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ABSTRACT

Current multimodal AI safety detection often lacks granularity, interpretability,
and adaptability. To address these limitations, we introduce MoLD (Mixture of
LoRA Detectors), a framework that uniquely assesses risk by dynamically ana-
lyzing the interplay of multiple Low-Rank Adaptation (LoRA) module weights.
This approach yields fine-grained, interpretable assessments beyond binary classi-
fication, enables concurrent multi-risk detection, maintains robustness on long-
sequence data, and supports low-cost modularity. Impressively, MoLD demon-
strates state-of-the-art (SOTA) performance on textual and visual benchmarks
while achieving exceptional few-shot learning, reducing data requirements by
over 90%. Thus, MoLD provides a powerful, scalable, and data-efficient path
to robust, interpretable risk assessment in large-scale multimodal AI systems.
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Figure 1: The Teaser Figure of MoLD

1 INTRODUCTION

While the internet has revolutionized communication and knowledge sharingSingh et al. (2022a),
it has also facilitated a surge in harmful online content—spanning text, images, and other me-
dia—such as hate speech and harassmentGarg et al. (2023), negatively impacting users and digital
environmentsKowalski (2018). Unchecked, these multifaceted issues can escalate into severe social
conflictsEzeibe (2021). Consequently, automated content moderation has become a vital research
focus. Early efforts, and much subsequent research, concentrated on text security analysis using
Natural Language Processing (NLP)Blodgett et al. (2020); Garrido-Muñoz et al. (2021); Weidinger
et al. (2021) given the prevalence and complexity of textual data.

Manual content moderation on social platforms struggles with scale, cost, and subjectivity Young
(2022); Aroyo et al. (2019). To automate detection, early machine learning approaches evolved
from traditional classifiers like SVMs Singh et al. (2023) and CNNs Singh et al. (2022b) to super-
vised models Burdisso et al. (2019), but these single-task methods lacked multitasking flexibility.
Although multi-label classifiers Gunasekara & Nejadgholi (2018); Cai et al. (2024) could address
multiple toxicity types, their practical use was limited by the need for complete retraining and large
labeled datasets for new categories Zinovyeva et al. (2020).

However, persistent limitations, particularly in handling long-form content Zinovyeva et al. (2020);
Caselli et al. (2020) and cohesively assessing diverse online risk modalities, highlight a critical need
for a new risk assessment paradigm. Such a paradigm should offer nuanced, interpretable, and
data-efficient insights while scaling effectively across various modalities and evolving risks.

1
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To address these limitations, we introduce MoLD, a novel weight-centric framework. MoLD dynam-
ically analyzes multiple groups of LoRA modules, each of which represents a distinct risk theme and
contains several LoRAs fine-tuned for different extreme tendencies, in order to uncover subtle risk
signals. This enables nuanced, interpretable profiling beyond binary classification, alongside robust
few-shot performance. MoLD thus offers a practical, data-efficient tool for large-scale multimodal
risk assessment and points towards more adaptable and understandable AI safety mechanisms.

The main contributions of our method are:

1. Fine-Grained Multimodal Risk Assessment: The framework introduces a novel, weight-
centric approach that analyzes dynamic LoRA weights to provide nuanced and interpretable
risk profiles for various content modalities like text and images, moving beyond simple
binary classifications.

2. High Data and Parameter Efficiency: MoLD demonstrates exceptional few-shot learning
capabilities, reducing training data requirements by over 90%. Its modular design allows
for the addition of new risk dimensions with negligible parameter overhead, ensuring scal-
ability.

3. Efficient & Concurrent Multi-Risk Monitoring: The system is designed to assess multi-
ple, complex risk themes in parallel within a single analytical pass. Its high computational
efficiency is maintained across both short-form and long-sequence content, making it ideal
for scalable, real-world deployment scenarios.

Figure 2: Architecture of MoLD.

2 METHODOLOGY

2.1 OVERVIEW

This chapter details the MoLD framework, illustrated in Figure 2. At its core, MoLD leverages
a base large model for semantic understanding and assesses multimodal content by dynamically
optimizing scalar weights for its detection modules. Each detection module is composed of a set
of pre-trained LoRA adapters, where each adapter embodies a different extreme tendency of a de-
fined risk theme. The final optimized weights serve as a quantitative measure, indicating both the
relevance of each risk theme and the input’s specific tendency within those themes.

2.2 MOLD ARCHITECTURE

MoLD utilizes a frozen pre-trained base model (M ) augmented by N detection modules. Each
module i (where i = 1, 2, ..., N ) employs a set of frozen LoRA (L1

i , L2
i ...,Lk

i ), each pre-trained on
a different extreme tendency of its theme, thereby focusing the base model’s semantic analysis on
that specific risk theme.

2
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To assess a given data content, Dcontent (e.g., an image or text under analysis), MoLD determines the
appropriate contribution from each LoRA module by optimizing multiple dynamic scalar weights
during the analysis phase:

• Inter-Module Weights(wi): For each dimension i, wi signifies its overall relevance of
that dimension to the assessed Dcontent. These weights are constrained to sum to 1 across all
N dimensions (Equation 1), indicating which dimensions are most pertinent to the input.

N∑
i=1

wi = 1 (1)

• Layer-Specific Intra-Module Weights(wk
i,l): For each layer l in module i, the weights

wk
i,l quantify the assessed Dcontent’s alignment with each of the module’s defined tendencies

(indexed by k). Constrained to sum to 1 per layer (Equation 2), they measure this layer-
specific tendency.

Ki∑
k=1

wk
i,l = 1, ∀l ∈ {1, 2, ...,L}, ∀i ∈ {1, 2, ..., N} (2)

Where Ki is the number of LoRA adapters within module i, and K ≥ 2, with each adapter
representing a distinct tendency, and L is the total number of LoRA layers.

2.2.1 INTEGRATING MULTIPLE DETECTION MODULES

Integrating N detection modules (thus
∑N

i=1 Ki LoRA modules) with the base model M needs
careful synthesis. Naive LoRA combination (e.g., linear weight summation) typically impairs per-
formance and dilutes module specificity. MoLD mitigates this via a hierarchical weighted strategy
(Equation 3): Dynamic Intra-Module weights modulate the layer-specific contributions of LoRAs
within each thematic group , while Inter-Module weights scale the overall influence of each theme-
specific module.

E(Dcontent) = M(Dcontent) +

N∑
i=1

wi︸︷︷︸
Inter-Module

·
Ki∑
k=1

L∑
l=1

wk
i,l · Lk

i,l(Dcontent)︸ ︷︷ ︸
Intra-Module

(3)

2.3 LORA MODULE PRE-TRAINING

The foundation of MoLD’s assessment capability lies in its specialized LoRA modules. For each
defined risk theme i, a corresponding set of Ki LoRA is pre-trained. Each adapter is fine-tuned on
a curated dataset representing a specific extreme tendency of that theme.

The rationale for using extreme tendencies is twofold.

1. Using extreme tendencies maximizes the discriminative power of each LoRA adapter and
establishes a more expressive semantic basis.

2. By representing novel content as a compositional interpolation of these well-defined ex-
tremes, the resulting assessment becomes more fine-grained and interpretable.

This pre-training process is a one-time, offline procedure. Once completed, the weights of the base
model (M ) and all LoRA are frozen. They are not updated during the subsequent risk assessment
phase. This clear separation between training and inference ensures that the assessment process is
lightweight and fast.

2.4 INFERENCE PROCESS

When a new piece of content, Dcontent (e.g., text or an image), is presented for analysis, MoLD
performs a rapid, online optimization process to determine the optimal dynamic scalar weights (wi

and wk
i,l).

3
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This process is framed as an inverse problem: what set of weights best configures the frozen model
to explain the given content?

The optimization is achieved by minimizing the model’s own task loss directly on the content
Dcontent. For instance, for a Large Language Model, the objective is to minimize the negative
log-likelihood of the content. For an image model, this could be the mean squared error of
reconstruction. The loss function is minimized exclusively with respect to the dynamic weights:

min
wi,wk

i,l

Loss(E(Dcontent), Dcontent) (4)

The resulting optimized weights (wi and wk
i,l) form the basis of the final risk classification, as they

directly encode the input’s alignment with the pre-defined risk themes and tendencies.

2.5 ANALYZING WEIGHTS FOR RISK DETECTION

Having established MoLD’s architecture and the dynamic weight optimization process, we now
detail how these weights are systematically analyzed to perform risk detection. The analysis involves
two layers:

1. Determining the relevance of each risk theme via Inter-Module weights.
2. Identifying the specific dominant tendency within the relevant themes via Intra-Module

weights.

Figure 3: The distribution of weights. Top: Inter-Module Weights, Bottom: Intra-Module Weights
Histogram. The histogram is the frequency of the layers of the weight distribution in every 0.05 bin.

2.5.1 INTRA-MODULE WEIGHT BIAS ANALYSIS

While Inter-Module weights indicate relevant dimensions, Intra-Module weights show the input’s
tendency toward an extreme within a dimension i. To quantify this directional bias, MoLD analyzes
the distribution of these layer-specific weights as follows:

1. Intra-Module Weights Distribution: For a given risk dimension i, consider one of its
multiple LoRA modules. We analyze the distribution of its layer-specific Intra-Module
weights. The [0, 1] range of these Intra-Module weights is divided into discrete bins (e.g.,
20 bins, each of width 0.05). The frequency (fj) of weights falling into each bin j is
then computed, forming a distribution (Figure 3, bottom) that reveals patterns of weight
concentration.

2. Calculate Modified Skewness To quantify the directional bias of this distribution, a tai-
lored measure of skewness, ˆSK, is computed. This metric measures asymmetry relative to
the distribution’s center (0.5) by assigning a directional sign xj to each bin’s frequency fj .
ˆSK is calculated as:

ˆSK =
1
n

∑n
j=1 xj · fj3

σ3
f

, xj =

{
−1, j ≤ ⌊n

2 ⌋
1, j > ⌊n

2 ⌋
(5)

4
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Here, n is the total number, fj is the frequency of the j-th bin, and σf is the standard
deviation of the frequency vector f = {f1, ..., fn}. This metric effectively quantifies the
directional activation bias for each LoRA module across layers.

3. Normalize Tendencies Scores: For each dimension i and each of its corresponding LoRA
modules (indexed by k), a modified skewness score, ˆSK

k

i , is computed. Applying a soft-
max function across all these scores for dimension i yields the final Intra-Module risk
tendency scores, SKk

i :

{SKk
i }

Ki

k=1 = Softmax({ ˆSK
k

i }
Ki

k=1) (6)

These normalized scores sum to 1, representing the input’s alignment strength towards the
k extremes of dimension i.

2.5.2 FINAL RISK CLASSIFICATION

The final risk classification synthesizes dimension relevance (from Inter-Module weights wi) and
directional tendency (from Intra-Module scores SKk

i ). An input is flagged for a specific risk if both
of the following conditions are met for a monitored dimension i:

1. Sufficient Relevance: The dimension i is identified as highly relevant to the input. This
can be determined by its Inter-Module weight being maximal or exceeding a predefined
relevance threshold θw.

2. Significant Tendency: The input demonstrates a strong alignment with one of the di-
mension’s extremes. This is confirmed if the corresponding Intra-Module tendency score
(SKk

i ) surpasses a sensitivity threshold θSK .

If these conditions are not satisfied for any monitored dimension, the input is classified as benign
concerning these specific risks. The thresholds ( θw, θSK) are adjustable to tune the system’s sensi-
tivity and specificity for different application needs.

2.6 EFFICIENCY AND SCALABILITY ANALYSIS

A key advantage of the MoLD framework lies in its exceptional parameter efficiency and computa-
tional scalability, particularly when monitoring multiple risk dimensions concurrently.

2.7 PARAMETER EFFICIENCY

Conventional approaches to multi-risk detection often require training and deploying a separate
model for each risk type. For a system designed to detect N distinct risk themes, the total parameter
count for such a baseline approach (PBaseline) would scale linearly with N:

PBaseline(N) ≈ N × Pmodel (7)

where Pmodel is the number of parameters in a single, fully fine-tuned model.

In stark contrast, MoLD leverages a single, shared base model (M) and only adds a small set of
lightweight LoRA adapters for each new risk theme. The total parameter count of the MoLD system
(PMoLD) is therefore:

PMoLD(N) = Pbase +

N∑
i=1

Ki∑
k=1

PLk
i

(8)

where Pbase is the parameter count of the large base model, and
∑Ki

k=1 PLk
i

is the total parameter
count of the LoRA for theme i. Since LoRA adapters are extremely small by design (typically <
0.1% of Pbase), the growth in total parameters as N increases is negligible compared to the baseline.

5
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2.8 COMPUTATIONAL EFFICIENCY AND PARALLELISM

MoLD’s efficiency extends to its inference-time computation. During the risk assessment for a given
content Dcontent, the vast majority of the system’s parameters (both Pbase and all PLoRA) are frozen.
The only parameters being optimized (Poptim) are the small sets of scalar weights:

Poptim = N︸︷︷︸
Inter-Module

+

N∑
i=1

(Ki × L)︸ ︷︷ ︸
Intra-Module

(9)

This number is exceptionally small (e.g., in the order of hundreds or a few thousands), allowing the
optimization to converge rapidly.

Furthermore, the framework is inherently parallel. The optimization process solves for all Poptim
simultaneously, meaning the input content is assessed against all N risk themes concurrently within
a single analytical pass. This is a significant advantage over methods that would require N separate
models to be loaded and run sequentially. This powerful parallel capability allows MoLD to produce
a comprehensive, multi-faceted risk profile with minimal latency, making it an ideal solution for
scalable, real-world content moderation systems.

3 EXPERIMENTS

3.1 DATASETS

To train the LoRA modules representing extremes and evaluate MoLD, datasets for selected textual
and visual dimensions were curated and split into training, validation, and testing sets in a 6:2:2
ratio, respectively.

Textual Datasets:

We focused on three textual dimensions relevant to societal risks, bias, and style:

• Gender Perspective:’Feminism’, ’Misogyny’.

• Racial Attitude:’Anti-Black’, ’Pro-Black’.

• Behavioral Style:’Meticulous’, ’Careless’, ’Humor’.

Table 1: Templates for Large Language Model.
Top: Used to generate synthesized data. Bottom: Used
to rate the polarity of the content.

Prompt Instances

• Prompt for data: Generate a two-role (Ques-
tioner, Responder) dialogue corpus on open-
ended/everyday topics. Questioner: Asks/opines cu-
riously, doubtfully, or factually. Responder: Gives
serious, goal-driven, detailed, clear, structured, prac-
tical, non-vague replies.
• Prompt for score: As a linguistic analyst,
rate conversation meticulousness (Scale: 0=none to
10=extremely meticulous). Consider: Language,
tone, context.

Data for ’Feminism’, ’Misogyny’, ’Humor’
and ’Anti-Black’ categories were extracted
from public datasets (ClimaConvoShiwakoti
et al. (2024), ToxiGenHartvigsen et al. (2022),
DHATEVidgen et al. (2020), and SBICV2Sap
et al. (2019)).

Other categories (’Pro-Black’, ’Meticulous’,
’Careless’) were synthetically generated via
GPT-4oHurst et al. (2024) using specific
prompts (see Table 1 for examples). All tex-
tual samples underwent filtering by a GPT-4o
assessor (Table 1), retaining only those scoring
> 8/10 for extremity, yielding 5,000 samples
per extreme category.

Visual Datasets:

For the visual modality, we addressed dimensions related to content safety, and style:

• Regulated Content:’Violence’, ’Sexual’, ’Self-Harm’, ’Discriminatory’.

• Image Style:’Cartoon’, ’Realistic’.

6
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’Sexual’, ’Violence’, ’Discriminatory’ and ’Self-Harm’ data were curated from VHD11k Yeh et al.
(2024) and UnsafeBench Qu et al. (2024). For ’Cartoon’ and ’Realistic’ categories, 100 images and
50 short videos per category were collected from public online sources by the authors.

3.2 EXPERIMENTAL SETUP

This section details the MoLD risk assessment configuration and the LoRA module training hyper-
parameters. All experiments were conducted on a server equipped with 128GB of RAM and a single
NVIDIA GeForce RTX 4090 GPU.

3.2.1 MOLD RISK ASSESSMENT CONFIGURATION

For the risk assessment procedure detailed, we employed the following specific parameter settings
across all experiments:

• Relevance Identification (Inter-Module Weights): The most relevant risk dimension k
was selected based on the maximum Inter-Module weight (wk = maxi wi).

• Tendency Evaluation (Intra-Module Weights): A threshold θSK = 0.8 determined sig-
nificant directional bias. A value empirically set on a validation set.

LoRA Module Training Details

Base Models:

• NLP domain: Qwen2.5-Instruct series Yang et al. (2024) (0.5B, 1.5B, 3B, 7B parameters)
• V&L domain: Pre-trained Stable Diffusion v2.1Rombach et al. (2021).

LoRA modules for each risk theme were trained independently with the following settings:

NLP LoRAs (Qwen-based): Learning rate 5e-5 (cosine scheduler), 5 epochs, batch size 8, rank 8,
and α as 16.

Vision LoRAs (SD-based): Image resolution 512x512, learning rate 1e-5, 400 iterations, batch size
2, rank 4, and α as 0.5.

3.3 MOLD ON NLP DOMAIN

Figure 4: Comparison of MoLD with base-
lines at different data scales.
Top: MoLD’s cross-scale consistency capability.
Bottom: Few-shot learning capability of MoLD

This section evaluates MoLD’s text-based risk detec-
tion via four experiments: few-shot learning, base-
line comparison, variable text length handling, and
multi-risk detection. Results use Qwen2.5-0.5B-
Instruct as the base LLM unless stated otherwise.
The dynamic weight optimization for each assess-
ment was conducted over 5 iterations.

3.3.1 FEW-SHOT
AND CROSS-SCALE PERFORMANCE

MoLD’s ability to achieve strong performance with
minimal training data was investigated.

Cross-scale Consistency:

MoLD showed consistent high accuracy across
Qwen2.5-Instruct sizes (0.5B-7B) when trained with
few samples (e.g., 200 per extreme). The 0.5B
model’s few-shot performance matched larger models (Figure 4, top).

Few-shot Learning vs. Baselines:

Compared to fine-tuning baselines (BERTDevlin et al. (2019), DistilBERTSanh et al. (2019),
RoBERTaLiu et al. (2019), and ClimateBERTWebersinke et al. (2021)), MoLD (0.5B base) achieved

7
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near-peak accuracy (∼ 0.96) with only 200 samples per extreme, while baselines needed ≥ 2000
samples (Figure 4, bottom). MoLD required > 90% less training data. This highlights MoLD’s
exceptional data efficiency, valuable for low-resource risk detection scenarios.

3.3.2 COMPARISON OF BASELINE NLP MODELS

Table 2: NLP Model Performance Comparison.
Model Acc F1

BERT 0.901 0.708
DistilBERT 0.896 0.664
RoBERTa 0.842 0.662
ClimateBERT 0.884 0.704
BERTweet+Llama2 0.952 0.890
Optimal MoLD 0.96 0.959

MoLD (trained on 200 samples per extreme)
was benchmarked against strong NLP base-
lines (BERTweet + Llama2Kaya et al. (2024),
BERT, DistilBERT, RoBERTa, and Climate-
BERT) trained on larger datasets.

MoLD achieved a superior F1 score (0.959),
surpassing all baselines (Table 2), demonstrat-
ing its competitive performance despite high
data efficiency.

Table 3: Inference Time Comparison.
Model 2-Risks 4-Risks 7-Risks

BERT 1882ms 3766ms 6580ms
DistilBERT 1027ms 2041ms 3570ms
RoBERTa 1467ms 2888ms 5048ms
ClimateBERT 1520ms 3005ms 5338ms
BERTweet+Llama2 1732ms 3123ms 6439ms
Optimal MoLD 1150ms 1546ms 1951ms

Table 3 presents the average inference time over
100 test samples of 30 tokens each. The results
show that while MoLD’s speed is comparable to
the fastest baseline for 2-Risks detection, it holds
a significant advantage in more complex multi-
Risks (4 and 7) scenarios, demonstrating its ex-
cellent scalability for parallel monitoring tasks.

3.3.3 DETECTION ACROSS VARIABLE TEXT
LENGTHS

Figure 5: The performance of MoLD in detecting
text of different lengths.

MoLD’s robustness to varying input lengths
was tested by training on short texts (200 sam-
ples, 200-400 chars) and evaluating on inputs
from 200 to 4,000 characters.

MoLD maintained high accuracy and recall
across all lengths (Figure 5), demonstrating
its ability to handle long-form content effec-
tively without length-specific adaptations, un-
like token-limited models.

3.3.4 CONCURRENT MULTI-RISK
DETECTION Table 4: MoLD performance for multiple text

risk dimension simultaneously.
Risk Dimension Precision Recall Accuracy

Feminism 0.989 0.98 0.99
Misogyny 0.925 0.99 0.985

Anti-Black 1.0 0.92 0.986
Pro-Black 0.943 1.0 0.99

Meticulous 0.923 0.96 0.98
Careless 1.0 0.92 0.986
Humor 0.956 0.934 0.976

MoLD’s ability to monitor multiple risks simul-
taneously was tested. Configured with LoRA
modules for all three NLP dimensions (Seven ex-
tremes) active concurrently.

MoLD maintained high Precision, Recall, and
Accuracy across all categories (Table 4), show-
ing minimal interference between parallel detec-
tion processes and confirming its scalability for
multi-risk monitoring.

3.4 MOLD ON V&L DOMAIN

This section evaluates MoLD’s visual risk detection capabilities, comparing it against baselines and
testing concurrent multi-risk detection.

3.4.1 COMPARISON OF BASELINE V&L MODELS

8
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Table 5: Comparison of MoLD with baseline
V&L models

Model Pre Rec F1

LlavaGuard 0.476 0.931 0.63
LlavaGuard(SG) 0.672 0.989 0.8
GPT-4o mini 0.683 0.977 0.803
Gemma3 0.777 0.879 0.825
SG2 0.876 0.897 0.886
Optimal MoLD 0.896 0.91 0.901

MoLD’s performance on ’Violence’ vs. ’Self-
Harm’ image detection was compared against
baselines (LlavaGuardHelff et al. (2024), GPT-
4o miniHurst et al. (2024), Gemma3Team et al.
(2024) and SG2Zeng et al. (2025)).

MoLD was trained using only 40 images per ex-
treme (tested on 60). MoLD achieved a superior
F1 score of 0.901 (Table 5), surpassing reported
baseline results on similar tasks. This high per-
formance with minimal training data highlights MoLD’s strong data efficiency extending to the
visual domain.

3.4.2 CONCURRENT MULTI-RISK DETECTION

Table 6: MoLD detects results for multiple im-
age risk dimensions simultaneously.

Risk Dimension Precision Recall Accuracy

Violence 0.94 0.922 0.953
Sexual 0.91 0.903 0.91
Discriminatory 0.97 0.94 0.953
Self-Harm 0.985 0.92 0.967

Cartoon 0.99 0.93 0.96
Realistic 1.0 0.92 0.96

MoLD’s capacity for simultaneous multi-risk vi-
sual detection was evaluated. Configured with
LoRA modules for two visual dimensions (six ex-
tremes total) active concurrently.

MoLD maintained high performance (accuracy
0.91 ∼ 0.967) across all six categories simultane-
ously (Table 6). This demonstrates effective con-
current multi-risk visual assessment with mini-
mal interference, confirming its robustness and
potential for scalable visual safety monitoring.

3.4.3 DETECTION ON SEQUENTIAL VISUAL DATA (VIDEO)

Table 7: MOLD performance on video risk de-
tection.

Risk Dimension Precision Recall Accuracy

Cartoon 1.0 0.96 0.98
Realistic 0.98 0.96 0.97

To evaluate MoLD’s performance on sequential
visual data, we tested its ability to detect risks
in video clips. Each video was treated as a se-
quence of image frames. The results (Table 7)
show that MoLD maintains high accuracy, suc-
cessfully identifying the video’s dominant. This
demonstrates that the framework’s robustness to
long-sequence data extends from the text to the visual domain.

3.5 ABLATION STUDY

Table 8: Ablation studies on core components of
MoLD.

Model Variant Acc Pre Rec F1

Full MoLD 0.960 0.962 0.956 0.959
w/o SK (Avg.) 0.915 0.906 0.887 0.895
w/o Layer-Weights 0.831 0.840 0.806 0.823

We conduct ablation studies to validate two
key components of MoLD: our modified skew-
ness (SK) analysis and the hierarchical, layer-
specific weight architecture. As shown in Table
8, removing either component results in a sig-
nificant performance drop.

Replacing the SK analysis with a simple av-
eraging heuristic degrades the F1-score from
0.959 to 0.895. The impact is more severe when
removing the layer-weights, which lowers the F1-score to 0.823. These results confirm that both our
SK-based analysis and the hierarchical weight structure are crucial for MoLD’s superior perfor-
mance.

4 CONCLUSION

This work introduced MoLD, a novel framework for nuanced multimodal risk assessment that an-
alyzes the dynamic interplay of specialized LoRA module weights. Experiments demonstrate that
MoLD achieves state-of-the-art, scalable, and multi-dimensional risk detection with significant data
and parameter efficiency.
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Ismael Garrido-Muñoz , Arturo Montejo-Ráez , Fernando Martı́nez-Santiago , and L. Alfonso
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A RELATED WORK

We situate MoLD within existing research by briefly reviewing challenges in multimodal detection,
the evolution of automated detection methods, approaches to multi-risk handling, and the novel
application of weight-based analysis, thereby highlighting MoLD’s contributions.

Data Scalability in Multimodal Risk Detection. A significant challenge in effectively detecting
risks across diverse modalities like text and images Lu & Cranefield (2024); Yoon et al. (2025) is
the extensive data typically required for training robust models, often involving complex annotation
efforts Bai et al. (2024); Van Aken et al. (2018). MoLD directly addresses this data scalability issue
through its emphasis on a highly data-efficient learning paradigm.

Automated Toxicity Detection. While advanced architectures such as Pre-trained Language
Models (PLMs) like BERT Mazari et al. (2024) and vision models like CLIP Radford et al. (2021)
significantly improved contextual understanding and detection accuracy, their effectiveness often
relies on large labeled datasets Mahesh (2020). This reliance has spurred the development of more
data-efficient techniques, including few-shot Bonagiri et al. (2025); Yeh et al. (2024) and zero-shot
learning Cao et al. (2023); AlDahoul et al. (2024). MoLD strategically adopts such data-efficient
principles to enhance its practical applicability in resource-constrained scenarios.

Approaches for Multi-Risk Detection. Mixture of Experts (MoE) models Masoudnia &
Ebrahimpour (2014); Cai et al. (2024), including LoRA-based variants Chen et al. (2024); Li et al.
(2024); Wu et al. (2024), often manage multiple risks by routing or mitigating expert interfer-
ence Zhou et al. (2022), typically avoiding direct expert conflicts Zhong et al. (2024); Sun et al.
(2024). MoLD distinctively analyzes the dynamic weight interplay among multiple thematic groups
of LoRA modules, which are intentionally extreme-trained on different tendencies. This assess-
ment through a compositional analysis of these tendencies, rather than expert selection or simple
composition Sung et al. (2022); Huang et al. (2023).

Risk Assessment via Weight Analysis. Learned model weights Glorot & Bengio (2010); He
et al. (2015) can encode valuable information beyond their primary predictive function Zeiler (2014).
While some research explores LoRA weight analysis for auxiliary tasks (e.g., inferring dataset prop-
erties Salama et al. (2024); Shokri et al. (2017)), MoLD innovatively applies this concept for direct
risk assessment. It analyzes dynamically optimized scalar weights—which modulate the influence
of extreme-trained LoRA modules J. et al. (2021), to classify, localize, and score toxicity, forming
the core of its interpretable, fine-grained evaluation capabilities.
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