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Abstract

We propose the simple and efficient method
of semi-supervised learning for deep neural
networks. Basically, the proposed network is
trained in a supervised fashion with labeled
and unlabeled data simultaneously. For un-
labeled data, Pseudo-Labels, just picking up
the class which has the maximum predicted
probability, are used as if they were true la-
bels. This is in effect equivalent to Entropy
Regularization. It favors a low-density sepa-
ration between classes, a commonly assumed
prior for semi-supervised learning. With De-
noising Auto-Encoder and Dropout, this sim-
ple method outperforms conventional meth-
ods for semi-supervised learning with very
small labeled data on the MNIST handwrit-
ten digit dataset.

1. Introduction

Recently, deep neural networks have achieved great
success in hard AI tasks (Hinton et al., 2006; Bengio
et al., 2012). All of the successful methods for train-
ing deep neural networks have something in common :
they rely on an unsupervised learning algorithm (Er-
han et al., 2010). Most work in two main phases. In
a first phase, unsupervised pre-training, the weights of
all layers are initialized by this layer-wise unsupervised
training. In a second phase, fine-tuning, the weights
are trained globally with labels using backpropagation
algorithm in a supervised fashion. All of these meth-
ods also work in a semi-supervised fashion. We have
only to use extra unlabeled data for unsupervised pre-
training.

Several authors have recently proposed semi-
supervised learning methods of training supervised
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and unsupervised tasks using same neural network
simultaneously. In (Ranzato et al., 2008), the weights
of each layer are trained by minimizing the combined
loss function of an autoencoder and a classifier. In
(Larochelle et al., 2008), Discriminative Restricted
Boltzmann Machines model the joint distribution
of an input vector and the target class. In (Weston
et al., 2008), the weights of all layers are trained by
minimizing the combined loss function of a global
supervised task and a Semi-Supervised Embedding as
a regularizer.

In this article we propose the simpler way of training
neural network in a semi-supervised fashion. Basically,
the proposed network is trained in a supervised fash-
ion with labeled and unlabeled data simultaneously.
For unlabeled data, Pseudo-Labels, just picking up the
class which has the maximum predicted probability
every weights update, are used as if they were true la-
bels. In principle, this method can combine almost all
neural network models and training methods. In our
experiments, Denoising Auto-Encoder (Vincent et al.,
2008) and Dropout (Hinton et al., 2012) boost up the
performance.

This method is in effect equivalent to Entropy Regu-
larization (Grandvalet et al., 2006). The conditional
entropy of the class probabilities can be used for a
measure of class overlap. By minimizing the entropy
for unlabeled data, the overlap of class probability dis-
tribution can be reduced. It favors a low-density sepa-
ration between classes, a commonly assumed prior for
semi-supervised learning (Chapelle et al., 2005).

Several experiments on the well-known MNIST
dataset prove that the proposed method shows the
state-of-the-art performance. This method (with-
out unsupervised pre-training) earned second prize in
ICML 2013 Workshop in Challenges in Representation
Learning: The Black Box Learning Challenge.
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2. Pseudo-Label Method for Deep
Neural Networks

2.1. Deep Neural Networks

Pseudo-Label is the method for training deep neural
networks in a semi-supervised fashion. In this article
we will consider multi-layer neural networks with M
layers of hidden units :

hki = sk

 dk∑
j=1

W k
ijh

k−1
j + bki

 , k = 1, ...,M + 1 (1)

where sk is a non-linear activation function of the kth
layer such as sigmoid, fi = hM+1

i are output units
used for predicting target class and xj = h0j are input
values.

Sigmoid Unit is one of the most popular unit for neu-
ral network. This activation value usually stands for
binary probability.

s(x) =
1

1 + e−x
(2)

When sigmoid units are used for output instead of soft-
max, we assume that the probability of each label is
independent from each other. Though the labels of
data set in our experiments are mutually exclusive, we
use sigmoid output unit in order to make the best use
of saturation region of sigmoid.

Rectified Linear Unit is receiving a great deal of at-
tention recently (Glorot et al., 2011). This unit uses
rectifier activation function :

s(x) = max(0, x) (3)

This is biologically plausible more than sigmoid and
hyperbolic tangent. Because rectifier network gives
rise to real zeros of hidden activations and thus truly
sparse representations, this unit can boost up the net-
work performance.

The whole network can be trained by minimizing su-
pervised loss function

C∑
i=1

L(yi, fi(x)), (4)

where C is the number of labels, yi’s is the 1-of-K code
of the label, fi is the network output for i’th label, x
is input vector. If we use sigmoid output unit, we can
choose Cross Entropy as a loss function:

L(yi, fi) = −yi log fi − (1− yi) log(1− fi) (5)

2.2. Denoising Auto-Encoder

Denoising Auto-Encoder is unsupervised learning al-
gorithm based on the idea of making the learned rep-
resentations robust to partial corruption of the input
pattern (Vincent et al., 2008). This approach can be
used to train autoencoders, and these DAE can be
stacked to initialize deep neural networks.

hi = s

 dv∑
j=1

Wij x̃j + bi

 (6)

x̂j = s

(
dh∑
i=1

Wijhi + aj

)
(7)

where x̃j is corrupted version of the jth input value,
x̂j is the reconstruction of the jth input value. Au-
toencoder training consists in minimizing The recon-
struction error between xj and x̂j . For binary input
value, common choice of the reconstruction error is
Cross Entropy :

L(x, x̂) =

dv∑
j=1

−xj log x̂j − (1− xj) log(1− x̂j) (8)

We use DAE in a unsupervised pre-training phase.
Masking noise with a probability 0.5 is used for corrup-
tion. Unlike original DAE, hidden unit is also masked
with a probability 0.5 in our experiments. An expo-
nentially decaying learning rate and linearly increas-
ing momentum is also used. This scheme is inspired
by Dropout.

2.3. Dropout

Dropout is a technique that can be applied to super-
vised learning of deep neural networks (Hinton et al.,
2012). On the network activations of each example,
hidden unit is randomly omitted with a probability of
0.5. Sometimes 20% dropout of visible units is also
helpful.

hki = drop

sk
 dk∑

j=1

W k
ijh

k−1
j + bki

 , k = 1, ...,M

(9)
where drop(x) = 0 with a probability of 0.5, other-
wise drop(x) = x. Overfitting can be reduced by this
technique to prevent complex co-adaptations on hid-
den representations of training data. Because in each
weights update we train a different sub-model by omit-
ting a half of hidden units, this training procedure is
similar to bagging (Breiman, 1996), where many dif-
ferent networks are trained on different subsets of the
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data. But dropout is different from bagging in that all
of the sub-models share same weights.

For successful SGD training with dropout, An expo-
nentially decaying learning rate is used that starts at
a high value. And momentum is used to speed up
training.

∆W (t+ 1) = p(t)∆W (t)− (1− p(t)) ε(t) < ∇WL >
(10)

W (t+ 1) = W (t) + ∆W (t) (11)

where,
ε(t+ 1) = k ε(t) (12)

p(t) =

{
t
T pf +

(
1− t

T

)
pi t < T

pf t ≥ T
(13)

with k = 0.998, pi = 0.5, pf = 0.99, T = 500, t is
the current epoch, < ∇WL > is the gradient of loss
function, ε(0) is the initial learning rate. We use these
parameters from original dropout paper (Hinton et al.,
2012), but don’t use weight regularization.

2.4. Pseudo-Label

Pseudo-Label are target classes for unlabeled data as if
they were true labels. We just pick up the class which
has maximum predicted probability for each unlabeled
sample.

y′i =

{
1 if i = argmaxi′ fi′(x)

0 otherwise
(14)

We use Pseudo-Label in a fine-tuning phase with
Dropout. The pre-trained network is trained in a su-
pervised fashion with labeled and unlabeled data si-
multaneously. For unlabeled data, Pseudo-Labels re-
calculated every weights update are used for the same
loss function of supervised learning task.

Because the total number of labeled data and unla-
beled data is quite different and the training balance
between them is quite important for the network per-
formance, the overall loss function is

L =
1

n

n∑
m=1

C∑
i=1

L(ymi , f
m
i )+α(t)

1

n′

n′∑
m=1

C∑
i=1

L(y′mi , f ′mi ),

(15)
where n is the number of mini-batch in labeled data
for SGD, n′ for unlabeled data, fmi is the output units
of m’s sample in labeled data, ymi is the label of that,
f ′mi for unlabeled data, y′mi is the pseudo-label of that
for unlabeled data, α(t) is a coefficient balancing them.

The proper scheduling of α(t) is very important for
the network performance. If α(t) is too high, it dis-
turbs training even for labeled data. Whereas if α(t)

is too small, we cannot use benefit from unlabeled
data. Furthermore, the deterministic annealing pro-
cess, by which α(t) is slowly increased, is expected to
help the optimization process to avoid poor local min-
ima (Grandvalet et al., 2006) so that the pseudo-labels
of unlabeled data are similar to true labels as much as
possible.

α(t) =


0 t < T1
t−T1

T2−T1
αf T1 ≤ t < T2

αf T2 ≤ t
(16)

with αf = 3, T1 = 100, T2 = 600 without pre-training,
T1 = 200, T2 = 800 with DAE.

3. Why could Pseudo-Label work?

3.1. Low-Density Separation between Classes

The goal of semi-supervised learning is to improve gen-
eralization performance using unlabeled data. The
cluster assumption states that the decision boundary
should lie in low-density regions to improve general-
ization performance (Chapelle et al., 2005).

Recently proposed methods of training neural net-
works using manifold learning such as Semi-Supervised
Embedding and Manifold Tangent Classifier utilize
this assumption. Semi-Supervised Embedding (Weston
et al., 2008) uses embedding-based regularizer to im-
prove the generalization performance of deep neural
networks. Because neighbors of a data sample have
similar activations with the sample by embedding-
based penalty term, it’s more likely that data samples
in a high-density region have the same label. Manifold
Tangent Classifier (Rifai et al., 2011b) encourages the
network output to be insensitive to variations in the
directions of low-dimensional manifold. So the same
purpose is achieved.

3.2. Entropy Regularization

Entropy Regularization (Grandvalet et al., 2006) is a
means to benefit from unlabeled data in the framework
of maximum a posteriori estimation. This scheme fa-
vors low density separation between classes without
any modeling of the density by minimizing the condi-
tional entropy of class probabilities for unlabeled data.

H(y|x′) = − 1

n′

n′∑
m=1

C∑
i=1

P (ymi = 1|x′m) logP (ymi = 1|x′m)

(17)
where n′ is the number of unlabeled data, C is the
number of classes, ymi is the unknown label of the mth
unlabeled sample, x′m is the input vector of mth unla-
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Table 1. The Conditional Entropy (17) of the network out-
put of labeled(train) data, unlabeled data and test data
on MNIST. dropNN is the neural network trained with
only labeled data (corresponding to Figure 1 (a)) , +PL is
the network trained additionally with unlabeled data and
Pseudo-Label (corresponding to Figure 1 (b)).

train unlabeled test

dropNN 2.63 × 10−9 0.0349 0.0317
+PL 6.10 × 10−9 0.0067 0.0114

beled sample. The entropy is a measure of class over-
lap. As class overlap decreases, the density of data
points get lower at the decision boundary.

The MAP estimate is defined as the maximizer of the
posterior distribution :

C(θ, λ) =

n∑
m=1

logP (ym|xm; θ)− λH(y|x′; θ) (18)

where n is the number of labeled data, xm is the mth
labeled sample, λ is a coefficient balancing two terms.
By maximizing of the conditional log-likelihood of la-
beled data (the first term) with minimizing the en-
tropy of unlabeled data (the second term), we can get
the better generalization performance using unlabeled
data.

3.3. Training with Pseudo-Label as Entropy
Regularization

Our method encourages the predicted class probabili-
ties to be near 1-of-K code via training with unlabeled
data and Pseudo-Labels, so the entropy of (17) is mini-
mized. Thus our method is equivalent to Entropy Reg-
ularization. The first term of (18) corresponds to the
first term of (15), The second term of (18) corresponds
to the second term of (15), α corresponds to λ.

Figure 1 shows t-SNE (Van der Maaten et al., 2008) 2-
D embedding results of the network output of MNIST
test data (not included in unlabeled data). The neural
network was trained with 600 labeled data and with
or without 60000 unlabeled data and Pseudo-Labels.
Though the train error is zero in the two cases, the net-
work outputs of test data is more condensed near 1-of-
K code by training with unlabeled data and Pseudo-
Labels, in other words, the entropy of (17) is mini-
mized.

Table 2 shows the estimated entropy of (17). Though
the entropy of labeled data is near zero in the two
cases, the entropy of unlabeled data get lower by

Pseudo-Label training, in addition, the entropy of test
data get lower along with that. This makes the clas-
sification problem easier even for test data and makes
the density of data points lower at the decision bound-
ary. According to cluster assumption, we can get the
better generalization performance.

(a) without unlabeled data (dropNN)

(b) with unlabeled data and Pseudo-Label (+PL)

Figure 1. t-SNE 2-D embedding of the network output of
MNIST test data.

4. Experiments

4.1. Handwritten Digit Recognition (MNIST)

MNIST is one of the most famous dataset in deep
learning literature. For comparison, we used the same
semi-supervised setting with (Weston et al., 2008; Ri-
fai et al., 2011b). We reduced the size of the labeled
training set to 100, 600, 1000 and 3000. The train-
ing set has the same number of samples on each label.
For validation set, we picked up 1000 labeled exam-
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(a) without unlabeled data (dropNN)

(b) with unlabeled data and Pseudo-Label (+PL)

(c) using unsupervised pre-training with DAE
(+PL+DAE)

Figure 2. Some filters on layer 1 of the network trained
with or without unlabeled data on MNIST. 600 labeled
data is used for supervised training.

ples separately. We used validation set for determin-
ing some hyper-parameters. The remaining data were
used for unlabeled data. Because we could not get the
same split of data set, 10 experiments on random split
were done using the identical network and parameters.
In the case of 100 labeled data, the results heavily de-
pended on data split so that 30 experiments were done.
95% confidence interval is about ±1 ∼ 1.5% for 100 la-
beled data, about ±0.1 ∼ 0.15% for 600 labeled data,
less than ±0.1% for 1000 and 3000 labeled data.

We used the neural network with 1 hidden layer. Rec-
tified Linear Unit is used for hidden unit, Sigmoid Unit
is used for output unit. The number of hidden units is
5000. For optimization, We used mini-batch Stochas-

Table 2. Classification error on the MNIST test set with
600, 1000 and 3000 labeled training samples. We compare
our method with results from (Weston et al., 2008; Rifai
et al., 2011b). dropNN is our network model trained with-
out unlabeled data, +PL with unlabeled data and Pseudo-
Label, +PL+DAE using unsupervised pre-training with
DAE in addition.

method 100 600 1000 3000

NN 25.81 11.44 10.7 6.04
SVM 23.44 8.85 7.77 4.21
CNN 22.98 7.68 6.45 3.35
TSVM 16.81 6.16 5.38 3.45
DBN-rNCA - 8.7 - 3.3
EmbedNN 16.86 5.97 5.73 3.59
CAE 13.47 6.3 4.77 3.22
MTC 12.03 5.13 3.64 2.57

dropNN 21.89 8.57 6.59 3.72
+PL 16.15 5.03 4.30 2.80
+PL+DAE 10.49 4.01 3.46 2.69

tic Gradient Descent with Dropout.1 The initial learn-
ing rate is 1.5 and the number of mini-batch is 32 for
labeled data, 256 for unlabeled data. These parame-
ters were determined using validation set.

Table 2 compares our method with results from (We-
ston et al., 2008; Rifai et al., 2011b). Our method out-
performs the conventional methods for small labeled
data in spite of simplicity. The training scheme is less
complex than Manifold Tangent Classifier and doesn’t
use computationally expensive similarity matrix be-
tween samples used in Semi-Supervised Embedding.

5. Conclusion

In this work, we have shown the simple and efficient
way of semi-supervised learning for neural networks.
Without complex training scheme and computation-
ally expensive similarity matrix, the proposed method
shows the state-of-the-art performance.
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