
4D-LRM: Large Space-Time Reconstruction Model
From and To Any View at Any Time

Ziqiao Ma1,2 Xuweiyi Chen4 Shoubin Yu1,3

Sai Bi1 Kai Zhang1 Ziwen Chen1,5 Sihan Xu2 Jianing Yang1,2

Zexiang Xu1 Kalyan Sunkavalli1 Mohit Bansal3 Joyce Chai2 Hao Tan1

1Adobe Research 2University of Michigan
3UNC Chapel Hill 4University of Virginia 5Oregon State University

https://4dlrm.github.io/

t=0 t=1 t=22 t=23…

t = 0.00 t = 8.25 t = 17.50 t = 23.00

t = 4.25 t = 8.25 t = 14.75 t = 21.00

GT

GT

t=0 t=1 t=22 t=23…

t = 0.00 t = 9.50 t = 19.75 t = 23.00

t = 0.75 t = 5.50 t = 9.25 t = 17.00

GT

GT

Input Views Render Any View At Any Time Ground Truth
(<1.5 seconds on single A100)

Figure 1: Large Space-Time Reconstruction Model (4D-LRM) is a data-driven 4D reconstruction
model that takes sparse input views at any time and renders arbitrary novel view-time combinations.

Abstract

Can we scale 4D pretraining to learn general space-time representations that recon-
struct an object from a few views at some times to any view at any time? We provide
an affirmative answer with 4D-LRM, the first large-scale 4D reconstruction model
that takes input from unconstrained views and timestamps and renders arbitrary
novel view-time combinations. Unlike prior 4D approaches, e.g., optimization-
based, geometry-based, or generative, that struggle with efficiency, generalization,
or faithfulness, 4D-LRM learns a unified space-time representation and directly
predicts per-pixel 4D Gaussian primitives from posed image tokens across time,
enabling fast, high-quality rendering at, in principle, infinite frame rate. Our results
demonstrate that scaling spatiotemporal pretraining enables accurate and efficient
4D reconstruction. We show that 4D-LRM generalizes to novel objects, interpolates
across time, and handles diverse camera setups. It reconstructs 24-frame sequences
in one forward pass with less than 1.5 seconds on a single A100 GPU.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://4dlrm.github.io/

1 Introduction

Reconstructing dynamic objects and scenes from video is a fundamental problem in computer vision
full of challenges. The ability to accurately capture both spatial structure and temporal dynamics
to build a complete 4D representation from limited visual inputs, across varying views and time,
would significantly advance applications, such as 4D asset generation [78, 53] for video games, film
production, and AR/VR, as well as world modeling [32, 96] for embodied AI and robotics.

Prior work on 4D modeling generally follows three directions, each shaped by different assumptions,
target applications, or inherent limitations. The first direction is optimization-based. These methods
reconstruct space and time by optimizing per scene or object from multi-view videos [3, 28, 82]. While
these methods can produce high-quality results, they require dense spatial and temporal sampling,
limiting their practicality with sparse inputs. The second direction is geometry-based. Motivated by
Geometry Transformers [71, 66], they aim to estimate dynamic geometry and extract camera poses or
depth maps directly from videos [90, 19, 70]. This line is orthogonal to the previous line of work,
as these methods are not intended for novel view or time synthesis and instead focus on per-frame
geometry estimation [90]. The third direction is generation-based, aiming to produce perceptually
plausible 4D assets using visual generative models, particularly video diffusion models [73, 76, 78, 83].
These methods require fewer inputs, but are still computationally expensive, sensitive to prompts [36],
or tailored for single-view monocular videos (Figure 2a) [53, 78]. As Yao et al. [83] noted, generating
dynamic 3D content from a single-view video is inherently ill-posed for reconstruction due to motion
ambiguity. Thus, these methods prioritize perceptual quality over faithful 4D reconstruction.

Recent advances in Large Reconstruction Models (LRMs) [24, 92, 98] offer a promising rendering-
based alternative toward efficient and high-quality 3D reconstruction. Based on Transformer
architectures, LRMs have shown strong performance on 3D reconstruction tasks by learning powerful
priors over shape and appearance from large-scale 3D datasets. This also enables them to reconstruct
detailed objects and scenes from only a few posed images. However, existing LRMs are designed
for static 3D objects or scenes. Although recent work has explored adapting them for 4D asset
generation [53] and scene-level reconstruction with limited camera dynamics [81, 39], extending
LRMs to general 4D reconstruction remains challenging, particularly when dealing with sparse
multi-views and missing timestamps. We envision that an ideal 4D reconstruction model should
be able to learn accurate spatiotemporal representations from a limited set of input views at a few
timestamps, enabling reconstruction at novel view-times by effectively sharing information across
both viewpoint and time (Figure 2b). This motivates a fundamental question for 4D modeling:

Can we scale 4D pretraining to learn a generic space-time representation that reconstructs an object
from a few views at some time points, to any view at any time?

We introduce 4D-LRM, a Transformer-based large space-time reconstruction model for dynamic object
reconstruction, trained in a data-driven manner. Inspired by 4D Gaussian Splatting (4DGS; [82]),
4D-LRM adopts a unified treatment of space and time, representing a dynamic object as a cloud of
anisotropic 4D Gaussians. As illustrated in Figure 3, we patchify temporally posed input images
into image tokens, which are processed by Transformer blocks. The model then directly regresses
per-view, per-pixel 4D Gaussian primitives from contextualized multi-view tokens across time. These
predicted 4DGS primitives enable fast, high-quality reconstruction and rendering from any viewpoint
at any timestamp, with, in principle, an infinite frame rate. We train 4D-LRM on a curated subset of
Objaverse4D [13], consisting of dynamic, articulated objects captured over time. The model scales
effectively with more data and larger model size, and generalizes well to novel objects.

To the best of our knowledge, 4D-LRM is the first large-scale 4D reconstruction model that supports
input from unconstrained posed views and timestamps, and renders arbitrary novel view-time
combinations. With around 300M parameters, 4D-LRM achieves a high-quality reconstruction on
Consistent4D [28] and the hold-out test set of Objaverse4D using only one input view per frame. It
reconstructs a 24-frame dynamic object in one forward pass with less than 1.5 seconds on a single A100
GPU. Compared to per frame 3D reconstruction, 4D-LRM exhibits strong and robust performance
under diverse input camera configurations. We attribute this to 4D-LRM’s ability to jointly model
spatial and temporal contexts, effectively resolving motion ambiguities by sharing information across
views and time. We further unlock its application to 4D asset generation, which surpasses baselines
in both faithfulness and inference speed. Finally, we present detailed scaling behavior analyses for
both training and inference, examining the scalability of different design choices and how inference

2

Time

Ca
m
er
a

Input Output
(a) Generative 4D Modeling.

Time

Ca
m
er
a

Input Output
(b) Generic 4D Reconstruction.

Figure 2: Comparison between previous generative 4D modeling methods (e.g., L4GM [53] and
SV4D [78, 83]) and our goal of generic 4D reconstruction. Prior approaches take a single monocular
video as input and use generative priors to synthesize multi-view images for the first frame. In contrast,
our objective is to reconstruct dynamic objects from any viewpoint at any timestamp.

performance varies with the number of input views. This highlights future directions in developing
4D-LRM variants that can handle longer contexts [98] and support test-time training [11].

2 Large Space-Time Reconstruction Model (4D-LRM)

2.1 Preliminary: 4D Gaussian Splatting (4DGS)

3D Gaussian Splatting. With 3D Gaussian Splatting (GS; [31]), a static 3D scene can be represented
as a cloud of anisotropic 3D Gaussians. Each Gaussian is in principle unbounded and, unless filtered,
contributes to a point x ∈ R3 via an unnormalized density:

p(x|µ,Σ) = exp
[
−1

2
(x− µ)

T
Σ−1 (x− µ)

]
, (1)

where µ = (µx, µy, µz) ∈ R3 is the mean and Σ ∈ R3×3 is the covariance. The covariance is
factorized as Σ = RSSTRT , with S = diag(sx, sy, sz) and R derived from a unit quaternion q.

Pixel-Aligned Gaussians. GS-based reconstruction models [6, 60, 92] adopt pixel-aligned Gaussian
rendering, where the center of each 3D Gaussian is computed from the ray distance and known camera
parameters. Given ray origin rayo, direction rayd, and distance δ, the center is µ = rayo + δ · rayd.
Therefore, each Gaussian can be parameterized with dim3DGS = 12, including 3-channel RGB color,
3-channel scale, 4-channel rotation quaternion, 1-channel opacity, and 1-channel ray distance.

4D Gaussian Splatting. When considering a dynamic scene, Yang et al. [82] observed that treating
space and time as independent, i.e., assuming pi(x, y, z|t) = pi(x, y, z) for the i-th visible Gaussian,
is undesirable. Instead, they extend the formulation of Kerbl et al. [31] to model dynamic scenes with
a unified treatment of spatial and temporal dimensions using a coherent 4D Gaussian representation
(4DGS; [82]). The mean of 4DGS is given by µ = (µx, µy, µz, µt) ∈ R4, which captures both
the spatial and temporal centers. 4DGS parameterizes its covariance matrix Σ as a 4D ellipsoid
Σ = RSSTRT , where S = diag(sx, sy, sz, st) is a diagonal scaling matrix and R ∈ R4×4 is a 4D
rotation matrix. In 4D Euclidean space, R can be decomposed into a pair of left and right isoclinic
rotations, each represented by a quaternion. Together, a general 4D Gaussian can be parameterized
with dim4DGS = 20, including 3-channel RGB color, 4-channel scale, two 4-channel quaternions,
1-channel opacity, and the 4-channel space-time centers of order xyzt.

Sampling Conditional 3DGS from 4DGS. As is shown in Figure 3, the marginal probability pi(t) at
time t is a one-dimension Gaussian N (t;µ4,Σ4,4). The conditional 3DGS can be derived from the
properties of the multivariate Gaussian with:

µxyz|t = µ1:3 +Σ1:3,4Σ
−1
4,4(t− µ4),

Σxyz|t = Σ1:3,1:3 − Σ1:3,4Σ
−1
4,4Σ4,1:3.

(2)

This decomposition enables direct adaptation of the 3DGS tile-based rasterizer by first evaluating
the marginal distribution pi(t), allowing for the accumulation of color and opacity over time. More
details are available in Appendix B.2.

3

Input View-Times
(V, H, W, 3)

Temporally Posed Images
(V, H, W, 3+6+1)

Image Tokenizer (Linear)

Image Patchification
(V, NP*NP, 10*PS*PS)

+

Free Gaussian Tokens
(N, D)

Image Tokens
(V*NP*NP, D)

+Self-Attention +MLP

L x Transformer

t1

t2

t0

t4

t5

Unpatchify (Linear) GS Decoder (Linear)
Free Gaussians

(N, 20)
Pixel-Aligned Gaussians

(V*H*W, 20)

Merged 4D Gaussians
(V*H*W + N, 20)

+ Plücker Rays
+ Frame Time

Marginal Time

P(t)

t

t3?

Conditional
3D Gaussians View

Render

t1-5

t0 t1 t2 t3 t4 t5

Novel View-Time

4D-LRM Overview

t1

t2

t0

t4t5

+

Input Output

Sampling

Figure 3: Overview of 4D-LRM. 4D-LRM adopts a unified treatment of space and time, representing
a dynamic object as a cloud of anisotropic 4D Gaussians [82]. We train a simple Transformer to
regress 4D Gaussian primitives from a set of images with camera poses and timestamps. Each input
image is tokenized by patchifying the temporally posed frames. The resulting multi-view image
tokens are concatenated in temporal order and passed through a series of transformer blocks. An
optionalal set of N learnable free Gaussian tokens append the image tokens for greater generative
flexibility.

2.2 Transformer-Based Image-to-4DGS Decoder

Tokenizing Temporally Posed Images. As shown in Figure 3, the inputs to our model are V images
from arbitrary view-time combinations, denoted as {Ij ∈ RH×W×3} for j = 1, 2, .., V , along with
their corresponding camera intrinsic and extrinsic parameters. Here, H and W represent the image
height and width, respectively. For pose conditioning, we compute Plücker ray coordinates [48] for
each image, resulting in {Pj ∈ RH×W×6}. Instead of the standard canonical Plücker coordinates
[rayd, rayo × rayd], we follow GS-LRM [92] and represent each ray as a direction plus its closest
point to the origin [rayd, rayo − ⟨rayo, rayd⟩ · rayd], which is suitable for pose-sensitive learning
and pixel alignment. Temporal conditioning is provided by a timestamp map {Tj ∈ RH×W×1}. We
channel-wise concatenate the RGB values, Plücker coordinates, and time to obtain a per-view feature
map Ĩj = Concat(Ij ,Pj ,Tj) of 10 channels, enabling per-pixel pose and time conditioning, naturally
serving as spatial and temporal embeddings to distinguish different patches. Therefore, we do not use
additional positional embeddings. Following Vision Transformer (ViT) architectures [16], we divide
each per-view feature map into non-overlapping patches of size PS2. Each patch is flattened into a
vector embedding of size 10 · PS2, and then projected to a token of dimension D (the Transformer
width) using a linear layer.

Decoding Per-Pixel Gaussians with Transformer. We concatenate the image tokens and feed them
through L layers of Transformer blocks. Each block follows a standard architecture consisting of Pre-
LayerNorm [2], multi-head self-attention [64], and MLP, all equipped with residual connections [23].
The output tokens are then unpatchified and decoded into pixel-aligned 4D Gaussian primitives using
a single linear layer. Given the same patch size, this results in V ×H ×W Gaussians, each with
dim4DGS = 20. As in prior GS-based LRMs, we adopt pixel-aligned Gaussian rendering. From each
decoded 4D Gaussian parameter g ∈ R20, we split the 4-channel space-time vector (gx,gy,gz,gt),
retain the time µt = gt, and normalize the xyz features to a scalar distance δ. Further details on
4DGS parameter initialization and differentiable rasterization are provided in Appendix B.

Optional Free Gaussians. Pixel-aligned Gaussians scale naturally with input resolution, making them
well-suited for generalization to higher resolutions [92]. However, this design becomes suboptimal for
very sparse views or setups with limited view coverage over motion, such as those used in standard
generative 4D modeling [53, 78]. To address this, we optionally introduce an additional set of N

4

Time

 C
am

. A
zi

m
ut

h 0°

90°

180°

270°

0 1 2 3 4 5 6 7 …
Time

 C
am

. A
zi

m
ut

h 0°

90°

180°

270°

0 1 2 3 4 5 6 7 …

Time

 C
am

. A
zi

m
ut

h 0°

90°

180°

270°

0 1 2 3 4 5 6 7 …
Time

 C
am

. A
zi

m
ut

h rand

rand

rand

rand

0 1 2 3 4 5 6 7 …

Time

 C
am

. A
zi

m
ut

h

180°

…

-45°

-30°

0 1 2 3 4 5 … … 22

-15°

15°

30°

23

…

165°

0°

Two Rotating Cameras (24in)

Alternating Canonical Views (24in)

Frame Interpolation (24in)

Single View Video (27in)

Random View Each Frame (24in)

Figure 4: Different types of camera setups in evaluations: Alternating Canonical Views (4 camera
poses, 24/24 timestamps seen, 24 input views in total); Frame Interpolation (4 camera poses, 12/24
timestamps seen, 24 input views in total); Two Rotating Cameras (24 camera poses, 24/24 timestamps
seen, 24 input views in total); Single View Video [53, 78] (4 camera poses on the first frame plus a
single view video for subsequent frames, 24/24 timestamps seen, 27 input views in total); Random
Input Views (random poses, 24/24 timestamps seen, 24 input views in total).

learnable Gaussian tokens, concatenated with the image tokens. These tokens allow the model to
generate freeform 4D Gaussian primitives. Unlike pixel-aligned Gaussians, these do not rely on pose
or time conditioning. Instead, we use a separate linear layer to decode the 4-channel space-time vector
(gx,gy,gz,gt) that directly defines the Gaussian center µ = (µx, µy, µz, µt) after activation. We
describe in Section 3.1 how 4D-LRM can be fine-tuned for 4D asset generation with free Gaussians.

2.3 Training Objectives
During training, we render images at U supervision views using the predicted 4D Gaussians and
minimize the image reconstruction loss. Let {I∗i′ | i′ = 1, 2, . . . , U} denote the ground truth views
and {Î∗i′} the corresponding rendered images. The training loss combines Mean Squared Error (MSE)
and Perceptual loss [9]:

L =
1

U

U∑
i′=1

(
MSE(̂I∗i′ , I

∗
i′) + λ · Perceptual(̂I∗i′ , I∗i′)

)
, (3)

where λ controls the weight of the perceptual loss and is set to 0.5 empirically.

3 Experiments

3.1 Implementation Details

Training Data. To enable large-scale training, we construct a 4D dataset derived from Objaverse [13],
which provides a subset of animated 3D assets. However, the raw dataset is not directly suitable for
4D modeling: object motions are often inconsistent, and the dataset contains duplicates and artifacts.
To address this, we build upon the filtered subset curated by Diffusion4D [38], which removes static
objects and unstable motion sequences, leading to 32,000 animated objects. For each object, we
render a 24-frame video from diverse camera trajectories. We augment the dataset with 783,000 static
3D objects from Objaverse by treating each as a 24-frame video, applying minor frame-by-frame
displacements along a single random direction. More details are available in Appendix B.3.

Benchmark Data. We use the Consistent4D [28] objects for evaluation. Additionally, we hold out
56 challenging objects exhibiting more complex motion as an extended test set to support future
benchmarking. For evaluation, we re-render the first 48 (2× 24) frames of the Consistent4D dataset
and the first 24 frames of the Objaverse4D (Test) split. During training, we exclude 6 (out of the 7)
Consistent4D test objects that also appear in Objaverse from our training set to avoid data leakage.

Curriculum Learning. We adopt a curriculum learning strategy to reduce computational cost.
Specifically, we pretrain the model at a resolution of 128× 128 for 100,000 steps, and then continue
at 256× 256 for an additional 20,000 steps. The continual pretraining stage uses the same model
architecture, initialized with the same pre-trained weights, but processes more tokens due to more

5

Table 1: Breakdown evaluation of each camera setup on Consistent4D (Re-rendered) dataset. For
each setup, we evaluate and average the score on 4 canonical views and 1 randomly sampled view.
We consider different Resolutions and model Initialization strategies and compare to GS-LRM [92].

Res. Models Init. Alter. Canonical Views Frame Interpolation Two Rotating Cameras Random Input Views
PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM

128
4D-LRM-Base No 29.233 0.047 0.961 29.194 0.047 0.961 25.014 0.071 0.926 25.788 0.081 0.926
4D-LRM-Large No 30.274 0.038 0.969 30.260 0.038 0.969 25.904 0.061 0.935 26.525 0.070 0.934
4D-LRM-Large Yes 31.023 0.031 0.974 30.917 0.031 0.973 28.703 0.042 0.959 28.789 0.049 0.957

256

SoM [69] - 25.586 0.055 0.906 - - - 22.756 0.089 0.941 17.637 0.208 0.875
GS-LRM (Per Fr.) - 19.327 0.097 0.902 - - - 20.037 0.094 0.935 16.826 0.212 0.801
GS-LRM (All in) - 21.606 0.086 0.925 21.590 0.086 0.925 20.641 0.100 0.909 19.665 0.132 0.897
4D-LRM-Base No 27.443 0.062 0.952 27.394 0.062 0.953 23.429 0.088 0.918 23.882 0.096 0.916
4D-LRM-Large No 27.860 0.049 0.959 27.822 0.048 0.959 25.095 0.069 0.934 25.776 0.073 0.934
4D-LRM-Free Yes 30.396 0.036 0.973 30.376 0.036 0.973 26.184 0.061 0.943 26.337 0.067 0.939
4D-LRM-Large Yes 32.177 0.028 0.980 32.145 0.028 0.980 27.664 0.050 0.957 27.990 0.057 0.954

t=0 t=1 t=22 t=23…

t = 0.75 t = 4.50 t = 14.75 t = 18.00

t = 0.00 t = 7.50 t = 16.25 t = 19.00

GT

GT
Input Views 4D-LRM Renderings Ground Truth

4D-LRM

4D-LRM GS-LRM
 (3 views)

GS-LRM
 (all in)

GS-LRM
 (3 views)

GS-LRM
 (all in)

Baselines

Alter. Canonical Views

PSNR: 16.45PSNR: 24.70PSNR: 33.79

PSNR: 21.13PSNR: 24.63PSNR: 36.23

t=0 t=1 t=22 t=23…

t = 1.25 t = 11.25 t = 15.75 t = 23.00

t = 1.25 t = 7.50 t = 20.25 t = 21.00

GT

GT

4D-LRM

4D-LRM GS-LRM GS-LRM
 (all in)

GS-LRM
 (3 views)

GS-LRM
 (all in)

Alter. Canonical Views

PSNR: 17.06PSNR: 19.26PSNR: 25.34

PSNR: 20.09PSNR: 20.84PSNR: 30.07

 (3 views)

Figure 5: Visual comparison with GS-LRM [92] using (a) all input views across time and (b) three
random views from the same timestamp. 4D-LRM reconstructs novel view-time combinations by
learning spatiotemporal representations from sparse inputs, outperforming per-frame reconstruction
by effectively sharing information across both space and time.

pixel-aligned Gaussians in higher resolution. At each training step for object-level data, we randomly
sample 36 images (from 144 renderings over 24 frames) as a training example. From this set,
we independently select 12 input views and 24 supervision views, allowing overlap to improve
convergence. Both pretraining stages are performed on 160 A100 GPUs. The first stage adopted a
per-GPU batch size of 16 and took approximately 5 days, while the second stage adopted a per-GPU
batch size of 8 with an additional 5 days. Unless otherwise specified, most training configurations
follow GS-LRM [92]. Additional implementation and training details are provided in Appendix B.4.

Fine-tuning 4D-LRM for 4D Generation. In the pre-training stage, we do not include any free
Gaussians. We fine-tune 4D-LRM with N = 4096 free Gaussians for the 4D generation task similar
to the setting of [53, 78]. For each training example over 24 frames, we select 4 canonical views at
the initial frame and all views from a single-view monocular video as input. We randomly sample 8
supervision views. This is trained on 64 A100 GPUs with a per-GPU batch size of 8 for 16,000 steps.

3.2 Experiment Setups

Input Camera Setup. Since 4D-LRM supports arbitrary input views at any time, we define several
camera setup configurations fore broad and systematic evaluation (see Figure 4 for illustrations):
• Alternating Canonical Views. The input view alternates cyclically among four canonical directions

(front, left, back, and right) across frames;

6

Table 2: Breakdown evaluation of each camera setup on Objaverse4D (Test) dataset. For each setup,
we evaluate and average the score on 4 canonical views and 1 randomly sampled view. We consider
different Resolutions and model Initialization strategies and compare to GS-LRM [92].
Res. Model Init. Alter. Canonical Views Frame Interpolation Two Rotating Cameras Random Input Views

PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM

128
4D-LRM-Base No 27.374 0.068 0.937 27.287 0.068 0.937 25.496 0.075 0.924 24.174 0.112 0.893
4D-LRM-Large No 28.489 0.055 0.949 28.440 0.055 0.949 26.312 0.064 0.934 25.023 0.096 0.905
4D-LRM-Large Yes 29.251 0.042 0.959 29.169 0.043 0.958 28.676 0.043 0.957 27.586 0.064 0.939

256

GS-LRM (Per Frame) - 18.796 0.164 0.854 - - - 19.729 0.143 0.911 18.300 0.176 0.845
GS-LRM (All in) - 19.388 0.138 0.888 19.412 0.139 0.888 19.428 0.138 0.888 19.379 0.138 0.888
4D-LRM-Base No 25.806 0.085 0.928 25.711 0.085 0.929 23.974 0.085 0.924 22.409 0.125 0.889
4D-LRM-Large No 26.658 0.066 0.942 26.580 0.066 0.942 25.524 0.067 0.937 24.461 0.095 0.913
4D-LRM-Free Yes 28.838 0.050 0.958 28.790 0.051 0.958 26.998 0.056 0.949 25.267 0.082 0.923
4D-LRM-Large Yes 30.094 0.041 0.967 30.028 0.042 0.967 27.810 0.049 0.957 26.694 0.072 0.939

t=0 t=0 t=2 t=2 …

Frame Interpolation

PSNR: 26.54

t = 1

4D-LRM

GT

PSNR: 26.54

t = 3

PSNR: 27.03

t = 15

PSNR: 26.79

t = 21

PSNR: 26.51

t = 7

PSNR: 23.09

t = 15

PSNR: 27.24

t = 17

PSNR: 24.22

t = 23

t=24 t=24 t=25 t=27 …

Rand. View & Rand. Frame

PSNR: 30.70

t = 25

GT

PSNR: 30.49

t = 44

PSNR: 29.12

t = 36

PSNR: 27.84

t = 45

PSNR: 30.60

t = 31

PSNR: 27.32

t = 46

PSNR: 27.61

t = 26

PSNR: 32.02

t = 33

4D-LRM

Figure 6: Qualitative examples of 4D-LRM taking views with missing frames, including Frame
Interpolation (only half timestamps seen, 24 input views) and Random Views at Random Frames
(24 input views from random views and times).

• Frame Interpolation. Two canonical views are provided at even-numbered frames, while all
odd-numbered frames are omitted from the input. This setup is designed to evaluate the model’s
interpolation ability across time;

• Two Rotating Cameras. Two virtual cameras rotate from front to back, one sweeping from the left
and the other from the right. The left-rotating camera provides views at odd-numbered frames and
the other for even-numbered frames, creating a complementary dual-view sequence;

• Random Input Views. At each frame, a single view is randomly selected from the available camera
positions. This setting introduces high variability that requires robustness to unstructured input.

Baselines. To the best of our knowledge, 4D-LRM is the first large-scale 4D reconstruction model
that supports inputs from unconstrained views and timestamps, and enables rendering at arbitrary
novel view-time combinations. The closest baselines are recent multi-view diffusion models [73, 76]
and feedforward models [39] that support camera pose and time control, though these methods are
not publicly available. For setups from moving cameras, we compare 4D-LRM to GS-LRMs run in a
per-frame fashion or directly with all views jointly. We also include Shape of Motion (SoM) [69], an
optimization-based method that models videos as causal, one-way motion trajectories. It represents
scene motion using compact SE(3) bases, enforcing consistent forward movement throughout dynamic
scenes. Following its guidelines, we manually segment the dynamic region and run 3,000 optimization
iterations. In addition, we perform systematic ablation studies on 4D-LRM, evaluating two model
scales: Large (300M parameters; 1024 hidden size, 24 layers, 16 attention heads) and Base (85M
parameters; 768 hidden size, 12 layers, 12 attention heads). We also explore the effects of different
Resolution settings and Initialization strategies, i.e., whether initializing the Transformer with weights
from GS-LRM improves performance, using the same training setup and number of steps. Unless
otherwise specified, we use 4D-LRM-Large with initialization by default. More design choices are
discussed with training-time scaling in Section 4 and Appendix B.4.

7

Table 3: Comparison between 4D-LRM and GS-
LRM under varying numbers of input views per
frame (VPF). Rand.: randomly selected input views;
Canon.: 4 canonical input views at each frame.

Input VPF Model Objaverse4D (Test) Consistent4D (Re.)
PSNR LPIPS SSIM PSNR LPIPS SSIM

Rand.

1 GS-LRM 18.738 0.165 0.852 17.201 0.166 0.846
4D-LRM 28.343 0.040 0.964 30.513 0.036 0.972

2 GS-LRM 22.252 0.105 0.898 22.425 0.097 0.904
4D-LRM 28.622 0.051 0.957 30.601 0.035 0.973

3 GS-LRM 24.381 0.083 0.917 24.661 0.079 0.924
4D-LRM 28.212 0.052 0.954 30.554 0.035 0.972

4 GS-LRM 26.118 0.070 0.933 26.126 0.070 0.935
4D-LRM 27.940 0.053 0.953 30.445 0.034 0.972

Canon. 4 GS-LRM 28.710 0.047 0.962 30.067 0.038 0.967
4D-LRM 27.839 0.055 0.952 30.850 0.039 0.968

Table 4: Application to 4D generation on the
original Consistent4D benchmark. ‡Using
ground truth multi-view reference in the first
frame as the skyline.
Model PSNR LPIPS SSIM FVD CLIP
Consistent4D [28] - 0.160 - 1,133.44 0.87
DG4D [52] - 0.160 - - 0.87
4Diffusion [89] - 0.165 - - 0.88
Efficient4D [45] - 0.130 - - 0.92
GaussianFlow [22] - 0.140 - - 0.91
4DGen [85] - 0.130 - - 0.89
STAG4D [88] - 0.130 - 992.21 0.91
SV4D [78] - 0.129 - 677.68 0.93
L4GM [53] - 0.120 - 691.87 0.94
4D-LRM-Large 20.094 0.138 0.885 1,063.88 0.87
4D-LRM-Free 23.777 0.117 0.916 677.58 0.94
4D-LRM-Free‡ 26.118 0.055 0.947 674.59 0.96

t=0 t=1 t=2 t=3 …

Single Camera View

GT

4D-LRM

L4GM

SV4D

GT

4D-LRM

L4GM

SV4D

GT

4D-LRM

L4GM

SV4D

t=0 t=1 t=2 t=3 …

Single Camera View

Figure 7: Visual comparisons of 4D-LRM(-Free) to generation-based 4D models. For fair comparisons,
we initialize each model with the first frame with the ground truth multi-view images.

Metrics. We follow previous work to adopt PSNR [5], SSIM [72], LPIPS [93] metrics. For a broad
coverage of evaluation views, we evaluated and averaged the metrics on 4 canonical views and 1
randomly sampled view at each frame.
3.3 Main Results: 4D Reconstruction
On both the re-rendered Consistent4D dataset (Table 1) and the Objaverse4D dataset (Table 2),
4D-LRM demonstrates strong performance across a variety of camera configurations. Among the four
tested setups, alternating canonical views provide the greatest view coverage over time and represent
the least challenging configuration, under which 4D-LRM achieves PSNR scores exceeding 30.
Notably, 4D-LRM remains robust even under more difficult settings, such as when half of the frames
are omitted, or in configurations with limited spatiotemporal coverage, including two rotating cameras
and random input views. We also find that increasing model size leads to improved performance
under identical data and training steps. Additionally, initializing the Transformer with weights from
GS-LRM further enhances performance and accelerates convergence.

The above experiments use 24 input views over a 24-frame motion sequence, corresponding to a
only one view per frame. Since GS-LRM is designed for sparse-view reconstruction, we further
compare it with 4D-LRM under denser input conditions. Specifically, we evaluate both models
using: (1) multiple randomly selected input views per frame, and (2) four canonical views per frame,
with the task of rendering a single randomly chosen novel view per frame. The results of these
comparisons are presented in Table 3. We observe that GS-LRM performs comparably only when
sufficient view coverage is available, as illustrated in Figure 5. In contrast, 4D-LRM consistently
outperforms per-frame 3D reconstruction methods by leveraging spatial and temporal information
jointly. As shown in Table 1, while SoM performs fair under structured settings such as canonical
or rotating views, it struggles in the random input view scenario due to its limited capacity to
handle unconstrained spatiotemporal inputs. This highlights the advantage of 4D-LRM’s learned,
generalizable representation for arbitrary view-time combinations. Finally, qualitative results in
Figure 6 highlight 4D-LRM’s ability to generalize to novel objects and interpolate effectively over
time, even when input frames are missing.

3.4 Application: 4D Generation.

We demonstrate that 4D-LRM can be extended to a 4D generation setup. Specifically, we chain
4D-LRM (fine-tuned with free Gaussians) with SV3D [65], and compare it against existing generation-

8

1.0 0.5 0.0 0.5 1.0
T Mean

0

1

2 ×104

(a) µt w/o interpolation.

1.0 0.5 0.0 0.5 1.0
T Mean

0

1

2 ×104

(b) µt w/ interpolation.

0.0 0.2 0.4
T Sigma

0.0

2.5

5.0 ×105

(c) Σt w/o interpolation.

0.0 0.2 0.4
T Sigma

0.0

2.5

5.0 ×105

(d) Σt w/ interpolation.
Figure 8: We visualize the distributions of µt and Σt under Alternating Canonical Views and Frame
Interpolation setups on 24 frames with the same dynamic object.

80000
60000

40000
20000

10000
7500

5000
2500

Training Steps

18

20

22

24

26

PS
NR

 (
)

4D-LRM-base
#Target x 2
w/ HexPlane
w/ Temp Align
w/ Free GS

(a) PSNR vs. #Training Steps.

80000
60000

40000
20000

10000
7500

5000
2500

Training Steps

0.70

0.75

0.80

0.85

0.90

SS
IM

 (
)

4D-LRM-base
#Target x 2
w/ HexPlane
w/ Temp Align
w/ Free GS

(b) SSIM vs. #Training Steps.

80000
60000

40000
20000

10000
7500

5000
2500

Training Steps

0.10

0.15

0.20

0.25

0.30

LP
IP

S
(

)

4D-LRM-base
#Target x 2
w/ HexPlane
w/ Temp Align
w/ Free GS

(c) LPIPS vs. #Training Steps.
Figure 9: Training-time scaling curves. Tested on Consistent4D (re-rendered). We compute the
PSNR, SSIM and LPIPS for different number of different setups, with a 4D-LRM-base as the model.=

based methods. When paired with a diffusion model as a generative prior, 4D-LRM outperforms
baseline 4D generation approaches on the original Consistent4D benchmark. This improvement is
due to 4D-LRM’s ability to produce much more faithful reconstructions of dynamic objects, even
in the presence of motion ambiguity. Since diffusion models introduce high variance, we provide a
comparison in Figure 7, where we evaluate 4D-LRM alongside other generative 4D models [53, 78]
using ground-truth multi-view inputs from the first frame to ensure a fair comparison. Moreover,
the core 4D-LRM model is efficient, requiring less than 1.5 seconds per forward pass; the primary
computational bottleneck lies in the diffusion model.

4 Analyses and Discussions
Why Can 4D-LRM Interpolate Frames? 4D-LRM demonstrates strong frame interpolation
capabilities, which aligns with its design: time is modeled as a continuous distribution rather than
as discrete steps. To better understand this behavior, we analyze the 4DGS primitives predicted for
the first 24 frames of the Guppie object in Consistent4D under two settings: Alternating Canonical
Views (24 known timestamps) and Frame Interpolation (12 known timestamps). We visualize the
distributions of the temporal mean µt = µ4 and variance Σt = Σ4,4 in Figure 10. Interestingly,
when some timestamps are missing, 4D-LRM learns to reallocate certain Gaussians toward these
missing regions, effectively filling the temporal gaps. Moreover, in the interpolation setting, the
predicted 4DGS primitives tend to have larger Σt, increasing their temporal support. This allows
each Gaussian to influence a broader range of neighboring timestamps after sampling, improving
interpolation quality and temporal coverage.
Training-Time Scaling. To understand how different design considerations affect the training
efficiency, we provide the scaling behavior with the following configurations to 4D-LRM-Base.
• 4D-LRM-Base: Transformer with 768 hidden dimensions, 12 layers, and 12 attention heads, trained

with 12 random input views and 12 random target views. No free Gaussians.
• # Target × 2: Trained with 12 random input views and 24 random target views.
• w/ Hexplane: Instead of unified space-time representation, Wu et al. [75] proposed an alternative

4DGS representation with decomposed neural voxel encoding inspired by HexPlane [3].
• w/ Temp Align: Similar to the idea of pixel-aligned Gaussians, we force µT to the input frame

time, reducing the parameterization to dim4DGS = 19.
• w/ Free GS: Trained with N = 1024 free Gaussian tokens from scratch.

We observe that increasing the number of target views slightly improves convergence speed, though at
the cost of increased iteration time. Introducing free Gaussians from scratch does not significantly
impact reconstruction quality but substantially slows down training. Additionally, we find that the
4DGS representation from [75] is less expressive than the unified space-time formulation proposed

9

6 8 12 18 24 48 72 96
Number of Input Views

27
28
29
30

PS
NR

 (
)

(a) PSNR vs. #Input View.

6 8 12 18 24 48 72 96
Number of Input Views

0.944
0.952
0.960
0.968

SS
IM

 (
)

(b) SSIM vs. #Input View.

6 8 12 18 24 48 72 96
Number of Input Views

0.035
0.040
0.045
0.050
0.055

LP
IP

S
(

)

(c) LPIPS vs. #Input View.
Figure 10: Inference-time scaling curves. Tested on Consistent4D (re-rendered). We compute the
PSNR, SSIM, and LPIPS for different numbers of randomly selected input views.

by [82], which informed our final design choice. We also note that enforcing strict temporal alignment
degrades performance, whereas pixel alignment improves reconstruction quality. This supports our
earlier observation that 4D-LRM effectively redistributes Gaussians to unseen time intervals to handle
sparse temporal supervision.

Inference-Time Scaling. Finally, we analyze inference-time scaling as the number of input views
varies. In terms of PSNR and SSIM, performance improves with more input views and peaks at 48,
after which it begins to decline slightly. We attribute this to two factors: (1) excessive Gaussians may
overcrowd the 4D representation, reducing its quality, and (2) the Transformer struggles with very long
input sequences. This observation suggests a promising future direction: designing 4D-LRM variants
that can handle longer contexts with hybrid models [98] and incorporate test-time training [11, 94].

5 Related Work

Prior work on 4D modeling generally falls into three broad directions: optimization-based, geometry-
based, and generation-based, each shaped by different assumptions, data requirements, and target
applications. The first direction is optimization-based, mostly covered in previous discussions of 4D
representations, where methods reconstruct dynamic scenes by optimizing per-object or per-scene
representations using multi-view video [3, 28, 82, 69]. While capable of producing high-quality
reconstructions, they are typically constrained by the need for dense spatial and temporal supervision.
To improve generalization and reduce test-time cost, recent methods incorporate depth supervision
or lightweight tuning [95, 62]. DyST [56] adopts a fully feed-forward approach, learning a latent
decomposition of content, dynamics, and pose from monocular videos via a Transformer. However, it
models space-time implicitly and remains limited in novel view synthesis quality. Although recent
work has explored adapting LRMs for 4D asset generation [53] and scene-level reconstruction with
limited input and target camera dynamics [81, 39], extending LRMs to general 4D reconstruction
remains challenging, particularly when considering any target view at any time from sparse multi-views
and missing timestamps. The second direction is geometry-based, which aims to estimate dynamic
scene geometry, such as depth, flow, or camera motion, directly from input videos. Inspired by static
sparse-view geometry methods like DUSt3R [71], recent work has extended this paradigm to dynamic
scenes [90, 19, 70]. These methods often incorporate correspondence-based supervision or monocular
depth priors to recover frame-wise geometry or trajectories. Unlike optimization-based approaches,
they do not model the full spatiotemporal volume and are not intended for novel view or time synthesis.
The third direction is generation-based, which leverages video generative models to synthesize
perceptually plausible 4D assets. This includes both explicit 4D asset synthesis [53, 78, 83] and
controllable video generation [36, 73, 76]. These methods reduce dependence on multi-view inputs by
relying on learned priors, typically from large-scale video diffusion models. However, they are often
computationally intensive at inference time, prompt-sensitive [36], and mostly limited to monocular
inputs. Reconstructing faithful 4D geometry from a single-view video remains fundamentally
ill-posed due to motion ambiguity [83]. Our goal is to learn a generic space-time representation that
reconstructs an object from a few views at some time points, to any view at any time. We include an
expanded related work section in Appendix due to the page limitation.

6 Conclusion

This work introduces 4D-LRM, the first large-scale 4D reconstruction model capable of processing
unconstrained views and timestamps to render arbitrary novel view-time combinations. By learning a
unified spatiotemporal representation and directly predicting per-pixel 4D Gaussian primitives from
posed image tokens over time, 4D-LRM enables fast, high-quality rendering at, in principle, infinite
frame rates.

10

References
[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M Seitz,

and Richard Szeliski. Building rome in a day. Communications of the ACM, 54(10):105–112,
2011.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[3] Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 130–141,
2023.

[4] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello,
Orazio Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-
aware 3d generative adversarial networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16123–16133, 2022.

[5] Luen C Chan and Peter Whiteman. Hardware-constrained hybrid coding of video imagery.
IEEE Transactions on Aerospace and Electronic Systems, (1):71–84, 1983.

[6] David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d
gaussian splats from image pairs for scalable generalizable 3d reconstruction. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 19457–19467,
2024.

[7] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su.
Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 14124–14133, 2021.

[8] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In European conference on computer vision, pages 333–350, 2022.

[9] Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement
networks. In Proceedings of the IEEE international conference on computer vision, pages
1511–1520, 2017.

[10] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

[11] Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao
Han, Ka Chun Cheung, Jan Kautz, Carlos Guestrin, et al. One-minute video generation with
test-time training. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2025.

[12] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2023.

[13] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt,
Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3d objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13142–13153, 2023.

[14] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati,
Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A
universe of 10m+ 3d objects. In Conference on Neural Information Processing Systems, 2024.

[15] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-supervised nerf: Fewer
views and faster training for free. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 12882–12891, 2022.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

11

[17] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset
of 3d scanned household items. In 2022 International Conference on Robotics and Automation
(ICRA), pages 2553–2560. IEEE, 2022.

[18] Bardienus P Duisterhof, Zhao Mandi, Yunchao Yao, Jia-Wei Liu, Jenny Seidenschwarz,
Mike Zheng Shou, Deva Ramanan, Shuran Song, Stan Birchfield, Bowen Wen, et al. Deformgs:
Scene flow in highly deformable scenes for deformable object manipulation. In The 16th
International Workshop on the Algorithmic Foundations of Robotics, 2024.

[19] Haiwen Feng, Junyi Zhang, Qianqian Wang, Yufei Ye, Pengcheng Yu, Michael J Black, Trevor
Darrell, and Angjoo Kanazawa. St4rtrack: Simultaneous 4d reconstruction and tracking in the
world. arXiv preprint arXiv:2504.13152, 2025.

[20] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12479–12488,
2023.

[21] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis. IEEE
transactions on pattern analysis and machine intelligence, 32(8):1362–1376, 2009.

[22] Quankai Gao, Qiangeng Xu, Zhe Cao, Ben Mildenhall, Wenchao Ma, Le Chen, Danhang Tang,
and Ulrich Neumann. Gaussianflow: Splatting gaussian dynamics for 4d content creation. arXiv
preprint arXiv:2403.12365, 2024.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[24] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan
Sunkavalli, Trung Bui, and Hao Tan. Lrm: Large reconstruction model for single image to 3d.
In The Twelfth International Conference on Learning Representations, 2024.

[25] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian
splatting for geometrically accurate radiance fields. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference, pages 1–11, 2024.

[26] Hanwen Jiang, Qixing Huang, and Georgios Pavlakos. Real3d: Scaling up large reconstruction
models with real-world images. arXiv preprint arXiv:2406.08479, 2024.

[27] Hanwen Jiang, Hao Tan, Peng Wang, Haian Jin, Yue Zhao, Sai Bi, Kai Zhang, Fujun Luan,
Kalyan Sunkavalli, Qixing Huang, et al. Rayzer: A self-supervised large view synthesis model.
arXiv preprint arXiv:2505.00702, 2025.

[28] Yanqin Jiang, Li Zhang, Jin Gao, Weiming Hu, and Yao Yao. Consistent4d: Consistent 360°
dynamic object generation from monocular video. In The Twelfth International Conference on
Learning Representations, 2024.

[29] Haian Jin, Hanwen Jiang, Hao Tan, Kai Zhang, Sai Bi, Tianyuan Zhang, Fujun Luan, Noah
Snavely, and Zexiang Xu. Lvsm: A large view synthesis model with minimal 3d inductive bias.
arXiv preprint arXiv:2410.17242, 2024.

[30] Mohammad Mahdi Johari, Yann Lepoittevin, and François Fleuret. Geonerf: Generalizing nerf
with geometry priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18365–18375, 2022.

[31] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14,
2023.

[32] Justin Kerr, Chung Min Kim, Mingxuan Wu, Brent Yi, Qianqian Wang, Ken Goldberg, and
Angjoo Kanazawa. Robot see robot do: Imitating articulated object manipulation with monocular
4d reconstruction. In 8th Annual Conference on Robot Learning, 2024.

12

[33] Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis. Dynmf: Neural motion factorization
for real-time dynamic view synthesis with 3d gaussian splatting. In European Conference on
Computer Vision, pages 252–269, 2024.

[34] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano,
Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza,
Luca Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable
transformer modelling library. https://github.com/facebookresearch/xformers, 2022.

[35] Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with
mast3r. In European Conference on Computer Vision, pages 71–91, 2024.

[36] Bing Li, Cheng Zheng, Wenxuan Zhu, Jinjie Mai, Biao Zhang, Peter Wonka, and Bernard
Ghanem. Vivid-zoo: Multi-view video generation with diffusion model. In Conference on
Neural Information Processing Systems, pages 62189–62222, 2024.

[37] Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan
Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d with sparse-view
generation and large reconstruction model. In The Twelfth International Conference on Learning
Representations, 2024.

[38] Hanwen Liang, Yuyang Yin, Dejia Xu, Hanxue Liang, Zhangyang Wang, Konstantinos N
Plataniotis, Yao Zhao, and Yunchao Wei. Diffusion4d: Fast spatial-temporal consistent 4d
generation via video diffusion models. In Conference on Neural Information Processing Systems,
2024.

[39] Hanxue Liang, Jiawei Ren, Ashkan Mirzaei, Antonio Torralba, Ziwei Liu, Igor Gilitschen-
ski, Sanja Fidler, Cengiz Oztireli, Huan Ling, Zan Gojcic, et al. Feed-forward bullet-time
reconstruction of dynamic scenes from monocular videos. arXiv preprint arXiv:2412.03526,
2024.

[40] Yiqing Liang, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc, Douglas Lanman, James
Tompkin, and Lei Xiao. Gaufre: Gaussian deformation fields for real-time dynamic novel view
synthesis. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pages 2642–2652. IEEE, 2025.

[41] Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping Wang. Sparseneus: Fast
generalizable neural surface reconstruction from sparse views. In European Conference on
Computer Vision, pages 210–227, 2022.

[42] Baorui Ma, Junsheng Zhou, Yu-Shen Liu, and Zhizhong Han. Towards better gradient consistency
for neural signed distance functions via level set alignment. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 17724–17734, 2023.

[43] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. In International Conference on Learning Representations, 2018.

[44] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision, 2020.

[45] Zijie Pan, Zeyu Yang, Xiatian Zhu, and Li Zhang. Efficient4d: Fast dynamic 3d object generation
from a single-view video. arXiv preprint arXiv 2401.08742, 2024.

[46] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 165–174, 2019.

[47] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 5865–5874, 2021.

13

https://github.com/facebookresearch/xformers

[48] Julius Plücker. Xvii. on a new geometry of space. Philosophical Transactions of the Royal
Society of London, (155):725–791, 1865.

[49] Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, Frank Verbiest, Kurt Cornelis, Jan Tops,
and Reinhard Koch. Visual modeling with a hand-held camera. International Journal of
Computer Vision, 59:207–232, 2004.

[50] Marc Pollefeys, David Nistér, J-M Frahm, Amir Akbarzadeh, Philippos Mordohai, Brian
Clipp, Chris Engels, David Gallup, S-J Kim, Paul Merrell, et al. Detailed real-time urban 3d
reconstruction from video. International Journal of Computer Vision, 78:143–167, 2008.

[51] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf:
Neural radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10318–10327, 2021.

[52] Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao, Gang Zeng, and Ziwei Liu.
Dreamgaussian4d: Generative 4d gaussian splatting. arXiv preprint arXiv:2312.17142, 2023.

[53] Jiawei Ren, Cheng Xie, Ashkan Mirzaei, Karsten Kreis, Ziwei Liu, Antonio Torralba, Sanja
Fidler, Seung Wook Kim, Huan Ling, et al. L4gm: Large 4d gaussian reconstruction model. In
Conference on Neural Information Processing Systems, pages 56828–56858, 2024.

[54] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 4104–4113,
2016.

[55] Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. Pixelwise
view selection for unstructured multi-view stereo. In European Conference on Computer Vision,
pages 501–518, 2016.

[56] Maximilian Seitzer, Sjoerd van Steenkiste, Thomas Kipf, Klaus Greff, and Mehdi S. M. Sajjadi.
DyST: Towards dynamic neural scene representations on real-world videos. In The Twelfth
International Conference on Learning Representations, 2024.

[57] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo collections
in 3d. ACM Transactions on Graphics (TOG), 25(3):835–846, 2006.

[58] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and Ameesh Makadia. Generalizable
patch-based neural rendering. In European Conference on Computer Vision, pages 156–174,
2022.

[59] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and Ameesh Makadia. Light field neural
rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8269–8279, 2022.

[60] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu.
Lgm: Large multi-view gaussian model for high-resolution 3d content creation. In European
Conference on Computer Vision, pages 1–18, 2024.

[61] Zhenggang Tang, Yuchen Fan, Dilin Wang, Hongyu Xu, Rakesh Ranjan, Alexander Schwing, and
Zhicheng Yan. Mv-dust3r+: Single-stage scene reconstruction from sparse views in 2 seconds.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024.

[62] Fengrui Tian, Shaoyi Du, and Yueqi Duan. Mononerf: Learning a generalizable dynamic
radiance field from monocular videos. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 17903–17913, 2023.

[63] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lassner, and
Christian Theobalt. Non-rigid neural radiance fields: Reconstruction and novel view synthesis
of a dynamic scene from monocular video. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12959–12970, 2021.

14

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Conference on Neural
Information Processing Systems, 2017.

[65] Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitry Tochilkin,
Christian Laforte, Robin Rombach, and Varun Jampani. Sv3d: Novel multi-view synthesis and
3d generation from a single image using latent video diffusion. In European Conference on
Computer Vision, pages 439–457, 2024.

[66] Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
Novotny. Vggt: Visual geometry grounded transformer. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pages 5294–5306, 2025.

[67] Peng Wang, Hao Tan, Sai Bi, Yinghao Xu, Fujun Luan, Kalyan Sunkavalli, Wenping Wang,
Zexiang Xu, and Kai Zhang. Pf-lrm: Pose-free large reconstruction model for joint pose and
shape prediction. In The Twelfth International Conference on Learning Representations, 2024.

[68] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T
Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning
multi-view image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4690–4699, 2021.

[69] Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi Li, and Angjoo Kanazawa. Shape
of motion: 4d reconstruction from a single video. arXiv preprint arXiv:2407.13764, 2024.

[70] Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa.
Continuous 3d perception model with persistent state. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2025.

[71] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
Geometric 3d vision made easy. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 20697–20709, 2024.

[72] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):
600–612, 2004.

[73] Daniel Watson, Saurabh Saxena, Lala Li, Andrea Tagliasacchi, and David J Fleet. Controlling
space and time with diffusion models. In The Thirteenth International Conference on Learning
Representations, 2024.

[74] Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan, Valentin Deschaintre, Kalyan Sunkavalli,
Hao Su, and Zexiang Xu. Meshlrm: Large reconstruction model for high-quality mesh. arXiv
preprint arXiv:2404.12385, 2024.

[75] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu,
Qi Tian, and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
20310–20320, 2024.

[76] Rundi Wu, Ruiqi Gao, Ben Poole, Alex Trevithick, Changxi Zheng, Jonathan T Barron, and
Aleksander Holynski. Cat4d: Create anything in 4d with multi-view video diffusion models.
arXiv preprint arXiv:2411.18613, 2024.

[77] Desai Xie, Sai Bi, Zhixin Shu, Kai Zhang, Zexiang Xu, Yi Zhou, Soren Pirk, Arie Kaufman,
Xin Sun, and Hao Tan. Lrm-zero: Training large reconstruction models with synthesized data.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

[78] Yiming Xie, Chun-Han Yao, Vikram Voleti, Huaizu Jiang, and Varun Jampani. Sv4d: Dy-
namic 3d content generation with multi-frame and multi-view consistency. arXiv preprint
arXiv:2407.17470, 2024.

15

[79] Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi, Kalyan Sunkavalli,
Gordon Wetzstein, Zexiang Xu, et al. Dmv3d: Denoising multi-view diffusion using 3d large
reconstruction model. In The Twelfth International Conference on Learning Representations,
2024.

[80] Jianing Yang, Alexander Sax, Kevin J Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai,
Franziska Meier, and Matt Feiszli. Fast3r: Towards 3d reconstruction of 1000+ images in one
forward pass. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2025.

[81] Jiawei Yang, Jiahui Huang, Yuxiao Chen, Yan Wang, Boyi Li, Yurong You, Apoorva Sharma,
Maximilian Igl, Peter Karkus, Danfei Xu, et al. Storm: Spatio-temporal reconstruction model
for large-scale outdoor scenes. In The Thirteenth International Conference on Learning
Representations, 2025.

[82] Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene
representation and rendering with 4d gaussian splatting. In The Twelfth International Conference
on Learning Representations, 2024.

[83] Chun-Han Yao, Yiming Xie, Vikram Voleti, Huaizu Jiang, and Varun Jampani. Sv4d 2.0:
Enhancing spatio-temporal consistency in multi-view video diffusion for high-quality 4d
generation. arXiv preprint arXiv:2503.16396, 2025.

[84] Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha Chaudhuri, and Olga Sorkine-
Hornung. Neural cages for detail-preserving 3d deformations. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 75–83, 2020.

[85] Yuyang Yin, Dejia Xu, Zhangyang Wang, Yao Zhao, and Yunchao Wei. 4dgen: Grounded 4d
content generation with spatial-temporal consistency. arXiv preprint arXiv:2312.17225, 2023.

[86] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields
from one or few images. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4578–4587, 2021.

[87] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting:
Alias-free 3d gaussian splatting. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 19447–19456, 2024.

[88] Yifei Zeng, Yanqin Jiang, Siyu Zhu, Yuanxun Lu, Youtian Lin, Hao Zhu, Weiming Hu, Xun
Cao, and Yao Yao. Stag4d: Spatial-temporal anchored generative 4d gaussians. In European
Conference on Computer Vision, pages 163–179, 2024.

[89] Haiyu Zhang, Xinyuan Chen, Yaohui Wang, Xihui Liu, Yunhong Wang, and Yu Qiao. 4diffusion:
Multi-view video diffusion model for 4d generation. In Neural Information Processing Systems,
volume 37, pages 15272–15295, 2024.

[90] Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole,
Deqing Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the
presence of motion. In The Thirteenth International Conference on Learning Representations,
2025.

[91] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu, Eli Shechtman, and Noah Snavely.
Arf: Artistic radiance fields. In European Conference on Computer Vision, pages 717–733,
2022.

[92] Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang
Xu. Gs-lrm: Large reconstruction model for 3d gaussian splatting. In European Conference on
Computer Vision, pages 1–19, 2024.

[93] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 586–595, 2018.

16

[94] Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan
Sunkavalli, William T Freeman, and Hao Tan. Test-time training done right. arXiv preprint
arXiv:2505.23884, 2025.

[95] Xiaoming Zhao, R Alex Colburn, Fangchang Ma, Miguel Ángel Bautista, Joshua M. Susskind,
and Alex Schwing. Pseudo-generalized dynamic view synthesis from a video. In The Twelfth
International Conference on Learning Representations, 2024.

[96] Haoyu Zhen, Qiao Sun, Hongxin Zhang, Junyan Li, Siyuan Zhou, Yilun Du, and Chuang Gan.
Tesseract: Learning 4d embodied world models. arXiv preprint arXiv:2504.20995, 2025.

[97] Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer, Justus Thies, and
Javier Romero. Drivable 3d gaussian avatars. In International Conference on 3D Vision, 2025.

[98] Chen Ziwen, Hao Tan, Kai Zhang, Sai Bi, Fujun Luan, Yicong Hong, Li Fuxin, and Zexiang Xu.
Long-lrm: Long-sequence large reconstruction model for wide-coverage gaussian splats. arXiv
preprint arXiv:2410.12781, 2024.

17

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the central goal of scaling 4D
pretraining to enable generalizable space-time reconstruction. The proposed 4D-LRM model
directly addresses this goal, demonstrating high-quality view-time rendering, generalization
across scenes and time, and fast reconstruction speed. The claims made are well-supported
by the model design, experiments, and results throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

18

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper provides empirical study of 4D representation. There is no proof
for theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix B foe details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

19

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We will release code and data in order to support reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss the training and test details in Section 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Majority of experiments are deterministic or based on fixed evaluation protocols
(e.g., reconstruction from fixed views and times), making standard deviation or error bars
less informative. Due to computational cost and the nature of the 4D task, we focus on
representative results rather than repeated trials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We discuss all computing requirements in the Section 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research involves 4D representation learning and does not involve human
subjects, sensitive data, or deployment-related risks. We adhere all ethical standards
regarding transparency, reproducibility in accordance with the NeurIPS Code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

21

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve the release of models or datasets with known high
risk for misuse. Our research focuses on 4D representation learning which does not include
any language models and generative models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We acknowledge all external code and models used in this paper by properly
citing their original sources, and we provide a detailed discussion of how each asset is used
in the appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

22

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We clearly discuss and document all new assets. We only used open-sourced
data in order to train our model and we will release our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve human subjects or any form of crowdsourcing. All
experiments are conducted using publicly available datasets without human participation.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects or study participants. Therefore,
no ethical risks or IRB approvals are applicable.
Guidelines:

23

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as part of the core methodology, experimental design, or
analysis in this research. Any LLM usage was limited to minor writing or formatting support
and did not affect the scientific contributions of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

A Related Work (Expanded)
3D Representations. At the heart of 3D reconstruction lies the choice of scene representation.
Classical multi-view geometry methods [49, 57, 21, 1, 54] rely on calibrated images and epipolar
constraints to recover structure via structure-from-motion (SfM; [49]) and multi-view stereo (MVS;
[50, 21, 55]). While robust under densely sampled views, these pipelines degrade in the presence of
occlusion, textureless surfaces, or wide baselines. To improve generalization, recent geometry-based
models [71, 35] extend reconstruction to unposed and sparse view settings by leveraging large-scale
pretraining. In parallel, neural optimization approaches fit implicit representations per scene, such as
neural radiance fields (NeRF; [44, 4, 8, 15]) or signed distance functions [46, 42]. In this work, we
adopt Gaussian Splatting (GS; [31, 25, 87]) as our 3D representation, which prioritizes efficiency and
real-time performance through explicit point-based representations and offers faster rendering and
competitive quality with minimal optimization per scene.

4D Representations. Modeling dynamic scenes in 4D has evolved from implicit, per-scene
neural fields to more efficient, explicit spatio-temporal representations. Early methods [51, 47, 63]
extend NeRF to dynamic scenes by conditioning on time or deformation fields, but they remain
computationally heavy and lack real-time inference. A more practical shift arrives with HexPlane [3]
and K-Planes [20], which decompose the 4D volume into planar factorizations. Concurrent with
these NeRF-based approaches, dynamic Gaussian Splatting emerges as an explicit, high-performance
framework for dynamic scenes [18, 33, 40]. D3GA [97] adapts this paradigm to human avatars by
embedding Gaussian splats into deformable tetrahedral cages [84], allowing anatomical consistency
and real-time control via joint-driven pose signals. Notably, 4D-GS [75] represents dynamic scenes
using a canonical set of 3D Gaussians combined with 4D voxel-based features. These voxel encodings,
inspired by the spatio-temporal factorization of HexPlane [3], are decoded by a lightweight MLP to
predict per-Gaussian deformations across time. In contrast, we adapted 4DGS [82], which introduces
a more elegant and unified formulation by directly parameterizing 4D Gaussians over space and time,
allowing anisotropic deformation and smooth, time-varying appearance via 4D spherical harmonics.

Feed-Forward Reconstruction Models. Recent advances in generalizable radiance field-based
methods have achieved state-of-the-art quality in novel view synthesis by leveraging NeRF-style
volume rendering [86]. These approaches typically employ 3D-to-2D geometric projections to sample
per-view image features, using architectural priors such as epipolar feature sampling [68, 59, 58]
or plane-swept cost volumes [7, 30, 41] inspired by MVS. In contrast, we explore a simpler
and more flexible design: a large Transformer-based model without explicit 3D inductive biases,
which directly regresses Gaussian primitives. Parallel to radiance field approaches, a separate line
of research investigates feed-forward, geometry-centric reconstruction models [61, 80], building
upon DUSt3R [71] and leveraging large-scale training. This work aligns more closely with large
reconstruction models (LRMs), which have recently emerged as a unified framework for producing
view-consistent 3D reconstructions. These models are trained on massive 3D datasets and use
triplane-based NeRFs [37, 24, 79, 67, 26] or 3D Gaussian Splatting [92, 60, 77, 98] to encode strong
priors over shape and appearance, enabling high-quality reconstruction from just a few posed views.
While early efforts have begun extending LRMs to generate 4D assets [53], we present the first LRM
for general 4D reconstruction that can handle sparse multi-views and missing timestamps.

B 4D-LRM Implementation and Training Details

B.1 4DGS Parameterizing and Initialization

Given the decoded 4D Gaussian parameter g ∈ R20, we split it into (gxyz ∈ R3,gt ∈ R,grgb ∈
R3,gscale,xyz ∈ R3,gscale,t ∈ R,grotation,left ∈ R4,grotation,right ∈ R4,gopacity ∈ R).
Space and Distance. Given the ray origin rayo, direction rayd, and a distance scalar δ, the pixel-
aligned Gaussian center in space along the ray is computed as µxyz = rayo + δ · rayd. To derive δ
from the decoded 4D Gaussian primitive (gx,gy,gz), we adopt an interpolation scheme bounded by
two empirically determined depth limits, δnear and δfar, which define the permissible depth interval
along each ray. This range constrains the model’s predictions to lie within a spatially valid and
semantically meaningful region of 3D space, consistent with the geometry captured during training.

ω = sigmoid [(gx + gy + gz)/3] , (4)
δ = (1− ω) δnear + ω δfar. (5)

25

Following the setup in [92], we set δnear = 0.1 and δfar = 4.5. The predicted µxyz values are further
clipped to the range [−1, 1]3.

Scale and Opacity. We follow the default activation functions used in 3DGS to ensure the predicted
scale and opacity values fall within valid ranges: all scales are mapped to R+ and opacity to (0, 1).
Specifically, we apply the exponential activation to scale, mapping real-valued inputs to positive values,
and the sigmoid activation to opacity. We observe similar training dynamics reported in [92], that the
learned scale of 3D Gaussians can become excessively large. In such cases, the Gaussian degenerates
into a highly anisotropic distribution, resembling a thin stick or line stretched across space and time.
This can lead to unstable training dynamics, slow convergence, and temporal ghosting artifacts. To
mitigate this, we apply constant biases to the Transformer’s output to shift the initialization, and we
clip the predicted scales to remain within a reasonable range.

scalexyz = min{exp (gscale,xyz − 2.3), 0.3}, (6)
scalet = min{exp (gscale,t − 2.3), 1.0}, (7)

opacity = σ(gopacity − 2.0), (8)

All hyperparameters are empirically chosen and primarily serve to stabilize training. We observe that
model performance is relatively insensitive to their specific values.

Rotation. We predict unnormalized quaternions and apply L2 normalization to ensure they lie on the
unit hypersphere, producing valid unit quaternions for rotation. This approach simplifies optimization,
as the model can freely output real-valued 4D vectors while normalization guarantees valid rotations.
Following [82], we use a pair of ql = (a, b, c, d) and qr = (p, q, r, s) for the left and right unit
quaternions, respectively. We use them to represent isotropic rotations in a symmetric form. R can be
constructed by:

R = L(ql)R(qr) =


a −b −c −d

b a −d c

c d a −b

d −c b a




p −q −r −s

q p s −r

r −s p q

s r −q p

 . (9)

Spherical Harmonics / RGB. A 3D Gaussian stores a set of spherical harmonics (SH) coefficients to
represent view-dependent color, along with a scalar opacity value α. 4DGS extends this representation
to enable both view-dependent appearance and its temporal evolution, by incorporating a time-variant
extension of the SH basis. This allows the appearance of each Gaussian to change smoothly over
both viewpoint and time. In our implementation, we directly interpret the model’s output as the
zero-order SH coefficients, following the convention used in 4DGS [82]. For simplicity, we do not
include higher-order SH terms in this work.

B.2 Differentiable Rasterization and Deferred Rendering

In the rendering process, given a pixel (u, v) in an image I at time t, along with the camera’s extrinsic
matrix E and intrinsic matrix K, the pixel color I(u, v, t) is computed by blending the contributions
of all visible conditional 3D Gaussians. We build on the tile-based rasterization pipeline introduced
in 3DGS and 4DGS [31, 82], and adopt deferred backpropagation [91] during rendering to reduce
GPU memory consumption. We describe more details for completeness.

Filtering. At inference time, the final opacity of each conditional 3D Gaussian is weighted by its
temporal marginal p(t), which reflects its relevance at the rendered time step. To improve rendering
efficiency and visual clarity, we apply two filtering strategies: (1) Gaussians with marginal probability
p(t) < 0.05 are removed, and (2) Gaussians whose weighted opacity α < 0.05 are removed. These
filters are applied only during inference. Applying them during training would prematurely eliminate
potentially useful Gaussians, leading to degraded convergence or dead Gaussians that fail to get
optimized in training.

Rasterization. These filtered Gaussians are projected onto the image plane and sorted in front-to-back
order based on their depth. For each pixel, the final color is computed using alpha blending, where
the contribution of each Gaussian is weighted by its projected 2D density pi(u, v, t), its opacity αi,
and its view-dependent color ci(di, t). Additionally, a transmittance term

∏i−1
j=1 [1− pj(u, v, t)αj]

26

Algorithm 1 Image-to-4DGS Pseudo Code.
Input dimensions:
b = batch size; v = number of views; h, w = image height and width

Input tensors:
images : [b, v, h, w, 3] # RGB image frames
frame_time : [b, v, 1] # Frame timestamp per view
extrinsics : [b, v, 4, 4] # Camera-to-world (c2w) transformation matrices
intrinsics : [b, v, 4] # Camera intrinsics (fx, fy, cx, cy)

Output tensors (4DGS parameters):
xyzt : [b, *, 4] # 4D Gaussian centers (x, y, z, t)
rgb : [b, *, 3] # RGB color
scale : [b, *, 4] # Anisotropic Gaussian scale (3D space + time)
rotation : [b, *, 4, 4] # Rotation matrix
opacity : [b, *, 1] # Opacity value

Augment and patchify input for 4D representation
x_grid, y_grid = meshgrid(h, w) # [h, w]
ray_dir_cam = compute_camera_rays(x_grid, y_grid, intrinsics) # [b, v, 3, h, w]
ray_dir_world = transform_directions(ray_dir_cam, extrinsics) # [b, v, 3, h, w]
ray_origin = extract_camera_origin(extrinsics) # [b, v, 3, h, w]
o_dot_d = dot_product(-ray_origin, ray_dir_world, dim=2) # [b, v, 1, h, w]
nearest_pts = ray_origin + o_dot_d * ray_dir_world # [b, v, 3, h, w]

Concatenate and patchify augmented images into transformer input
x = concatenate(

normalize_rgb(images), # [b, v, 3, h, w], RGB scaled to [-1, 1]
normalize_t(frame_time), # [b, v, 1, h, w], time scaled to [-1, 1]
ray_dir_world, # [b, v, 3, h, w]
nearest_pts # [b, v, 3, h, w]

) # Final: [b, v, 10, h, w]
x = patchify(x, patch_size=8) # [b * v, num_patches, patch_dim]

Transformer
x = linear(x) # [b, v * num_patches, hidden_dim]
x = transformer(LN(x)) # LayerNorm + Transformer
x = depatchify(LN(x), out_dim=20) # [b, v * h * w, 20]

4DGS Parameterization
Step 1: Split the transformer output into individual 4DGS fields
xyz, t, rgb, scale_xyz, scale_t, rotation_left, rotation_right, opacity = \

split(x, sizes=[3, 1, 3, 3, 1, 4, 4, 1], dim=-1)

Step 2: Compute center position (xyz + t)
w = sigmoid(norm(xyz)) # Soft depth interpolation weight
delta = near * (1 - w) + far * w # Range interpolation [near, far]
xyz = ray_origin + ray_dir_world * delta # 3D center point
xyzt = concatenate(xyz, t) # [b, v * h * w, 4]

Step 3: Compute scale (clipped exp)
scale_xyz = clip(exp(scale_xyz - 2.3), max=0.3) # Spatial scale
scale_t = clip(exp(scale_t - 2.3), max=1.0) # Temporal scale
scale = concatenate(scale_xyz, scale_t) # [b, v * h * w, 4]

Step 4: Normalize quaternions
q_l = normalize(rotation_left) # [b, v * h * w, 4]
q_r = normalize(rotation_right) # [b, v * h * w, 4]

Step 5: Construct rotation matrix R = L(q_l) * R(q_r)
L = build_left_quaternion_matrix(q_l) # [b, v * h * w, 4, 4]
R = build_right_quaternion_matrix(q_r) # [b, v * h * w, 4, 4]
rotation = matmul(L, R) # [b, v * h * w, 4, 4]

Step 6: Compute opacity
opacity = sigmoid(opacity - 2.0) # [b, v * h * w, 1]

Final 4DGS outputs
return xyzt, rgb, scale, rotation, opacity

models the amount of light that reaches the i-th Gaussian after being attenuated by all previous ones.
This formulation enables differentiable, order-dependent compositing. Yang et al. [82] noted that
pi(u, v, t) can be factorized as the product of a conditional and a marginal probability at time t:

I(u, v, t) =
N∑
i=1

pi(t)pi(u, v|t)αici(d, t)

i−1∏
j=1

[1− pj(t)pj(u, v|t)αj]. (10)

27

To compute the image-space density pi(u, v|t), we start with the 4-channel space-time features in the
order of xyzt, and compute the conditional 3DGS:

µi,xyz|t = µi,1:3 +Σi,1:3,4Σ
−1
i,4,4(t− µi,4),

Σi,xyz|t = Σi,1:3,1:3 − Σi,1:3,4Σ
−1
i,4,4Σi,4,1:3

(11)

We approximate the projection of a 3D Gaussian N (µi,Σi) using a linearized perspective transfor-
mation as is in [31]. The resulting 2D Gaussian is

pi(u, v) ∼ N (µi,uv,Σi,uv), (12)

where the mean and covariance are computed as µi,uv = Proj(µi,xyz|t, E,K)1:2 and Σi,uv =

(JEΣi,xyz|tE
⊤J⊤)1:2,1:2, with Proj(·, ·, ·) denoting projection from world to image coordinates

using extrinsic E and intrinsic K, and J the Jacobian of the perspective projection at µi,xyz|t.

B.3 Dataset Curation

To enable large-scale training, we construct a 4D dataset derived from Objaverse [13], which provides
a subset of animated 3D assets.1 However, the raw dataset is not directly suitable for 4D modeling:
object motions are often inconsistent, and the dataset contains duplicates and artifacts. We build upon
the filtered subset curated by Diffusion4D [38], which removes static objects and unstable motion
sequences. For each object, we render a 24-frame video from diverse camera trajectories. If the
original animation has fewer frames, we pad by repeating the last frame. The views include four
canonical static views (front, back, left, right), elevated moving trajectories, and randomized orbits at
varying distances, similar to [92]. This design encourages robustness to both viewpoint and motion
variation. To further ensure quality, we compute the maximum L1 distance across frames for each
sequence to select a high-quality subset with sufficient but not overly aggressive motion. Our final
dataset contains 3,000 high-quality animated objects (HQ4D) selected from 32,000 animated objects
(4D). We augment the dataset with 783,000 static 3D objects from Objaverse by treating each as
a 24-frame video, applying minor frame-by-frame displacements along a single random direction.
During pretraining, we sample from HQ4D, 4D, and 3D with a mixing ratio of 200:50:1.

B.4 Training Details

We keep most settings identical to GS-LRM [92] so we can initialize 4D-LRM training upon it.
Below, we describe the details for completeness. We use a patch size of 8× 8 for the image tokenizer.
4D-LRM-Large employs a 24-layer Transformer with a hidden dimension of 1024, 16 attention heads,
and a two-layer MLP with GeLU activation. 4D-LRM-Base uses 12 layers with a hidden dimension of
768 and 12 attention heads, sharing the same MLP design. All Transformer blocks are equipped with
Pre-Layer Normalization and residual connections. Additionally, Layer Normalization is applied after
the patchifying linear layer and before the unpatchifying linear layer to stabilize training. To enable
efficient training and inference, we adopt Flash-Attention v2 [12] via the xFormers library [34],
along with gradient checkpointing [10] and mixed-precision training using the BF16 data type [43].

C Additional Results

C.1 Evaluation on 3D Reconstruction

Table 5 reports performance on the GSO dataset [17], comparing various models under two resolutions.
Notably, when adapting 4D-LRM for static 3D reconstruction by setting all timestamps to zero, we
observe a modest drop in performance relative to GS-LRM at 256×256 resolution. Despite this,
4D-LRM still outperforms the LGM and many models evaluated at higher resolution. This suggests
that the spatiotemporal representations learned by 4D-LRM remain effective for conventional 3D
tasks, highlighting its versatility and robustness.

C.2 Failure Cases

1We exclude Objaverse-XL [14] due to license restrictions.

28

Alter. Canonical Views

t = 5

GT

t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12

t=0 t=1 t=22 t=23…

4D-LRM

Figure 11: A typical failure case as 4D-LRM sometimes struggles with non-linear motion trajectories.
When an object follows a non-linear path, the structures cannot be efficiently captured by a single
ellipsoidal Gaussian. As a result, the model requires multiple Gaussians placed along the trajectory to
approximate the motion, increasing complexity and often leading to artifacts if not properly aligned.

Table 5: Performance on the GSO dataset [17]
for 3D reconstruction. 4D-LRM is evaluated
by collapsing frame times to 0.
Res. Model PSNR LPIPS SSIM

512
SparseNeus [41] 20.62 0.199 0.836
Triplane-LRM [37] 26.54 0.064 0.893
Mesh-LRM [74] 27.93 0.081 0.925
GS-LRM [92] 30.52 0.050 0.952

256
LGM [60] 21.44 0.122 0.832
GS-LRM [92] 29.59 0.051 0.944
4D-LRM 27.35 0.061 0.929

We provide a typical failure case in Figure 11. 4D-
LRM still struggles with challenging 4D reconstruc-
tion scenarios involving self-occlusion and fast mo-
tion, which often result in temporal ghosting artifacts.
These failures are primarily due to the limitations of
both (1) under-training (the current model has not yet
reached the saturation for scaling) as well as (2) the
current Gaussian representation, which models ap-
pearance and motion as smooth, continuous functions.
In the presence of rapid or discontinuous changes,
such as objects moving in and out of occlusion or
undergoing abrupt non-rigid deformation, the model
cannot accurately localize or update the corresponding Gaussians in time. As a result, outdated
Gaussians persist across frames, leading to visually noticeable residuals and motion trails. 4D-LRM
sometimes falls short in non-linear trajectories. The kernel density of a Gaussian is ellipsoidal, it
defines mass aligned with principal directions. When an object follows a non-linear path, the optimal
support is curved or branched, not ellipsoidal. To approximate a non-linear trajectory, the model
needs more Gaussians along the curve.

C.3 Additional Qualitative Examples

We provide additional qualitative examples in Figure 12 and 13.

D Limitations

We highlight the following future directions:

Long Context. Issues such as limited resolution, short video duration, and occlusion are fundamentally
challenges of memory and long-range dependencies in sequence modeling. Although 4D-LRM
achieves high-quality reconstruction from sparse posed images, several limitations remain. First, it
cannot yet efficiently process hundreds of input images in a single forward pass. Second, its maximum
training resolution is 256 × 256, though it generalizes up to 512 × 512. Unlike GS-LRM, which
was fine-tuned at 512 resolution, fine-tuning 4D-LRM at this scale is significantly more expensive,
requiring approximately 75 seconds per training step. A promising direction for future work is
to develop high-resolution 4D reconstruction models capable of handling hundreds of 1K or 2K
resolution inputs. This will require fundamental architectural advances, such as hybrid models for
long-context handling [98] and test-time training strategies [11, 94].

Removing 3D Inductive Bias. Currently, 4D-LRM relies on posed images and explicitly learns 4D
Gaussian primitives for rendering. To scale up 4D representations from in-the-wild videos, future
work should aim to remove strong 3D inductive biases. This includes learning to reconstruct from
unposed images [67, 27], and designing architectures that forgo explicit 3D representations such as
NeRF or 3DGS [29, 27, 94].

From Objects to Scenes. Currently, 4D-LRM is not trained at the scene level, as the concept
of “any view” is less well-defined, e.g., we cannot observe what lies behind walls. Although
GS-LRM has shown that this architecture can scale to scene-level reconstruction, we currently lack

29

…

Alter. Canonical Views

PSNR: 28.14

t = 0

GT

PSNR: 26.84

t = 3

PSNR: 26.44

t = 8

PSNR: 27.18

t = 12

PSNR: 28.71

t = 1

PSNR: 27.79

t = 14

PSNR: 29.11

t = 2

PSNR: 26.48

t = 11

t=0 t=0 t=2 t=2 …

Frame Interpolation

PSNR: 32.32

t = 0

GT

PSNR: 31.35

t = 3

PSNR: 32.50

t = 19

PSNR: 28.94

t = 22

PSNR: 32.32

t = 11

PSNR: 32.11

t = 21

PSNR: 31.14

t = 11

PSNR: 30.33

t = 21

t=0 t=1 t=2 t=3

4D-LRM

4D-LRM

…

Two Rotating Cameras

PSNR: 32.47

GT

PSNR: 32.81

t = 4

PSNR: 33.49

t = 8

PSNR: 31.42

t = 12

PSNR: 31.16

t = 16

PSNR: 31.04

t = 20

PSNR: 31.93

t = 6

PSNR: 32.33

t = 11

t=0 t=1 t=2 t=3 …

Rand. View Each Frame

PSNR: 33.18

t = 6

GT

PSNR: 30.08

t = 19

PSNR: 32.50

t = 2

PSNR: 32.61

t = 12

PSNR: 33.82

t = 1

PSNR: 30.99

t = 23

PSNR: 34.59

t = 4

PSNR: 31.19

t = 16

t = 0
(reconstruction)

4D-LRM

t=0 t=2 t=4 t=6

t=1 t=3 t=5 t=7

4D-LRM

Figure 12: Qualitative examples of 4D-LRM under varying camera setups. We show the performance
of 4D-LRM when taking input views captured with different camera configurations, demonstrating its
robustness to diverse spatial arrangements and viewpoints.

a license-compliant, high-quality 4D scene dataset for training. Moreover, the data augmentation
strategies used for object-level data do not directly transfer to scene-level setups. While we start to
see attempts on this line with limited camera movement or domain-specific applications and limited
input/target camera dynamics [81, 39], more future work should investigate both scalable 4D datasets
and training methods for extending 4D-LRM to scene-level reconstruction.

E Broader Impact
While this paper does not explicitly address societal impact, the proposed 4D representation learning
method has the potential to benefit a range of downstream applications, including robotics, AR/VR,
and digital content creation, by enabling more accurate and efficient modeling of dynamic scenes.
However, the work primarily focuses on technical contributions, and we do not identify immediate
ethical concerns or direct social implications. As with any foundation model capable of detailed
spatial-temporal understanding, future applications should consider issues of privacy, surveillance,
and potential misuse, especially if deployed in real-world environments involving human data.

F Acknowledgment.
The authors would like to thank Ang Cao, Junyi Zhang, and Wenhao Chai for their helpful discussions
and feedback.

30

…

…

t=0 t=1 t=22 t=23…

Alter. Canonical Views

…

…

t=0 t=1 t=22 t=23…

Alter. Canonical Views

t=13 t=14 t=15 t=16

t=13 t=14 t=15 t=16

t=0 t=1 t=22 t=23… t = 18.00

Alter. Canonical Views

PSNR: 28.53

4D-LRM GT

t = 19.00PSNR: 27.76

4D-LRM GT

t = 20.00PSNR: 30.11

4D-LRM GT

t = 21.00PSNR: 27.87

4D-LRM GT

t=0 t=1 t=22 t=23… t = 11.00

Alter. Canonical Views

PSNR: 28.46

4D-LRM GT

t = 12.00PSNR: 27.93

4D-LRM GT

t = 13.00PSNR: 27.78

4D-LRM GT

t = 14.00PSNR: 31.65

4D-LRM GT

t=24 t=25 t=46 t=47… t = 32.00

Alter. Canonical Views

PSNR: 29.72

4D-LRM GT

t = 33.00PSNR: 29.98

4D-LRM GT

t = 34.00PSNR: 32.90

4D-LRM GT

t = 45.00PSNR: 31.13

4D-LRM GT

Figure 13: Additional frame interpolation examples. We insert 4× denser frames between Alternating
Canonical Views as input.

31

	Introduction
	Large Space-Time Reconstruction Model (4D-LRM)
	Preliminary: 4D Gaussian Splatting (4DGS)
	Transformer-Based Image-to-4DGS Decoder
	Training Objectives

	Experiments
	Implementation Details
	Experiment Setups
	Main Results: 4D Reconstruction
	Application: 4D Generation.

	Analyses and Discussions
	Related Work
	Conclusion
	Related Work (Expanded)
	4D-LRM Implementation and Training Details
	4DGS Parameterizing and Initialization
	Differentiable Rasterization and Deferred Rendering
	Dataset Curation
	Training Details

	Additional Results
	Evaluation on 3D Reconstruction
	Failure Cases
	Additional Qualitative Examples

	Limitations
	Broader Impact
	Acknowledgment.

