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Open-source deep-learning software for 
bioimage segmentation

ABSTRACT  Microscopy images are rich in information about the dynamic relationships 
among biological structures. However, extracting this complex information can be challeng-
ing, especially when biological structures are closely packed, distinguished by texture rather 
than intensity, and/or low intensity relative to the background. By learning from large amounts 
of annotated data, deep learning can accomplish several previously intractable bioimage 
analysis tasks. Until the past few years, however, most deep-learning workflows required 
significant computational expertise to be applied. Here, we survey several new open-source 
software tools that aim to make deep-learning–based image segmentation accessible to bi-
ologists with limited computational experience. These tools take many different forms, such 
as web apps, plug-ins for existing imaging analysis software, and preconfigured interactive 
notebooks and pipelines. In addition to surveying these tools, we overview several chal-
lenges that remain in the field. We hope to expand awareness of the powerful deep-learning 
tools available to biologists for image analysis.

INTRODUCTION
Microscopy reveals unique aspects of biological specimens, allow-
ing scientists to investigate the relationship between structure and 
function. Images of biological specimens are rich in data and often 
difficult to obtain, compelling biologists to extract as much high-
quality information from them as feasible. Computational analysis of 
images can reduce bias by applying a consistent method while mini-
mizing subjectivity and “hands-on” time. Further, these techniques 
are powerful to detect subtle and unanticipated phenotypes. Open-
source software programs such as ImageJ (Schindelin et al., 2015) 
and CellProfiler (McQuin et al., 2018) allow biologists without formal 

computational training to apply calculations to images to achieve 
many different tasks, including identifying individual biological 
structures—a process known as segmentation. However, when bio-
logical structures are dimly stained, irregularly shaped, or distin-
guished from each other predominantly by texture changes rather 
than intensity value changes, classical segmentation methods are 
often unsuccessful. Two types of segmentation tasks exist: semantic 
and instance segmentation. Semantic segmentation categorizes 
each pixel into categories but treats multiple objects of the same 
category as a single entity. Instance segmentation, on the other 
hand, identifies individual objects as separate entities and is a more 
common goal in bioimage analysis.

Deep learning promises to accomplish previously intractable 
bioimage analysis tasks. In classical approaches, a known algorithm 
is applied to an image in order to accomplish a desired task, using 
a set of engineered rules. Deep-learning–based methods learn to 
identify the relevant patterns in the raw input data. This learning is 
achieved by training complex models, known as deep neural net-
works, on annotated data sets labeled with the desired output. 
(Here, we use the terms “models” and “neural networks” inter-
changeably, although some experts refer to a particular architec-
ture as a network, whereas a model is a trained instance of a given 
network.) Recent examples of the powerful capabilities of deep-
learning models in bioimage analysis include the ability to segment 
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nuclei in fluorescence and brightfield images from many different 
species with a single model (Caicedo et al., 2019), image restora-
tion by denoising (Krull et al., 2019), and reconstruction of isotropic 
resolution and subdiffraction structures (Weigert et al., 2018). Tech-
nical advancements in the use of deep learning on biological im-
ages have been recently reviewed (Moen et al., 2019; Meijering, 
2020).

While extremely powerful, until recently, most deep-learning 
approaches required significant technical expertise to be applied. 
Over the past few years, an increasing number of deep-learning 
tools have been released that specifically target users without 
computational training. The goal of such tools is to make deep 
learning accessible and time effective for scientists who spend 
most of their time conducting experiments. Here, we survey cur-
rently available open-source software to apply deep learning to 
bioimage segmentation for users without computational experi-
ence. We exclude commercial tools from our survey and instead 
focus on open-source software with the objective to introduce 
tools that are accessible to all, favor research reproducibility, and 
encourage contributions from the bioimaging community. We find 
four functional groups, described in the following sections and 
Table 1, and share our perspective on the future of deep learning 
for biologists.

WEB APPLICATIONS PROVIDE QUICK TESTING OF 
DEEP-LEARNING METHODS
Several web applications (apps) offer an easy-to-use interface for 
testing previously trained deep-learning models on a research-
er’s own microscopy data for segmentation. These web apps in-
clude several for light microscopy: StarDist (Schmidt et al., 2018), 
CellPose (Stringer et al., 2021), NucleAlzer (Hollandi et al., 2020), 
and DeepCell (Bannon et al., 2018) and one for electron micros-
copy: CDeep3M-Preview (Haberl et al., 2020) (Table 1). DeepCell 
also offers object tracking capabilities. Many of these tools are 
also available in other formats, such as interactive notebooks, 
locally installable scripts, or cloud-based solutions (Haberl et al., 
2018).

A clear advantage of using a web app is the low technical barrier 
to entry and rapid results, making them good tools to quickly test 
neural networks. However, several features of currently available 
web apps limit their utility. First, because the underlying code can 
change at any time, the user may not be able to analyze the images 
consistently until these tools enable selecting old versions for analy-
sis. Second, current versions of these web apps are available only for 
testing pretrained models and have limited preprocessing and con-
figuration options, hindering customization for a particular project’s 
images. Third, large-scale projects may exceed the web app host’s 
computational resources, requiring biologists with hundreds or 
more images to use another version of the deep-learning tool, such 
as the locally installed script, or a different software program alto-
gether. Finally, we found that web apps were particularly prone to 
unpredictable failures and uninformative error messages, which may 
prevent effective usage.

Two web apps under active development may soon be useful to 
the cell biology community. Piximi will offer a web-based solution 
for annotating, training, and evaluating neural networks for pheno-
type classification and eventually segmentation. ImJoy (Ouyang 
et al., 2019) provides a web app interface for a multitude of deep-
learning–related tasks, although the deep-learning methods for 
segmentation were under construction at the time of writing. One 
currently available feature is a web app version of ImageJ that can 
be used, for example, to apply CellPose.

DEEP-LEARNING PLUG-INS FOR POPULAR IMAGE 
ANALYSIS TOOLBOXES
Integrating a deep-learning method into a flexible toolbox allows 
the use of a single, familiar interface for many different tasks. Such 
toolboxes also allow creation of a streamlined workflow with up-
stream and downstream steps. Users already familiar with a specific 
image analysis software platform may therefore want to preferen-
tially learn to use deep-learning plug-ins designed for that soft-
ware. Several exist for ImageJ. The DeepImageJ plug-in (Gómez-
de-Mariscal et al., 2019) provides a framework to test models for 
several tasks on a researcher’s own data; it also provides a user-
friendly mechanism to share models. At this time, DeepImageJ 
provides access to pretrained models, but does not include a 
mechanism for users to train a model using their data; this can be 
limiting if existing trained models fail to work well. The CSBDeep 
toolbox is a collection of ImageJ plug-ins and interactive note-
books (discussed below). At this time, the CSBDeep ImageJ plug-
ins can be used to test models for denoising, image restoration, 
and segmentation. In addition, users can train models for denois-
ing and segmentation with this plug-in, though the developers cau-
tion that a computer with a graphics processing unit (GPU) is neces-
sary for timely processing. The interactive notebooks in the 
CSBDeep toolbox can be additionally used to train all of the mod-
els in their collection, a method that allows more customization of 
the training. These trained models can then be imported into the 
CSBDeep ImageJ plug-in.

In addition to ImageJ, several other image analysis software 
packages include plug-ins for deep learning. DeepMIB (Belevich 
and Jokitalo, 2021) is a deep-learning–based image segmentation 
plug-in for two- and three-dimensional data sets bundled with the 
Microscopy Image Browser (MIB), an open-source MATLAB-based 
image analysis application for light microscopy and electron mi-
croscopy. Users can load data sets, test pretrained models or train 
a model via a graphical user interface (GUI). A pretrained deep-
learning model for nucleus segmentation was available as a plug-
in for CellProfiler 3 (McQuin et al., 2018) but is not actively main-
tained in the current CellProfiler 4 release; installation of the 
necessary TensorFlow libraries made this feature a challenge to 
use, and the team is turning efforts toward its Piximi app to pro-
vide deep-learning capabilities. Finally, ilastik (Berg et al., 2019), 
an open-source toolkit for interactive machine learning, now in-
cludes a beta version for segmentation of images using pretrained 
deep-learning models. While installing ilastik for use with neural 
networks is more complex than for typical usage of ilastik, docu-
mentation of this process is a work in progress. In addition, the il-
astik team is actively developing capability for training neural 
networks.

Obtaining segmentations from a neural network is usually just 
one of many steps in image analysis. Biologists may want to com-
pute quantitative metrics on these images, refine segmentations, or 
use these segmentations as additional input to a new image analysis 
pipeline. Therefore, the output formats of the tool must be easily 
readable for further processing and analysis or must directly link to 
other image processing functions. DeepImageJ and CSBDeep, be-
ing integrated as part of ImageJ, provide a major advantage in di-
rectly providing access to postprocessing features within ImageJ 
and ImageJ-integrating tools like Icy (de Chaumont et al., 2012). 
Furthermore, those who can write code to batch process bioimages 
using ImageJ can integrate these deep-learning tools into existing 
workflows. Similarly, the results produced by DeepMIB, such as the 
trained models and segmentation masks, can be used in other MAT-
LAB scripts for further analysis.
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INTERACTIVE NOTEBOOKS ARE AN APPROACHABLE 
INTERFACE FOR TESTING AND TRAINING DEEP-
LEARNING MODELS
Interactive notebooks are a common mechanism to share code for 
deep learning. These notebooks are composed of independent 
“cells” that can contain code, explanatory text, or GUIs. When inter-
active notebooks are run, the code cells display output such as nu-
merical data, images, and plots. One type of interactive notebook, 
the Jupyter Notebook, is typically installed on the user’s computer 
along with the necessary Python language components to run the 
code (Kluyver et  al., 2016). In addition to the CSBDeep ImageJ 
plug-in described above, the CSBDeep toolbox provides a collec-
tion of Jupyter Notebooks for image restoration, denoising, and 
segmentation. Pretrained models can be tested or users can train 
models using their own data. Colaboratory (Colab) notebooks are 
cloud-based interactive notebooks hosted by Google (https://
colab.research.google.com/). ZeroCostDL4Mic (Von Chamier et al., 
2020) provides a collection of such Colab notebooks, which can be 
used to train models for a multitude of tasks and image types. The 
CellPose method for nuclear and cytoplasmic segmentation also 
includes both Jupyter and Colab notebook options, although the 
Colab notebook is currently available only for applying trained 
models (not training new ones).

Interactive notebooks have several advantages for the biolo-
gist. As code-based documents, they facilitate reproducibility of 
an analysis pipeline. Entirely cloud-based interactive notebooks 
further support reproducibility by providing a sharable environ-
ment to run the code. While cloud-based notebooks are typically 
hosted by an external service such as Google, unlike web apps, 
users can also download the notebook code and if needed, run 
the code in a local environment. The interactive nature of these 
notebooks allows for the graceful integration of crucial validation 
tasks into the workflow, such as ensuring that the images were 
correctly loaded into the notebook or visually evaluating the re-
sults of a given prediction. A particular advantage of the Colab 
notebook approach is free access to GPU resources provided by 
Google, although the free allocation may be insufficient for 
large-scale experiments (Von Chamier et  al., 2020). Although 
adapting these notebooks typically involves writing code, de-
pending on the extent of the explanatory text amid the code, it 
is within the capability of an inexperienced researcher willing to 
learn. Assistance for first-time and infrequent users is critical to 
increase the accessibility of this type of resource. When assessing 
which tools to use, we encourage biologists to consider the 
teaching resources available (Table 1) and note that we have 
found video tutorials to be particularly helpful for first-time users 
of bioimage analysis software in general.

PIPELINE-BASED TOOLS COMPRESS DENSE TRAINING 
AND TESTING CODE INTO EASILY EXECUTABLE SCRIPTS
Local installation of deep-learning tools provides biologists with the 
opportunity to train and test custom models for their project. Cell-
Pose and NucleAIzer both aim to provide a deep-learning model to 
segment a particular subcellular structure (cells and/or nuclei) in 
many different image types. HistomicsML2 (Lee et al., 2020) is an 
application for segmentation on whole slide image (WSI) data sets. 
The user interfaces differ greatly across these tools. InstantDL 
(Waibel et al., 2020) and NucleAIzer use the command line, and in 
some cases a plain-text configuration file, to configure the parame-
ters and run them. CellPose comes with a GUI that includes many 
helpful preprocessing and postprocessing configuration options, 
though command line usage is required if the user wishes to per-

form training or batch testing on their data. The HistomicsML2 soft-
ware is provided as a Docker container that, once started, can be 
accessed from the web browser and interacted with through a GUI. 
In the web-based GUI of HistomicsML2, biologists can annotate 
their data by dragging and dropping the selected patches into cor-
responding classes, which are used to train a deep-learning model 
to segment the image in an active loop. After each training step, 
regions of high uncertainty are displayed as a heatmap, which can 
then be annotated and used to provide further training to improve 
the resulting segmentation.

The tools described in this section typically require the most 
technical expertise to install and use. Example data, models, and 
template commands or scripts are often provided as a starting 
point, but errors may result from the user modifying code in order to 
adapt to their own data. In such cases, GitHub repositories or the 
Scientific Community Image Forum (Rueden et al., 2019) are good 
places to ask for guidance from the project’s developers or other 
users who encountered similar problems. Results can be exported 
as image masks that can be imported into tools like ImageJ or Cell-
Profiler; alternatively, those already proficient in Python can use In-
stantDL and CellPose’s exported Numpy arrays with Python image 
analysis libraries for further analysis (Harris et al., 2020). Similarly, the 
segmentations obtained from a training session in HistomicsML2 
are exported as HDF5 files that can be further analyzed from other 
command line tools.

SUMMARY AND OUTLOOK
Deep learning has revolutionized image analysis tasks in all fields of 
science, including bioimaging. Open-source software for applying 
deep learning expands the reach of this powerful approach. Open-
source software shares the underlying code, thereby increasing ac-
cessibility, promoting transparency (especially for version changes), 
enabling reproducibility, and encouraging all users to contribute. 
The software tools highlighted in this Perspective make deep-learn-
ing–driven segmentation accessible to users with limited computa-
tional experience. Equipped with these tools, biologists can per-
form previously intractable tasks and uncover new aspects of 
biology.

We do not here recommend any particular tool for any particular 
task, simply because each user’s data, needs, and computational 
comfort levels are distinct; each researcher is the best judge of what 
works for them. As most of these tools provide simple interfaces for 
applying pretrained models to new data, a user may wish to start by 
trying many existing pretrained models in order of how comfortable 
they find each tool to see whether any are satisfactory for their 
needs. Many image analysis software development teams, includ-
ing CSBDeep, DeepImageJ, ilastik, ImJoy, and ZeroCostDL4Mic, 
are actively contributing to the BioImage Model Zoo (bioimage.io), 
which aims to be a central repository for deep-learning models 
trained for bioimages. We believe that this initiative will greatly in-
crease access to pretrained models. In general, models trained on a 
wide variety of image types are more likely to perform well on previ-
ously unseen data than those trained on one source (Tzeng et al., 
2017), so it may help to look for tools that advertise broad training 
data for their pretrained models. As tools add more models, and as 
models become less tailored to specific data sets, we believe that 
this will become a common and fruitful approach.

If pretrained models are not sufficiently accurate, there are sev-
eral further considerations to help choose a tool that allows training. 
One feature to look for is the presence of training mechanisms that 
prevent overfitting, which occurs when a model becomes too spe-
cialized to the training data set and does not generalize well to new 
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data sets. Such overfitting can be prevented with the appropriate 
use of regularization techniques such as early stopping (Caruna 
et al., 2001), dropout (Srivastava et al., 2014), or data augmentation 
methods (Shorten and Khoshgoftaar, 2019). Furthermore, choosing 
tools that include methods for transfer learning, in which knowledge 
of the model when trained on one task is exploited to improve its 
learning on a different task, will help increase the resulting predic-
tion accuracy. Software that includes such transfer learning function-
alities typically provide multiple pretrained models from which the 
user can choose as a starting point for fine-tuning on their new task 
or data set.

Because training configurations may need to be adjusted for dif-
ferent tasks and data sets, another important feature to look for in 
software is whether it allows for the manipulation of the various 
training parameters. These parameters include configuring the un-
derlying neural network architecture, how quickly the model learns 
with each round of training (the learning rate), how many images are 
used for each learning step (the batch size), and how many times the 
model should go over the data (epochs). Because each of these set-
tings strongly affects the performance of the model, we encourage 
biologists to seek software that provides detailed documentation 
and education on the use and selection of such parameters. If un-
certain, we encourage biologists to look for suggestions for default 
values, because appropriate settings are often roughly in the same 
range for a given model. We caution that understanding the under-
lying concepts of deep learning dramatically increases the chances 
of successful training, so we recommend choosing software that as-
sists sensible decisions through various forms of documentation and 
education.

In addition to selecting a software for the training itself, research-
ers will also need to select an image annotation tool to prepare the 
training images. This choice must be appropriate for both the user’s 
image type and the training software because many annotation 
tools are restricted to read images of a specific file format or a cer-
tain number of channels or dimensionality. Further, many annotation 
tools enable only a subset of desired annotation types (options in-
clude X Y locations, bounding boxes, and full segmentation masks), 
and it is important to match what your training software expects. 
Many of the software tools surveyed here include guidance for se-
lecting an annotation tool.

Deep learning allows biologists to accomplish previously intrac-
table image analysis tasks in their research. We hope that the mul-
tiple available software tools described here will be useful for those 
who wish to apply deep learning for segmentation. With better and 
easier segmentation in hand, biologists will be able to create data 
sets more quickly and of higher quality, setting the stage for previ-
ously impossible discoveries to become possible.
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