTATION DETAILS

Model architecture We use a similar setup as Desai et al. (2023), where the language encoder is
the same one used by the original CLIP (Radford et al., 2021) consisting of a 12-layer Transformer
architecture (Vaswani et al., 2017) with a width of 512 dimensions. The maximum input token size
is set to 77 with a vocab size of 49408. For the vision encoder, we use the small and base Vision
Transformer (Dosovitskiy et al., 2021; Chen et al., 2021; Touvron et al., 2021) backbone using a patch
size of 16. The images are resized using border padding and random cropping (with scale [0.5, 1.0])
to 224× 224, which results in an input sequence size of 196. A fixed set of 2-D sine-cosine position
embeddings is included in the input sequence to instill a positional inductive bias.

Table 7: Hyperparameter
search for ηinter performed
on grounded CC3M dataset.

ηinter ImageNet

1.0 12.5
0.9 12.6
0.8 13.1
0.7 13.4
0.6 13.3
0.5 12.8

Initializing Lorentz model and Loss The curvature of the Lorentz
model is made learnable with an initial value of κ = 1.0. Similar to
Desai et al. (2023), we scale our batch of vectors before projecting it
to the hyperboloid using learnable scalars cimg and ctxt, respectively,
in both image and text modes. These scalars are initialized with a
value of cimg = ctxt = 1/

√
512. The adaptive softmax temperature

of the contrastive loss is initialized with τ = 0.07 and clipped at
0.01. All of these scalar values are learned in the logarithmic space.
In the hCE loss (Equations 10,11), we set separate values of the
η parameter for inter-modality entailments ηinter = 0.7 and intra-
modality entailments ηintra = 1.2 through a hyperparameter search
while pre-training on the CC3M dataset for 75k steps and evaluating
on ImageNet zero-shot image classification (cf. Table 7). Intuitively,
this is because embeddings of images and text exist in different regions of the space, making it easier
for text to entail the corresponding image as texts are nearer the origin and have a wider aperture ω (cf.
Eq. 7). Hence, we make the loss stricter by reducing the aperture of text embeddings. Similarly, the
intra-modal box representations are closer in their corresponding spaces. Accordingly, we increase
the aperture of the box regions to relax the entailment loss. In the final hC loss, we set the weight for
hCE loss γ = 0.1.

Optimizer and Hardware We train our models on 4 A100 GPUs for 500k steps using a batch size
of 768 on an internal cluster. Similar to Desai et al. (2023), we use the AdamW optimizer (Loshchilov
& Hutter, 2019) with hyperparameters β1 = 0.9, β2 = 0.98 and weight decay 0.2 which is disabled
for the learnable scalars. We use a cosine learning rate scheduler (Loshchilov & Hutter, 2017) with a
maximum learning rate of 5× 10−4 and a linear rate for the initial 4k steps.

C METRICS FOR HIERARCHICAL CLASSIFICATION

This section provides more details on the metrics used for our hierarchical classification experiment.
For a pair of predicted and true class (ŷ, y), the Tree Induced Error (TIE) (Dekel et al., 2004) is the
distance between ŷ and y in the graph (cf. Fig. 7a). This is defined as

∑
e∈E(ŷ,y) we, where E(i, j)

is the set of edges with weights we along the path connecting nodes i and j. For the WordNet graph,

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 7: Hierarchical classification metrics when labels have a tree-like structure. Predicted label
in red and true label in green. (a) Tree Induced Error (TIE) is the graph distance till the correct label
while Least Common Ancestor (LCA) is the distance till the first common ancestor label as shown in
blue. (b) shows ancestor label set of the predicted label (Ŷanc) and the true label (Yanc).

we set we = 1. Similarly, the Lowest Common Ancestor (LCA) error is the distance to the deepest
common node in the graph which is shared between the ancestors of classes ŷ and y.

For set-based measures, we define Ŷanc and Yanc as the set of ancestor nodes of classes ŷ and y
respectively (cf. Fig. 7b). Other relevant set-based hierarchical metrics such as, Jaccard Similarity J ,
and Hierarchical precision (PH ) and recall (RH ) (Kosmopoulos et al., 2015) are then given by

J =
|Ŷanc ∩ Yanc|
|Ŷanc ∪ Yanc|

, PH =
|Ŷanc ∩ Yanc|

|Ŷanc|
, RH =

|Ŷanc ∩ Yanc|
|Yanc|

. (13)

D REGIONCLIP ON OTHER TASKS

In addition to object detection (cf. Sec. 3.2, Zero-shot object detection), we evaluate RegionCLIP on
the other downstream tasks described in Sec. 3.2. We compare RegionCLIP, which uses a ResNet-50
backbone (∼25M parameters), to HyCoCLIP, which employs a ViT-S/16 backbone with ∼22M
parameters. As shown in Table 8, our method significantly outperforms RegionCLIP across all these
tasks. This is expected, as RegionCLIP is primarily optimized for object detection. By contrast,
HyCoCLIP reaches the level of performance of RegionCLIP on object detection despite being
designed to learn hierarchical representation spaces.

Table 8: RegionCLIP performance on downstream tasks. The pre-training of RegionCLIP using
boxes is primarily optimized for object detection. Thus displays poorer performance in comparison
to HyCoCLIP which is designed to learn hierarchical representations from the boxes. * s.u. denotes
scene understanding.

classification retrieval hierarchical metrics s.u.*

Model Im
ag
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C
IF
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39
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od
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M
ea

n(
16

)
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(↓
)
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A
(↓

)

J
(↑

)

P
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(↑
)

R
H

(↑
)

V
L

-C
O

V
G

-A

RegionCLIP 40.6 23.2 43.4 41.3 36.4 38.5 31.5 3.76 2.29 0.77 0.84 0.84 52.5 59.7
HyCoCLIP 41.7 53.6 52.5 50.2 41.1 69.5 55.2 3.55 2.17 0.79 0.86 0.85 59.8 68.4

E SCENE UNDERSTANDING BENCHMARKS

In this section, we describe in detail the experiments of the compositional reasoning benchmarks
used to evaluate our models in Sec. 3.2.
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Figure 8: Performance on scene understanding benchmarks (a) model performance on VL-
Checklist-Object (VL-CO) understanding experiments. HyCoCLIP performs best on object under-
standing tasks. (b) model performance on Visual Genome (VG) Attribution benchmark, accuracy
values are plotted for the 19 most frequent attribute pairs in the experiment. HyCoCLIP gives the
best results on most of these attribute pairs.

E.1 BENCHMARKS

VL-Checklist-Object (VL-CO) This benchmark (Zhao et al., 2022) modifies the caption in several
aspects. An object term in the caption is replaced with a random noun phrase. The model results are
categorized for different sizes and locations of the object within the image to check for invariance
which are summarized as follows,

• O-Small: The object covers a small area within the image. Following Zhao et al. (2022),
the threshold of the object area is set to below 32× 32.

• O-Medium: The object covers a moderate area within the image. The threshold of the
object area is set between 32× 32 and 96× 96.

• O-Large: The object covers a large area within the image. Any object with an area greater
than 96× 96 fits this category.

• O-Center: The object center lies within the center region of the image. If x is the half-length
diagonal, and y is the distance between the center of the object and the center of the image,
the object is considered to lie in the center region if y

x ≤ 1
3 .

• O-Margin: The object center lies at the margin of the image. This is when y
x > 2

3 .

• O-Mid: The object center lies in between the center and margin region which is when
1
3 < y

x ≤ 2
3 .

VG-Attribution (VG-A) This benchmark (Yüksekgönül et al., 2023) tests the capability of the
model to correctly identify the attribute word associated with an object in a sentence in the context of
an image. For instance, the model has to pick between ”the crouched cat and the open door” and
”the open cat and the crouched door”.

E.2 PERFORMANCE

We reported the mean performance for scene understanding benchmarks in Table 5. In addition to
this, here we provide the results of HyCoCLIP compared against MERU on the individual categories
of VL-CO and the top 19 most frequently occurring attribute pairs in the VG-A evaluation set. Fig.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 9: Visualizing the learned hyperbolic space of MERU in lower dimensions using samples
from GRIT. (a) distribution of embedding distances from the origin, MERU embeds text data closer
to the origin wrt the images but box samples don’t show a smaller radius wrt full images/captions.
On the right, (b) HoroPCA does not show local ordering and (c) CO-SNE visualizations of the latent
space in L2 are quite distorted.

8 highlights the significant improvements achieved by our method indicating better semantic scene
understanding.

F VISUALIZING REPRESENTATION SPACE - MERU

Following Sec. 4, we additionally plot the learned hyperbolic space of MERU in lower dimensions in
Fig. 9. We observe that the distributions of text embeddings and image embeddings are overlapped
with corresponding box distributions from Fig. 9a. This is also apparent in the 2D plot when using
HoroPCA in Fig. 9b. The embeddings for all modes seem to collapse to a small region with CO-SNE
as seen in Fig. 9c.

G INTERPOLATION DETAILS

The logarithmic map is the inverse of the exponential map and, for p,q ∈ Ln, is given by

logκp(q) =
cosh−1(−κ⟨p,q⟩L)√

(κ⟨p,q⟩)2 − 1
(q+ κ⟨p,q⟩Lp). (14)

Here, we will use it to interpolate between points in hyperbolic space (Desai et al., 2023).

For hyperbolic representations (gI(IS), gI(IT )) of source image IS and target image IT , we take the
logarithmic maps log0(gI(IS)) and log0(gI(IT )) and obtain a set of N equally spaced representations
on the line joining these vectors given by,

SN
E =

{
pi ∈ TpLn : pi = (1− ti) log0(gI(IS)) + ti log0(gI(IT )), ti =

i

N
, i ∈ {1, . . . , N}

}
.

(15)
These are then mapped back to the hyperboloid using exponential mapping given by,

SN
H =

{
qi ∈ Ln : qi = exp0(pi), pi ∈ SN

E

}
. (16)

The closest representations are retrieved for all points in the set SN
H using Lorentzian distance as

the similarity metric from a collection of representations of images and texts. Further, we drop any
duplicate representations retrieved.
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H MORE INTERPOLATION EXAMPLES

(a) (b)

Figure 10: Interpolation between points on the hyperbolic space
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(a) (b)

Figure 11: Interpolation between points on the hyperbolic space
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(a) (b)

Figure 12: Interpolation between points on the hyperbolic space
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