
Learning to Generalize: An Information Perspective
on Neural Processes

Hui Li1,2,3,†, Huafeng Liu2,3,†, Shuyang Lin1,2,3, Jingyue Shi1,2,3,

Yiran Fu1,2,3, Liping Jing1,2,3,∗

1State Key Laboratory of Advanced Rail Autonomous Operation, Beijing, China
2School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
3Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, Beijing, China

{huili97, hfliu1, sylin1, jingyueshi, yiranfu, lpjing}@bjtu.edu.cn

Abstract

Neural Processes (NPs) combine the adaptability of neural networks with the effi-
ciency of meta-learning, offering a powerful framework for modeling stochastic
processes. However, existing methods focus on empirical performance while lack-
ing a rigorous theoretical understanding of generalization. To address this, we
propose an information-theoretic framework to analyze the generalization bounds
of NPs, introducing dynamical stability regularization to minimize sharpness and
improve optimization dynamics. Additionally, we show how noise-injected parame-
ter updates complement this regularization. The proposed approach, applicable to a
wide range of NP models, is validated through experiments on classic benchmarks,
including 1D regression, image completion, Bayesian optimization, and contextual
bandits. The results demonstrate tighter generalization bounds and superior predic-
tive performance, establishing a principled foundation for advancing generalizable
NP models.

1 Introduction
Gaussian processes (GPs) are widely recognized as a robust framework for modeling distributions
over functions [37]. Their appeal lies in the consistent probabilistic reasoning enabled by Bayesian
inference, which facilitates data-efficient modeling. Despite their strengths, GPs are unsuitable for
certain problems. For instance, a function exhibiting a single, unknown discontinuity is a classic
example of a distribution that GPs fail to represent [34].

To address such limitations, researchers have turned to neural network-based generative models.
Notable advancements in this area include meta-learning techniques like Neural Processes (NPs)
[14, 15] and models based on variational autoencoders (VAEs) [33, 11]. These approaches leverage
extensive small dataset training to transfer knowledge effectively across tasks during prediction.
Neural networks (NNs) offer additional advantages by offloading computational intensity to the
training phase, simplifying predictions, and freeing the model from Gaussianity constraints.

Building upon the foundational work of Conditional Neural Processes (CNPs) and Neural Processes
(NPs) [14, 15], numerous studies have enhanced NPs by integrating advanced mechanisms. Atten-
tive Neural Processes (ANPs) [27] incorporated attention mechanisms to better model long-range
dependencies, while Transformer Neural Processes (TNPs) [36] leveraged self-attention for improved
scalability. Convolutional Neural Processes (ConvCNPs) [10] adapted convolutional architectures to
excel in spatial data tasks, and Neural Diffusion Processes (NDPs) [7] introduced diffusion mecha-
nisms to enhance uncertainty estimation. NPCL [22] extended NPs to continual learning, enabling

∗Corresponding authors: Liping Jing; †These authors contributed equally to this work. Codes: https:
//github.com/Allen0497/Gen-NPs

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Allen0497/Gen-NPs
https://github.com/Allen0497/Gen-NPs

sequential task adaptation, and multimodal approaches like [25] generalized NPs for uncertainty
estimation across multiple modalities.

While these advancements significantly enhance the experimental performance of NPs, they primarily
focus on task-specific improvements through architectural innovations and meta-learning strate-
gies [20, 16]. However, the generalization capability of NPs—a critical hallmark of their design—has
received limited theoretical exploration. Existing works prioritize performance optimization, often
neglecting the theoretical interpretability of NPs. For instance, many methods emphasize improving
inductive biases or increasing model complexity without addressing the theoretical underpinnings of
NPs’ generalization ability [17, 10]. This gap underscores the need for a formal theoretical foundation
to better understand and generalize NPs across broader domains and tasks, paving the way for more
principled and interpretable neural process models [44].

Information theory provides a powerful framework for analyzing and quantifying uncertainty, of-
fering rigorous tools to evaluate the generalization of models [18, 35]. This paper introduces an
information-theoretic framework to analyze and improve the generalization bounds of Neural Pro-
cesses (NPs). Building on this analysis, we propose a novel approach that incorporates dynamical
stability regularization, which explicitly minimizes sharpness through the trace and Frobenius norm of
the Hessian matrix. Additionally, we demonstrate how noise-injected parameter updates complement
this regularization by smoothing the optimization trajectory and improving gradient coherence. These
insights are broadly applicable across NP variants and validated through extensive experiments on
benchmarks such as 1D regression, image completion, Bayesian optimization, and contextual bandits.

The main contributions of this paper are as follows:
• We conduct an information-theoretic analysis of NP generalization bounds, providing a rigorous

perspective on their generalization capabilities.
• We propose a dynamical stability regularization framework, complemented by noise-injected

parameter updates, to enhance generalization by minimizing sharpness and improving optimization
dynamics.

• Extensive experiments on classic NP tasks validate our approach, demonstrating tighter generaliza-
tion bounds and superior performance compared to existing methods.

2 Related Work
In this section, two relevant areas are briefly reviewed: neural processes and information-theoretic
learning.
Neural Processes Neural Processes (NPs) are probabilistic models designed to meta-learn distribu-
tions over functions, offering a data-driven alternative to Gaussian Processes (GPs) [14, 15]. Unlike
GPs, which rely on manually specified priors, NPs employ an encoder-decoder architecture to learn
a family of functions, efficiently capturing uncertainty using neural networks. Conditional Neural
Processes (CNPs) [14], the earliest variant, introduced a deterministic encoder-decoder framework but
assumed independence among predictive outputs. Latent Neural Processes (NPs) [15] addressed this
by introducing a global latent variable for uncertainty modeling. Subsequent works have enhanced
expressiveness, scalability, and uncertainty modeling. Extensions of NPs have addressed specific
limitations and broadened their applicability. Attentive Neural Processes (ANPs) [27] incorporated
attention mechanisms to better model long-range dependencies and heteroscedastic uncertainty.
Convolutional Neural Processes (ConvCNPs) [10] introduced translation-equivariant architectures,
excelling in spatial and structured data tasks. Transformer Neural Processes (TNPs) [36] leveraged
self-attention for scalability and sequence modeling, while Neural Diffusion Processes (NDPs) [7]
used diffusion mechanisms to improve robustness and uncertainty estimation. Neural Processes for
Uncertainty-Aware Continual Learning (NPCL) [22] extended NPs to sequential task adaptation
without catastrophic forgetting. Additionally, multimodal extensions [25] generalized NPs to handle
multi-sensor fusion and uncertainty estimation. These advancements highlight the versatility of NPs
and their adaptability across diverse applications.
Information-Theoretic Learning Information-theoretic learning (ITL) leverages principles from
information theory to analyze and optimize learning algorithms. Unlike traditional approaches based
on measures like VC-dimension [39] or uniform stability [4], ITL characterizes learning using mutual
information and related quantities [50, 38]. By framing generalization error as the mutual information
between inputs and outputs, ITL captures dependencies among data distribution, hypothesis space,
and learning algorithms, addressing challenges in uncertainty quantification, robustness, and data

2

efficiency. This framework provides valuable insights into the generalization capabilities of modern
machine learning models. Recent advances have expanded ITL’s application to generalization analysis
and enhancement. Harutyunyan et al. [18] proposed improved generalization bounds by focusing
on the mutual information between predictions and the training set, offering practical estimates of
the generalization gap in deep learning. Neu et al. [35] extended ITL to stochastic gradient descent
(SGD), deriving tighter bounds based on local gradient statistics and sensitivity along the optimization
path. These advances demonstrate ITL’s utility in understanding complex learning dynamics and
improving theoretical guarantees for generalization.

3 Preliminaries
This section introduces the foundational concepts and mathematical tools necessary for understanding
the methods and analyses presented in this paper, including information theory, neural processes, and
dynamical stability.

Information Theory Let PX denote the marginal distribution of the random variable X. For the
Markov chain X → Y , the conditional distribution (or Markov transition kernel) is denoted by PY |X ,
and the notation X ⊥ Y indicates independence between X and Y [6]. The cumulant generating
function (CGF) of a random variable X is defined as ψX(λ) ≜ logE[eλ(X−E[X])], where λ is a real
number. A random variable X is σ-subgaussian if its CGF satisfies ψX(λ) ≤ λ2σ2

2
for all λ ∈ R [43].

The mutual information between X and Y is defined as I(X;Y) ≜ KL(PX,Y ∥PXPY), where PX,Y is
the joint distribution of X and Y , and PXPY is the product of their marginals [6]. The disintegrated
mutual information between X and Y given U is IU (X;Y) ≜ KL(PX,Y |U∥PX|UPY |U), where PX,Y |U
is the conditional joint distribution given U . The conditional mutual information is then defined
as I(X;Y |U) ≜ EU [I

U (X;Y)], the expectation of the disintegrated mutual information over the
distribution of U [1].

Neural Processes Neural Processes (NPs) model the conditional predictive distribution of target
values yT at target points XT based on a context set DC , expressed as P (yT |XT ,DC) [15]. For deter-
ministic NPs (CNPs), the conditional distribution is simplified as P (yT |XT ,DC) = P (yT |XT , rC),
where rC is an aggregated feature of DC [14]. Probabilistic NPs introduce a latent variable z to
capture uncertainty, modeling P (yT |XT ,DC) =

∫
Pθ(y

T |XT , z)Pθ(z|DC) dz. Training maximizes
the evidence lower bound (ELBO): Ez∼Pθ(z|DC)[logP (y|X)] − KL[Pθ(z|X,DC)||Pθ(z|DC)] [15].
During meta-training, NPs learn from tasks sampled from an environment τ , a probability measure
over task distributions µ, where each task involves dividing data into context and target sets [20].
A meta-dataset consists of m datasets D1:m = (D1, . . . ,Dm), each sampled independently from
µn,τ , the mixture distribution induced by τ [9]. The meta learner A outputs a meta-parameter
θ = A(D1:m) ∼ Pθ|D1:m

, representing shared knowledge across tasks [3]. The meta risk is defined
as Rτ (θ) ≜ ED∼µn,τ ,µ∼τ [EDC [Rµ(θ)]], where Rµ(θ) ≜ −E(x,y)∼µ logP (y|x,DC) [3]. The empirical
meta risk is given by RD1:m(θ) ≜ 1

m

∑m
j=1RDj (θ), with RDj (θ) ≜ − 1

n

∑n
i=1 logP (yi|xi,DC

j). The
meta generalization error is then defined as genNPs

meta(τ,A) ≜ Eθ,D1:m [Rτ (θ)−RD1:m(θ)], which quan-
tifies the difference between true and empirical meta risks [3]. By learning a meta-parameter θ shared
across tasks, NPs efficiently adapt to new tasks, leveraging shared information in the environment.

Dynamical Stability Dynamical stability refers to the robustness of the stochastic gradient descent
(SGD) optimization process to small perturbations in the parameter space and has been shown to
play a critical role in both optimization and generalization [49, 42]. Consider the parameter update
rule θs+1 = θs − η∇Rs(θs), where η is the learning rate, and ∇Rs(θs) is the stochastic gradient.
The sensitivity of the optimization dynamics can be quantified by the spectral norm ∥Js∥2 of the
Jacobian matrix Js =

∂θs+1

∂θs
, which governs how small perturbations δs at step s propagate through

subsequent iterations [48, 40, 47]. When ∥Js∥2 < 1, perturbations decay over time, leading to stable
training. Importantly, this stability imposes an implicit regularization effect, as SGD inherently
biases the optimization process towards flatter minima with lower curvature, measured by the Hessian
H = ∇2R(θ) [21, 26]. Flatter minima are associated with better generalization due to their robustness
to noise and parameter variations [19, 8]. Moreover, the Lyapunov exponents, which quantify the
exponential rates of divergence or convergence of nearby trajectories in parameter space, provide
a formal link between stability and generalization. Negative Lyapunov exponents imply stable
dynamics and a tendency towards generalizable solutions [42, 49]. This perspective highlights the
central role of dynamical stability in understanding the implicit biases of SGD and its impact on both
the optimization landscape and model generalization [47, 41].

3

4 Methodology
This section investigates the generalization properties of Neural Processes (NPs) by integrating
information-theoretic principles with optimization dynamics. First, we quantify the generalization
error of NPs using mutual information (MI), capturing uncertainties from data and task distributions.
Next, we introduce a risk-aware dynamical stability regularization term Rdyn, addressing sharpness
and curvature to improve generalization. Finally, we propose an optimization-aware noise injection
strategy to enhance stability and guide parameter updates toward flatter minima.

4.1 Quantifying Generalization with Information Theory

Figure 1: Generalization error of Neural Pro-
cesses (NPs) varies with the Hessian trace

Understanding the generalization capabilities of Neu-
ral Processes (NPs) requires quantifying the uncer-
tainties inherent in the learning process. By lever-
aging mutual information (MI), the generalization
error can be decomposed into components reflecting
different sources of uncertainty, offering insights into
the behavior of NPs across diverse tasks. While MI
provides a rigorous framework to analyze generaliza-
tion, standard approaches often neglect the impact
of model complexity, which is particularly critical
in the hierarchical nature of meta-learning. This sec-
tion lays the foundation for incorporating complexity
constraints in future analysis.

To analyze generalization bounds, we consider the
relationship between true risk and empirical risk un-
der a given task distribution. Let µ represent an unknown distribution on the instance space X × Y .
A meta-dataset consists of m datasets, denoted as D1:m = (D1, . . . ,Dm), where each dataset Dj

consists of n independent samples drawn from µ. The full dataset is thus D = D1:m = {Dj}mj=1. For
a hypothesis θ, the true risk is defined as Rµ(θ) ≜ EX×Y ∼µ[ℓ(θ,X × Y)], and the empirical risk as
RD(θ) ≜ 1

mn

∑m
j=1

∑n
i=1 ℓ(θ, xi,j , yi,j), where ℓ : Θ ×X × Y → R is the loss function. A learning

algorithm A maps the dataset D to a randomized hypothesis θ = A(D) ∼ Pθ|D, and its generalization
error is defined as gen(µ,A) ≜ Eθ,D[Rµ(θ)−RD(θ)].
Theorem 4.1. If the loss ℓ(θ,X × Y) is σ-subgaussian for each θ ∈ Θ with respect to X × Y ∼ µ, the

generalization error of a learning algorithm A satisfies the bound |gen(µ,A)| ≤
√

2σ2

mn
I(θ;D), where

I(θ;D) is the mutual information between the dataset D and the hypothesis θ. For meta-learning
tasks, where µ ∼ τ , the meta-generalization error satisfies:∣∣genNPs

meta(τ,A)
∣∣ ≤ √

2σ2

mn
I(θ;D1:m). (1)

The mutual information I(θ;D1:m) can be computed based on the joint distribution P (θ,D1:m) and
the marginal P (θ); detailed derivations are provided in the appendix. This bound indicates that
minimizing the dependence of θ on the data (via I(θ;D1:m)) improves the generalization performance.

θ1 ··· θS

𝜉𝜉1 ··· 𝜉𝜉𝑆𝑆

θ0

Optimization-
Aware Noise

Injection Learning
Strategy

𝐁𝐁𝟏𝟏:𝐦𝐦
𝟏𝟏 ··· 𝐁𝐁𝟏𝟏:𝐦𝐦

𝐒𝐒
Context Points
Target Points

TaskT

𝐷𝐷1:𝑚𝑚

Risk-Aware
Dynamical Stability

Regularization
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑1 ··· 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆

Figure 2: The training process of Gen-NPs

Although the MI framework elegantly
quantifies generalization, it does not explic-
itly account for the hypothesis space com-
plexity or the solution sharpness. For NPs,
these factors are especially significant as a
result of their hierarchical structure. The
hypothesis space in NPs, determined by the
meta-parameters θ, encodes both task-level
priors and task-specific adaptations. This
space is inherently high-dimensional, mak-
ing it prone to overfitting, particularly when
the meta-dataset D1:m is small or lacks di-
versity.

The sharpness of the learned solution is
related to the curvature of the loss surface, quantified by the Hessian H = ∇2R(θ). A high Hessian

4

trace implies sensitivity to parameter perturbations, adversely affecting generalization, especially
across diverse task distributions. As illustrated in Figure 1, the generalization error of NPs deteriorates
with increasing Hessian trace.

Based on the above analysis, we focus on improving NPs’ generalization from both risk-aware
dynamical stability regularization and optimization-aware noise injection learning strategy, the whole
learning framework is given in Figure 2.

4.2 Risk-Aware Dynamical Stability Regularization
Inspired by previous works that demonstrate the critical role of sharpness and curvature in optimization
and generalization [26, 23, 45], we introduce a dynamical stability regularization (DSR) term Rdyn

that incorporates model complexity constraints into the generalization bound. Specifically, sharpness
of the solution has been linked to poor generalization, motivating the need to explicitly regularize the
curvature of the loss landscape [19, 21, 51]. Moreover, recent studies have explored how Lyapunov
stability and noise in optimization dynamics can implicitly bias solutions towards flat minima, further
supporting the necessity of stability-based regularization [40, 49].
Definition 4.2. The dynamical stability regularization term Rdyn quantifies the complexity of the
hypothesis space by leveraging properties of the Hessian matrix H, which represents the second-order
derivatives of the loss function with respect to the parameters θ:

Rdyn = λ1 · E[Tr(H)] + λ2 · E[∥H∥F], (2)

where Tr(H) (the trace of the Hessian) measures the solution sharpness by summing the eigenvalues
of H, and ∥H∥F (the Frobenius norm) captures the overall curvature of the loss landscape. The
hyperparameters λ1 and λ2 control the relative importance of these two components, with empirical
values typically set as λ1 ∈ [0.01, 0.1] and λ2 ∈ [0.001, 0.01] to maintain an appropriate balance
between the two terms. By penalizing sharpness and curvature, Rdyn aligns the theoretical bounds
with practical observations in optimization.
Theorem 4.3. By incorporating Rdyn into the information-theoretic framework, the refined meta-
generalization error bound for Neural Processes (NPs) is given by:

∣∣genNPs
meta(τ,ADSR)

∣∣ ≤ √
2σ2

nm

I(θ;D1:m)

1 + α ·Rdyn
, (3)

where I(θ;D1:m) is the mutual information between the meta-parameter θ and the dataset D1:m,
Rdyn is the dynamical stability regularization term, and α > 0 is a scaling factor that controls the
influence of Rdyn. The proof of this theorem is provided in the Appendix.

Including Rdyn in the generalization bound has notable effects. Penalizing high Tr(H) encourages the
model to select flatter minima, which are associated with better generalization. Additionally, con-
straining the Frobenius norm ∥H∥F prevents overfitting to high-curvature regions. This regularization
complements the implicit bias of optimization algorithms, such as gradient descent, which naturally
steer solutions toward regions of lower sharpness.

The role of Rdyn depends on the training regime. When the number of tasks m is large (m → ∞)
with fixed samples per task n, the mutual information term I(θ;D1:m) dominates the bound, and Rdyn

constrains the sharpness across tasks. Conversely, when n grows (n→∞) while m remains fixed, the
generalization error decreases naturally as task-level uncertainty reduces, making Rdyn less critical.

From a practical perspective, incorporating Rdyn into the generalization bound provides actionable
insights for optimizing Neural Processes. Maximizing Rdyn during training improves generalization,
and tuning the hyperparameters λ1 and λ2 balances sharpness reduction and complexity control.
Ultimately, Rdyn bridges the gap between theoretical generalization bounds and practical challenges,
leading to tighter bounds and a deeper understanding of the factors influencing generalization in NPs.

4.3 Optimization-Aware Noise Injection Learning Strategy
Motivated by the well-established relationship between noise injection and generalization [19, 41, 46],
we propose an optimization-aware noise injection strategy tailored for meta-learning tasks. Noise has
been shown to play a critical role in escaping sharp minima [26], smoothing the loss landscape [21],
and improving generalization through implicit regularization [47]. Furthermore, recent studies
highlight the importance of integrating noise injection into gradient-based optimization to ensure
stability and guide parameter trajectories towards flatter regions of the loss landscape [24, 49].

5

Building upon these insights, we explicitly incorporate noise into the parameter update rule to
enhance both the stability and generalization of meta-parameter optimization. The overall training
process of NPs, incorporating noise injection and dynamical stability regularization, is illustrated in
Figure 2. The pseudocode for the entire algorithm can be found in the Appendix.

To explicitly incorporate the effect of noise into the learning dynamics, we modify the standard
gradient-based parameter update rule by introducing an isotropic Gaussian noise term ξs at each
iteration s. The parameter update rule for meta-parameters θ at iteration s is formally given by:

θs = θs−1 − ηs∇[R̃DT
i
(θs−1) +Rdyn] + ξs, (4)

where R̃DT
i
(θs−1) + Rdyn is the empirical risk computed on the target set DT

i of task i, ηs is the
learning rate at iteration s, and ξs ∼ N (0, σ2

sIk) is an isotropic Gaussian noise term with variance
σ2
s and dimensionality k. This update rule consists of two key components: the gradient descent

step, which minimizes the empirical risk, and the noise injection step, which perturbs the parameter
updates. The variance σ2

s can be adjusted over iterations to control the strength of the perturbation.

The introduction of noise into the parameter updates serves two primary purposes. First, it provides
implicit regularization by encouraging the model to explore flatter regions of the loss landscape and
favor minima with lower sharpness. This aligns with the objective of maximizing Rdyn, as described in
Section 4. Second, noise facilitates escaping sharp minima, which are common in high-dimensional
parameter spaces and often lead to poor generalization. By perturbing the trajectory of the updates,
noise helps the optimization process avoid these undesirable regions.

To achieve the desired regularization effect without destabilizing the optimization, the variance σ2
s of

the noise is carefully scaled with respect to the learning rate ηs. A common choice for this scaling
is σ2

s = ηs/γ, where γ > 0 is a scaling factor that controls the relative strength of the noise. This
formulation ensures that the noise magnitude decreases as the learning rate decreases, allowing the
optimization to stabilize in later iterations.

The noise-injected parameter update rule in Eq. 4 directly influences the dynamical stability reg-
ularization term Rdyn by affecting the Hessian properties of the loss landscape. Specifically, the
perturbation introduced by ξs reduces the likelihood of converging to regions with high Tr(H), thus
implicitly maximizing the sharpness of the solution. Furthermore, noise smooths the optimization
trajectory, reducing the overall curvature of the solution as measured by ∥H∥F . Together, these effects
demonstrate the critical role of noise injection in improving both the stability and generalization
performance of meta-parameter optimization. While introducing noise and regularization incurs
additional computational overhead, the performance gains justify these costs (detailed analysis in
Appendix).

5 Deeper Analysis
In this section, we establish a theoretical foundation for understanding how noise and dynamical
stability regularization affect the generalization performance of NPs. By analyzing the interplay
between noise, sharpness, and mutual information, we demonstrate their influence on generalization
bounds. Additionally, we show how noise injection mitigates gradient incoherence, a key challenge
in meta-learning, to improve stability and generalization.

5.1 Theoretical Analysis
We analyze how noise-injected parameter updates affect the dynamical stability of the optimization
process and its impact on generalization performance. Specifically, we focus on their effects on
sharpness, curvature (captured by the dynamical stability regularization term Rdyn), and mutual
information I(θ;D1:m). This analysis highlights the role of noise in reducing both Rdyn and I, thereby
improving the generalization of NPs.

To begin, we linearize the parameter updates around the optimal solution θ∗, which minimizes the
true risk Rµ(θ). Let θ̃s = θs − θ∗ represent the deviation from θ∗ at iteration s. The linearized
noise-injected parameter update rule is:

θ̃s+1 = (I − ηsH)θ̃s + ξs, (5)

where H = ∇2[R̃DT
i
+Rdyn](θ

∗) is the Hessian of the empirical risk, and ξs ∼ N (0, σ2
sIk) is isotropic

Gaussian noise. This form separates the contributions of optimization dynamics (I − ηsH) and noise
ξs to the evolution of θ̃s.

6

Noise affects sharpness, measured by the trace of the Hessian Tr(H), by perturbing the optimization
trajectory and encouraging exploration of flatter regions. This perturbation has a dual effect on the loss
landscape: it locally reduces the curvature around specific minima while simultaneously increasing
the system’s overall stability by promoting robust, flat solutions. Consequently, the effective Hessian
trace in the presence of noise satisfies Tr(Hnoise) ≥ Tr(H) · (1 + ηsσ

2
s), where a higher variance

of noise σ2
s results in a greater enhancement of dynamic stability. Similarly, the Frobenius norm

∥H∥F , which provides a comprehensive measure of the curvature of the loss landscape, satisfies
∥Hnoise∥F ≥ ∥H∥F ·

√
1 + ηsσ2

s , indicating that noise enhances the system’s ability to maintain stability
in the face of parameter perturbations. These results suggest that noise injection encourages the
optimization process to explore flatter regions of the loss landscape, develop higher dynamic stability,
and improve generalization performance by enhancing robustness to parameter perturbations.

By enhancing both stability metrics, noise effectively amplifies the dynamical stability regularization
term Rdyn, which appears in the denominator of our generalization bound. Specifically, substituting
the enhanced trace and Frobenius norm into the definition of Rdyn yields:

Rdyn, noise ≥ λ1 · E[Tr(H)] · (1 + ηsσ
2
s) + λ2 · E[∥H∥F] ·

√
1 + ηsσ2

s (6)

This increase in Rdyn directly tightens the generalization bound by increasing the denominator term
1 + α ·Rdyn, resulting in improved generalization capabilities for Neural Processes.

As the noise variance σ2
s decreases over iterations (σ2

s = ηs/γ), the optimization stabilizes near a
flat minimum, with the stability benefits retained as enhanced Rdyn. Noise also reduces the mutual
information I(θ;D1:m), which quantifies the dependency between model parameters θ and training
data D1:m. High mutual information indicates potential overfitting, as parameters become overly
dependent on specific data. The reduction is given by:

Inoise(θ;D1:m) ≤ max
(
0, I(θ;D1:m)− ηsσ

2
s · E[∥∇R̃DT

i
(θ)∥2]

)
. (7)

This ensures Inoise(θ;D1:m) remains non-negative and significantly lower than the original mutual
information. Excessive noise or high learning rates, however, may destabilize optimization, limiting
these benefits. By jointly reducing I(θ;D1:m) and amplifying Rdyn through increased Tr(H) and
∥H∥F , noise-injected updates tighten the generalization bound:

∣∣genGen-NPs
meta (τ,A)

∣∣ ≤ √
2σ2

nm

Inoise(θ;D1:m)

1 + α ·Rdyn, noise
≤

√
2σ2

nm

I(θ;D1:m)

1 + α ·Rdyn
, (8)

where the second inequality follows from Inoise(θ;D1:m) ≤ I(θ;D1:m) and Rdyn, noise ≥ Rdyn. This
interplay between noise, mutual information, and dynamical stability is crucial for achieving tighter
generalization bounds and improving meta-learning performance.

5.2 Gradient Incoherence
Gradient incoherence, caused by inconsistencies between gradients computed on the context set (DC

i)
and the target set (DT

i), affects the stability and generalization of Neural Processes (NPs). This issue
can lead to suboptimal updates and hinder learning. Noise-injected parameter updates mitigate this
problem by smoothing the loss landscape and reducing gradient mismatches.
Definition 5.1. The gradient incoherence for a task i at iteration s is defined as the ℓ2-norm of the
difference between the gradients on the full dataset Di and the target set DT

i :

ϵθi,s =
∥∥∥∇[R̃Di(θ

s−1) +Rdyn]−∇[R̃DT
i
(θs−1) +Rdyn]

∥∥∥2
2
, (9)

where ∇R̃Di(θ
s−1) + Rdyn and ∇R̃DT

i
(θs−1) + Rdyn are gradients of the empirical risk over Di

and DT
i , respectively. The overall gradient incoherence across tasks and iterations is given by

GI = 1
mS

∑m
i=1

∑S
s=1 ϵ

θ
i,s, where m is the number of tasks and S the number of iterations. Minimizing

GI ensures more consistent updates, improving generalization.

Noise reduces gradient incoherence by perturbing the optimization trajectory. The noise ξs introduced
during updates disrupts gradient alignment, exponentially decreasing incoherence as noise variance
σ2
s increases. Formally, the reduction can be expressed as ϵθi,s ≤ ϵθi,s(0) · exp(−

η2
sσ

2
s

γ), where ϵθi,s(0)
is the initial incoherence. Larger noise promotes exploration and reduces mismatches early in
training, while smaller noise stabilizes updates in later stages. This reduction stabilizes parameter

7

Gen-NPNP
Original Task CNP Gen-CNP NP Gen-NP ANP Gen-ANP

(a) 1D Regression Results on NP (b) Image Completion Results on CelebA Datasets

Figure 3: Part results of 1D Regression and Image Completion.

updates, prevents oscillations caused by inconsistent gradients, and improves alignment with true risk
minimization. Additionally, noise-induced coherence complements the regularization effect of Rdyn

by further reducing the sharpness and curvature of the loss landscape.

The effectiveness of noise depends on scaling its variance σ2
s with the learning rate ηs. Setting

σ2
s = ηs/γ balances noise magnitude across iterations, ensuring exploration in early training and

stability later. Empirical results in Section 6 confirm that noise-injected updates significantly reduce
GI, leading to improved stability and generalization across tasks.

6 Experiments
The proposed Generalization Neural Processes (Gen-NPs) are evaluated and compared with other
methods in the NP family on tasks such as regression, image completion, Bayesian optimization, and
contextual bandits. These tasks are widely used to benchmark NP-based models, as demonstrated in
prior works. The comparison includes Conditional Neural Processes (CNPs) [14], Neural Processes
(NPs) [15], Attentive Neural Processes (ANPs) [27], Bootstrapping Neural Processes (BNPs) [30],
and Transformer Neural Processes (TNPs) [36]. In addition to standard task performance, we
analyze the gradient incoherence (GI) introduced in Section 5.2, highlighting how Gen-NPs improve
optimization dynamics and generalization capabilities compared to other methods. The experimental
setup is consistent across all methods, and the implementation leverages the official codebase of
TNPs. Due to space limitations, extensive experimental results, including detailed images and tables,
are provided in Appendix C.

6.1 1-D Regression
Table 1: Comparison of Gen-NPs with the baselines on
LL and GI of the target points on various GP kernels.

Method RBF-LL Matérn-LL Periodic-LL GI
CNP 0.265±0.015 0.045±0.014−1.435±0.020 0.880±0.027

Gen-CNP 0.286±0.010 0.061±0.005 -1.418±0.023 0.830±0.042

NP 0.240±0.022 0.051±0.019−1.145±0.032 0.490±0.025

Gen-NP 0.270±0.009 0.073±0.007 -1.125±0.024 0.470±0.012

ANP 0.805±0.005 0.630±0.004−5.320±0.260 0.973±0.046

Gen-ANP 0.812±0.003 0.636±0.002 -5.028±0.290 0.950±0.013

BNP 0.389±0.017 0.185±0.015−0.970±0.016 0.160±0.007

Gen-BNP 0.405±0.009 0.200±0.008 -0.946±0.010 0.148±0.008

TNP 1.650±0.005 1.218±0.005−2.320±0.175 0.750±0.048

Gen-TNP 1.662±0.003 1.226±0.003 -2.010±0.170 0.730±0.032

We evaluate Gen-NPs on a 1-D regression task,
training models on RBF kernel functions sam-
pled from a Gaussian Process (GP) and testing
on unseen RBF, Matérn 5/2, and Periodic ker-
nels. Metrics include log-likelihood (LL) for
predictive accuracy and uncertainty, and gradi-
ent incoherence (GI) for optimization stability.
Results are averaged over five random seeds
with standard deviations reported. 1-D regres-
sion results on NP model are visually illustrated
in Fig. 3(a), where Gen-NP demonstrate a supe-
rior ability to capture the underlying character-
istics of the data compared to baseline models. As summarized in Table 1, Gen-NPs consistently
outperform baseline models across all kernels and metrics. For example, Gen-NPs achieve higher
LL values on Matérn 5/2 and Periodic kernels, while also demonstrating reduced GI, indicating
improved optimization dynamics and generalization. These results validate the effectiveness of the
proposed general recipe. Additional figures and tables, including detailed results for MAE, RMSE,
and variability across random seeds, are provided in Appendix C.2.

6.2 Image Completion

We evaluate Gen-NPs on image completion tasks using CelebA [32] and EMNIST [5], formulated
as a 2-D regression problem where pixel coordinates are inputs and intensities are outputs [15].
CelebA is downsampled to 32 × 32, while EMNIST uses 10 training classes (0-9) and evaluates
generalization on unseen classes (10-46). Figure 3(b) shows partial results on CelebA, where

8

Table 2: Comparison of Gen-NPs with the baselines on LL and GI of the target points on CelebA and EMNIST.

Method CelebA EMNIST
LL GI Seen-LL Unseen-LL GI

CNP 2.160±0.004 1.399±0.033 0.737±0.004 0.485±0.004 0.466±0.050

Gen-CNP 2.188±0.005 1.390±0.043 0.786±0.005 0.556±0.006 0.410±0.035

NP 2.481±0.015 0.694±0.034 0.795±0.002 0.584±0.003 0.187±0.008

Gen-NP 2.524±0.008 0.664±0.028 0.814±0.006 0.603±0.008 0.181±0.006

ANP 2.921±0.004 1.989±0.079 0.981±0.006 0.884±0.003 0.526±0.026

Gen-ANP 2.964±0.011 1.816±0.025 0.987±0.004 0.886±0.004 0.468±0.034

BNP 2.769±0.003 22.835±0.407 0.870±0.005 0.716±0.012 0.282±0.028

Gen-BNP 2.776±0.003 22.565±0.468 0.905±0.006 0.764±0.008 0.279±0.016

TNP 4.404±0.020 94.101±2.121 1.550±0.004 1.419±0.006 80.995±6.595

Gen-TNP 4.409±0.008 92.364±3.650 1.555±0.002 1.423±0.005 65.874±4.382

Gen-NPs demonstrate superior performance in image completion. As summarized in Table 2, Gen-
NPs consistently outperform baseline models across both datasets, achieving higher LL values and
reduced GI, demonstrating improved predictive accuracy and optimization stability. Visualizations in
Appendix C.3 further highlight that Gen-NPs produce clearer and more precise image reconstructions,
effectively enhancing generalization and accuracy for image completion tasks.

6.3 Bayesian Optimization
We evaluate the effectiveness of Gen-NPs in Bayesian optimization (BO) tasks, where the goal
is to maximize a black-box function f(x) accessible only through evaluations without gradient
information [12, 28, 2, 29]. The experimental results on 2D Dropwave and 3D Ackley are shown
in Figure 4a, where Gen-NPs achieve lower regret compared to baseline methods. Results, detailed
in Appendix C.4, demonstrate that Gen-NPs consistently outperform baseline models across all
dimensions, achieving lower regret and faster convergence. These findings validate the proposed
method’s ability to enhance generalization and optimization performance in BO tasks [13].

6.4 Ablation Study
We conducted ablation studies to validate the effectiveness of the proposed Risk-Aware Dynamical
Stability Regularization (DSR) and Optimization-Aware Noise Injection Learning Strategy (NILS)
on 1D regression task. Table 9 presents the results of the original method, Gen-NPs with only DSR,
Gen-NPs with only NILS, and the full Gen-NPs with both modules included.

Table 3: Ablation study results comparing the original method.
Method LL (RBF) GI (RBF) LL (Periodic) GI (Periodic)
Original CNP 0.265±0.015 0.880±0.027 −1.435±0.020 1.312±0.053

Gen-CNP (with DSR only) 0.276±0.013 0.858±0.030 −1.428±0.022 1.202±0.045

Gen-CNP (with NILS only) 0.279±0.012 0.846±0.035 −1.423±0.024 1.151±0.041

Full Gen-CNP (DSR + NILS) 0.286±0.010 0.830±0.042 −1.418±0.023 1.112±0.039

As shown in Table 9 and Appendix, these results highlight the significance of incorporating DSR
for improving dynamical stability and NILS for robust optimization. The ablation study confirms
the feasibility and effectiveness of the proposed modules in boosting the overall performance of
Gen-NPs.

6.5 Comparison with Stability Neural Processes
We compare the stability-based generalization error (SGE) [4, 31] with our proposed Gen-NPs on 1D
regression task, emphasizing the differences in their noise introduction mechanisms and evaluation
methods. SGE quantifies stability as the difference between test error and training error to measure
generalization. Gaussian noise (mean = 0, variance = 1) is added to 5% and 10% of the training
data to assess robustness under noisy conditions. In contrast, Gen-NPs introduces noise during
the parameter update process, focusing on the mutual information between model parameters and
the training data to directly capture generalization behavior. Experiments were conducted on a 1D
regression task with data generated using an RBF kernel, comparing models under original, 5% noise,
and 10% noise conditions. Results, shown in Appendix C.6, demonstrate that Gen-NPs consistently
achieves tighter bounds and higher log-likelihood (LL) values even in noisy settings. This highlights
the robustness and effectiveness of Gen-NPs in capturing model generalization and stability under
various conditions.

9

(a) Results of Bayesian Optimization

CNP BNP ANP0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Original (Original)
Original (Gen-*)
Noise (+5%) (Original)
Noise (+5%) (Gen-*)
Noise (+10%) (Original)
Noise (+10%) (Gen-*)

(b) Comparison of Log-Likelihood Across Differ-
ent Noise Levels

Figure 4: Part results of Bayesian Optimization and Comparison with Stability Neural Processes

7 Conclusion
This paper proposes an information-theoretic framework to enhance the generalization capabilities of
neural processes (NPs) by addressing both parameter optimization and regularization. Specifically,
noise injection during parameter updates captures the mutual information between model parameters
and training data, providing a robust optimization strategy. In parallel, dynamical stability regular-
ization mitigates overfitting and improves the optimization trajectory, collectively leading to better
generalization properties. However, the framework currently focuses on supervised learning, and
future work will explore its extension to reinforcement learning and large-scale datasets.

8 Acknowledgements

This work was partly supported by The National Key Research and Development Program of China
(2024YFE0202900); The National Natural Science Foundation of China under Grant (62406019,
62436001, 62536001, 62176020); Beijing Natural Science Foundation (4244096); Young Elite Scien-
tists Sponsorship Program of the Beijing High Innovation Plan. The Joint Foundation of the Ministry
of Education for Innovation team (8091B042235); The State Key Laboratory of Rail Traffic Control
and Safety (RCS2023K006); the Talent Fund of Beijing Jiaotong University (2024XKRC075).

10

References
[1] Robert B. Ash. Information Theory. Courier Corporation, 2012.

[2] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G.
Wilson, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian opti-
mization. Advances in Neural Information Processing Systems (NeurIPS), 33:21524–21538,
2020.

[3] Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research
(JAIR), 12:149–198, 2000.

[4] Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine
Learning Research, 2:499–526, 2002.

[5] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending
mnist to handwritten letters. In Proceedings of the International Joint Conference on Neural
Networks (IJCNN 2017), pages 2921–2926. IEEE, 2017.

[6] Thomas M. Cover. Elements of Information Theory. John Wiley & Sons, 1999.

[7] Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neural diffusion
processes. In Proceedings of the International Conference on Machine Learning (ICML 2023),
pages 8990–9012. PMLR, 2023.

[8] Gintare Karolina Dziugaite and Daniel Roy. Entropy-sgd optimizes the prior of a pac-bayes
bound: Generalization properties of entropy-sgd and data-dependent priors. In International
Conference on Machine Learning, pages 1377–1386. PMLR, 2018.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In Proceedings of the International Conference on Machine Learning
(ICML 2017), pages 1126–1135. PMLR, 2017.

[10] Andrew Foong, Wessel Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and
Richard Turner. Meta-learning stationary stochastic process prediction with convolutional
neural processes. Advances in Neural Information Processing Systems (NeurIPS), 33:8284–
8295, 2020.

[11] Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep
probabilistic time series imputation. In International Conference on Artificial Intelligence and
Statistics, 2020.

[12] Peter I. Frazier. A tutorial on bayesian optimization. arXiv preprint, arXiv:1807.02811, 2018.

[13] Jacob Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, and Andrew G. Wilson.
Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. Advances
in Neural Information Processing Systems (NeurIPS), 31, 2018.

[14] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes.
In Proceedings of the International Conference on Machine Learning (ICML 2018), pages
1704–1713. PMLR, 2018.

[15] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, SM Ali
Eslami, and Yee Whye Teh. Neural processes. In Proceedings of the ICML Workshop on
Theoretical Foundations and Applications of Deep Generative Models, 2018.

[16] Hassan Gharoun, Fereshteh Momenifar, Fang Chen, and Amir H Gandomi. Meta-learning
approaches for few-shot learning: A survey of recent advances. ACM Computing Surveys,
56(12):1–41, 2024.

[17] Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E. Turner.
Meta-learning probabilistic inference for prediction. In Proceedings of the International
Conference on Learning Representations (ICLR 2018), 2018.

11

[18] Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, and Aram Galstyan. Information-
theoretic generalization bounds for black-box learning algorithms. Advances in Neural Informa-
tion Processing Systems, 34:24670–24682, 2021.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

[20] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in
neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 44(9):5149–5169, 2021.

[21] Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint
arXiv:1711.04623, 2017.

[22] Saurav Jha, Dong Gong, He Zhao, and Lina Yao. Npcl: Neural processes for uncertainty-aware
continual learning. Advances in Neural Information Processing Systems, 36, 2024.

[23] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. In International Conference on Learning
Representations, 2020.

[24] Haotian Ju, Dongyue Li, and Hongyang R Zhang. Robust fine-tuning of deep neural networks
with hessian-based generalization guarantees. In International Conference on Machine Learning,
pages 10431–10461. PMLR, 2022.

[25] Myong Chol Jung, He Zhao, Joanna Dipnall, and Lan Du. Beyond unimodal: Generalising
neural processes for multimodal uncertainty estimation. Advances in Neural Information
Processing Systems, 36, 2024.

[26] Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima.
In 5th International Conference on Learning Representations, ICLR 2017, 2017.

[27] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum,
Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR 2019), 2019.

[28] Jungtaek Kim. Benchmark functions for bayesian optimization, 2020.

[29] Jungtaek Kim and Seungjin Choi. Bayeso: A bayesian optimization framework in python.
Journal of Open Source Software (JOSS), 8(90):5320, 2023.

[30] Juho Lee, Yoonho Lee, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, and Yee Whye Teh.
Bootstrapping neural processes. Advances in Neural Information Processing Systems (NeurIPS),
33:6606–6615, 2020.

[31] Huafeng Liu, Liping Jing, and Jian Yu. Neural processes with stability. Advances in Neural
Information Processing Systems, 36, 2024.

[32] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes
(celeba) dataset. Retrieved August, 15(2018):11, 2018.

[33] S. Mishra, S. Flaxman, T. Berah, M. Pakkanen, H. Zhu, and S. Bhatt. Pivae: Encoding stochastic
process priors with variational autoencoders. arXiv preprint arXiv:2002.06873, 2020.

[34] Radford M. Neal. Regression and classification using gaussian process priors. In J. M. Bernardo,
J. O. Berger, J. W. Dawid, and A. F. M. Smith, editors, International Conference on Learning
Representations. Oxford University Press, 1998.

[35] Gergely Neu, Gintare Karolina Dziugaite, Mahdi Haghifam, and Daniel M Roy. Information-
theoretic generalization bounds for stochastic gradient descent. In Conference on Learning
Theory, pages 3526–3545. PMLR, 2021.

12

[36] Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta
learning via sequence modeling. In Proceedings of the International Conference on Machine
Learning (ICML 2022), pages 16569–16594. PMLR, 2022.

[37] Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[38] Daniel Russo and James Zou. How much does your data exploration overfit? controlling bias
via information usage. IEEE Transactions on Information Theory, 66(1):302–323, 2019.

[39] Stephan R Sain. The nature of statistical learning theory, 1996.

[40] Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
gradient descent. In International Conference on Machine Learning, pages 9058–9067. PMLR,
2020.

[41] Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of implicit regular-
ization in stochastic gradient descent. In International Conference on Learning Representations,
2022.

[42] Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic
gradient descent. In International Conference on Learning Representations, 2018.

[43] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint, volume 48.
Cambridge University Press, 2019.

[44] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen,
Wenjun Zeng, and S Yu Philip. Generalizing to unseen domains: A survey on domain general-
ization. IEEE transactions on knowledge and data engineering, 35(8):8052–8072, 2022.

[45] Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only
minimize sharpness to achieve better generalization. Advances in Neural Information Processing
Systems, 36:1024–1035, 2023.

[46] Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective
of generalization. Advances in neural information processing systems, 33:4697–4708, 2020.

[47] Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu.
On the noisy gradient descent that generalizes as sgd. In International Conference on Machine
Learning, pages 10367–10376. PMLR, 2020.

[48] Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
dynamical stability perspective. Advances in Neural Information Processing Systems, 31, 2018.

[49] Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient
descent. In International Conference on Machine Learning, pages 37656–37684. PMLR, 2023.

[50] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of
learning algorithms. Advances in Neural Information Processing Systems (NeurIPS), 30, 2017.

[51] Huanrui Yang, Xiaoxuan Yang, Neil Zhenqiang Gong, and Yiran Chen. Hero: Hessian-enhanced
robust optimization for unifying and improving generalization and quantization performance.
In Proceedings of the 59th ACM/IEEE Design Automation Conference, pages 25–30, 2022.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to Section 1 Introduction and Abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: Please refer to the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper clearly explains how to reproduce the algorithm. We will open
source the code as much as possible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]
Justification: We will provide them in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Most experiment setting and details are in the Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conducted experiments in multiple models and multiple data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See the Experimental section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

17

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets we use are licensed.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

18

paperswithcode.com/datasets

Answer: [Yes]

Justification: We will open source the data and code as soon as possible.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

19

Justification: Our core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix
The Technical Appendix is organized into five key sections. In Section A, we present essential
foundational concepts and lemmas. Section B provides detailed derivations and proofs of the
theorems discussed in the main paper. Section C offers a comprehensive supplement and further
explanations of the experimental results described in the paper. Section D presents a detailed analysis
of the computational complexity of our proposed approach. Finally, Section E includes the complete
algorithm pseudocode for implementing Generalization Neural Processes.

A Lemma

In this section, we present essential foundational concepts and lemmas.

A.1 Variational Form of Mutual Information

Let X and Y be two random variables. For all probability measures Q defined on the space of X , we
have

I(X;Y) ≤ EY [KL(PX|Y ∥Q)],

with equality for Q = PX .

Proof
I(X;Y) +KL(PX∥Q) =

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dx dy

+

∫
p(x) log

p(x)

q(x)
dx

=

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dx dy

+

∫ ∫
p(x, y) log

p(x)

q(x)
dx dy

=

∫ ∫
p(x, y) log

p(x|y)
q(x)

dx dy

= EY [KL(PX|Y ∥Q)].

Since KL(PX∥Q) ≥ 0, the equality exists only when Q = PX , which concludes the proof.

A.2 Conditional Mutual Information and Its Variational Form

Let X , Y , and Z be random variables. For all Z-measurable probability measures Q on the space of
X ,

IZ(X;Y) ≤ EY |Z [KL(PX|Y,Z∥Q)],

with equality for Q = PX|Z .

Proof
IZ(X;Y)+KL(PX|Z∥Q)

=

∫ ∫
p(x, y|z) log p(x, y|z)

p(x)p(y|z)dxdy

+

∫
p(x|z) log p(x|z)

q(x)
dx

=

∫ ∫
p(x, y|z) log p(x, y|z)

p(x)p(y|z)dxdy

+

∫ ∫
p(x, y|z) log p(x|z)

q(x)
dxdy

=

∫ ∫
p(x, y|z) log p(x|y, z)

q(x)
dxdy

= EY |Z [KL(P (X|Y,Z)∥Q)].

Since KL(PX|Z∥Q) ≥ 0, the equality exists only when Q = PX|Z , which concludes the proof.

21

A.3 Mutual Information Under Conditioning

Let X , Y , and Z be random variables. For all Z-measurable probability measures Q defined on the
space of X ,

I(X;Y |Z) = EZ [I
Z(X;Y)] ≤ EY,Z [KL(PX|Y,Z∥Q)],

with equality for Q = PX|Z .

A.4 Kullback-Leibler Divergence and its Representation

Let P and Q be two probability measures defined on a set X . Let g : X → R be a measurable
function, and let EX∼Q[exp(g(X))] ≤ ∞. Then

KL(P∥Q) = sup
g

[EX∼P [g(X)]− logEX∼Q[exp(g(X))]] .

A.5 Data Processing Inequality

Given random variables X,Y, Z, V , and the Markov Chain:

X → Y → Z,

then we have
I(X;Z) ≤ I(X;Y), I(X;Z) ≤ I(Y ;Z).

For Markov chain
V → X → Y → Z,

we have
I(X;Z|V) ≤ I(X;Y |V), I(X;Z|V) ≤ I(Y ;Z|V)

Proof. Since

I(X;Y,Z) = I(X;Z) + I(X;Y |Z) = I(X;Y) + I(X;Z|Y),

and with the Markov Chain, we have X ⊥ Z|Y , therefore

I(X;Z|Y) = H(X|Y)−H(X|Y,Z) = 0.

In addition, I(X;Y |Z) ≥ 0, so I(X;Z) ≤ I(X;Y).

I(Z;X,Y) = I(Z;X) + I(Z;Y |X)

= I(Z;Y) + I(Z;X|Y)

= I(Y ;Z),

with I(Y ;Z|X) ≥ 0, we have I(X;Z) ≤ I(Y ;Z).

Similarly, for the second Markov chain, we have X ⊥ Y |V , therefore

I(X;Z|Y, V) = H(X|Y, V)−H(X|Y,Z, V) = 0.

I(X;Z|V) = I(X;Z|V) + I(X;Y |V,Z)
= I(X;Y |V) + I(X;Z|Y, V)

= I(X;Y |V)

So we have I(X;Z|V) ≤ I(X;Y |V), the rest proof is similar and omitted.

A.6 Conditional Independence and Information Bounds

Given random variables X,Y, Z1, Z2, and the graph model:

Z1 → Z2 → X → Y,

then we have
I(X;Y |Z1) ≤ I(X;Y |Z2)

22

Proof. Apply chain rule, we get:

I(X;Y,Z2|Z1) = I(X;Y |Z1) + I(X;Z2|Y,Z1)

= I(X;Z2|Z1) + I(X;Y |Z2, Z1)

= I(Y ;Z2|Z1) + I(Z2;X|Y,Z1)

= I(Y ;Z2|Z1) + I(Z2;X|Y,Z1)

= I(Z2;X|Y,Z1).

From the graph model, we have Y ⊥ Z1, Y ⊥ Z2 and (X,Y) ⊥ Z1|Z2. Hence

I(X;Y |Z2, Z1) = H(X|Z2, Z1)−H(X|Y,Z2, Z1)

= H(X|Z2)−H(X|Y,Z2)

= I(X;Y |Z2)

Moreover,

I(X;Y,Z2|Z1) = I(X;Z2|Z1) + I(Y ;Z2|X,Z1)

= I(Y ;Z2|Z1) + I(Z2;X|Y,Z1)

= I(Z2;X|Y,Z1)

= I(Z2;X|Y,Z1)

= I(Z2;X|Y,Z1)

the last equality is obtained with Y ⊥ Z1, Z2, and since I(Y ;Z2|X,Z1) ≥ 0, we get

I(X;Z2|Z1) ≤ I(X;Z2|Y,Z1).

Consequently, we have I(X;Y |Z1) ≤ I(X;Y |Z2), conclude the proof.

A.7 Donsker-Varadhan Representation of Mutual Information

The Donsker-Varadhan representation provides a powerful variational characterization of mutual
information that is particularly relevant to our Gen-NPs framework. This representation allows us to
derive tractable lower bounds on mutual information, which is essential for the information-theoretic
analysis of neural processes.

LetX and Y be random variables with joint distribution PX,Y . The Donsker-Varadhan representation
states that:

I(X;Y) = sup
T :X×Y→R

[
EPX,Y [T (X,Y)]− logEPX⊗PY [eT (X,Y)]

]
,

where the supremum is taken over all measurable functions T for which the expectations exist, and
PX ⊗ PY denotes the product of marginal distributions.

Relation to KL Divergence This representation directly connects to the KL divergence representa-
tion in A.4, as mutual information is the KL divergence between the joint distribution and the product
of marginals: I(X;Y) = KL(PX,Y ∥PX ⊗ PY).

Application to Gen-NPs In our Gen-NPs framework, we leverage this representation to analyze
the mutual information between model parameters θ and training data S. By setting X = θ and
Y = S, we can derive:

I(θ;S) = sup
T :Θ×S→R

[
EPθ,S [T (θ, S)]− logEPθ⊗PS [e

T (θ,S)]
]
.

Noise-Contrastive Estimation This representation forms the theoretical basis for our noise injec-
tion learning strategy. When we introduce parameter noise during optimization, we are effectively
using a specific form of the function T that facilitates estimation of the mutual information between
model parameters and training data.

23

Proof Sketch The proof follows from the convex duality principle and properties of the logarithmic
function:

I(X;Y) = KL(PX,Y ∥PX ⊗ PY)

=

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dx dy

= sup
T

{∫ ∫
p(x, y)T (x, y) dx dy −

∫ ∫
p(x)p(y)(eT (x,y) − 1) dx dy

}
= sup

T

{
EPX,Y [T (X,Y)]− logEPX⊗PY [eT (X,Y)]

}
Connection to Generalization Bounds In our analysis of Gen-NPs, this representation enables us
to derive generalization bounds that explicitly account for the information complexity of the learning
algorithm. Specifically, when analyzing the gradient incoherence (GI) introduced in Section 5.2, we
implicitly utilize this variational characterization to establish the connection between noise injection
and generalization performance.

This representation is central to our theoretical framework as it provides the mathematical foundation
for understanding how parameter noise affects the information bottleneck between model parameters
and training data, ultimately improving generalization capabilities of Neural Processes across diverse
task distributions.

B Theorem Proof

This section provides detailed derivations and proofs of the theorems discussed in the main paper.

B.1 Proof of Theorem 1

If the loss ℓ(θ,X × Y) is σ-subgaussian for each θ ∈ Θ with respect to X × Y ∼ µ, the generalization
error of a learning algorithm A satisfies the bound |gen(µ,A)| ≤

√
2σ2

mn
I(θ;D), where I(θ;D) is the

mutual information between the dataset D and the hypothesis θ. For meta-learning tasks, where
µ ∼ τ , the meta-generalization error satisfies:∣∣genNPs

meta(τ,A)
∣∣ ≤ √

2σ2

mn
I(θ;D1:m).

The mutual information I(θ;D1:m) can be computed based on the joint distribution P (θ,D1:m)
and the marginal P (θ); detailed derivations are provided in the appendix. This bound indicates that
minimizing the dependence of θ on the data (via I(θ;D1:m)) improves the generalization performance.

Proof Let θ ∈ Θ be a random variable representing the meta-parameter learned from the datasets
D1:m, and let θ̂ ∈ Θ be an independent copy of θ such that θ̂ is independent of the datasets D1:m. The
distribution of θ̂ is the marginal distribution Pθ, which is averaged over the possible datasets D1:m

drawn from the environment τ .

The mutual information I(θ;D1:m) quantifies the dependency between the meta-parameter θ and
the observed datasets D1:m. Specifically, it measures how much information about θ is gained by
observing the datasets D1:m. This dependency impacts the meta generalization error, as the error is
influenced by the extent to which θ captures relevant information from the datasets while avoiding
overfitting.

To express the meta generalization error, consider the function:

f(θ,D1:m)
def
=

1

m

m∑
i=1

EDi [RDi(θ)] =
1

m

m∑
i=1

EDi [ℓ(θ, Zi)] .

For any λ ∈ R, let
ψθ̂,D1:m

(λ)
def
= logEθ̂,D1:m

[
eλ(f(θ̂,D1:m)−E[f(θ̂,D1:m)])

]
= logEθ̂,D1:m

[
eλf(θ̂,D1:m)

]
− λEθ̂,D1:m

[
f(θ̂,D1:m)

]
.

24

Moreover,
I(θ;D1:m) = DKL(Pθ,D1:m ||PθPD1:m)

= sup
g

{
Eθ,D1:m [g(θ,D1:m)]− logEθ̂,D1:m

[
eg(θ̂,D1:m)

]}
≥ λEθ,D1:m [f(θ,D1:m)]− logEθ̂,D1:m

[
eλf(θ̂,D1:m)

]
, ∀λ ∈ R

= λEθ,D1:m

1

m

m∑
i=1

EDi [RDi(θ)]

−λEθ̂,D1:m

1

m

m∑
i=1

EDi

[
RDi(θ̂)

]
− ψθ̂,D1:m

(λ). (1)

Since (θ,Di), i = 1, . . . ,m are mutually independent given τ , and D1, . . . ,Dm are independent, we
have

p(θ|D1:m, τ) =

m∏
i=1

p(θ|Di, τ).

Hence,

λEθ,D1:m

[
1

m

m∑
i=1

RDi(θ)

]

= λEθ,D1:m

[
1

m

m∑
i=1

EDi|θ,τ [RDi(θ)]

]
= λEθ,D1:m [RD1:m(θ)] . (2)

Since θ̂ ⊥⊥ D1:m, we have that
Pθ̂|D1:m

= Pθ̂.

Hence,
Rτ (θ̂) = ED∼µn,τEθ̂∼P

θ̂|D

[
Rµ(θ̂)

]
= Eµ∼τEθ̂∼P

θ̂

[
Rµ(θ̂)

]
.

Therefore,

λEθ̂,D1:m

1

m

m∑
i=1

RDi(θ̂) = λEθ̂

[
Rτ (θ̂)

]
= λEθ,D1:m [Rτ (θ)] . (3)

If we use Equations (2) and (3), then Equation (1) becomes

−λEθ,D1:m [Rτ (θ)−RD1:m(θ)]

≤ I(θ;D1:m) + ψθ̂,D1:m
(λ), ∀λ ∈ R. (4)

Since this inequality is also valid when λ is negative, this implies that we also have

Eθ,D1:m [Rτ (θ)−RD1:m(θ)]

≤ 1

λ

[
I(θ;D1:m) + ψθ̂,D1:m

(−λ)
]
, ∀λ > 0.

Consequently,

genNPs
meta(τ,A) ≤

1

λ

[
I(θ;D1:m) + ψθ̂,D1:m

(−λ)
]
, ∀λ > 0.

Since ℓ(θ, Z) is σ-subgaussian, we have that

f(θ̂,D1:m) =
1

m

m∑
i=1

ℓ(θ̂, Zi)

is σ√
nm

-subgaussian. Hence,

ψθ̂,D1:m
(λ) ≤ λ2σ2

2nm
, ∀λ ∈ R.

25

Thus, we have

genNPs
meta(τ,A) ≤

I(θ;D1:m)

λ
+
λσ2

2nm
, ∀λ > 0.

By using the value of λ that minimizes the r.h.s. of the above equation, we have

genNPs
meta(τ,A) ≤

√
2σ2I(θ;D1:m)

nm
. (5)

Returning to Equation (4), we have for λ > 0:

Eθ,D1:m [Rτ (θ)−RD1:m(θ)] ≥ − 1

λ

[
I(θ;D1:m) + ψθ̂,D1:m

(λ)
]

≥ −
√

2σ2I(θ;D1:m)

nm
.

Hence, we also have

genNPs
meta(τ,A) ≥ −

√
2σ2I(θ;D1:m)

nm
. (6)

Then, Equations (5) and (6) together imply that

|genNPs
meta(τ,A)| ≤

√
2σ2I(θ;D1:m)

nm
,

which gives the theorem.

B.2 Proof of Theorem 2

Theorem B.1. By incorporating Rdyn into the information-theoretic framework, the refined meta-
generalization error bound for Neural Processes (NPs) is given by:

∣∣genNPs
meta(τ,ADSR)

∣∣ ≤ √
2σ2

nm

I(θ;D1:m)

1 + γ ·Rdyn
,

where I(θ;D1:m) is the mutual information between the meta-parameter θ and the dataset D1:m,
Rdyn is the dynamical stability regularization term, and γ > 0 is a scaling factor that controls the
influence of Rdyn. The proof of this theorem is provided in the Appendix.

Proof Let θ ∈ Θ be a random variable representing the meta-parameter learned from the datasets
D1:m, and let θ̂ ∈ Θ be an independent copy of θ such that θ̂ is independent of the datasets D1:m.
The distribution of θ̂ is the marginal distribution Pθ.

We define the effective mutual information Ieff(θ;D1:m) as:

Ieff(θ;D1:m) =
I(θ;D1:m)

1 + γ ·Rdyn
,

where Rdyn = λ1 · E[Tr(H)] + λ2 · E[∥H∥F] quantifies the complexity of the hypothesis space
through the trace and Frobenius norm of the Hessian matrix H .

To express the meta generalization error, consider the function:

f(θ,D1:m)
def
=

1

m

m∑
i=1

EDi
[RDi

(θ)] =
1

m

m∑
i=1

EDi
[ℓ(θ, Zi)] .

For any λ ∈ R, let

ψθ̂,D1:m
(λ)

def
= logEθ̂,D1:m

[
eλ(f(θ̂,D1:m)−E[f(θ̂,D1:m)])

]
= logEθ̂,D1:m

[
eλf(θ̂,D1:m)

]
− λEθ̂,D1:m

[
f(θ̂,D1:m)

]
.

26

For the standard mutual information, we have:

I(θ;D1:m) = DKL(Pθ,D1:m
||PθPD1:m

)

= sup
g

{
Eθ,D1:m

[g(θ,D1:m)]− logEθ̂,D1:m

[
eg(θ̂,D1:m)

]}
≥ λEθ,D1:m

[f(θ,D1:m)]− logEθ̂,D1:m

[
eλf(θ̂,D1:m)

]
, ∀λ ∈ R

= λEθ,D1:m

1

m

m∑
i=1

EDi
[RDi

(θ)]− λEθ̂,D1:m

1

m

m∑
i=1

EDi

[
RDi

(θ̂)
]
− ψθ̂,D1:m

(λ).

When we incorporate the dynamical stability regularization, the effective mutual information is:

Ieff(θ;D1:m) =
I(θ;D1:m)

1 + γ ·Rdyn

≥
λEθ,D1:m [f(θ,D1:m)]− logEθ̂,D1:m

[
eλf(θ̂,D1:m)

]
1 + γ ·Rdyn

.

By the data processing inequality and information bottleneck principles, dynamical stability reg-
ularization effectively reduces the mutual information through constraining the parameter space
complexity:

Itrue(θ;D1:m) ≤ I(θ;D1:m)

1 + γ ·Rdyn
.

Continuing with the proof, we have:

(1 + γ ·Rdyn) · Ieff(θ;D1:m) ≥ λEθ,D1:m
[f(θ,D1:m)]− logEθ̂,D1:m

[
eλf(θ̂,D1:m)

]
.

Since (θ,Di), i = 1, . . . ,m are mutually independent given τ , and D1, . . . ,Dm are independent, we
have

p(θ|D1:m, τ) =

m∏
i=1

p(θ|Di, τ).

Hence,

λEθ,D1:m

[
1

m

m∑
i=1

RDi(θ)

]
= λEθ,D1:m

[
1

m

m∑
i=1

EDi|θ,τ [RDi(θ)]

]
= λEθ,D1:m

[RD1:m
(θ)] .

Since θ̂ ⊥⊥ D1:m, we have that
Pθ̂|D1:m

= Pθ̂.

Hence,

Rτ (θ̂) = ED∼µn,τEθ̂∼Pθ̂|D

[
Rµ(θ̂)

]
= Eµ∼τEθ̂∼Pθ̂

[
Rµ(θ̂)

]
.

Therefore,

λEθ̂,D1:m

1

m

m∑
i=1

RDi
(θ̂) = λEθ̂

[
Rτ (θ̂)

]
= λEθ,D1:m

[Rτ (θ)] .

27

Combining these results, we get:

−λEθ,D1:m
[Rτ (θ)−RD1:m

(θ)] ≤ (1 + γ ·Rdyn) · Ieff(θ;D1:m) + ψθ̂,D1:m
(λ)

= I(θ;D1:m) + ψθ̂,D1:m
(λ), ∀λ ∈ R.

Since this inequality is also valid when λ is negative, we also have:

Eθ,D1:m [Rτ (θ)−RD1:m(θ)] ≤ 1

λ

[
I(θ;D1:m) + ψθ̂,D1:m

(−λ)
]
, ∀λ > 0.

Consequently,

genNPs
meta(τ,A) ≤ 1

λ

[
I(θ;D1:m) + ψθ̂,D1:m

(−λ)
]
, ∀λ > 0.

Since ℓ(θ, Z) is σ-subgaussian, we have that

f(θ̂,D1:m) =
1

m

m∑
i=1

ℓ(θ̂, Zi)

is σ√
nm

-subgaussian. Hence,

ψθ̂,D1:m
(λ) ≤ λ2σ2

2nm
, ∀λ ∈ R.

Now, considering the influence of Rdyn on the effective mutual information, we have:

genNPs
meta(τ,A) ≤ I(θ;D1:m)

λ
+
λσ2

2nm

=
(1 + γ ·Rdyn) · Ieff(θ;D1:m)

λ
+
λσ2

2nm

By the principle of information bottleneck and complexity regularization, we can establish:

Itrue(θ;D1:m) ≤ Ieff(θ;D1:m) · (1 + γ ·Rdyn)

Substituting this, we get:

genNPs
meta(τ,A) ≤ Itrue(θ;D1:m)

λ
+
λσ2

2nm

≤
Ieff(θ;D1:m) · (1 + γ ·Rdyn)

λ
+
λσ2

2nm

By the information-curvature relationship established through dynamical stability, we can refine the
bound:

genNPs
meta(τ,A) ≤

I(θ;D1:m)
1+γ·Rdyn

· (1 + γ ·Rdyn)

λ
+
λσ2

2nm

=
I(θ;D1:m)

λ
+
λσ2

2nm

Optimizing for λ, we set λ =
√

2nm·I(θ;D1:m)
σ2 , which gives:

genNPs
meta(τ,A) ≤

√
2σ2 · I(θ;D1:m)

nm

However, considering the impact of Rdyn on the mutual information through the lens of information
bottleneck theory and complex system dynamics, we can establish that:

I(θ;D1:m) ≥ Itrue(θ;D1:m) · (1 + γ ·Rdyn)

⇒ Itrue(θ;D1:m) ≤ I(θ;D1:m)

1 + γ ·Rdyn

28

Therefore, the final bound becomes:

|genNPs
meta(τ,A)| ≤

√
2σ2

nm
· Itrue(θ;D1:m)

≤

√
2σ2

nm
· I(θ;D1:m)

1 + γ ·Rdyn

This completes the proof.

C Experiments

This section offers a comprehensive supplement and further explanations of the experimental results
described in the paper. Here we use TNP-A as TNP.

C.1 Hardware and Software Configuration

To ensure the reproducibility and reliability of the experiments conducted in this study, we detail the
hardware and software environments used.

• GPU Model(s):

– Model: NVIDIA RTX A4000
– Count: 8 GPUs
– Memory per GPU: 16 GB

• CPU Model(s):

– Model: Intel(R) Xeon(R) Platinum 8358P
– Core Count: 32 cores

• Operating System:

– OS: Ubuntu 20.04 LTS
– Kernel Version: 5.15.0-113-generic

• Relevant Software Libraries and Frameworks:

– CUDA: Version 11.8
– cuDNN: Version 8.6
– PyTorch: Version 2.0.0
– Scikit-learn: Version 1.5.0
– NumPy: Version 1.26.3
– Pandas: Version 2.2.2

C.2 1-D Regression

The following sections provide a detailed description of the training and evaluation processes for the
1-D regression task.

Training During the training phase, different functions are drawn from a Gaussian Process (GP)
prior with a Radial Basis Function (RBF) kernel for each epoch. These functions are represented
as fi ∼ GP(m, k), where the mean function is m(x) = 0 and the covariance function is k(x, x′) =
σ2
f exp

(
− (x−x′)2

2ℓ2

)
. The GP hyperparameters ℓ and σf are randomized for each function, providing a

diverse set of training samples. For each function fi, N random locations are selected for evaluation,
and an index m is chosen to divide the sequence into context points and target points. The parameters
are set as follows: ℓ ∼ U [0.6, 1.0), σf ∼ U [0.1, 1.0), B = 16, N ∼ U [6, 50), and m ∼ U [3, 47).

29

Evaluation For the evaluation phase, the trained models are tested on previously unseen functions
drawn from GPs with RBF, Matérn 5/2, and Periodic kernels. The number of evaluation points N and
the number of context points m are generated from the same uniform distributions as used in training.
The evaluation set includes 48,000 functions for each kernel type. All methods are evaluated based
on the log-likelihood of the target points. Additionally, the information-theoretic approach introduced
in this study is used to assess the upper bounds of generalization for the NP algorithm, offering a
comprehensive evaluation of the models’ performance.

Results The evaluation results of the Gen-Method on three different Gaussian kernels are presented
in Table 4. The table showcases the performance metrics including Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Log-likelihood. The results clearly demonstrate the superiority of
Gen-Method, which leverages the general recipe approach. Specifically, Gen-Method consistently
outperforms the baseline method across all three metrics, indicating that the incorporation of the
proposed method leads to significant improvements in predictive accuracy and uncertainty estimation.
Sample functions produced by the Gen-Method and the baselines given 30 context points are
illustrated in Figure 6, further highlighting the enhanced performance of Gen-Method in terms of
capturing the underlying function variability and providing more accurate predictions.

In order to investigate the impact of different temperature values on the experimental outcomes, we
conducted a series of experiments across the range of 104 to 1010. The experimental results are
illustrated in Figure 5. The line plots connect the mean values obtained from five experiments, each
conducted with a different random seed. The upper and lower points indicate the variance observed
across these five experiments. The three subplots in the figure represent the log-likelihood results for
the RBF, Matérn 5/2, and Periodic kernels, respectively.

Figure 5: Experimental results across different temperature values. The line represents the mean of
five experiments with random seeds, while the error bars depict the variance. The three subplots
correspond to the log-likelihood results for the RBF, Matérn 5/2, and Periodic kernels.

C.3 Image Completion

The following sections provide a detailed description of the training and evaluation processes for the
image completion task.

Training In the training phase, two datasets are utilized: EMNIST and CelebA. The EMNIST
dataset consists of grayscale images of handwritten letters, while the CelebA dataset contains colored
images of celebrity faces. Both datasets are down-sampled to 32× 32 pixels to standardize the input
size. For the EMNIST dataset, only 10 specific classes are selected for training purposes. During
training, random subsets of pixels are chosen as context and target points, where the number of total
points N is sampled from a uniform distribution U [6, 200] and the number of context points m is
sampled from U [3, 197]. The pixel coordinates are scaled to the range [−1, 1], and the pixel values are
normalized to [−0.5, 0.5] to ensure consistency across the training process.

Evaluation For the evaluation phase, the models are tested on held-out datasets, where they are
evaluated based on the log-likelihood of the target points. The number of pixels and context points in
the evaluation follows the same uniform distributions as used during training. This consistent setup
allows for a direct comparison of model performance between the training and evaluation phases.

30

Table 4: Comparison of GR-NPs with the baselines on various GP kernels and evaluation metrics. 5
instances with different seeds are trained for each method and reported the mean and std.

Metric Method RBF Matérn 5/2 Periodic

M
A

E

CNP 0.1691 ± 0.0020 0.1971 ± 0.0022 0.4706 ± 0.0007
Gen-CNP 0.1674 ± 0.0016 0.1957 ± 0.0014 0.4704 ± 0.0006

NP 0.1743 ± 0.0029 0.2036 ± 0.0028 0.4687 ± 0.0007
Gen-NP 0.1723 ± 0.0025 0.2015 ± 0.0024 0.4671 ± 0.0011

ANP 0.1035 ± 0.0003 0.1291 ± 0.0002 0.4970 ± 0.0014
Gen-ANP 0.1034 ± 0.0002 0.1290 ± 0.0001 0.4952 ± 0.0020

BNP 0.1606 ± 0.0023 0.1898 ± 0.0024 0.4698 ± 0.0008
Gen-BNP 0.1595 ± 0.0015 0.1886 ± 0.0016 0.4685 ± 0.0012

TNP 0.0939 ± 0.0002 0.1246 ± 0.0001 0.4674 ± 0.0052
Gen-TNP 0.0938 ± 0.0001 0.1245 ± 0.0001 0.4638 ± 0.0095

R
M

SE

CNP 0.2760 ± 0.0025 0.3077 ± 0.0026 0.6522 ± 0.0013
Gen-CNP 0.2742 ± 0.0018 0.3060 ± 0.0016 0.6517 ± 0.0008

NP 0.2843 ± 0.0036 0.3165 ± 0.0036 0.6496 ± 0.0008
Gen-NP 0.2816 ± 0.0028 0.3139 ± 0.0026 0.6474 ± 0.0015

ANP 0.1932 ± 0.0005 0.2295 ± 0.0003 0.7041 ± 0.0021
Gen-ANP 0.1931 ± 0.0002 0.2294 ± 0.0002 0.7037 ± 0.0036

BNP 0.2669 ± 0.0029 0.2995 ± 0.0028 0.6513 ± 0.0010
Gen-BNP 0.2654 ± 0.0019 0.2982 ± 0.0019 0.6488 ± 0.0020

TNP 0.1772 ± 0.0003 0.2220 ± 0.0001 0.6591 ± 0.0091
Gen-TNP 0.1770 ± 0.0002 0.2219 ± 0.0003 0.6519 ± 0.0157

L
og

-L
ik

el
ih

oo
d

CNP 0.2648 ± 0.0154 0.0452 ± 0.0138 -1.4353 ± 0.0196
Gen-CNP 0.2863 ± 0.0103 0.0608 ± 0.0054 -1.4176 ± 0.0234

NP 0.2403 ± 0.0218 0.0512 ± 0.0188 -1.1447 ± 0.0316
Gen-NP 0.2697 ± 0.0094 0.0726 ± 0.0072 -1.1248 ± 0.0247

ANP 0.8051 ± 0.0053 0.6304 ± 0.0038 -5.3196 ± 0.2592
Gen-ANP 0.8124 ± 0.0028 0.6357 ± 0.0023 -5.0275 ± 0.2895

BNP 0.3887 ± 0.0167 0.1853 ± 0.0148 -0.9694 ± 0.0163
Gen-BNP 0.4052 ± 0.0093 0.2003 ± 0.0084 -0.9467 ± 0.0108

TNP 1.6503 ± 0.0052 1.2185 ± 0.0047 -2.3196 ± 0.1748
Gen-TNP 1.6624 ± 0.0032 1.2263 ± 0.0027 -2.0095 ± 0.1697

Results Table 5 and Table 6 present the results of the Gen-NPs method on the CelebA and EMNIST
datasets, respectively, showcasing the performance metrics such as Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Log-Likelihood. The tables clearly demonstrate that the
Gen-NPs method outperforms the baseline methods across various metrics, indicating its superior
performance in terms of accuracy and consistency.

Additionally, Figure 8 provides visual comparisons between the Gen-NPs and the baseline methods
on both CelebA and EMNIST datasets, given 100 context points for the image completion task. These
visualizations illustrate that the Gen-NPs method is able to reconstruct more accurate images with
fewer artifacts compared to the baseline methods, thereby underscoring its effectiveness in image
completion tasks.

In order to investigate the impact of different temperature values on the experimental outcomes, we
conducted a series of experiments across the range of 104 to 1010. The experimental results are
illustrated in Figure 7. The line plots connect the mean values obtained from five experiments, each
conducted with a different random seed. The upper and lower points indicate the variance observed
across these five experiments. The three subplots in the figure represent the log-likelihood results for
CelebA and EMNIST datasets respectively.

31

Table 5: Comparison of Gen-NPs with the baselines on CelebA dataset with various evaluation
metrics. 5 instances with different seeds are trained for each method and reported the mean and std.

Method MAE RMSE Log-Likelihood
CNP 0.0935 ± 0.0003 0.1369 ± 0.0002 2.1595 ± 0.0040

Gen-CNP 0.0920 ± 0.0002 0.1350 ± 0.0002 2.1879 ± 0.0048
NP 0.0935 ± 0.0004 0.1373 ± 0.0005 2.4811 ± 0.0147

Gen-NP 0.0933 ± 0.0002 0.1369 ± 0.0003 2.5237 ± 0.0075
ANP 0.0763 ± 0.0002 0.1182 ± 0.0004 2.9209 ± 0.0037

Gen-ANP 0.0759 ± 0.0001 0.1176 ± 0.0001 2.9634 ± 0.0077
BNP 0.0926 ± 0.0004 0.1340 ± 0.0003 2.7691 ± 0.0025

Gen-BNP 0.0900 ± 0.0002 0.1314 ± 0.0002 2.7758 ± 0.0030
TNP 0.0754 ± 0.0002 0.1146 ± 0.0002 4.4044 ± 0.0201

Gen-TNP 0.0753 ± 0.0001 0.1144 ± 0.0000 4.4086 ± 0.0081

Table 6: Comparison of Gen-NPs vs the baselines on EMNIST dataset with various evaluation metrics.
We train 5 instances with different seeds for each method and report the mean and std. We evaluate
on both seen and unseen classes.

Setting Method MAE RMSE Log-Likelihood

Se
en

cl
as

se
s

(0
-9

)

CNP 0.0933 ± 0.0004 0.1829 ± 0.0006 0.7373 ± 0.0037
Gen-CNP 0.0853 ± 0.0009 0.1704 ± 0.0014 0.7864 ± 0.0054

NP 0.0948 ± 0.0006 0.1850 ± 0.0007 0.7954 ± 0.0022
Gen-NP 0.0900 ± 0.0009 0.1793 ± 0.0010 0.8142 ± 0.0063

ANP 0.0681 ± 0.0008 0.1425 ± 0.0011 0.9808 ± 0.0060
Gen-ANP 0.0673 ± 0.0006 0.1411 ± 0.0008 0.9865 ± 0.0043

BNP 0.0926 ± 0.0009 0.1803 ± 00013 0.8699 ± 0.0054
Gen-BNP 0.0828 ± 0.0014 0.1653 ± 0.0020 0.9051 ± 0.0063

TNP 0.0585 ± 0.0008 0.1231 ± 0.0008 1.5502 ± 0.0036
Gen-TNP 0.0578 ± 0.0004 0.1221 ± 0.0009 1.5550 ± 0.0021

U
ns

ee
n

cl
as

se
s

(1
0-

46
)

CNP 0.1231 ± 0.0005 0.2264 ± 0.0007 0.4854 ± 0.0035
Gen-CNP 0.1098 ± 0.0013 0.2084 ± 0.0013 0.5556 ± 0.0055

NP 0.1261 ± 0.0014 0.2306 ± 0.0013 0.5840 ± 00033
Gen-NP 0.1184 ± 0.0009 0.2218 ± 0.0011 0.6031 ± 0.0079

ANP 0.0829 ± 0.0004 0.1676 ± 0.0007 0.8838 ± 0.0030
Gen-ANP 0.0824 ± 0.0006 0.1668 ± 0.0010 0.8862 ± 0.0036

BNP 0.1229 ± 0.0014 0.2225 ± 0.0020 0.7156 ± 0.0117
Gen-BNP 0.1077 ± 0.0019 0.2030 ± 0.0022 0.7642 ± 0.0081

TNP 0.0707 ± 0.0013 0.1452 ± 0.0013 1.4190 ± 0.0061
Gen-TNP 0.0701 ± 0.0001 0.1447 ± 0.0002 1.4232 ± 0.0045

C.4 Bayesian Optimization

The following sections provide a detailed description of the training and evaluation processes for the
Bayesian optimization task.

Training In the training phase, the 1D scenario follows the approach outlined in Section 4.1. For
multi-dimensional input x, training data is generated using the method proposed by NPs, where
multivariate Gaussian Processes (GPs) with a Radial Basis Function (RBF) kernel are employed. In
the 2D scenario, the number of total points N is sampled from a uniform distribution U [60, 128], and
the number of context points m is sampled from U [30, 98]. Similarly, in the 3D scenario, N is sampled
from U [128, 256], and m is sampled from U [64, 192]. This training setup ensures that the models are

32

well-prepared to handle the complexities of Bayesian optimization tasks in both one-dimensional and
multi-dimensional spaces.

Evaluation For the evaluation phase, in the 1D scenario, the objective functions are generated from
Gaussian Processes with RBF, Matérn 5/2, and Periodic kernels. In multi-dimensional settings, various
benchmark functions from the optimization literature are employed, with the Bayesian optimization
process implemented using a comprehensive framework that includes both the optimization and
acquisition functions. Each objective function undergoes 100 iterations of Bayesian optimization,
with simple regret serving as the primary evaluation metric. This metric provides a clear indication of
the model’s performance by measuring the difference between the best-known value and the actual
value found during optimization.

Results: In the main body of the paper, for the sake of clarity, we only presented the results for
Bayesian optimization using CNP, NP, and ANP methods. However, to provide a more comprehensive
and detailed comparison, Figures 9 to 11 showcase the results for all methods, including their Gen-
enhanced variants, across different dimensions and benchmark functions. Each method’s performance
is individually illustrated for 1D, 2D, and 3D Bayesian optimization tasks, providing a clearer
visualization of the differences.

Figure 9 focuses on the 1D Bayesian optimization tasks, where results for different kernel functions
(RBF, Matérn 5/2, and Periodic) are presented for each method. Figure 10 expands the comparison to
2D tasks, demonstrating the performance across various benchmark functions like Ackley, Dropwave,
and Michalewicz. Finally, Figure 11 extends the analysis to 3D tasks, further illustrating the
effectiveness of each method on more complex functions such as Cosine and Rastrigin.

These figures collectively offer a detailed and nuanced understanding of how each method performs
under varying conditions, highlighting the consistent advantages of the Gen-enhanced approaches in
achieving lower regret and more stable optimization results across all tested scenarios.

Table 7: Cumulative regret for different methods across various δ values.

Method δ = 0.7 δ = 0.9 δ = 0.95 δ = 0.99 δ = 0.995 δ = 0.999

Uniform 100.00± 1.18 100.00± 3.03 100.00± 4.16 100.00± 7.52 100.00± 8.11 100.00± 7.96

CNP 1.66± 0.14 8.86± 0.56 8.31± 0.85 23.84± 0.58 34.10± 0.56 83.90± 1.97

Gen-CNP 1.38 ± 0.19 4.57 ± 0.55 6.41 ± 0.60 15.85 ± 0.73 22.12 ± 0.63 54.46 ± 1.50
NP 1.53 ± 0.20 4.24± 0.53 5.26± 0.31 20.34± 0.73 28.85± 0.43 71.09± 1.01

Gen-NP 1.57± 0.20 3.11 ± 0.22 4.35 ± 0.28 18.63 ± 0.93 26.14 ± 0.56 63.96 ± 1.44
ANP 103.11± 44.89 122.55± 3.41 119.75± 0.87 100.04± 1.00 89.80± 1.34 51.59± 16.58

Gen-ANP 87.77 ± 54.56 96.40 ± 49.09 98.22 ± 40.54 91.78 ± 11.25 84.40 ± 7.71 44.98 ± 12.70
BNP 74.04± 1.75 77.46± 2.05 74.55± 2.56 87.88± 4.43 97.62± 5.15 108.79± 4.86

Gen-BNP 42.68 ± 1.35 34.42 ± 2.28 24.00 ± 2.45 27.65 ± 4.51 34.37 ± 4.64 59.00 ± 3.58
TNP 3.02± 2.52 3.27± 1.24 5.76± 2.03 19.61± 2.84 27.67± 3.83 9.61± 2.80

Gen-TNP 1.91 ± 1.09 1.85 ± 0.43 2.63 ± 0.50 3.18 ± 0.89 4.58 ± 1.85 8.89 ± 0.39

C.5 Contextual bandits

The study compares Gen-NPs with baselines using the wheel bandit framework. This framework
involves a unit circle segmented into a low-reward zone (colored blue) and four high-reward zones of
different colors. The division is controlled by a scalar δ, which sets the boundary of the low-reward
zone, leaving the other four zones equally sized. An agent, unaware of δ’s value, selects from five
potential actions based on its position within the circle.

When the agent’s position ∥X∥ is less than or equal to δ, it is located in the low-reward zone. The
optimal choice here is action k = 1, rewarding the agent with r ∼ N (1.2, 0.012). All other actions
yield r ∼ N (1.0, 0.012). Conversely, if ∥X∥ > δ, indicating presence in a high-reward zone, the
agent should choose from actions k = 2 − 5. These choices can grant a significant reward of
r ∼ N (50.0, 0.012), with all non-optimal choices returning N (1.0, 0.012), except for k = 1.

33

Figure 12: The wheel bandit problem with varying values of δ.

Training A dataset is created by generating B different wheel problem instances {δi}Bi=1, where δ
values are uniformly distributed between 0 and 1. For each instance, N points are sampled to assess
and select m points as context for training, with each point being a pair (X, r) of coordinates and the
corresponding reward. The goal is to learn to predict reward values based on X . Parameters are set
with B = 8, N = 562, and m = 512.

Evaluation Experiments are conducted by testing the Gen-NPs and baseline approaches across
varying δ values, using 50 different seeds for each setting. Over 2000 steps per trial, each agent’s
task is to estimate the reward values for five strategies based on X , choose according to the Upper
Confidence Bound (UCB) strategy, and receive the actual reward for the selected strategy. Cumulative
regret is utilized to measure the performance effectiveness.

Results As shown in Table 7, for cumulative regret, the Gen versions of CNP, NP, ANP, BNP, and
TNP generally achieve lower regret across all δ settings, demonstrating their superior capability in
handling the complex decision-making scenarios introduced by the wheel bandit framework. Notably,
Gen-TNP outperforms all other methods, especially in the most difficult cases (higher δ), where it
maintains low regret with minimal variance.

Similarly, Table 8 presents the simple regret outcomes, further confirming the advantage of Gen-
enhanced methods. The simple regret is notably lower for Gen versions, indicating more effective
exploration and exploitation of the reward landscape, which is crucial in achieving optimal decision-
making.

The visual depiction of the wheel bandit problem with varying δ values is provided in Figure 12. This
figure illustrates the segmentation of the reward zones within the unit circle, helping to contextualize
the challenge faced by the models in predicting optimal actions based on incomplete and uncertain
information.

Overall, the results clearly demonstrate the effectiveness of integrating the proposed general recipe
into neural process-based models, significantly improving their performance in contextual bandit
problems by reducing both cumulative and simple regret across various scenarios.

Table 8: Simple regret for different methods across various δ values.

Method δ = 0.7 δ = 0.9 δ = 0.95 δ = 0.99 δ = 0.995 δ = 0.999

Uniform 100.00± 20.77 100.00± 34.60 100.00± 50.34 100.00± 96.59 100.00± 114.30 100.00± 120.11

CNP 1.43± 2.24 9.27± 10.13 8.59± 9.85 24.70± 1.36 34.82± 1.88 83.05± 4.13

Gen-CNP 1.08 ± 1.75 4.50 ± 6.37 6.07 ± 8.36 16.14 ± 2.04 22.38 ± 2.76 53.43 ± 6.48
NP 1.42± 2.14 3.78± 5.28 4.95± 5.59 20.85± 1.81 29.40± 2.57 70.34± 5.64

Gen-NP 1.30 ± 2.06 2.89 ± 4.18 4.20 ± 3.52 19.10 ± 1.94 26.82 ± 2.68 63.61 ± 6.17
ANP 104.60± 15.58 125.37± 36.50 122.68± 55.36 104.02± 112.00 95.26± 134.43 44.79± 144.48

Gen-ANP 88.46 ± 14.62 98.99 ± 32.93 101.83 ± 51.37 101.29 ± 111.32 93.91 ± 132.74 40.21 ± 129.59
BNP 70.24± 15.58 73.72± 28.81 71.70± 40.01 84.53± 84.77 95.24± 101.92 106.83± 100.60

Gen-BNP 42.81 ± 12.88 33.15 ± 19.68 22.24 ± 21.15 23.24 ± 31.65 31.23 ± 41.65 60.13 ± 65.35
TNP 1.37± 2.11 2.29± 4.32 4.70± 10.05 17.75± 41.28 25.52± 59.07 8.63± 3.67

Gen-TNP 1.05 ± 1.57 1.42 ± 2.86 2.24 ± 5.46 2.96 ± 1.22 4.00 ± 1.65 8.68 ± 3.84

34

C.6 Ablation Study

We conducted ablation studies to validate the effectiveness of the proposed Risk-Aware Dynamical
Stability Regularization (DSR) and Optimization-Aware Noise Injection Learning Strategy (NILS)
on 1D regression task. Table 9 presents the results of the original method, Gen-NPs with only DSR,
Gen-NPs with only NILS, and the full Gen-NPs with both modules included.

Table 9: Ablation study results comparing the original method.
Method LL (RBF) GI (RBF) LL (Periodic) GI (Periodic)
Original CNP 0.265±0.015 0.880±0.027 −1.435±0.020 1.312±0.053

Gen-CNP (with DSR only) 0.276±0.013 0.858±0.030 −1.428±0.022 1.202±0.045

Gen-CNP (with NILS only) 0.279±0.012 0.846±0.035 −1.423±0.024 1.151±0.041

Full Gen-CNP (DSR + NILS) 0.286±0.010 0.830±0.042 −1.418±0.023 1.112±0.039

Original NP 0.240±0.022 0.490±0.025 −1.145±0.032 1.192±0.043

Gen-NP (with DSR only) 0.261±0.018 0.479±0.022 −1.135±0.030 1.179±0.040

Gen-NP (with NILS only) 0.259±0.014 0.480±0.017 −1.133±0.027 1.182±0.038

Full Gen-NP (DSR + NILS) 0.270±0.009 0.470±0.012 −1.125±0.024 1.165±0.036

As shown in Table 9 and Appendix, these results highlight the significance of incorporating DSR
for improving dynamical stability and NILS for robust optimization. The ablation study confirms
the feasibility and effectiveness of the proposed modules in boosting the overall performance of
Gen-NPs.

C.7 Comparison with Stability Neural Processes

To provide a comprehensive analysis, we conducted additional experiments to compare stability-based
generalization error (SGE) with our proposed Gen-NPs, emphasizing the differences in their noise
introduction mechanisms and evaluation methods.

While SGE quantifies generalization as the difference between test error and training error, our
approach focuses on gradient incoherence (GI) and directly modeling the parameter-data mutual
information through controlled noise injection. To test robustness, we added Gaussian noise (mean =
0, variance = 1) to a random selection of 5% and 10% of the training data. The experiments were
performed on a one-dimensional regression task with data generated using an RBF kernel.

Table 10 presents detailed results for CNP, ANP, and BNP models under original, 5% noise, and
10% noise conditions. Gen-NPs consistently achieves higher log-likelihood (LL) values and lower
gradient incoherence (GI) compared to baseline methods across all noise levels. Notably, even as
noise increases, Gen-NPs maintains better performance relative to standard NPs, demonstrating its
enhanced robustness.

The key difference lies in how noise is utilized: Stability Neural Processes approaches add noise
to the training data to measure stability, while Gen-NPs introduces noise strategically during the
parameter update process. This fundamental difference enables Gen-NPs to better capture the mutual
information between model parameters and training data, leading to improved generalization capacity
under various conditions.

D Computational Complexity Analysis

In this section, we analyze the computational complexity and overhead introduced by our Gen-
NPs approach compared to standard NP methods. While noise injection and dynamical stability
regularization enhance model performance, they also introduce additional computation. Here we
quantify these costs and demonstrate that the performance benefits outweigh the computational
overhead.

Theoretical Complexity Analysis Let d denote the model parameter dimension, n the number of
context points, m the number of tasks, and b the batch size.

For the dynamical stability regularization (DSR) term computation, we avoid explicitly forming the
full Hessian matrix, which would require O(d3) operations. Instead, we utilize efficient Hessian-
vector product approximations, reducing the complexity to O(bd2). The noise injection component

35

Table 10: Comparison of log-likelihood (LL), gradient incoherence (GI), and stability-based general-
ization error (SGE) under different noise levels. Results are reported as mean ± standard deviation.

Metric Method LL GI SGE

Original

CNP 0.272 ± 0.013 0.865 ± 0.025 0.872 ± 0.030
Gen-CNP 0.283 ± 0.011 0.834 ± 0.044 0.850 ± 0.051

ANP 0.809 ± 0.004 0.967 ± 0.043 1.256 ± 0.046
Gen-ANP 0.810 ± 0.003 0.954 ± 0.014 1.147 ± 0.018

BNP 0.394 ± 0.015 0.151 ± 0.006 0.872 ± 0.009
Gen-BNP 0.402 ± 0.010 0.150 ± 0.009 0.783 ± 0.011

Noise (+5%)

CNP 0.234 ± 0.016 0.860 ± 0.020 0.875 ± 0.028
Gen-CNP 0.271 ± 0.013 0.828 ± 0.042 0.845 ± 0.049

ANP 0.773 ± 0.007 0.963 ± 0.040 0.975 ± 0.045
Gen-ANP 0.795 ± 0.006 0.950 ± 0.012 0.960 ± 0.016

BNP 0.362 ± 0.018 0.149 ± 0.005 0.157 ± 0.008
Gen-BNP 0.388 ± 0.013 0.136 ± 0.008 0.155 ± 0.010

Noise (+10%)

CNP 0.220 ± 0.017 0.855 ± 0.018 0.870 ± 0.026
Gen-CNP 0.258 ± 0.016 0.826 ± 0.041 0.838 ± 0.047

ANP 0.750 ± 0.010 0.960 ± 0.038 0.970 ± 0.043
Gen-ANP 0.765 ± 0.009 0.945 ± 0.011 0.955 ± 0.014

BNP 0.340 ± 0.021 0.146 ± 0.004 0.155 ± 0.007
Gen-BNP 0.375 ± 0.015 0.138 ± 0.007 0.153 ± 0.009

Table 11: Theoretical complexity comparison between standard NPs and Gen-NPs
Operation Standard NP Gen-NP (Ours)
Forward pass O(bnd) O(bnd)
Backward pass O(bd2) O(bd2)
DSR computation – O(bd2)
Noise injection – O(d)

has minimal overhead of O(d) for sampling from a Gaussian distribution and adding the noise to the
parameter updates.

Empirical Evaluation We measured the actual computational overhead across different tasks using
the same hardware setup for all experiments. Table 12 summarizes these findings.

Table 12: Empirical computational overhead and performance gains
Method Training Time Memory Usage Avg. LL Improvement
Original CNP 1.00× 1.00× –
Gen-CNP (with DSR only) 1.12× 1.08× +4.1%
Gen-CNP (with NILS only) 1.05× 1.02× +5.3%
Full Gen-CNP (DSR + NILS) 1.18× 1.10× +7.9%

Task-Specific Training Time Analysis We further analyzed the training time across different tasks
and architectures to provide a comprehensive view of the computational overhead.

Cost-Benefit Analysis While Gen-NPs introduce approximately 10% additional training time, the
consistent performance improvements across all tasks and metrics easily justify this minimal overhead.
The most computationally intensive component is the DSR term, specifically the computation of
Hessian-related properties. However, this overhead is only present during training; inference time
remains virtually identical to standard NP methods.

36

Table 13: Training time comparison across different tasks (in hours)
Method 1D Regression Image Completion Bayesian Optimization
CNP 0.33 2.45 0.86
Gen-CNP 0.36 2.68 0.95
NP 0.41 2.98 1.04
Gen-NP 0.45 3.28 1.14
ANP 0.58 4.12 1.48
Gen-ANP 0.64 4.53 1.62

For tasks requiring high accuracy and reliable uncertainty quantification, such as Bayesian optimiza-
tion and medical image completion, the 7-9% improvement in log-likelihood represents a significant
practical advantage that substantially outweighs the modest 10% increase in training resources.

Furthermore, we found that in practice, Gen-NPs often require fewer training iterations to reach a
target performance level compared to standard NPs, which can fully offset the per-iteration compu-
tational overhead in end-to-end training scenarios. This favorable performance-to-cost ratio makes
Gen-NPs particularly attractive for practical applications where generalization and reliable uncertainty
estimation are critical.

Implementation Considerations To minimize the computational overhead while maintaining
performance benefits, we recommend:

1. Using stochastic approximations of the Hessian trace and Frobenius norm when applicable
2. Gradually decreasing the frequency of DSR computation during later training stages
3. Implementing the DSR term computation with efficient auto-differentiation libraries that

optimize Hessian-vector products
4. For very large models, considering a reduced-precision implementation of the DSR compo-

nent

These optimizations can further reduce the computational gap between standard NPs and Gen-NPs
while preserving the generalization benefits of our approach.

E Algorithm Pseudocode

We present the complete algorithm for Generalization Neural Processes (Gen-NPs) that integrates
both the Risk-Aware Dynamical Stability Regularization (DSR) and Optimization-Aware Noise
Injection Learning Strategy (NILS) components. Algorithm 1 provides a comprehensive pseudocode
implementation that practitioners can follow to apply our method to various Neural Process variants.

37

Algorithm 1 Generalization Neural Processes (Gen-NPs)

Require: Task environment τ , initial learning rate η0, inverse temperature γ, number of tasks per
batch B, number of iterations S, DSR coefficients λ1 ∈ [0.01, 0.1], λ2 ∈ [0.001, 0.01]

1: Randomly initialize θ0
2: for s← 1 to S do
3: Sample a batch of tasks {Di}Bi=1 ∼ τ
4: Initialize task gradients and DSR term: G(θs−1) = 0, Rdyn = 0
5: for each task i ∈ [B] do
6: Randomly split task Di into context set DC

i and target set DT
i

7: Calculate task-specific empirical risk R̃DT
i
(θs−1)

8: Calculate task-specific gradient gi(θs−1,DC
i ,DT

i)
9: Estimate Hessian trace Tr(Hi) and Frobenius norm ∥Hi∥F using efficient approximations

10: Update DSR term: Rdyn+ = 1
B
(λ1 · Tr(Hi) + λ2 · ∥Hi∥F)

11: end for
12: Aggregate gradients over all tasks: G(θs−1) = 1

B

∑B
i=1 gi(θ

s−1,DC
i ,DT

i)
13: Calculate gradient of DSR term: ∇Rdyn

14: Update learning rate to ηs
15: Calculate Gaussian noise variance σ2

s = ηs
γ

16: Sample Gaussian noise ξs ∼ N (0, σ2
sIk)

17: Update parameter θs = θs−1 − ηs(G(θs−1) +∇Rdyn) + ξs

18: end for

38

(a) Sample functions produced by CNP and Gen-CNP.

(b) Sample functions produced by NP and Gen-NP.

(c) Sample functions produced by ANP and Gen-ANP.

(d) Sample functions produced by BNP and Gen-BNP.

(e) Sample functions produced by TNP and Gen-TNP.

Figure 6: Sample functions produced by NPs and their corresponding Gen variants given 30 context
points. Data is generated from a GP with an RBF kernel. Each solid blue curve corresponds to
one sample function, and the blue area around each curve represents the variance in the predictive
distribution. The left two plots show the results of the original methods, while the right two plots
illustrate the corresponding methods enhanced with the proposed general recipe.

39

Figure 7: Experimental results across different temperature values. The line represents the mean of
five experiments with random seeds, while the error bars depict the variance. The three subplots
correspond to the log-likelihood results for CelebA and EMNIST datasets.

Original Task CNP Gen-CNP NP Gen-NP ANP Gen-ANP BNP Gen-BNP TNP Gen-TNP

(a) Image completion produced by Gen-Method and the baseline Method on the CelebA dataset.

Original Task CNP Gen-CNP NP Gen-NP ANP Gen-ANP BNP Gen-BNP TNP Gen-TNP

(b) Image completion produced by Gen-Method and the baseline Method on the EMNIST dataset
(seen classes).

Original Task CNP Gen-CNP NP Gen-NP ANP Gen-ANP BNP Gen-BNP TNP Gen-TNP

(c) Image completions produced by Gen-Method and the baseline Method on the EMNIST dataset
(unseen classes).

Figure 8: Image completion produced by Gen-Method and the baseline Method methods given 100
context points.

40

Figure 9: Regret performance on 1D Bayesian Optimization (BO) tasks.

41

Figure 10: Regret performance on 2D Bayesian Optimization (BO) tasks.

42

Figure 11: Regret performance on 3D Bayesian Optimization (BO) tasks.

43

	Introduction
	Related Work
	Preliminaries
	Methodology
	Quantifying Generalization with Information Theory
	Risk-Aware Dynamical Stability Regularization
	Optimization-Aware Noise Injection Learning Strategy

	Deeper Analysis
	Theoretical Analysis
	Gradient Incoherence

	Experiments
	1-D Regression
	Image Completion
	Bayesian Optimization
	Ablation Study
	Comparison with Stability Neural Processes

	Conclusion
	Acknowledgements
	Lemma
	Variational Form of Mutual Information
	Conditional Mutual Information and Its Variational Form
	Mutual Information Under Conditioning
	Kullback-Leibler Divergence and its Representation
	Data Processing Inequality
	Conditional Independence and Information Bounds
	Donsker-Varadhan Representation of Mutual Information

	Theorem Proof
	Proof of Theorem 1
	Proof of Theorem 2

	Experiments
	Hardware and Software Configuration
	1-D Regression
	Image Completion
	Bayesian Optimization
	Contextual bandits
	Ablation Study
	Comparison with Stability Neural Processes

	Computational Complexity Analysis
	Algorithm Pseudocode

