Under review as a conference paper at ICLR 2026

LEARNING INTERPRETABLE MODELS USING UNCER-
TAINTY ORACLES

Anonymous authors
Paper under double-blind review

ABSTRACT

A desirable property of interpretable models is small size, so that they are easily
understandable by humans. This leads to the following challenges: (a) small sizes
typically lead to diminished accuracy, and, (b) different techniques offer bespoke
levers, e.g., L1 regularization, for making this size-accuracy trade-off that might
be insufficient to reach the desired balance.

We address these challenges here. Earlier work has shown that learning the train-
ing distribution creates accurate small models. Our contribution is a new tech-
nique that exploits this idea. The training distribution is modeled as a Dirich-
let Process for flexibility in representation. Its parameters are learned using
Bayesian Optimization; a design choice that makes the technique applicable to
non-differentiable loss functions. To avoid challenges with high data dimension-
ality, the data is first projected down to one-dimension using uncertainty scores of
a separate probabilistic model, that we refer to as the uncertainty oracle.

Based on exhaustive experiments we show that this technique possesses multi-
ple merits: (1) it significantly enhances small model accuracies, (2) is versatile:
it may be applied to different model families with varying notions of size, e.g.,
depth of a decision tree, non-zero coefficients in a linear model, simultaneously
the maximum depth of a tree and number of trees in Gradient Boosted Models, (3)
is practically convenient because it needs only one hyperparameter to be set and
works with non-differentiable losses, (4) works across different feature spaces be-
tween the uncertainty oracle and the interpretable model, e.g., a Gated Recurrent
Unit trained using character sequences may be used as an oracle for a Decision
Tree that uses character n-grams, and, (5) may augment the accuracies of fairly old
techniques to be competitive with recent task-specialized techniques, e.g., CART
Decision Tree (1984) vs Iterative Mistake Minimization (2020), on the task of
cluster explanation.

1 INTRODUCTION

In recent years, Machine Learning (ML) models have become increasingly pervasive in various real
world systems. This has led to a growing emphasis on models to be understandable, especially
in high human-impact domains, e.g., medicine and healthcare (Caruana et al., 2015; [Mienye et al.,
2024]), defence applications (Gunning, 2016;|Moustafa et al.,[2023)), law enforcement (Angwin et al.}
2016; [Hall et al., [2022; Herrewijnen et al.| 2024)).

An important aspect of model interpretability is its size (smaller is better); this has been established
through user studies (Feldman), [2000; [Kulesza et al., 2013}, Piltaver et al.l [2016; |Lage et al., 2019
Poursabzi-Sangdeh et al) [2021), and is also evidenced by its popularity as an algorithm design
criteria (Tibshirani, [1996} Ribeiro et al., 2016; Herman, |2017} [Lipton, 2018} |Murdoch et al., 2019;
Lakkaraju et al.,[2016; |Good et al.| 2023)). However, smaller sizes typically imply relatively lower
capacity and thus, lower accuracy. A practitioner may control this size-accuracy trade-off using
bespoke levers offered by a training algorithm, e.g., early stopping in Decision Trees (DT), L1
regularization in linear models. However, this presents certain challenges: (1) one needs to be
intimately aware of how various hyperparameters (hence referred to as hyperparams) interact, and
(2) the desired trade-off might not even be achievable within its hyperparam search space.

Under review as a conference paper at ICLR 2026

10.0 10.0
10.0
0.0 — 0.0
0.0 5.0 10.0 0.0 5.0 10.0
(a) 2D two-class balanced (b) Regions learned by CART (c) Regions learned by CART when
toy dataset when depth=5. F1=0.63. depth=5 using our technique. F1=0.77.

Figure 1: Application of our technique is shown on the toy dataset in (a). Learning a DT constrained
to a depth of 5 using the CART (Breiman et al},[1984) algorithm produces the regions shown in (b).
Additionally learning the training distribution using our technique produces the regions in (c). For
both (b) and (c) the F1-macro scores on a held-out set are reported.

Here we propose a model-agnosti{l technique that often produces better accuracies for small-sized
models on classification problems. The underlying strategy is to learn a distribution over training
instances, that represents their informational value for learning, and sample a new training set ac-
cordingly; models thus constructed have been shown to possess favorable size-accuracy trade-offs
(Ghose & Ravindran| [2020). Our technique is an implementation of this principle.

The distribution used is a mixture model based on the Dirichlet Process - picked for its flexibility
of representation and maturity within the Bayesian nonparametrics community. Its parameters are
learned using Bayesian Optimization, so as to accommodate non-differentiable losses, e.g., many
DT and rules learners. To make this process computationally efficient, we avoid directly learning
the distribution over the input space which may have high dimensionality. Instead we first project
instances down to a single dimension, using an auxiliary model’s prediction uncertainty scores. We
refer to this model as the uncertainty oracle.

As an illustration, consider the toy dataset in Figure[T[a). Figure[T(b) visualizes class regions learned
by a DT of depth = 5 using the CART (Breiman et al, [1984) algorithm. The Fl-macro score on
a held-out set is 0.63. When the training distribution is also learned using our technique, we obtain
the regions in Figure[T|c) and a F1-macro score of 0.77, for the same tree depth. The oracle used is

a Gradient Boosted Model (GBM) (2001).

Our primary contribution is a model-agnostic technique that produces small accurate models. It
is also agnostic to the notion of model size, e.g., number of terms of with non-zero coefficients in a
linear model or depth of a DT, both the number of trees and depth per tree in GBMs. We show that
this produces relative improvements of ~ 100% in some cases. It is convenient to use as it works
with with non-differentiable losses, and only one hyperparam needs to be set.

Additionally, we show that: (1) it is more accurate than its predecessor (Ghose & Ravindran, 2020),
(2) it can elevate the performance of fairly old techniques to be competitive with relatively new
ones, and (3) can use an uncertainty oracle that is trained on a different feature space than what the
target model uses. The last property allows for a broad choice of oracles, e.g., in the case of text
classification, the oracle might be a Gated Recurrent Unit (GRU) that is learned using a sequence of
characters while the target model might be a DT over n-grams.

O

The rest of the paper is organized as follows: we first review related work in We then detail
our technique in §3] We follow that up with rigorous empirical validations in §4lA side effect of
allowing non-differentiable losses is high running times; we discuss this limitation, and a mitigation
in §B] Finally, we conclude with a discussion on future work in §6

"'We use the term to mean agnostic to the model family, as is accepted usage in the area of XAlI, e.g., SHAP

(Cundberg & Lee}[2017), LIME (Ribeiro et al| 2016).

Under review as a conference paper at ICLR 2026

o Train a size-constrained

One-time I
@odel based on the current training sample.

1D projection of training data
based on how hard is it to
classify an instance.

Sizes indicate

weights. Grey
a circles indicate
- . instances that
Dlstlrbu_tlon of were dropped.
uncertainty scores.

Calculate F1-
macro score on
held-out data.

Current learned sampling
p distribution (based on a
Modify params o Dirichlet Process).
Po; Ns, @ Sample N, instances based on
based on ® this distribution. Fraction p,
this score. must come from the

oproximity to boundary ! original distribution.

0
proximity to boundary

(measured using the oracle's prediction
uncertainty - higher scores indicate
closeness to boundary)

Figure 2: Overview of our technique. Left: Training instances are characterized by their proximity
to class boundaries. As a proxy for this quantity, we use the prediction uncertainty scores of a prob-
abilistic oracle (these may also be seen as an 1D projection): higher uncertainty indicates proximity
to a boundary. These scores are calculated once. Right: The size-constrained model is learned iter-
atively. A sampling distribution, parameterized by ®, over the uncertainty values (shown in Step
1) is used to sample training instances (as in Step 2), which is used to train a size-constrained
model (shown in Step 3). Its accuracy on a held-out set - Step 4 - is used to modify ®. This
loop, Steps 1-4, is executed by a BayesOpt algorithm.

2 RELATED WORK

The concept of using a different training distribution relative to test is common in the case of class
imbalance, e.g., undersample the majority class data (Japkowicz & Stephen, |2002; |Chawla et al.,
2002; He et al., 2008} [Santhiappan et al., [2018), but it was shown to be a general strategy for
improving accuracy in |Ghose & Ravindran| (2020). Their technique relies on a specialized DT,
called density tree, that encodes the geometric placement of training data. We believe that using
these trees - which are primarily learned using the CART algorithm - inherently limits the accuracy
of their technique. This work may be seen as a non-trivial extension: since the uncertainty oracle
can come from an arbitrary model family, it provides greater flexibility and accuracy.

The interaction of two models - the oracle and the interpretable model - suggests an overlap with
the area of Knowledge Distillation|Gou et al.|(2021)). But there is a critical difference: in theory, we
don’t require the oracle model; here it happens to be a convenient fool for dimensionality reduction.
Indeed, there are other ways to achieve a similar outcome, e.g., within Active Learning, it is common
to infer proximity to a class boundary by noting the labels of an instance’s neighbors (Margatina
et al.| [2021;|Chen et al.| |2023)); these setups might be thought of as rudimentary k-Nearest Neighbor
(kNN) models. With our use of the oracle, we avoid having to worry about neighborhood-related
hyperparams, such as neighbor distance.This should not be seen as distillation for the same reason
as we don’t consider using such kNNs as effecting distillation. The oracle’s peripheral role is also
underscored by the fact that its labels are ignored. This lack of fidelity wrt the oracle is also why
our technique shouldn’t be seen an explanation technique, i.e., XAl, such as TREPAN (Craven &
Shavlikl [1995) or LIME (Ribeiro et al.,[2016).

3 METHODOLOGY

We begin describing our technique with an overview. This is then used as a foundation for introduc-
ing details.

3.1 OVERVIEW

Our technique is visualized in Figure 2] Instead of learning the training distribution directly, which
might be expensive because of the dimensionality of the data, we first project the data down to one

Under review as a conference paper at ICLR 2026

dimension. This is done just once, and is shown in the left panel in Figure[2] Since we are solving for
classification, we want this dimension to correspond to the “classifiability” of an in instance, or how
close is an instance to a class boundary. As a tractable proxy for this property, we train a separate
highly accurate probabilistic oracle model on the training dateﬂ and use its prediction uncertainty
score as the projected value; high uncertainty scores typically denote proximity to class boundaries
Lewis & Catlett| (1994).

The distribution is modeled as an Infinite Beta Mixture Model using a Dirichlet Process, which is
iteratively learned. Step 1 on the right panel in Figure [2| shows the current distribution, based on
which training data is sampled (Step 2). The size-constrained model of interest is then trained on
this sample - Step 3 - and its accuracy on a held-out set is calculated - Step 4. This score is
used as a feedback for the optimizer which repeats the process to learn better distribution parameters.
We use Bayesian Optimization (BayesOpt) (Shahriari et al., [2016; |Garnett, 2023)) to accommodate
models with non-differentiable loss functions. Note that we can’t just pick highly uncertain points,
because that has not been shown to consistently work well (Ghose & Nguyen, 2024)).

3.2 TERMINOLOGY AND NOTATION
We introduce some nomenclature before discussing our algorithm.

1. A dataset is denoted as a set of instance-label pairs, D = {(x1,y1), (x2,¥2), ..., (N, yN)}-
A joint distribution over a dataset is denoted by p(X,Y).

2. To distinguish between the distribution we are given (in form of the dataset) and the one
we learn, we refer to the former as the original distribution. In all experiments here, the
test and held-out data follow the original distribution; for the training data, we learn a new
distribution.

3. We let acc(M, p) denote some classification accuracy metric for model M on data repre-
sented p(X,Y).

4. traing §(p,n) is understood to produce a model of size 7 (for some pre-decided notion of
size) from the model family F using a specific training algorithm f.

For instance, F might represent DTs and f might be the CART algorithm, and = 5 might
denote a DT of depth = 5. We let = * denote unbounded size.

Let us state our objective using this notation. Typically, a model is trained on the same distribution as
the test (on which it is evaluated), i.e., we evaluate acc(traing, s(p,n), p). In this work, the training
distribution is allowed to be different relative to the test. In other words, we seek p’ such that:

arg max acc(traing ¢(p', 1), p) M
p/

3.3 ALGORITHM

Referring to the high-level flow in Figure |2} we note that the proposed technique relies on a few
important ingredients. These are described below, while a more comprehensive discussion may be

found in §A4}

1. Uncertainty score: This is needed for the one-time projection using the oracle. There
are multiple ways to measure prediction uncertainty; here we choose margin uncertainty
(Scheffer et al.,|2001), since (a) it accounts for prediction probabilities of different classes,
(b) while also producing high scores even with two dominant predicted classes in a setting
with more classes. The uncertainty score for x, as provided by model M, is denoted by
upr(x) € [0,1]. The margin uncertainty is calculated as:

up () 1= (pc, — pe,) (2)

Here, pc, and pc, denote the probabilities of the most confident and next most confident
classes. See §A.T]for further details.

2Performed using cross-validation or using a random held-out set, to avoid overfitting.

Under review as a conference paper at ICLR 2026

2. Density model: Since we want to learn a distribution, we want the representation to be
flexible. We encode the density as a mixture model of Beta distributions. We use the latter
since (a) their support matches the range of uncertainty scores, i.e., up(z) € [0,1], and
(b) a Beta mixture model can approximate any distribution in [0, 1] arbitrarily well (Dia-
conis & Ylvisaker, [1983). Further, in the interest of flexibility, we refrain from explicitly
dictating the number of Beta components, and thus, we use an Infinite Beta Mixture Model
(IBMM), where the component assignments are decided by a standard Dirichlet Process
(DP) (Ferguson, |1973)). This is a popular tool in the area of Bayesian Nonparametrics|Yee
Whye Teh & Blei|(2006); Wang et al.|(2011). Another advantage of this formulation is that
it leads to a fixed number of parameters irrespective of the number of active components
which makes it easy to pick an optimizer. We note here that |Ghose & Ravindran| (2020)
also use a DP-based IBMM, but for modeling the height of density trees.

Two sets of parameters are required to describe this density model:

(a) The shape parameters A;, B; of the it Beta component. These are separately sampled
from prior distributions that are themselves Beta distributions, with shape parameters
a,b and o', b’ respectively. Since naively doing this would restrict A; or B; to Beta’s
support, i.e., [0, 1], we also multiply the sampled value by a variable scale, that we
set to be large enough to cover the family of component distributions we requir
Effectively then, A; ~ scale x Beta(a,b) and B; ~ scale x Beta(a’,V’).

(b) The DP needs just a concentration parameter @ € R+ that decides the number of
active components, i.e., ones with instances assigned to thenﬂ

In all, the density model requires five parameters, which we denote as ¥ = {«, a,b,a’,b'}.
To sample N instances given ¥, we first determine the number of instances per component
using a standard technique like the Chinese Restaurant Process (Aldous, [1985) and then
sample component-wise. Please see §A.2]for details.

3. Optimization: As mentioned earlier, we use BayesOpt to accommodate non-differentiable
losses. It is also resilient to noise, which is relevant due to factors such as randomized
initialization of model parameters, different dataset splits across trials, etc. Specifically,
we use the hyperopt library (Bergstra et al.,|2013)), which implements the Tree Structured
Parzen Estimator (TPE) algorithm |Bergstra et al.|(2011). Because there is no tight coupling
between our formulation and the optimizer, it is possible to use a different BayesOpt library.
This can be a crucial practical consideration, and is discussed in §E}

For optimization, in addition to ¥, we retain the following parameters, originally intro-
duced in|Ghose & Ravindran| (2020):

(a) Ng: This is the sample size - this is also learned.

(b) po € [0,1]: Proportion of the new training set that is uniformly sampled from the
original training data. This serves two purposes: (1) it acts as a “shortcut” for the
optimizer to mix in the original distribution as needed, and (2) it serves as a “probe
variable”, i.e., it shows how much of the original distribution is actually needed for
good accuracies.

Accounting for these, we now have a total of seven optimization variables: U =
{a,a,b,ad’,b'}, Ng, po, which are iteratively optimized, till the budgeted number of it-
erations, 7', are exhausted. These variables are collectively denoted as & = {¥, Ny, p, }.
Algorithm [T] outlines the overall technique; here the interpretable and oracle model fami-
lies are denoted by Z and O, and the respective training algorithms are denoted by h and g
respectively. §A.4]provides additional details around model selection, robust estimation of
acce, etc.

Optimization variables and parameters: The task of the optimizer is to find ¢ that maximizes
the held-out accuracy (line 11 in Algorithm[T)) within 7" iterations. The optimizer here accepts box
constraints, and as such their lower/upper bounds, which need to be set by the user, are parameters
(along with T') of the technique. We discuss in §A.3|that reasonable default bounds exist for param-
eters D, e.g., its easy to see p, € [0, 1]. So, in practice, T is the only parameter that a user needs
to set.

>NOTE: This is fixed at a value of 10000 and not learned; hence it isn’t counted as a parameter.

40Of course, in theory, there are an infinite number of components, but the number of active components
grows with data.

® 9 & W

10
11
12
13
14
15
16
17

Under review as a conference paper at ICLR 2026

Algorithm 1: Learning interpretable model using oracle

Data: Dataset D, model size 1), traino (), traing q(), iterations T’
Result: Optimal parameters ®*, test set accuracy s, at *, and interpretable model M * at &*
Create splits Dyrqin, Dyal, Dtest from D, stratified wrt labels. Here
|Dirain| : |Dvat] ¢ |Dtest| :: 60 : 20 : 20.
Mo + traino,h(Dtmim *)
fort < 1to T do

b, + suggest(sg, s1,.--St—1, Po, P1y..., Pp—1) // $0,Pp initialized at t=0,
see text. Note: & ={Uy, Ns;,poi} where U, = {a, a, b, ap,b}.
No < pot X N
N, < Ng4 — N,
D, + uniformly sample with replacement N, points from D,
D,, < sample N,, points from Dy,;,, using the DP-based IBMM given current values for
Ny, Mo, Dirain, Ve // see Algorithm for details
D+~ D,wD,// D, D, are assumed to be multisets
M, < traing 4(Ds,n)
8¢ < ace(My, Dyar)
end
t* < argmax, {s1, 82, ..., ST—1, ST}
O* @t*
M* + My«

Stest < acc(M™*, Dyest)
return O, sy, M*

Smoothing: A final practical consideration is the smoothness of the optimization landscape. Uncer-
tainty scores over the training data may often result in a density that isn’t smooth, making it difficult
to learn a good distribution. We redress this by explicitly smoothing the density. We detail this in

This concludes our discussion of algorithmic details; next, we look at empirical validation.

4 EXPERIMENTS

We have performed extensive empirical investigations to validate the utility of our technique. These
may be grouped in the following manner:

1. Those that establish the effectiveness of the technique in various settings, i.e., different
datasets, interpretable models and oracles, across different model sizes. This is our key
result.

2. Benchmarking against the density tree approach.

3. Competitiveness: Even if our technique produces significant improvements, it leaves open
the question of these gains being competitive with task-specific techniques, e.g., cluster-
explanation trees and prototype-based classifiers. These set of experiments affirmatively
answer this question.

4. Additional properties - while these are not as rigorous as the previous groups, they highlight
some interesting properties: (a) model size can be multivariate, and (b) it is possible to have
different feature spaces between the oracle and the target models.

All experiments were performed on an Intel i7-7700HQ machine with 32 GB RAM.

Due to space constraints, only the key result - point 1 above - is presented in detail in the main paper
(some aspects are relegated to the Appendix), while other findings are only summarized here, with
details being provided in the Appendix.

Under review as a conference paper at ICLR 2026

4.1 EFFECTIVENESS OF OUR TECHNIQUE

We begin describing this set of experiments with the various settings.

4.1.1 EXPERIMENT SETTINGS

We tested our technique across the following configurations:

1. Datasets: We use the following 13 publicly available standard classification datasets for
our experiments: cod-rna, ijcnnl, higgs, covtype.binary, phishing, ala, pendigits, letter,
Sensorless, senseit_aco, senseit_sei, covtype, connect-4. These were obtained from the
LIBSVM website (Chang & Linl 2011a). For details, such as number of classes and extent
of imbalance, please see

10000 instances from each dataset are used. The split ratio used in Algorithmis | Dirain]
|Dyat] i |Drest| 2 60 : 20 : 20, where the splits are stratified wrt labels.

2. Interpretable model families: we use Linear Probability Models (LPM E] and the DTs (pro-
duced by the CART algorithm). These were picked as they are commonly considered
interpretable Réz[(2024).

The notion of model size for LPMs is the number of non-zero coefficients, and sizes n €
{1,2,...,15} are explored (except for cod-rna, that has 8 features, and so we cannot have a
sizes greater than 8).

For DTs, the notion of size is depth. For a dataset, we first learn a tree (with no size
constraints) with the highest F'/-macro score using standard 5—fold cross-validation. We
refer to this as the optimal tree T,,;, and its depth as depth(T,,:). We then explore model
sizes € {1,2,...,min(depth(Top),15)}. Stopping early makes sense since the model
is saturated in its learning at depth(T,,,;); changing the input distribution is not helpful
beyond this point.

3. Oracle families: As oracles we use Random Forests (RF) (Breiman, 2001) and GBMs
(Friedman, 2001). They were learned using cross-validation or using a held-out set, to
avoid overfitting, and were calibrated (Platt, |1999; |[Niculescu-Mizil & Caruanal [2005)) for
reliable probability estimates.

4. Optimization budget: For DTs, we use 7' = 3000, while for LPMs 7" = 1000 is used.
These values were determined based on limited search. The budget for LPMs is lower
since for multi-class datasets (7 of 13 here) we construct one-vs-all models which makes
training LPMs time-consuming.

4.1.2 METRICS

For various combinations of models and oracles, i.e., {LPM, DT} x {GBM, RF}, we measure
the percentage relative improvement in the F/-macro score (on the test set Dy.s;) in terms of the
baseline score F'195¢ and the one produced by our model, F'1}, ,:

100 x (F1f.y — F1725)
F1iess

(SFltest = (3)

We use the macro score since its not impacted by class imbalance.

In the interest of robustness we run five trials per configuration, i.e., a combination of dataset,
oracle family, model family and size, and utilize the validation set to accept the model produced
by our technique M*. Specifically: indexing trials with ¢, we conduct an independent #-fest on
{F1%,,}1<i<s and {F'1%95¢} <, <5. The null hypothesis is that M * doesn’t produce results different
MPbas¢_ If we can reject the null at a significance of p = 0.1, we report § F'1;c as in Equation@ﬂ
else we report 0F'1;.5; = 0, i.e., we reject M*. Here 6F 1t € (—00,00); negative values are
possible since we pick a model based on D,,,; while we report based on Dy;.

SWe have not used the more common Logistic Regression because: (1) LPMs are considered more inter-
pretable (Mood, 2010), and (2) LPMs results are indicative of behavior of linear models in general.
SThe test scores from different trials are averaged first.

Under review as a conference paper at ICLR 2026

4.1.3 OBSERVATIONS

Table [T| shows a portion of the results in the interest of space - for complete results, and analysis of
statistical significance (using the Wilcoxon signed-rank test (Wilcoxonl [1943))), please see

Table 1: This table shows the average improvements, § F'1, over five runs for the combinations model={LPM,
DT} and oracle=GBM, for different model sizes. The improvements are measured relative to the model at the
first iteration. Here, F'1 € (—o0, 00). Negative improvements are shown in underlined. Complete results,
including analysis of statistical significance, are presented in

dataset model ora size=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cod-rna Ipm_gbm 1.39 12.53 14.76 15.73 1497 12.00 0.00 0.08 - - - - - - -
dt_gbm 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 -0.28 0.08 - - - - -
ijennl Ipm_gbm -0.16 3.36 3.93 0.00 519 418 3.85 3.79 3.69 2.99 297 3.21 3.11 3.26 3.02
dt_gbm 1.96 12.00 10.15 11.37 10.63 7.18 3.63 4.52 291 1.78 1.93 2.29 1.47 226 0.00
higgs Ipm_gbm 29.29 17.80 1140 6.56 3.06 2.68 3.16 2.90 2.67 2.82 2.65 1.79 2.62 2.19 1.63

dt_gbm 0.00 0.00 1.86 0.26 0.93 0.45 - - - - - - - - -

covtype.binary Ipm_gbm 76.52 66.39 29.17 12.51 9.18 528 4.94 4.56 3.92 3.56 3.62 3.31 2.59 2.83 2.39
dt_gbm 0.00 0.00 2.35 1.27 118 1.11 0.00 0.00 0.00 - - - - - -

phishing Ipm_gbm 0.00 1.88 2.88 3.05 322 3.25 2.99 1.69 1.42 1.45 1.29 0.00 0.00 0.00 0.00
dt_gbm 0.00 0.00 0.00 0.07 0.39 0.00 0.28 0.22 0.44 0.23 0.00 0.00 0.00 0.00 0.00
ala Ipm_gbm 0.00 2.55 7.58 8.98 8.40 8.03 8.90 8.23 8.17 7.90 5.96 7.10 6.97 6.18 5.73
dt_gbm 0.00 5.54 2.39 3.84 3.55 2.55 1.51 2.25 4.87 - - - - - -
pendigits Ipm_gbm 51.39 23.44 16.18 8.95 8.84 6.63 4.86 1.83 227 2.16 2.44 2.16 333 297 2.73
dt_gbm 14.02 6.72 5.11 13.14 6.42 4.20 2.46 1.09 0.98 0.16 -026 0.00 0.00 0.00 0.00
letter Ipm_gbm 57.06 48.48 59.85 29.76 36.09 1927 2037 1608 17.55 15.16 17.26 1651 1846 17.19 15.55
dt_gbm 0.00 13.98 25.05 33.96 3205 1549 11.17 0.00 4.26 3.50 1.99 0.00 0.00 0.00 0.00
Sensorless Ipm_gbm 216.47 257.56 17831 117.01 90.70 8390 73.50 6595 61.57 5797 5654 57.15 5545 6624 6824
dt_gbm -0.01 42.42 68.13 44.38 17.39 1032 1.82 1.44 0.79 0.64 0.41 0.12 0.00 -0.02 034
senseit_aco Ipm_gbm 173.71 170.68 63.95 44.20 3349 2299 19.14 1350 1029 7.59 6.26 5.92 5.30 4.89 4.32
dt_gbm 14.89 0.00 3.71 2.32 4.85 0.81 0.00 - - - - - - - -
senseit_sei Ipm_gbm 160.59 65.27 23.44 10.48 6.76 4.86 4.82 4.46 4.79 4.12 4.54 5.17 391 421 4.46
dt_gbm 2.66 1.01 3.49 2.29 0.95 1.30 1.37 0.00 - - - - - - -
covtype Ipm_gbm 36.87 49.24 12.78 11.21 7.84 7.15 7.15 8.07 7.70 8.25 10.94 835 437 8.77 5.84
dt_gbm 34227 92.85 43.23 20.04 8.14 8.05 5.67 3.26 4.92 3.52 2.72 0.00 0.00 0.00 1.74
connect-4 Ipm_gbm 37.62 11.66 12.01 6.84 5.68 6.82 4.58 2.10 3.82 3.21 3.02 3.64 2.32 297 3.40
dt_gbm 89.33 29.23 20.20 12.10 9.73 9.88 7.82 743 0.57 4.61 1.08 3.35 223 1.15 1.55

We highlight some interesting trends:

1. The incidence of negative improvements is fairly low. Of course, this result set is in-
complete, but referring to the complete set in we note that only 13 of 690 non-null
observations, or 1.88%, are negative. The average negative improvement is —0.24%.

2. As model size increases (left to right in Table[)), positive improvements (which can be high
for small sizes, e.g., > 100%) tend to reduce. This makes intuitive sense since beyond a
certain model size, when all informative patterns in the data have been captured, modifying
the training distribution should not have much/any effect.

3. For DTs, the drop in improvements happen earlier than for LPMs. An intuitive explanation
for this is that an unit increase in size for the LPM and DT do not lead to identical increase
in capacity. DTs are non-linear models to begin with, and then, increasing their depth by
one leads to a much larger increment in capacity, e.g., it doubles the number of leaves for a
binary tree.

4.2 SUMMARY OF OTHER FINDINGS
In the interest of space, we summarize our other findings below:

1. Benchmarking against the density tree approach: we perform this comparison since it is
the closest to ours in terms of methodology (see §2). The experiment settings are identical
to the previous section, While we present a detailed discussion in the salient
observations are:

(a) We report the scaled difference in test Fl-macro score improvement (§F1°7% —
SF19e") / max {§F19¢" §F1°7%}. The denominator ensures a range of [—1,1],
where a positive value is desiredAveraged over model sizes and datasets this value
is 0.37 and 0.31 for LPMs and DTs respectively.

Under review as a conference paper at ICLR 2026

(b) An aggregate score like the above might be influenced by outlier improvement scores;
so we also report the percentage of times we produce a better score. This is 81.38%
and 67.30% for LPMs and DTs respectively.

For additional details, please see §A.9

2. Competitiveness: We compare against techniques specialized for certain tasks, to see if our
technique can elevate the performance of older techniques to be competitive:

(a) On the task of cluster explanation, decision trees are constructed whose leaves rep-
resent clusters. Some specialized algorithms in the area are ExShallow [Laber et al.
(2021) and Iterative Mistake Minimization (IMM) Moshkovitz et al.| (2020). While
these are recent algorithms, we show that CART-based |Breiman et al.| (1984) DTs
obtained by our technique outperform the more recent IMM.

(b) We consider prototype-based classification where, in the interest of interpretability,
we want a small number of prototypes. Here the notion of size is the number of
prototypes. We show that using our technique improves the performance of a sim-
ple Radial Basis Function Network (RBFN) Broomhead & Lowe|(1988) to perform
similar to Stochastic Neighbor Compression (SNC) Kusner et al.| (2014)).

The Mean Rank is used as the primary metric, while the Friedman (Friedman, |1937) and
Wilcoxon signed-rank tests are used to measure statistical significance. Please see §A.10|
for details.

3. We also conducted these experiments to highlight some interesting properties:

(a) It may be applied even in cases when model size is defined by more than one attribute,
e.g., max_depth and num_trees in the case of GBMs. This is because Algorithm I]
delegates size enforcement to trainz 4. See §A.T2|for details.

(b) The technique works even if the oracle and the target model use different feature
representations. This is because all that is required of the oracle are uncertainty scores,
irrespective of how it arrives at them. We demonstrate this via a text classification
task of predicting nationalities from surnames (Rao & McMahan, 2019). A Gated
Recurrent Unit (GRU) (Cho et al., |2014) is used as the oracle. This is trained on a
sequence of characters. The interpretable target model is a DT that uses character
n-grams as input. See §A.13|for additional details.

5 LIMITATION: RUNTIMES

The cost of catering to non-differentiable loss functions, i.e., no gradient information, is high running
times. Our experiments used hyperopt on account of its popularity and maturity, but this leads to high
runtimes, e.g., for the ala “dt_gbm” setting in Table[I] at our budget of 7' = 3000, the optimizer runs
for close to an hour. But with a different surrogate model representation, e.g., Gaussian Processes,
and with a judiciously picked acquisition function such as a noise-resilient version of logEIl (Ament
et al., [2023), the runtime can be reduced to ~ 2 min. These preliminary results are presented in
Our takeaway is that there exists a path to improving the runtime in future work.

6 CONCLUSION AND FUTURE WORK

In this work we presented a model-agnostic technique that obtains good size-accuracy trade-offs.
This was empirically shown to perform well in diverse settings. Conveniently, there is only one
hyperparameter to set (the number of iterations). Further, it can accommodate multivariate model
sizes and can be used with differing feature spaces between the oracle and the interpretable models.

For future work, we think the following themes are meaningful: (a) Extension to differentiable mod-
els/losses for faster learning. Techniques such as bilevel optimization, e.g.,|Pedregosal (2016)), might
be useful here to learn instance weights directly, instead of a distribution. (b) We noted that im-
provements diminish with increasing model size (Section d.1.2)). It would be interesting to explore
whether applying the technique separately to smaller models obtained from decomposing a larger
model, e.g., subtrees within a DT, delays this effect. (c) Finally, exploring newer BayesOpt algo-
rithms would be a good way to improve the running time for our algorithm - our current experiments
(mentioned in §3)) already indicate this to be a fruitful direction of study.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We acknowledge that we have read, understood and adhere to the code of ethics provided athttps:
//iclr.cc/public/CodeOfEthicsl Wedeclare that this paper faithfully represents research
that was performed with rigor and integrity, and the claims presented here are substantiated by our
experiments, which have been presented in detail in either the main paper or the Appendix.

We further declare that Large Language Models (LLMs) were not used in this work.

10

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have uploaded our code as a supplementary material - this contains implementations of all ideas
presented in paper.

The datasets used are publicly available and the versions available at the source mentioned in Section
were directly used without any modifications..

11

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/l Software
available from tensorflow.org.

David J. Aldous. Exchangeability and related topics. In P. L. Hennequin (ed.), Ecole d’Eté de
Probabilités de Saint-Flour XIII — 1983, pp. 1-198, Berlin, Heidelberg, 1985. Springer Berlin
Heidelberg. ISBN 978-3-540-39316-0.

Fevzi Alimoglu and Ethem Alpaydin. Methods of combining multiple classifiers based on different
representations for pen-based handwritten digit recognition. In Proceedings of the Fifth Turkish
Artificial Intelligence and Artificial Neural Networks Symposium (TAINN 96, 1996.

Sebastian Ament, Sam Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Un-
expected improvements to expected improvement for bayesian optimization. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL |https://openreview.
net/forum?id=1vyAG6Jj9PE.

Fabrizio Angiulli. Fast condensed nearest neighbor rule. In Proceedings of the 22nd International
Conference on Machine Learning, ICML °05, pp. 25-32, New York, NY, USA, 2005. Association
for Computing Machinery. ISBN 1595931805. doi: 10.1145/1102351.1102355. URL https:
//doi.org/10.1145/1102351.1102355!.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Ma-
chine Bias. https://www.propublica.org/article/
machine-bias-risk-assessments—in-criminal-sentencing, May 2016.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In Advances in Neural Information Processing Systems 33, 2020. URL
http://arxiv.org/abs/1910.06403.

P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics
with deep learning. Nature Communications, 5(1):4308, 2014. ISSN 2041-1723. doi:
10.1038/ncomms5308. URL https://doi.org/10.1038/ncomms5308.

Alessio Benavoli, Giorgio Corani, and Francesca Mangili. Should we really use post-hoc tests
based on mean-ranks? Journal of Machine Learning Research, 17(5):1-10, 2016. URL http:
//jmlr.org/papers/v17/benavolilba.html.

J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter opti-
mization in hundreds of dimensions for vision architectures. In Proceedings of the 30th Interna-
tional Conference on International Conference on Machine Learning - Volume 28, ICML’13,
pp. I-115-1-123. JMLR.org, 2013. URL http://dl.acm.org/citation.cfm?id=
3042817.3042832.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. Algorithms for hyper-parameter
optimization. In Proceedings of the 24th International Conference on Neural Information Pro-
cessing Systems, NIPS’11, pp. 2546-2554, USA, 2011. Curran Associates Inc. ISBN 978-1-
61839-599-3. URL http://dl.acm.org/citation.cfm?id=2986459.2986743\

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-

Lépez, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.
arXiv preprint arXiv:2105.15183, 2021.

12

https://www.tensorflow.org/
https://openreview.net/forum?id=1vyAG6j9PE
https://openreview.net/forum?id=1vyAG6j9PE
https://doi.org/10.1145/1102351.1102355
https://doi.org/10.1145/1102351.1102355
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://arxiv.org/abs/1910.06403
https://doi.org/10.1038/ncomms5308
http://jmlr.org/papers/v17/benavoli16a.html
http://jmlr.org/papers/v17/benavoli16a.html
http://dl.acm.org/citation.cfm?id=3042817.3042832
http://dl.acm.org/citation.cfm?id=3042817.3042832
http://dl.acm.org/citation.cfm?id=2986459.2986743

Under review as a conference paper at ICLR 2026

G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 26(2):211-252, 1964. ISSN 00359246. URL http://
www. jstor.org/stable/2984418.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, Oct 2001. ISSN 1573-0565. doi:
10.1023/A:1010933404324. URL https://doi.org/10.1023/A:1010933404324,

Leo Breiman et al. Classification and Regression Trees. Chapman & Hall, New York, 1984. ISBN
0-412-04841-8.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
CoRR, abs/1012.2599, 2010.

D.S. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive networks. Com-
plex Systems, 2:321-355, 1988.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligi-
ble models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 15, pp. 1721-1730, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3664-
2. doi: 10.1145/2783258.2788613. URL http://doi.acm.org/10.1145/2783258.
2788613

Chih-Chung Chang and Chih-Jen Lin. Ijcnn 2001 challenge: Generalization ability and text decod-
ing. In In Proceedings of IJCNN. IEEE, pp. 1031-1036, 2001.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011a. Software available at
http://www.csle.ntu.edu.tw/~cjlin/libsvm.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011b. Software avail-
ableathttp://www.csie.ntu.edu.tw/~cjlin/libsvm, datasetsathttps://www.
csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: Syn-
thetic minority over-sampling technique. J. Artif. Int. Res., 16(1):321-357, June 2002. ISSN
1076-9757.

Cheng Chen, Yong Wang, Lizi Liao, Yueguo Chen, and Xiaoyong Du. Real: A representative
error-driven approach for active learning. In Danai Koutra, Claudia Plant, Manuel Gomez Ro-
driguez, Elena Baralis, and Francesco Bonchi (eds.), Machine Learning and Knowledge Discov-
ery in Databases: Research Track, pp. 20-37, Cham, 2023. Springer Nature Switzerland. ISBN
978-3-031-43412-9.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder—
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 1724—1734, Doha, Qatar, Oc-
tober 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://www.aclweb.org/anthology/D14-1179.

Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of
svms for very large scale problems. In T. G. Dietterich, S. Becker, and
Z. Ghahramani (eds.), Advances in Neural Information Processing Systems 14,
pp. 633-640. MIT Press, 2002. URL http://papers.nips.cc/paper/

1949-a-parallel-mixture-of-svms—-for-very-large-scale-problems.
pdf.

Mark Craven and Jude Shavlik. Extracting tree-structured representations of trained networks. In
D. Touretzky, M.C. Mozer, and M. Hasselmo (eds.), Advances in Neural Information Process-
ing Systems, volume 8. MIT Press, 1995. URL https://proceedings.neurips.cc/
paper/1995/file/45f31d16b1058d586fc3be7207b58053-Paper.pdf.

13

http://www.jstor.org/stable/2984418
http://www.jstor.org/stable/2984418
https://doi.org/10.1023/A:1010933404324
http://doi.acm.org/10.1145/2783258.2788613
http://doi.acm.org/10.1145/2783258.2788613
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.aclweb.org/anthology/D14-1179
http://papers.nips.cc/paper/1949-a-parallel-mixture-of-svms-for-very-large-scale-problems.pdf
http://papers.nips.cc/paper/1949-a-parallel-mixture-of-svms-for-very-large-scale-problems.pdf
http://papers.nips.cc/paper/1949-a-parallel-mixture-of-svms-for-very-large-scale-problems.pdf
https://proceedings.neurips.cc/paper/1995/file/45f31d16b1058d586fc3be7207b58053-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/45f31d16b1058d586fc3be7207b58053-Paper.pdf

Under review as a conference paper at ICLR 2026

Denis J. Dean and Jock A. Blackard. Comparison of neural networks and discriminant analysis in
predicting forest cover types. 1998.

Janez DemSar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7(1):1-30, 2006. URL http://jmlr.org/papers/v7/demsar0O6a.
html.

Don Kurian Dennis, Yash Gaurkar, Sridhar Gopinath, Sachin Goyal, Chirag Gupta, Moksh Jain,
Shikhar Jaiswal, Ashish Kumar, Aditya Kusupati, Chris Lovett, Shishir G Patil, Oindrila Saha,
and Harsha Vardhan Simhadri. EdgeML: Machine Learning for resource-constrained edge de-
vices, 2021. URL https://github.com/Microsoft/EdgeML.

Persi Diaconis and Donald Ylvisaker. Quantifying prior opinion. Technical Report EFS_NSF_207,
1983. URL https://purl.stanford.edu/ck231kf8763.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/mll

Marco F. Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks. J. Parallel
Distrib. Comput., 64(7):826-838, July 2004. ISSN 0743-7315. doi: 10.1016/j.jpdc.2004.03.020.
URLhttps://doi.org/10.1016/7.jpdc.2004.03.020!

Jacob Feldman. Minimization of boolean complexity in human concept learning. Nature, 407:
630-3, 11 2000. doi: 10.1038/35036586.

Thomas S. Ferguson. A Bayesian Analysis of Some Nonparametric Problems. The Annals of
Statistics, 1(2):209 — 230, 1973. doi: 10.1214/a0s/1176342360. URL https://doi.org/
10.1214/a0s/1176342360.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals
of Statistics, 29(5):1189 — 1232, 2001. doi: 10.1214/a0s/1013203451. URL https://doi.
org/10.1214/a0s/1013203451!

Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association, 32(200):675-701, 1937. ISSN
01621459. URL http://www. jstor.org/stable/2279372.

Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Exkmc: Expanding explainable k-means
clustering. arXiv preprint arXiv:2006.02399, 2020.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Abhishek Ghose and Emma Thuong Nguyen. On the fragility of active learners for text classi-
fication. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 22217-22233, Mi-
ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.emnlp-main.1240. URL https://aclanthology.org/2024.emnlp-main.
1240/.

Abhishek Ghose and Balaraman Ravindran. Interpretability with accurate small models. Frontiers
in Artificial Intelligence, 3:3, 2020. ISSN 2624-8212. doi: 10.3389/frai.2020.00003. URL
https://www.frontiersin.org/article/10.3389/frai.2020.00003\

Jack Henry Good, Torin Kovach, Kyle Miller, and Artur Dubrawski. Feature learning for inter-
pretable, performant decision trees. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=PYEgC56f1W.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation:
A survey. International Journal of Computer Vision, 129(6):1789-1819, Jun 2021. ISSN
1573-1405. doi: 10.1007/s11263-021-01453-z. URL https://doi.org/10.1007/
s11263-021-01453-2z.

David Gunning. Explainable Artificial Intelligence. https://www.darpa.mil/program/
explainable—-artificial-intelligence, July 2016.

14

http://jmlr.org/papers/v7/demsar06a.html
http://jmlr.org/papers/v7/demsar06a.html
https://github.com/Microsoft/EdgeML
https://purl.stanford.edu/ck231kf8763
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.jpdc.2004.03.020
https://doi.org/10.1214/aos/1176342360
https://doi.org/10.1214/aos/1176342360
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
http://www.jstor.org/stable/2279372
https://aclanthology.org/2024.emnlp-main.1240/
https://aclanthology.org/2024.emnlp-main.1240/
https://www.frontiersin.org/article/10.3389/frai.2020.00003
https://openreview.net/forum?id=PYEgC56flW
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence

Under review as a conference paper at ICLR 2026

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’ 17, pp. 1321-1330. JMLR.org, 2017.

Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape,
Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, and Prateek Jain. ProtoNN:
Compressed and accurate kNN for resource-scarce devices. In Doina Precup and Yee Whye Teh
(eds.), Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 1331-1340. PMLR, 06-11 Aug 2017. URL
https://proceedings.mlr.press/v70/guptal7a.html.

Stuart W. Hall, Amin Sakzad, and Kim-Kwang Raymond Choo. Explainable artificial intelli-
gence for digital forensics. WIREs Forensic Science, 4(2):e1434, 2022. doi: https://doi.org/10.
1002/wfs2.1434. URL https://wires.onlinelibrary.wiley.com/doi/abs/10.
1002/wfs2.1434.

Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pp. 1322-1328, 2008. doi:
10.1109/1JCNN.2008.4633969.

Bernease Herman. The promise and peril of human evaluation for model interpretability. Presented
at NIPS 2017 Symposium on Interpretable Machine Learning. Available at: https://arxiv.
org/abs/1711.09889v3,2017. URLhttp://arxiv.org/abs/1711.07414.

Elize Herrewijnen, Meagan B. Loerakker, Marloes Vredenborg, and Pawet W. WoZniak. Require-
ments and attitudes towards explainable ai in law enforcement. In Proceedings of the 2024 ACM
Designing Interactive Systems Conference, DIS 24, pp. 995-1009, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400705830. doi: 10.1145/3643834.3661629.
URLhttps://doi.org/10.1145/3643834.3661629.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector machines.
IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, 13:
415-25, 02 2002. doi: 10.1109/72.991427.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, ICML’15, pp. 448—-456. IMLR.org,
2015.

Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: A Classification Perspec-
tive. Cambridge University Press, 2011. doi: 10.1017/CB0O9780511921803.

Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study. Intell.
Data Anal., 6(5):429-449, October 2002. ISSN 1088-467X. URL http://dl.acm.org/
citation.cfm?id=1293951.1293954.

Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factorization ma-
chines for ctr prediction. In Proceedings of the 10th ACM Conference on Recommender Sys-
tems, RecSys 16, pp. 43-50, New York, NY, USA, 2016. Association for Computing Machin-
ery. ISBN 9781450340359. doi: 10.1145/2959100.2959134. URL https://doi.org/10.
1145/2959100.2959134.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Todd Kulesza, Simone Stumpf, Margaret Burnett, Sherry Yang, Irwin Kwan, and Weng-Keen Wong.
Too much, too little, or just right? ways explanations impact end users’ mental models. In 2013
IEEE Symposium on Visual Languages and Human Centric Computing, pp. 3—10, 2013. doi:
10.1109/VLHCC.2013.6645235.

15

https://proceedings.mlr.press/v70/gupta17a.html
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wfs2.1434
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wfs2.1434
https://arxiv.org/abs/1711.09889v3
https://arxiv.org/abs/1711.09889v3
http://arxiv.org/abs/1711.07414
https://doi.org/10.1145/3643834.3661629
http://dl.acm.org/citation.cfm?id=1293951.1293954
http://dl.acm.org/citation.cfm?id=1293951.1293954
https://doi.org/10.1145/2959100.2959134
https://doi.org/10.1145/2959100.2959134
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2026

Matt Kusner, Stephen Tyree, Kilian Weinberger, and Kunal Agrawal. Stochastic neighbor compres-
sion. In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp. 622-630,
Bejing, China, 22-24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/
kusnerl4.htmll

Eduardo Sany Laber, Lucas Murtinho, and Felipe Oliveira. Shallow decision trees for explainable
k-means clustering. CoRR, abs/2112.14718, 2021. URL https://arxiv.org/abs/2112.
14718.

Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim, Samuel J. Gershman, and
Finale Doshi-Velez. Human evaluation of models built for interpretability. Proceedings of the
AAAI Conference on Human Computation and Crowdsourcing, 7(1):59-67, Oct. 2019. URL
https://o0js.aaai.org/index.php/HCOMP/article/view/5280.

Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22Nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD 16, pp. 1675-1684, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939874. URL
http://doi.acm.orqg/10.1145/2939672.2939874.

David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning.
In In Proceedings of the Eleventh International Conference on Machine Learning, pp. 148-156.
Morgan Kaufmann, 1994.

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning
through prototypes: A neural network that explains its predictions. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Arti-
ficial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence, AAAT’ 18/IAAT’ 18/EAAT’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Zachary C. Lipton. The mythos of model interpretability. Queue, 16(3):30:31-30:57, June 2018.
ISSN 1542-7730. doi: 10.1145/3236386.3241340. URL|http://doi.acm.org/10.1145/
3236386.3241340.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp.
4765-4774. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdfl

Konstantin Makarychev and Liren Shan. Explainable k-means: Don’t be greedy, plant bigger
trees! In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2022, pp. 1629-1642, New York, NY, USA, 2022. Association for Computing Machin-
ery. ISBN 9781450392648. doi: 10.1145/3519935.3520056. URL https://doi.org/10.
1145/3519935.3520056!

Katerina Margatina, Giorgos Vernikos, Loic Barrault, and Nikolaos Aletras. Active learning by
acquiring contrastive examples. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 650—663, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.51. URL
https://aclanthology.org/2021.emnlp-main.51/.

Donald Michie, D. J. Spiegelhalter, C. C. Taylor, and John Campbell (eds.). Machine Learning,
Neural and Statistical Classification. Ellis Horwood, USA, 1995. ISBN 013106360X.

Ibomoiye Domor Mienye, George Obaido, Nobert Jere, Ebikella Mienye, Kehinde Aruleba,
Ikiomoye Douglas Emmanuel, and Blessing Ogbuokiri. A survey of explainable artifi-
cial intelligence in healthcare: Concepts, applications, and challenges. Informatics in
Medicine Unlocked, 51:101587, 2024. ISSN 2352-9148. doi: https://doi.org/10.1016/j.imu.
2024.101587. URL https://www.sciencedirect.com/science/article/pii/
S52352914824001448.

16

https://proceedings.mlr.press/v32/kusner14.html
https://proceedings.mlr.press/v32/kusner14.html
https://arxiv.org/abs/2112.14718
https://arxiv.org/abs/2112.14718
https://ojs.aaai.org/index.php/HCOMP/article/view/5280
http://doi.acm.org/10.1145/2939672.2939874
http://doi.acm.org/10.1145/3236386.3241340
http://doi.acm.org/10.1145/3236386.3241340
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1145/3519935.3520056
https://doi.org/10.1145/3519935.3520056
https://aclanthology.org/2021.emnlp-main.51/
https://www.sciencedirect.com/science/article/pii/S2352914824001448
https://www.sciencedirect.com/science/article/pii/S2352914824001448

Under review as a conference paper at ICLR 2026

R. M. Mohammad, F. Thabtah, and L. McCluskey. An assessment of features related to phishing
websites using an automated technique. In 2012 International Conference for Internet Technology
and Secured Transactions, pp. 492-497, Dec 2012.

Carina Mood. Logistic regression : Why we cannot do what we think we can do, and what we can
do about it. European Sociological Review, 26(1):67-82, 2010. doi: 10.1093/est/jcp006.

Michal Moshkovitz, Sanjoy Dasgupta, Cyrus Rashtchian, and Nave Frost. Explainable k-means
and k-medians clustering. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 7055-7065. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.
press/v119/moshkovitz20a.htmll

Nour Moustafa, Nickolaos Koroniotis, Marwa Keshk, Albert Y. Zomaya, and Zahir Tari. Explain-
able intrusion detection for cyber defences in the internet of things: Opportunities and solutions.
IEEE Communications Surveys & Tutorials,25(3):1775-1807,2023. doi: 10.1109/COMST.2023.
3280465.

W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Defini-
tions, methods, and applications in interpretable machine learning. Proceedings of the Na-
tional Academy of Sciences, 116(44):22071-22080, 2019. ISSN 0027-8424. doi: 10.1073/pnas.
1900654116. URL https://www.pnas.org/content/116/44/22071.

Meike Nauta, Annemarie Jutte, Jesper Provoost, and Christin Seifert. This looks like that, because
... explaining prototypes for interpretable image recognition. In Michael Kamp, Irena Koprinska,
Adrien Bibal, Tassadit Bouadi, Benoit Frénay, Luis Galdrraga, José¢ Oramas, Linara Adilova,
Yamuna Krishnamurthy, Bo Kang, Christine Largeron, Jefrey Lijffijt, Tiphaine Viard, Pascal
Welke, Massimiliano Ruocco, Erlend Aune, Claudio Gallicchio, Gregor Schiele, Franz Pernkopf,
Michaela Blott, Holger Froning, Giinther Schindler, Riccardo Guidotti, Anna Monreale, Salvatore
Rinzivillo, Przemyslaw Biecek, Eirini Ntoutsi, Mykola Pechenizkiy, Bodo Rosenhahn, Christo-
pher Buckley, Daniela Cialfi, Pablo Lanillos, Maxwell Ramstead, Tim Verbelen, Pedro M. Fer-
reira, Giuseppina Andresini, Donato Malerba, Ibéria Medeiros, Philippe Fournier-Viger, M. Saqib
Nawaz, Sebastian Ventura, Meng Sun, Min Zhou, Valerio Bitetta, [laria Bordino, Andrea Ferretti,
Francesco Gullo, Giovanni Ponti, Lorenzo Severini, Rita Ribeiro, Joao Gama, Ricard Gavalda,
Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Damian Roqueiro, Diego Saldana Miranda,
Konstantinos Sechidis, and Guilherme Graga (eds.), Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases, pp. 441-456, Cham, 2021. Springer International
Publishing. ISBN 978-3-030-93736-2.

Alexandru Niculescu-Mizil and Rich Caruana. Obtaining calibrated probabilities from boosting.
In Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence, UAT’05,
pp. 413420, Arlington, Virginia, United States, 2005. AUAI Press. ISBN 0-9749039-1-4. URL
http://dl.acm.org/citation.cfm?id=3020336.3020388.

D.I. Ohlssen, L. D. Sharples, and D. J. Spiegelhalter. Flexible random-effects models using bayesian
semi-parametric models: applications to institutional comparisons. Statistics in Medicine, 26(9):
2088-2112, 2007. doi: 10.1002/sim.2666. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/sim.2666k

Fabian Paschke, Christian Bayer, Martyna Bator, Uwe Monks, Alexander Dicks, Olaf Enge-
Rosenblatt, and Volker Lohweg. Sensorlose zustandsiiberwachung an synchronmotoren. In Pro-
ceedings of Computational Intelligence Workshop, 12 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In Proceedings of the

33rd International Conference on International Conference on Machine Learning - Volume 48,
ICML16, pp. 737-746. JMLR.org, 2016.

17

https://proceedings.mlr.press/v119/moshkovitz20a.html
https://proceedings.mlr.press/v119/moshkovitz20a.html
https://www.pnas.org/content/116/44/22071
http://dl.acm.org/citation.cfm?id=3020336.3020388
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2666
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2666

Under review as a conference paper at ICLR 2026

Rok Piltaver, Mitja Lustrek, Matjaz Gams, and Sanda Martinci¢-Ipsi¢. What makes classification
trees comprehensible? Expert Systems with Applications, 62:333-346, 2016. ISSN 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2016.06.009. URL https://www.sciencedirect.
com/science/article/pii/S0957417416302901.

John Platt. Fast training of support vector machines using sequential minimal optimiza-
tion. In Advances in Kernel Methods - Support Vector Learning. MIT Press, January
1998. URL https://www.microsoft.com/en-us/research/publication/
fast-training—-of-support-vector-machines—-using-sequential-minimal-optimization/.

John C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS, pp. 61-74. MIT Press,
1999.

Forough Poursabzi-Sangdeh, Dan Goldstein, Jake Hofman, Jennifer Wortman Vaughan, and
Hanna Wallach. Manipulating and measuring model interpretability. In CHI 2021,
May 2021. URL https://www.microsoft.com/en-us/research/publication/
manipulating-—and-measuring-model-interpretability/.

Danil Prokhorov. IJCNN 2001 Neural Network Competition. http://www.geocities.ws/
ijcnn/nnc_1ijcnn01.pdf, 2001.

Delip Rao and Brian McMahan. Natural Language Processing with PyTorch.
O’Reilly, 2019. ISBN 978-1491978238. https://www.amazon.com/
Natural-Language—Processing—-PyTorch—-Applications/dp/1491978236/
and https://github.com/joosthub/PyTorchNLPBook.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?”: Explaining the
predictions of any classifier. In Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD *16, pp. 1135-1144, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939778. URL http://doi.
acm.org/10.1145/2939672.2939778.

Tim Réz. Ml interpretability: Simple isn’t easy. Studies in History and Philosophy
of Science, 103:159-167, 2024. ISSN 0039-3681. doi: https://doi.org/10.1016/j.shpsa.
2023.12.007. URL https://www.sciencedirect.com/science/article/pii/
S0039368123001723L

Sudarsun Santhiappan, Jeshuren Chelladurai, and Balaraman Ravindran. A novel topic model-
ing based weighting framework for class imbalance learning. In Proceedings of the ACM In-
dia Joint International Conference on Data Science and Management of Data, CoDS-COMAD
18, pp. 20-29, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450363419. doi: 10.1145/3152494.3152496. URL https://doi.org/10.1145/
3152494.315249¢6.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper/2018/file/905056clacldadl41560467e0a99%elcf-Paper.pdf.

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden markov models for infor-
mation extraction. In Proceedings of the 4th International Conference on Advances in Intelligent
Data Analysis, IDA °01, pp. 309-318, London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-
42581-0. URL http://dl.acm.org/citation.cfm?id=647967.741626.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, Uni-
versity of Wisconsin—Madison, 2009. URL |http://axon.cs.byu.edu/~martinez/
classes/778/Papers/settles.activelearning.pdfl

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of the
loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148-175, Jan 2016.
ISSN 0018-9219. doi: 10.1109/JPROC.2015.2494218.

18

https://www.sciencedirect.com/science/article/pii/S0957417416302901
https://www.sciencedirect.com/science/article/pii/S0957417416302901
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://www.microsoft.com/en-us/research/publication/manipulating-and-measuring-model-interpretability/
https://www.microsoft.com/en-us/research/publication/manipulating-and-measuring-model-interpretability/
http://www.geocities.ws/ijcnn/nnc_ijcnn01.pdf
http://www.geocities.ws/ijcnn/nnc_ijcnn01.pdf
https://www.amazon.com/Natural-Language-Processing-PyTorch-Applications/dp/1491978236/
https://www.amazon.com/Natural-Language-Processing-PyTorch-Applications/dp/1491978236/
https://github.com/joosthub/PyTorchNLPBook
http://doi.acm.org/10.1145/2939672.2939778
http://doi.acm.org/10.1145/2939672.2939778
https://www.sciencedirect.com/science/article/pii/S0039368123001723
https://www.sciencedirect.com/science/article/pii/S0039368123001723
https://doi.org/10.1145/3152494.3152496
https://doi.org/10.1145/3152494.3152496
https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
http://dl.acm.org/citation.cfm?id=647967.741626
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf

Under review as a conference paper at ICLR 2026

Jiaming Song, Lantao Yu, Willie Neiswanger, and Stefano Ermon. A general recipe for likelihood-
free Bayesian optimization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 20384-20404. PMLR,
17-23 Jul 2022. URL https://proceedings.mlr.press/v162/song22b.html.

Herbert A. Sturges. The choice of a class interval. Journal of the American Statistical Association,
21(153):65-66, 1926. doi: 10.1080/01621459.1926.10502161. URL https://doi.org/
10.1080/01621459.1926.10502161.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267-288, 1996. ISSN 00359246. URL http://www.
jstor.org/stable/2346178.

Andrew V. Uzilov, Joshua M. Keegan, and David H. Mathews. Detection of non-coding rnas on
the basis of predicted secondary structure formation free energy change. BMC bioinformatics, 7T:
173-173, Mar 2006. ISSN 1471-2105. doi: 10.1186/1471-2105-7-173. URL https://www.
ncbi.nlm.nih.gov/pubmed/16566836, 16566836[pmid].

Chien-Chih Wang, Kent Loong Tan, Chun-Ting Chen, Yu-Hsiang Lin, S. Sathiya Keerthi, Dhruv
Mahajan, S. Sundararajan, and Chih-Jen Lin. Distributed newton methods for deep neural
networks. Neural Comput., 30(6):1673—-1724, June 2018. ISSN 0899-7667. doi: 10.1162/
neco_a_01088. URL https://doi.org/10.1162/neco_a_01088.

Chong Wang, John Paisley, and David M. Blei. Online variational inference for the hierarchical
dirichlet process. In Geoffrey Gordon, David Dunson, and Miroslav Dudik (eds.), Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pp. 752-760, Fort Lauderdale, FL, USA, 11-13 Apr
2011. PMLR. URL https://proceedings.mlr.press/v15/wanglla.html.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80-83,
1945. ISSN 00994987. URL http://www. jstor.org/stable/3001968.

Matthew J Beal Yee Whye Teh, Michael I Jordan and David M Blei. Hierarchical dirichlet processes.
Journal of the American Statistical Association, 101(476):1566-1581, 2006. doi: 10.1198/
016214506000000302. URL https://doi.org/10.1198/016214506000000302

In-Kwon Yeo and Richard A. Johnson. A new family of power transformations to improve normality
or symmetry. Biometrika, 87(4):954-959, 2000. ISSN 00063444. URL http://www. jstor.
org/stable/2673623.

Wei Zhang, Xiaohui Chen, Yueqi Liu, and Qian Xi. A distributed storage and computation k-nearest
neighbor algorithm based cloud-edge computing for cyber-physical-social systems. IEEE Access,
8:50118-50130, 2020. doi: 10.1109/ACCESS.2020.2974764.

19

https://proceedings.mlr.press/v162/song22b.html
https://doi.org/10.1080/01621459.1926.10502161
https://doi.org/10.1080/01621459.1926.10502161
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://www.ncbi.nlm.nih.gov/pubmed/16566836
https://www.ncbi.nlm.nih.gov/pubmed/16566836
https://doi.org/10.1162/neco_a_01088
https://proceedings.mlr.press/v15/wang11a.html
http://www.jstor.org/stable/3001968
https://doi.org/10.1198/016214506000000302
http://www.jstor.org/stable/2673623
http://www.jstor.org/stable/2673623

Under review as a conference paper at ICLR 2026

A APPENDIX

A.l1 1. UNCERTAINTY METRICS
Some other popular uncertainty metrics are:

1. Least confident: we calculate the extent of uncertainty w.r.t. the class we are most confi-
dent about:
up(x)=1-— ma; M (y;|x 4
() ethax Myilz))
Here, we have C classes, and M (y;|x) is the probability score produced by the modeﬂ

2. Entropy: this is the standard Shannon entropy measure calculated over class prediction
confidences:
um(@) = Y —M(y|r)log M(y;|z) (5)
yi€{1,2,...,C}

We do not use the least confident metric since it completely ignores confidence distribution across
labels. While entropy is quite popular, and does take into account the confidence distribution, we
do not use it since it reaches its maximum for only points for which the classifier must be equally
ambiguous about all labels; for datasets with many labels (one of our experiments uses a dataset
with 26 labels - see Table[3) we may never reach this maximum.

Fig [3] visually shows what uncertainty values look like for the different metrics. Panel (a) displays
a dataset with 4 labels. A probabilistic linear Support Vector Machine (SVM) is learned on this,
and uncertainty scores corresponding to the metrics “margin”, “least confident” and “entropy” are
visualized in panels (b), (c) and (d) respectively. Darker shades of gray correspond to high uncer-
tainty. Observe that only the “margin” metric in panel (b) achieves scores close to 1 at the two-label
boundaries.

There is no best uncertainty metric in general, and the choice is usually application specific (Settles,
2009).

A.2 SAMPLING FROM THE IBMM

Given our representation, the procedure to sample Ny points, from a dataset D, using an oracle Mo
is shown in Algorithm[2] We also explain the steps below:

1. Determine partitioning over the N, points induced by the DP. We use the Chinese
Restaurant Process |Aldous| (1985) for this. Let’s assume this step produces k partitions
{c1,ca, ..., ¢ } and quantities n; € N where Zle n; = N. Here, n; denotes the number
of points that belong to partition c;.

2. We determine the Beta(A;, B;) component for each ¢; by sampling from the priors, i.e.,
A; ~ scale x Beta(a,b) and B; ~ scale x Beta(a',b").

3. Repeat for each ¢;: for each instance-label pair (x;, y;) in our training dataset, we calculate
the oracle uncertainty score, uxy,, (x;). We then calculate p; = c- Beta(un, (z;)|Ai, Bi).
c is a normalizing constant that scales the probabilities across instances to sum to 1. The
quantities p; are used as sampling probabilities for various (z;, y;), and n; points are sam-
pled with replacement based on them.

A.3 DEFAULT PARAMETERS

The optimizer we use, TPE, requires box constraints. Here we specify our search space for the
optimization variables, ® in Algorithm [T}

"The possibly confusing name “least confident” for this idea originated within the context of
uncertainty sampling, where we are interested in sampling the most uncertain point, z* =
arg min_ [maxy, c(1,2,....cy M (y:|z)], which may be considered to be the instance with the “least most confi-
dent label”.

20

P N N

8
9
10
11
12

Under review as a conference paper at ICLR 2026

(b) margin

(c) least confident (d) entropy

Figure 3: Visualizations of different uncertainty metrics. (a) shows a 4-label dataset on which linear
SVM is learned. (b), (c), (d) visualize uncertainty scores based on different metrics, as per the linear
SVM, where darker shades imply higher scores.

Algorithm 2: Sample based on uncertainties and ¥

Data: Sample size Ny, oracle Mo, dataset D = {(z;,y;)},, IBMM parameters
U ={a,a,b,d b}

Result: Sample D’, where |D’'| = N
D'={}// assumed to be a multiset
{(c1,n1), (c2,m2), ..., (ck,ni)} < partition Ny using the DP // Here Zle n; = Ns.
for i < 1to k do
A; ~ scale x Beta(a,b)
B; ~ scale x Beta(a',b)
for j < 1to N do

pj < ¢ Beta(um, (x;); Ai,Bi) // ¢ is a normalizing constant s.t.

N
§i c-pj=1.
end

temp < sample with replacement n; instance-label pairs based on p;
D' < D'Wtemp// W is the multiset sum

end
return D’

1. po: We want to allow the algorithm to pick an arbitrary fraction of samples from the original
data; we set p, € [0, 1].

2. N,: We set N, € [400,10000]. The lower bound ensures we have statistically significant
results. The upper bound is set to a reasonably large value.

3. {a,b,a’,V'}: Each of these parameters are allowed a range [0.1, 10] to allow for a wide
range of shapes for the component Beta distributions.

4. scale: We fix scale = 10000 for our experiments, to allow for A; and B; to model skewed
distributions where shape parameter large values might be required. For small values, the
algorithm adapts by learning the appropriate {a, b, a’,b'}.

5. a: ForaDP, a € R+ (. We use a lower bound of 0.1.

21

® 9 & W

10
11
12
13
14
15
16
17

Under review as a conference paper at ICLR 2026

Algorithm 3: Learning interpretable model using oracle - reproduction of Algorithm I

Data: Dataset D, model size 1), traino (), traing q(), iterations T’
Result: Optimal parameters ®*, test set accuracy s, at *, and interpretable model M * at &*
Create splits Dyrqin, Dyal, Dtest from D, stratified wrt labels. Here
|Dirain| : |Dvat] ¢ |Dtest| :: 60 : 20 : 20.
Mo + traino,h(Dtmim *)
fort < 1to T do

b, + suggest(sg, s1,.--St—1, Po, P1y..., Pp—1) // $0,Pp initialized at t=0,
see text. Note: & ={Uy, Ns;,poi} where U, = {a, a, b, ap,b}.
No < pot X N
N, < Ng4 — N,
D, + uniformly sample with replacement N, points from D,
D,, < sample N,, points from Dy,;,, using the DP-based IBMM given current values for
Ny, Mo, Dirain, Ve // see Algorithm for details
D+~ D,wD,// D, D, are assumed to be multisets
M, < traing 4(Ds,n)
8¢ < ace(My, Dyar)
end
t* < argmax, {s1, 82, ..., ST—1, ST}
O* @t*
M* + My«

Stest < acc(M™*, Dyest)
return O, sy, M*

To determine the upper bound, we rely on the following empirical relationship (Ohlssen
et al., 2007)) between the number of components k and o

E[k|a] ~ 50 + 2 (6)

We empirically estimated a fairly inclusive upper bound on the number of components to
be 500, which provides us the « upper bound of 99.6. Thus, we use « € [0.1,99.6].

A.4 NOTES ON THE MAIN ALGORITHM

We provide some additional details in reference to the main algorithm - Algorithm [1|- in the paper.
For convenience, we reproduce the algorithm here, as Algorithm[3] Our notes follow:

1. We will consider the initialization to happen at ¢ = 0, while the iterations range from 1 to
T. dgissetto: « =0.1,a=1,b=1,a’ = 1,0/ = 1, Ny = |Dyrainl|,po = 1. A model
is constructed based on @ and a score s is recorded. (Pg, so) serve as the history for the
iteration at ¢ = 1. The values for «, a, b, a’, b’ carry no significance and are arbitrary, since
setting p, — 1 forces sampling only from the original distribution. Combined with N, =
| Ditrainl, this setting mimics the baseline, i.e., training the interpretable model without our
algorithm, thus providing the optimizer with a good initial reference point in its search
space.

2. The optimizer is represented by the function call suggest() which takes as input all past
parameter values and validation scores. suggest() denotes a generic optimizer; not all
optimizers require this extent of historical information.

3. While the training algorithm for the oracle, traine () is taken as input, a pre-constructed
oracle Mo may also be used. This would eliminate the oracle training step in line 2.

4. acc() on the validation data, D,,q;, serves as both the objective and fitness function.

5. Evaluation on the test set, Dy, is done only once, in line 16, with the model that produces
the best validation score.

6. Since we sample with replacement, both temporary datasets D, and D,,, procured from
uniformly sampling the original training data and sampling based on uncertainties respec-
tively, are multisets. Accordingly, line 9 uses the multiset sum operator & to combine them.

22

Under review as a conference paper at ICLR 2026

7. M, is created (line 10) with limited or no hyperparameter search using simple random

validation, i.e., a stratified (by labels) random sample of size 0.2 ; is used as the vali-
dation set. A restricted search is performed because often hyperparameters are correlated
with model size, and setting them to particular values would fail to produce a model of
the required size 7. As an example, consider DTs: setting a high threshold for the number
of instances in a node for it be split (hyperparameter min_samples_split in scikit-learn’s
(Pedregosa et al., |2011)) implementation) would produce only short trees.
We don’t use cross-validation since at small values of IV, ;, the amount of training data, i.e.,
(%)Nsi for k-folds, may become too small to obtain a good model. For example, for
3-folds, the training data size is 0.67N, ;. The data shortage problem can be addressed by
increasing the number of folds, but that also increases the running time per iteration owing
to the larger number of models that now need to be trained. As a practical compromise, we
perform simple validation thrice and average the outcomes. This number is configurable,
and may be decreased for models that are expensive to train.

8. Since the validation score s; (line 11) needs to be reliable, in our implementation we repeat
lines 7-10 thrice and use the averaged validation score as s;.

9. Class imbalance is accounted for in our implementation when training model M, in line 10.
We either balance the data by sampling (this is the case with a Linear Probability Model),
or an appropriate cost function is used to simulate balanced classes (this is the case with
DTs and GBMs).

It is important to note here that D, and Dycsy are not modified by our algorithm in any way, and
therefore s; and s;.s; measure the accuracy on the original distribution.

A.5 SMOOTHING THE OPTIMIZATION LANDSCAPE

A practical consideration in our implementation is if we might facilitate finding the maxima ®* in
Algorithm [T}

Since BayesOpt algorithms model the response surface of the actual objective function using a finite
number of evaluations (s; in Algorithm [I), a certain degree of smoothness is assumed (Shahriari
et al.| 2016} Brochu et al., 2010). Here, the optimization variables ® influence the objective value
s via this indirect chain: ®; — Dy, — M; — s; (symbols as in Algorithm|[T), and for BayesOpt to
work well, it is required that small changes in ®; result in small changes in s;.

However, we have noticed that an oracle might produce uncertainty score distributions that are
“spiky” or “jagged” - as an example, see the curve labelled “original” in Figure f{a); which leads
us to hypothesize that this principle is violated in general. A spiky distribution implies that small
shifts &, + A®,; may lead to sampling of instances with very different uncertainties; and since such
instances may occur in regions far from those indicated by ®,, they produce models with different
class prediction behavior. This indirectly causes a disproportionate shift in s;. While, in theory, a
good BayesOpt algorithm should adapt to such problem characteristics, in practice they make the
optimization problem harder, especially when the optimization budget is small.

To address this, we “flatten” the distributimﬂ within [0, 1]. Our transformation is simple: we divide
the interval [0, 1] into B bins, and map approximately |Dy,qin|/B uncertainty scores to each bin,
while maintaining order between the original and mapped scores. Within a bin, the mapped scores
are linearly spread across its range. This distributes the mapped scores approximately uniformly in
the range [0, 1]. The algorithm is detailed in Algorithm 4]

Figure 4| visualizes the process of flattening. The original and modified uncertainty distributions for
the datasets Sensorless and covtype.binary are shown in Figuredfa) andf[b) respectively.

While Sensorless appears to have a non-smooth distribution, and flattening here might help, this
seems redundant for covtype.binary. However, since this step is computationally cheap, we
perform this for all our experiments, saving us the effort of assessing its need.

8Distribution transformations have a long history in statistics, e.g., power transforms like the Box-Cox (Box
& Cox, [1964) and Yeo-Johnson (Yeo & Johnson, [2000) transforms. Within ML, Batch Normalization (lotfe
& Szegedyl [2015) is a popular example of a distribution transformation applied to a loss landscape (Santurkar
et al., [2018).

23

WO =

o ® N o e

11
12

13

14
1

n

Under review as a conference paper at ICLR 2026

Algorithm 4: Flatten distribution of uncertainty scores {u(x1), u(z2), ..., u(xn)}

Data: {u(z1), u(x2),...,u(zy)}, number of bins B

Result: {u'(x1),u (z2),...,u (zn)}

bin_size < [N/B], bin_range < 1/B

bin-min + [], bin-max < ||

Let sortedIndex(i) € {1,2, ..., N} be the index of u(x;) in the sequence of scores ordered by
non-decreasing values.

for j < 1to B do
bin_min[j] < min{u(x;)|i € {1,2,..., N} A sortedIndex(i) = j}
bin_mazx[j] + max{u(xz;)|i € {1,2,..., N} A sortedIndex(i) = j}
end
fori < 1to N do
j « sortedIndex(7)
bin_num < [j/bin_size]
boundary_low + (bin-num — 1) X bin_range + §
boundary_high < bin_num X bin_range — §
' (x;) + low + bhﬁfi;l@?TgZﬁZ}fi[j] x (boundary_high — boundary_low)
end

return {v'(z1), v (z2),...,u (zn)}

1.4
—— original
—— flattened

2.00 —— original
—— flattened

1.2

1.0

0.8

- -
g 2 1.00
0.6
0.75
0.4
0.50
02 0.25
0.0 AN ann ~ M And 0.00
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
uncertainty uncertainty
(a) Sensorless, GBM (b) covtype.binary, GBM

Figure 4: Example of curve-flattening, for datasets (a) Sensorless and (b) covtype.binary.
The uncertainty scores shown are obtained using the GBM oracle.

Our transformation is invertible, which is useful in analyzing the observations from our experiments.
Note however, it is not differentiable because of the discontinuities at the bin-boundaries; we also
don’t require this property.

The transformation affects line 7 in Algorithm 2] Instead of sampling based on the actual oracle
uncertainty scores:

pj < Beta(un, (x;); Ai, B;) (7
we sample based on the transformed uncertainty scores, u, (z;):

pj + Beta(uy, (x;); Ai, B;) 8)
In §A.6) we show that smoothing indeed has a positive effect.

A.6 EFFECT OF SMOOTHING

We first consider the question: does flattening (§A.5)) help? Table [2] contrasts improved F'1 scores
obtained without (rows denoted as “original”’) and with (denoted “flattened”) flattening the uncer-

24

Under review as a conference paper at ICLR 2026

Table 2: Improved scores averaged over three trials, shown for different parameter settings, with
and without flattening. Here, Setting 1 is {rmax_components = 500, scale = 10000} and Setting
2 is {max_components = 50, scale = 10}. “curr” signifies this is the current setting for our
experiments in the main paper, while “low” signifies lower values of parameters. Highlighted cells
indicate positive effect of flattening.

Setting 1 (curr.) Setting 2 (low)
dataset dist. 1 2 3 1 2 3
Sensorless original 0.39 0.54 0.57 0.38 0.42 0.41

flattened 0.44 053 0.55 0.43 0.54 0.59
covtype.binary original 0.66 0.69 0.71 0.64 0.66 0.71
flattened 0.68 073 0.73 0.65 0.71 0.71

tainty distribution. This is shown for the datasets Sensorless and covtype.binary, for
model size € {1,2,3}, with model = LPM and oracle = GBM. Two different parameter set-
tings are used: (a) In Setting 1, maximum allowed Beta components are 500 and scale = 10000
(b) Setting 2 looks at much lower values of these parameters where maximum allowed components
is 50 and scale = 10. The scores presented are the average over three trials.

We observe that while flattening influences results, other parameters determine the magnitude of its
effect. At Setting 1, Sensorless is affected at size = 1 (flattening is better), but at higher sizes
the differences seem to be from random variations across trials. At Setting 2 however, the differences
are seen for size € {1,2,3} (flattening is better). For covtype.binary only size = 2 seems to
be affected in either setting.

Recall we had noted in Figure [4] that the datasets Sensorless and covtype.binary have
non-smooth and smooth uncertainty distributions respectively. The observations in Table [2] align
well with the expectation that Sensorless is positively affected by the transformation, while
results for covtype .binary remain mostly unchanged.

Based on these tests, we hypothesize that for non-smooth uncertainty distributions, flattening makes
our technique robust across parameter settings. It does not affect smooth distributions in a significant
way. Of course, rigorous and extensive tests are required to conclusively establish this effect.

A.7 DATASETS

Table |3| provides details about the various datasets used in the experiments in All of these are
publicly available on the LIBSVM website (Chang & Lin, [2011a)).

The “Label Entropy” column indicates how balanced a dataset is wrt its classes. For a dataset with
N instances and C labels, this is calculated as:

Label Entropy = Z —pj loge pj ©)
je{1,2,....C}
Here, p; — w

Label Entropy € [0, 1], where values close to 1 denote the dataset is nearly balanced, and values
close to 0 represent relative imbalance.

A.8 VALIDATION RESULTS

An extended version of the results shown in Table[T]are presented here in Table[d] This shows results
for all combinations of models and oracles: {LPM, DT} x {GBM, RF'}.

We also perform a Wilcoxon signed-rank test (Wilcoxon, [1945) to measure statistical significance.
We use this test as it has been shown to be useful in comparing classifiers (Demsar, 2006} Benavoli
et al.l 2016} Japkowicz & Shah| [2011). Results are shown in figure [5|for the following test setup:

25

Under review as a conference paper at ICLR 2026

Table 3: We use the following datasets available on the LIBSVM website (Chang & Lin, [2011a).
Their original source is mentioned in the “Description” column. 10000 instances from each dataset
are used. A train : wval : test split ratio of 60 : 20 : 20 is used for Diyqin, Dyar and Diegt in
Algorithm([T] The splits are stratified wrt labels.

S.No. Dataset Dimensions # Classes Label Entropy = Description

1 cod-rna 8 2 0.92 Predict presence of non-coding RNA common to a pair
of RNA sequences, based on individual sequence prop-
erties and their similarity .

2 ijennl 22 2 0.46 Time series data produced by an internal combustion
engine is used to predict normal engine firings vs mis-
firings (Prokhorov]200T). Transformations as in[Chang|

3 higgs 28 2 1.00 Predict if a particle collision produces Higgs bosons or
not, based on collision properties ‘

4 covtype.binary 54 2 1.00 Modification of the covtype dataset (see row 12), where
classes are divided into two groups
-

5 phishing 68 2 0.99 Various website features are used to predict if the web-

site is a phishing website (Mohammad et al.] 2012).
Transformations used as in (2016}
6 ala 123 2 0.80 Predict whether a person makes over 50K a year, based

on census data variables (Dua & Graff|[2017). Trans-
formations as in Platt|(1998).

7 pendigits 16 10 1.00 Classify handwritten digit samples into the digits 0-9
(ATimoglu & Alpaydin] Dua & Graff] [2017).
8 letter 16 26 1.00 Images of the capital letters A-Z were produced by ran-

dom distortion of these characters from 20 fonts. The
task is to classify these character images as one of the
original letters (Michie et al.][T995). Transformations
as in|Hsu & Lin|(2002]

9 Sensorless 48 11 1.00 Based on phase current measurements of an electric mo-
tor, predict different error conditions (Paschke et al.
2013). We use the transformations fr
(2018).

10 senseit_aco 50 3 0.95 Predict vehicle type using acoustic data gathered by a

sensor network (Duarte & Hu .
11 senseit_sei 50 3 0.94 Predict vehicle type using seismic data gathered by a

sensor network @
12 covtype 54 7 0.62 Predict forest cover type from cartographic variables

(Dean & B acEara] Dua & Uraf'f]

13 connect-4 126 3 0.77 Predict if the first player wins, loses or draws, based on
board positions of the board game Connect Four
& Graff][2017).

26

Under review as a conference paper at ICLR 2026

Table 4: This table shows the average improvements, 4 F'1, over five runs for different combinations of models
and oracles: {LPM, DT} x {GBM,RF}. This is an extended version of the results in Table[I] The im-
provements are measured relative to the model at the first iteration.The best improvement for a model size and
oracle is indicated in bold. Here, 0 F'1 € (—o0, 00). Negative improvements are shown in underlined.

dataset model_ora 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cod-rna lpm_gbm 1.39 12.53 1476 15.73 1497 12.00 0.00 0.08 - - - - - - -
Ipm_rf 2.66 13.91 14.69 1534 16.06 1249 830 000 - - - - - - -
dt_gbm 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 -0.28 0.08 - - - - -
def 0.00 0.00 1.78 2.28 039 -002 017 047 000 072 - - - - -
ijennl lpm_gbm -0.16 3.36 3.93 0.00 5.19 4.18 3.85 3.79 3.69 2.99 2.97 321 3.11 3.26 3.02
Ipm_rf 0.19 2.80 3.36 3.65 333 194 358 330 346 381 266 465 399 382 485
dt_gbm 1.96 12.00 1015 11.37 1063 7.18 3.63 452 291 178 193 229 147 226 0.00
def 4.06 12.10 895 10.75 10.13 825 538 246 263 1.25 1.46 1.37 191 000 138
higgs Ipm_gbm 2929 17.80 1140 6.56 306 268 316 290 267 282 265 179 262 219 1.63
Ipm_rf 26.71 17.29 15.06 10.60 535 4.04 235 2.03 1.66 1.89 291 294 3.31 2.58 222
dt_gbm 0.00 0.00 1.86 0.26 0.93 0.45 - - - - - - - - -
def 4.04 1.26 1.74 1.32 154 091 - - - - - - - - -
covtype.binary lpm_gbm 76.52 6639 29.17 1251 918 528 494 456 392 356 3.62 331 259 283 239
Ipm_rf 96.77 63.38 1436 9.61 679 394 293 28] 296 284 231 226 200 243 222
dt_gbm 0.00 0.00 2.35 1.27 1.18 1.11 0.00 000 000 - - - - - -
derf 0.00 0.00 2.10 2.33 244 239 184 219 165 070 - 089 - - -
phishing Ipm_gbm 0.00 1.88 2.88 3.05 322 325 299 1.69 142 145 129 000 0.00 000 0.00
Ipm_rf 0.00 2.14 3.29 3.22 3.59 3.79 3.29 2.05 1.42 1.44 1.24 1.23 1.16 1.26 1.02
dt_gbm 0.00 0.00 0.00 0.07 039 000 028 022 044 023 000 000 0.00 000 0.00
def 0.00 0.72 0.00 0.57 0.00 -017 013 048 0.3 005 003 -003 -028 0.00 -0.16
ala lpm_gbm 0.00 2.55 7.58 8.98 8.40 8.03 8.90 8.23 8.17 7.90 5.96 7.10 6.97 6.18 5.73
Ipm_rf 0.00 417 8.81 9.92 988 947 899 931 919 926 933 825 715 755 798
dt_gbm 0.00 5.54 2.39 3.84 355 255 1.51 225 487 - - - - - -
def 0.00 6.44 3.36 5.60 340 594 606 497 489 401 473 521 - - 4.53
pendigits Ipm_gbm 51.39 23.44 16.18 8.95 8.84 6.63 4.86 1.83 227 2.16 2.44 2.16 333 297 273
Ipm_rf 46.28 22.74 21.72 8.80 8.47 6.29 6.48 1.69 3.03 2.79 234 2.68 2.70 3.02 0.00
dt_gbm 14.02 6.72 5.11 13.14 642 420 246 1.09 098 016 -026 0.00 0.00 0.00 0.00
derf 2146 418 5.22 14.51 736 455 286 000 000 000 000 000 000 000 0.00
letter Ipm_gbm 57.06 4848 59.85 29.76 36.09 1927 2037 1608 17.55 1516 1726 1651 1846 17.19 15.55
Ipm_rf 61.06 6534 6426 2369 3520 2615 2210 20.74 2091 2031 19.28 21.40 20.77 1939 18.18
dt_gbm 0.00 13.98 25.05 33.96 3205 1549 1117 0.00 4.26 3.50 199 0.00 0.00 0.00 0.00
derf 0.00 12.21 28.67 33.47 3351 1841 8.10 0.00 1.84 1.21 1.31 0.67 0.61 0.11 -0.08
Sensorless Ipm_gbm 21647 25756 178.31 117.01 90.70 83.90 73.50 6595 61.57 5797 56.54 57.15 5545 6624 6824
Ipm_rf 22418 21028 13444 115.00 8585 7496 66.77 61.10 66.88 64.65 69.00 70.09 7291 80.14 82.15
dt_gbm -0.01 4242 68.13 4438 17.39 1032 1.82 144 079 0.64 041 012 000 -0.02 0.34
def 0.00 5254 57.10 44.61 1663 619 219 096 051 0.00 048 033 000 000 0.10
senseit_aco Ipm_gbm 17371 170.68 6395 4420 3349 2299 19.14 1350 1029 759 626 592 530 489 432
Ipm_rf 177.67 18126 79.86 42.86 37.60 28.80 23.75 19.06 1391 1074 848 6.09 520 532 4.62
dt_gbm 14.89 0.00 371 232 4.85 0.81 0.00 - - - - - - - -
derf 20.03 2.54 3.64 591 334 2.63 0.00 0.00 - - - - - - -
senseit_sei Ipm_gbm 160.59 65.27 23.44 10.48 6.76 4.86 4.82 4.46 4.79 4.12 4.54 5.17 391 421 4.46
Ipm_rf 16598 63.72 31.58 1494 9.07 579 495 507 524 470 460 374 430 435 435
dt_gbm 2.66 1.01 3.49 2.29 095 130 137 000 - - - - - - -
def 2.33 0.00 3.36 1.65 0.87 000 -123 - - - - - - - -
covtype lpm_gbm 36.87 4924 1278 1121 784 7.5 715 807 770 825 1094 835 437 877 584
Ipm_rf 3215 3949 1049 853 8.11 8.59 9.61 1199 1122 991 847 816 1034 1376 12.92
dt_gbm 34227 9285 4323 20.04 8.14 8.05 5.67 3.26 4.92 3.52 2.72 0.00 0.00 0.00 1.74
derf 35445 98.94 50.87 14.10 9.46 7.38 4.76 4.20 0.94 1.81 2.30 0.71 -0.37 0.00 0.00
connect-4 Ipm_gbm 37.62 11.66 12.01 6.84 5.68 6.82 4.58 2.10 3.82 3.21 3.02 3.64 2.32 2.97 3.40
Ipm_rf 33.77 12.99 17.60 14.66 1591 10.73 6.38 5.35 7.07 6.98 2.84 3.14 2.09 252 2.46
dt_gbm 89.33 2923 2020 1210 973 988 782 743 057 4.61 1.08 335 223 115 155
dexf 11371 2191 20.52 11.23 16.86 1096 10.64 9.11 651 588 676 216 297 0.61 0.00

1. We divide the analysis by model size. This is because size strongly influences § F'1 (as in
Table[d).

2. Normalized model sizes are used. Binning of model sizes is done using Sturges rule
(Sturges| |1926).

3. The one-sided version of the paired test is performed for each bin, where pairs of scores
F1bes¢ and F1* for a dataset, for models with sizes assigned to the bin, are compared. In
cases were where multiple model sizes for a dataset fall within the same bin, F’ 1base and
F'1* are first averaged and then compared.

4. The following hypotheses are tested:

* H, null hypothesis: accuracies of models produced by our technique are not better.
* H,, alternate hypothesis: accuracies of models trained using the oracle are better.

p-values are shown for each bin. Small p-values favor Hq, i.e., our algorithm.

27

Under review as a conference paper at ICLR 2026

(a) model=LPM, oracle=GBM

0.0010

b) model=LPM, oracle=RF
0.0010
0.0008 0.0008

(
0.0006 0.0006
0.0004 0.0004
0.0002 0.0002
0.0000 0.0000
2 4 6 8 2 4 6 8

model size bins model size bins

p-value
p-value

(c) model=DT, oracle=GBM (d) model=DT, oracle=RF
0.025

0.020

0.015

p-value
p-value

0.02
0.010

- II
0000 .----- 000 S —
2 4 6 8 2 4 6 8

model size bins model size bins

0.01

Figure 5: These plots show the p-values for the Wilcoxon signed-rank test, with the null hypothesis
Hy: using the oracle does not produce better F1 test scores. The bin boundaries are selected using

the Sturges rule [1926). Low p-values favor our algorithm.

5. Scores of 6 F'1 = 0 are split equally between positive and negative ranksﬂ

A.9 COMPARISON WITH THE APPROACH BASED ON DENSITY TREES

As mentioned in §4.2| we benchmark against the density tree technique (Ghose & Ravindran| (2020)
because that’s the closest in terms of methodology. Their metric is slightly different from ours.
Instead of reporting results for F'1*, they report them for max(F1*, F1°?%¢), This is an “outcome-
centric” VieWEI, where you can’t do worse than your best model. For this case, § F'liest € [0, 00).
We also follow this scoring scheme in this section to match their reporting.

We report two scores for comparison (den and ora denote density trees and our oracle based tech-
nique respectively):

1. To compare improvements, we use the Scaled Difference in Improvement (SDI):

(§F1°7a — §F1en) /H, if H > 0
0, if H=0

where H = max {§F19" §F1°7*}

SpI— { (10)

Here 0 F1°7® and §F'19¢™ are the improvements from our technique and by using density
trees, respectively. The scaling wrt H ensures that SDI € [—1, 1] making it convenient to
interpret. Note that H > 0 since both § F'1°"* > 0 and F’ 19" > () in the current scoring

°The zplit option in https://numpy.org/doc/stable/reference/generated/numpy.
histogram_bin_edges.htmlis used.

'Y Another reason provided is that with a sufficient budget the optimizer will eventually learn to set p, = 1,
thus emulating M %@ exactly, if M®@*° is indeed the best possible model. In this case F'1 = 0 as per Equation

28

https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html

Under review as a conference paper at ICLR 2026

scheme. For brevity, we average the SDI scores at the level of a dataset, across model
sizes, for a given model and oracle. This averaged score is denoted by SDI, and this is
what we report.

2. Since SDI is aggregated over model sizes, we also report the percentage of times
dF1°7% > §F19¢" across these model sizes. This is denoted as pct_better

All 6F1°7% and 6 F1%" scores used are the averaged over five runs.

We consider our approach to be better if SDI > 0 and pct_better > 50%. These scores are shown
in Table[5] Since the density trees approach lacks a notion of an oracle, we present results for GBMs
and RFs separately. Numbers that represent superior performance by density trees are underlined.
Note also the two special groupings:

* ANY: For each model size, the SDI score considered is the higher of the ones obtained
from using the GBM or RF as oracles. The SDI and pct_better scores are computed
based on these scores. This grouping represents the ideal way to use our technique in
practice: try multiple oracles and pick the best.

* OVERALL: This averages results across datasets, to provide an aggregated view.

The cells identified by OVERALL and ANY provide comparison numbers aggregated over datasets,
model sizes and oracles.

Table 5: LPM, DT compared to the Density Tree approach. All §F1°"® and §F19°™ scores used are the
average over five runs. Cases where density trees fare better are underlined. The line in the middle separates
binary class datasets (top) from multi-class ones (bottom).

LPM DT

dataset GBM RF ANY GBM RF ANY

cod-rna -0.38, 0.00% -0.45, 0.00% -0.33, 0.00% 0.51, 60.00% 0.50, 70.00% 0.65, 80.00%
ijennl 0.06, 66.67% 0.11, 80.00% 0.20, 93.33% 0.23, 53.33% 0.68, 100.00% 0.68, 100.00%
higgs -0.07, 40.00% -0.07, 40.00% 0.04, 46.67% 0.23,50.00% 0.61, 83.33% 0.61, 83.33%
covtype.binary -0.16, 40.00% -0.33, 13.33% -0.15, 40.00% 0.23, 66.67% 0.26, 72.73% 0.38, 81.82%
phishing 0.30, 80.00% 0.37, 86.67% 0.38, 86.67% 0.11, 26.67% -0.00, 26.67% 0.23, 46.67%
ala -0.03, 60.00% 0.13, 66.67% 0.13, 66.67% -0.06, 44.44% 0.43, 75.00% 0.52, 83.33%
pendigits 0.59,100.00% 0.59, 93.33% 0.62,100.00% 0.23, 60.00% 0.16, 46.67% 0.25, 60.00%
letter 0.79,100.00% 0.81, 100.00% 0.81,100.00% 0.02, 33.33% -0.34, 13.33% 0.06, 40.00%
Sensorless 0.64, 100.00% 0.65, 100.00% 0.66, 100.00% -0.23, 20.00% -0.39, 20.00% -0.23, 20.00%
senseit_aco 0.55,100.00% 0.63,100.00% 0.63,100.00% 0.50, 85.71% 0.37, 75.00% 0.39, 75.00%
senseit_sei 0.61, 100.00% 0.66, 100.00% 0.67,100.00% -0.25, 42.86% 0.51, 100.00% 0.51, 100.00%
covtype 0.20, 80.00% 0.39, 93.33% 0.43,100.00% 0.26, 66.67% 0.16, 66.67% 0.40, 80.00%
connect-4 023, 73.33% 0.24, 66.67% 0.38, 86.67% -0.23, 33.33% -0.13, 53.33% 0.08, 66.67%

OVERALL 0.28, 75.00% 0.32, 75.00% 0.37, 81.38% 0.10, 47.06% 0.16, 57.23% 0.31, 67.30%

The predominance of non-underlined values indicate that our technique performs better in most
settings. In both cases, the OVERALL +ANY entries indicate that our technique works better on
average - in terms of both the extent of improvement SDI and its frequency pct_better.

29

Under review as a conference paper at ICLR 2026

Model families Model families
Fi | Fo | F
fl FQ JT:B Calculate row- ! 2 e
wise ranks. D%
Dy (2, 1, 3] e
(%] —
@ @ | Dy
3 3
© —> <} 2
+
] 3
Dy .1 gD
HENR =
3
Compare column values ~ Calculate D3
for statistical tests. column-wise
mean ranks.
(a) Standard comparison (b) With model sizes 1 € {2,3}

Figure 6: (a) shows a standard measurement scheme with datasets in rows and model families in
columns. Statistical tests are performed on the column values. Row-wise ranks are first computed for
calculating the mean rank. (b) To account for model sizes, we allow rows to represent combinations
of datasets and model sizes. See text for details.

A.10 EVALUATING COMPETITIVENESS

As mentioned in the main paper in §4.2] we consider the following tasks for evaluating competitive-
ness:

1. Building cluster explanation trees.

2. Prototype-based classification.

For evaluation on each of these tasks, we follow a common theme: (a) first, we show that a traditional
technique is almost always not as good as newer and specialized techniques, and, (b) then we show
that its performance may be radically improved by learning the training distribution. Collectively,
these evaluations show that the strategy of learning the training distribution is both general - may
be applied to different tasks, models, notions of model sizes - and effective - results in competitive
performance. We first detail our measurement strategy.

A.10.1 MEASUREMENT

While each task-specific section contains a detailed discussion on the experiment setup, we discuss
some common aspects here:

1. To compare model families F;, F», F3, each of which is, say, used to construct models
for different sizes) € {2, 3}, for datasets D1, Do, D3, we use the mean rank, and support
our conclusions with statistical tests such as the Friedman (Friedman, |1937) and Wilcoxon
signed-rank (Wilcoxon, [1945) test{']

Typically mean rank is used to compare model families based on their accuracies across
datasets - which, ignoring model sizes, may be visualized as a 3 x 3 table here, with rows
representing datasets, and columns denoting model families - see Figure [6[a). An entry
such as “Dy, F3” represents the accuracy (or some other metric) of a model from family
JF3 on dataset Dy. Models are ranked on a per-dataset basis, i.e., row-wise, and the average
ranks (computed per family, i.e., column-wise) are reported (lower is better). For statistical
tests, the column values are directly used.

"'The Wilcoxon signed-rank test was used here since it has been advocated by various studies for measuring
classification performance (Demsar, 2006; Benavoli et al., [2016; Japkowicz & Shah} 2011).

30

Under review as a conference paper at ICLR 2026

However, we have an additional factor here - the model size. To avoid inventing a custom
metric, we assimilate it in the previous scheme by using the combination of datasets and
model sizes as a row - see Figure[6(b). We think of such combinations as “pseudo-dataset”
entries, i.e., now we have a 6 x 3 table, with rows for D?, D3, D3, D3, D%, D3, and same
columns as before. The entry for “D?, F3” indicates the accuracy of a model of size 2 from
family F3 on dataset D;.

Effectively, now the comparisons automatically account for model size since we use
pseudo-datasets instead of datasets.Note that no new datasets are being created - we are
merely defining a convention to include model size in the familiar dataset-model cross-
product table.

2. For each model family, model size and dataset combination (essentially a cell in this cross-
product table), models are constructed multiple times (we refer to these as multiple “trials”),
and their scores are averaged. Five trials were used in our experiments.

A.10.2 EXPLAINABLE CLUSTERING

The first task we investigate is the problem of Explainable Clustering. Introduced by Moshkovitz
et al.| (2020), the goal is to explain cluster allocations as discovered by techniques such k-means
or k-medians. This is achieved by constructing axis-aligned decision trees with leaves that either
exactly correspond to clusters, e.g., lterative Mistake Minimization (IMM) Moshkovitz et al.[(2020),
or are proper subsets, e.g., Expanding Explainable k-Means Clustering (ExKMC) Frost et al.|(2020).
We consider the former case here, i.e., a tree must possess exactly k leaves to explain k clusters.

For a specific clustering C, let C'(x;) denote the assigned cluster for an instance x;,i = 1...N,
where C'(z;) € {1,2, ..., k}, and the cluster centroids by p;,j = 1, ..., k. The cost of clustering .J
is then given by:

J:%Z ol —ulls (11)

k
J=1 {@:]C(ai)=5}

In the case of an explanation trees with % leaves, u; are centroids of leaves. Cluster explanation
techniques attempt to minimize this cost.

The price of explainability maybe measured as the cost rati

J5a
cost ratio = —— (12)
KM

Here Jg, is the cost achieved by an explanation tree, and J s is the cost obtained by a standard
k-means algorithm. It assumes values in the range [1, co], where the lowest cost is obtained when
using k-means, i.e., Jg, and Jx s are the same.

One may also indirectly minimize the cost in the following manner: use k-means to produce a
clustering, use the cluster allocations of instances as their labels, and then learn a standard decision
tree for classification, e.g., CART. This approach has been shown to be often outperformed by tree
construction algorithms that directly minimize the cost in Equation [T} e.g., IMM.

© Algorithms and Hyperparameters
The algorithms we compare and their hyperparameter settings are as follows:

1. Iterative Mistake Minimization (IMM) Moshkovitz et al.| (2020): This generates a de-
cision tree via greedy partitioning using a criterion that minimizes number of mistakes
at each split (the number of points separated from their corresponding reference cluster
center). There are no parameters to tune. We used the implementation available here:
https://github.com/navefr/ExKMC, which internally uses the reference imple-
mentation for IMM.

2. ExShallow |Laber et al.|(2021): Here, the decision tree construction explicitly accounts for
minimizing explanation complexity while targeting a low cost ratio. The trade-off between

12This is referred to as the cost ratio in|[Frost et al.|(2020), price of explainability in Moshkovitz et al.| (2020)
and competitive ratio in Makarychev & Shan|(2022])).

31

https://github.com/navefr/ExKMC

Under review as a conference paper at ICLR 2026

dataset=mice-protein p-value of Friedman test =6.69e-06 (only top 3 were used)

Method
—— KMeans

1.06 / .\.‘” >2%. ; 2.0
& = g s
1.04 ./ \'f./ E ”
1.02 I o
00 0.0

ExShallow c_CART MM CART

cost ratio

method

(f) Mean Rank

ey /xxjéak i | Z\:<;‘ - /b/ﬁgé/
\hadie -\ e ¥
(b) Sensorless kc) coi/type (d) covtybe.binary » (e) a:vila

Figure 7: Comparisons over explainable clustering algorithms are shown. (a) shows the comparison
for a specific dataset mice-protein. (b), (c), (d) and (e) show comparisons over other datasets -
miniaturized to fit the page. (f) shows mean ranks of these techniques over five datasets across model
sizes; the Friedman test is conducted over the top three techniques only, with p = 6.688 x 1075.

clustering cost and explanation size is controlled via a parameter A. This is set as A = 0.03
in our experiments; this value is used in the original paper for various experiments. We used
the reference implementation available here: https://github.com/lmurtinho/
ShallowTree.l

3. CART: We use CART [Breiman et al.|(1984) as the traditional model to compare, and
maximize the classification accuracy for predicting clusters, as measured by the F1-macro
score. The implementation in scikit |[Pedregosa et al.| (2011)) is used. During training, we
set the following parameters: (a) the maximum number of leaves (this represents model
size m here) is set to the number of clusters k, and (b) the parameter class_weight is set to
“balanced” for robustness to disparate cluster sizes. Results for CART are denoted with
label CART. We then apply our technique to CART; these results are denoted as c_.CART.
We set T' = 2000, and use default settings for other parameters, e.g., N € [400, | X¢rqinl]-
Since we are explaining clusters (and not predicting on unseen data), the training, validation
and test sets are identical.

o Experiment Setup

The comparison is performed over five datasets (limited to 1000 instances), and for each dataset,
k = 2,3,...,10 clusters are produced. Results for the cost ratio (Equation[I2)) are reported over five
trials. Evaluations are performed over the following publicly available datasets: avila, covtype, cov-
type.binary, Sensorless/Chang & Lin| (2011b) and mice-protein|Dua & Graff]| (2017)). We specifically
picked these datasets since CART is known to perform poorly on them |[Frost et al.| (2020); Laber
(2021)), and thus these provide a good opportunity to showcase the power of this technique.

© Observations

Figure [/|presents our results. Figure a) shows the plot for the mice-protein dataset: the 95% con-
fidence interval, in addition to cost ratio, is showr@ Plots for other datasets are shown miniaturized
- (b), (¢), (d), (e) in the interest of space. The cost for k-means is shown for reference a blue hori-
zontal line at y = 1. Figure EKD shows the mean ranks of the various techniques (lower is better)
across datasets and number of clusters (as described in §A.T0.1] trials scores are averaged), and its
title shows the p-value= 6.688 x 10~ of a Friedman test conducted over the top three techniques:
we restrict the test to top candidates since otherwise it would be very easy to obtain a low score

It might come as a surprise that the cost ratio increases with increasing k, but this seems to be a transient
phenomenon; at even higher values of £ we do observe that cost ratios collectively decrease

32

https://github.com/lmurtinho/ShallowTree
https://github.com/lmurtinho/ShallowTree

Under review as a conference paper at ICLR 2026

favorable to us, due to the high cost ratios for CART. The low score indicates with high confidence
that ExShallow, IMM and c_CART do not produce the same outcomes.

From the plot of mean ranks in Figure [/[f), we observe that although CART performs quite poorly,
the application of our technique drastically improves its performance, to the extent that it competes
favorably with techniques like IMM and ExShallow; its mean rank places it between them. This is
especially surprising given that it doesn’t explicitly minimize the cost in Equation[IT] We also note
the following p-values from Wilcoxon signed-rank tests:

» CART vs c_.CART: p = 1.4783 x 10~ 5. The low value indicates that using our technique
indeed significantly changes the accuracy of CART.

* IMM vs c_CART: p = 0.0155. The relatively high value indicates that the performance of
¢_CART is competitive with IMM.

Here, both the Friedman and Wilcoxon tests are performed for combinations of datasets and k - a
“pseudo-dataset”, as discussed in §A.T0.1]

A.10.3 PROTOYPE-BASED CLASSIFICATION

dataset=adult p-value of Friedman test =3.50e-08 (only top 4 were used)

0.75

0.65

F1 macro (test)

0.60 —— ProtoNN
0.55

. r
0.50 . —c_—
/./'\c/ B
045 —0 -
0.40 0

mean rank (lower is better)

0.025 0050 0075 0100 0125 0150 0175 0.200 ProtoNN SNC C_RBFN KM_RBFN FCNN1

compression method

(a) adult (f) Mean Rank

[== = o,

N s

(b) covtype.binary (c) senseit-sei (d) senseit-aco (e) phishing

Figure 8: Various prototype-based classifiers are compared. (a) shows comparison for the dataset
adult. Number of prototypes are shown as percentage of the training data on the x-axis, and is re-
ferred to as “compression”. (b), (c), (d) and (e) shows plots for other datasets - these are miniaturized
to fit the page. (f) shows the mean ranks of techniques based on five datasets; the Friedman test is
conducted over the top four techniques only, with p = 3.5025 x 1078,

Next, we consider prototype-based classification. At training time, such techniques identify “proto-
types” (actual training instances or generated instances), that maybe used to classify a test instance
based on their similarity to them. A popular technique in this family is the k-Nearest Neighbor
(kNN). These are simple to interpret, and if a small but effective set of protoypes maybe identified,
they can be convenient to deploy on edge devices [Gupta et al| (2017); [Zhang et al| (2020). Pro-
totypes also serve as minimal “look-alike” examples for explaining models (Li et al., [2018}; [Nautal
2021). Research in this area has focused on minimizing the number of prototypes that need to
be retained while minimally trading off accuracy.

We define some notation first. The number of prototypes we want is an input to our experiments, and

is denoted by N,,. We will also use K-, (z;, ;) = e~ 1#=25l3 to denote the Radial Basis Function
(RBF) kernel, parameterized by the kernel bandwidth ~.

< Algorithms and Hyperparameters
These are the algorithms we compare:

33

Under review as a conference paper at ICLR 2026

1. ProtoNN |Gupta et al.| (2017): This technique uses a RBF kernel to aggregate influence
of prototypes. Synthetic prototypes are learned and additionally a “score” is learned for
each of them that designates their contribution towards each class. The prediction function
sums the influence of neighbors using the RBF kernel, weighing contribution towards each
class using the learned score values; the class with the highest total score is predicted. The
method also allows for reducing dimensionality, but we don’t use this aspec The various
parameters are learned via gradient based optimization.

We use the EdgeML library (Dennis et al., 2021)), which contains the reference im-
plementation for ProtoNN. For optimization, the implementation uses the version of
ADAM Kingma & Bal (2015) implemented in TensorFlow |Abadi et al. (2015); we set
num-epochs = 200, learning_-rate = 0.05, while using the defaults for other param-
eters. The num_epochs and learning_rate values are picked based on a limited search
among values {100, 200,300} and {0.01,0.05} respectively. The search space explored
for vy is [0.001, 0.01, 0.1, 1, 10]. Defaults are used for the other ProtoNN hyperparameters.

2. Stochastic Neighbor Compression (SNC) Kusner et al.[(2014): This also uses a RBF ker-
nel to aggregate influence of prototypes, but unlike ProtoNN, the prediction is performed
via the I-NN rule, i.e., prediction uses only the nearest prototype. The technique bootstraps
with randomly sampled [V,, prototypes (and corresponding labels) from the training data,
and then modifies their coordinates for greater accuracy using gradient based optimiza-
tion; the labels of the prototypes stay unchanged in this process. This is another difference
compared to ProtoNN, where in the latter, each prototype contributes to all labels to vary-
ing extents. The technique maybe extended to reduce the dimensionality of the data (and
prototypes); we don’t use this aspect.

We were unable to locate the reference implementation mentioned in the paper, so we
implemented our own version, with the help of the JAXopt library Blondel et al.| (2021).
For optimization, gradient descent with backtracking line search is used. A total of 100
iterations for the gradient search is used (based on a limited search among these values:
{100, 200, 300}), and each backtracking search is allowed up to 50 iterations. A grid search
over the following values of -y is performed: [0.001,0.01,0.1, 1, 10].

3. Fast Condensed Nearest Neighbor Rule Angiulli| (2005): Learns a “consistent subset”
for the training data: a subset such that for any point in the training set (say with label [),
the closest point in this subset also has a label [. Of the multiple variations of this technique
proposed in |Angiulli (2005), we use FCNN1, which uses the /-NN rule for prediction.
There are no parameters to tune. We used our own implementation.

A challenge in benchmarking this technique is it does not accept IV, as a parameter; instead
it iteratively produces expanding subsets of prototypes until a stopping criteria is met, e.g.,
if prototype subsets V; and V;,; are produced at iterations ¢ and ¢ + 1 respectively, then
they satisfy the relationship V; C V;4;. For comparison, we consider the performance at
iteration 7 to be the result of IV, prototypes where N, is defined to be |V;], i.e., instead of
setting IV,,, we use the value the algorithm produces at each iteration.

4. RBFN: For the traditional model, we use Radial Basis Function Networks (RBFN)Broom-
head & Lowe|(1988). For a binary classification problem with classes {—1, 1}, given proto-
types z;,1 = 1,2, ..., p, the label of a test instance « is predicted as sgn(>_F w; K, (z, x;))
(a score of 0 is set to a label of 1). Weights w; are learned using linear regression. A one-
vs-rest setup is used for multiclass problems. For our baseline, we use cluster centres of a
k-means clustering as our prototypes, where k is set to N,,. These results are denoted using
the term KM_RBFN. In our version, denoted by ¢c_RBFN, the N, prototypes are sampled
from the training data. IV, represents model size 1) here.

Note that the standard RBFN, and therefore the variants used here KM_RBFN and c_RBFN,
don’t provide a way to reduce dimensionality; this is the reason why this aspect of ProtoNN
and SNC wasn’t used (for fair comparison). We set T' = 1000 and NN was set to N, to get
the desired number of prototypes.

14The implementation provides no way to switch off learning a projection, so we set the dimensionality of the
projection to be equal to the original number of dimensions. This setting might however learn a transformation
of the data to space within the same number of dimensions, e.g., translation, rotation.

34

Under review as a conference paper at ICLR 2026

Although all the above techniques use prototypes for classification, it is interesting to note variations
in their design: ProtoNN, SNC, KM_RBFN use synthetic prototypes, i.e., they are not part of the
training data, while c RBFN and FCNNI select N, instances from the training data. The prediction
logic also differs: ProtoNN, KM_RBFN, c_RBFN derive a label from some function of the influence
by all prototypes, while SNC and FCNN1 use the 1-NN rule.

<o Experiment Setup
As before, we evaluate these techniques over five standard datasets: adult, covtype.binary, senseit-
sei, senseit-aco, phishing Chang & Lin| (2011b). 1000 training points are used, with N, &
{20, 40, 60, 80, 100, 140, 160, 180,200}. Results are reported over five trials. The score reported
is the Fl-macro score.

o Observations

Results are shown in Figure [§] (a) shows the plot for the adulr dataset. The number of prototypes
are shown on the x-axis as percentages of the training data. Plots for other datasets are shown in (b),
(c), (d) and (e); these have been miniaturized to fit the page. Figure f) shows the mean rank (lower
is better) across datasets and number of prototypes (as described in m trials are aggregated
over). The p-value of the Friedman test is reported, p = 3.5025 x 107°. Here too, we do not
consider the worst performing candidate, FCNNI1 - so as to not bias the Friedman test in our favor.

We observe in Figure [§{f) that while both ProtoNN and SNC outperform ¢_RBFN, the performance
of SNC and ¢_RBFN are close. We also observe that FCNN1 performs poorly; this matches the
observations in |[Kusner et al.| (2014).

We also consider the following p-values from Wilcoxon signed-rank tests:

1. KM_RBFN vs ¢ RBFN: p = 1.699 x 10~%. The low value indicates that our technique
significantly improves upon the baseline KM_RBFN.

2. SNC vs c.RBFN: p = 0.1260. The relatively high value here indicates that c_ RBFN is
competitive with SNC; in fact, at a confidence threshold of 0.1, their outcomes would not
be interpreted as significantly different.

As discussed in §A.10.1] these statistical tests are conducted over a combination of dataset and
model size.

A.11 RUNTIMES

For our experiments in the main paper, we used the hyperopt library on account of its popularity and
maturity. Its acquisition function approximates the Probability of Improvement (PI) utility function
(Song et al., [2022), which can exhibit greedy behavior (Garnett, 2023)). In contrast, we might use a
different utility function, such as Expected Improvement (EI), which is relatively more exploratory,
and thus, is likely to find better extrema.

We present some initial results around this line of thought. Instead of using the naive EI, we use
a numerically stable version called LogEI (Ament et al., 2023) from the BoTorch (Balandat et al.,
2020) package. We also note that we might use an acquisition function that can explicitly account
for nois thus bypassing the need for estimating s; in Algorithm [3| via averaging (see notes in

SA.4).

Table E] shows results for datasets ala and ijcnnl, where the interpretable model is a DT and the
oracle is a GBM. We assume homoscedastic noise with variance of 0.5. hyperopt was provided
a budget of T = 3000 evaluations as in the main paper, while BoTorch was allowed T' = 200
iterations. We observe that significant speedups are obtained without mostly noticeable change in
the quality of results - the only exception seems to be for ijcnnl, for depth = 2. To take an example,
for the dataset ala, for DT depth = 1, the time taken by hyperopt is 3193.27 seconds or 53 minutes,
while BoTorch offers of speedup of 21.57x; this is a runtime of 3193.27/21.57 = 148.04 seconds
or ~ 2 minutes.

5We use this particular function: https://botorch.readthedocs.io/en/latest/
acquilsition.html#botorch.acquisition.analytic.LogNoisyExpectedImprovement,

35

https://botorch.readthedocs.io/en/latest/acquisition.html#botorch.acquisition.analytic.LogNoisyExpectedImprovement
https://botorch.readthedocs.io/en/latest/acquisition.html#botorch.acquisition.analytic.LogNoisyExpectedImprovement

Under review as a conference paper at ICLR 2026

Table 6: Difference between using BoTorch with the noisy LogEI acquisition function, and hyperopt.
The table shows: (a)hyperopt runtimes (in seconds), (b) percentage point (pp) difference between
the %-age improvements seen between BoTorch and hyperopt, and (c) the speedup in wallclock
runtime with BoTorch. BoTorch and hyperopt were run for 200 and 3000 iterations respectively.
For these examples, BoTorch runs significantly faster. Aside from one case - ijcnnl, depth = 2,the
performance degradation is reasonable. In some cases, it seems to perform better. Results are
averaged over three runs.

dataset tree depth = 1 2 3 4 5
timeny, = 3193.27s, 4228.81s, 3867.64s, 4843.54s, 3610.96s,
ala pp = +0.19, +1.87 +3.22, —0.43, +4.04,
speedup = 21.57x 27.02x 25.23x 34.50x 27.86x
4221.34s, 3902.53s, 4613.63s, 4362.36s, 4962.23s,
ijennl —2.39, —7.84 —3.47, —1.36, +0.20,
28.37x 24.62x 29.01x 27.20x 29.59x

A.12 MULTIVARIATE MODEL SIZES

Our technique is applicable even when the model size has more than one attribute. This is because
Algorithm E] delegates size enforcement to trainz, . Consider GBMs, where we might consider a
bivariate size, n = [maxz_depth, num_trees]; here the quantities respectively denote the maximum
depth allowed for each constituent DT in a GBM, and the number of DTs in the GBM. In Figure
@l, we show how improvements for GBMs vary when 1 < max_depth < 5 (z-axis) and 1 <
num_trees < 5 (y-axis); the oracle used is a GBM as well (unconstrained in size). Results are
averaged over three runs for these datasets: (a) senseit-sei (b) higgs (c) cod-rna and (d) senseit-aco
here. We continue to observe pattern that as model sizes increase, in terms of both max_depth and
num_trees, improvements decrease.

A.13 DIFFERENT FEATURE SPACES

In our validation experiments in §4.1.2] the feature vector representation was identical for the oracle
and the interpretable model. This is also what Algorithm [T]implicitly assumes. Here, we consider
the possibility of going a step further and using different feature vectors. If fo» and fr are the
feature vector creation functions for the oracle and the interpretable model respectively, and x; is a
“raw data” instance, then:

1. The oracle is trained on instances fo(z;), and provides uncertainties uo (fo(x;)).

2. The interpretable model is provided with data fz(x;), but the uncertainty scores available
to it are up (fo (z;)).

The motivation for using different feature spaces is that the combination (O, f») may be known to
work well together and/or a pre-trained oracle might be available only for this combination.

We illustrate this application with the example of predicting nationalities from surnames of indi-
viduals. Our dataset (Rao & McMahan, 2019) contains examples from 18 nationalities: Arabic,
Chinese, Czech, Dutch, English, French, German, Greek, Irish, Italian, Japanese, Korean, Polish,
Portuguese, Russian, Scottish, Spanish, Vietnamese. The representations and models are as follows:

1. The oracle model is a Gated Recurrent Unit (GRU) (Cho et al.| [2014), that is learned on
the sequence of characters in a surname. The GRU is calibrated with temperature scaling
(Guo et al.[[2017).

2. The interpretable model is a DT, where the features are character n-grams, n € 1,2, 3. The
entire training set is initially scanned to construct an n-gram vocabulary, which is then used
to create a sparse binary vector per surname - 1s and Os indicating the presence and absence
of an n-gram respectively.

36

Under review as a conference paper at ICLR 2026

(a) dataset: senseit_sei (b) dataset: higgs
0 175 0 - 70
- 150 - 60
< <
" -125
i [
< o
b= =
o -100 £'7
3 3
c c
~-75
o~ o~
- 50
- —
-25
1 2 3 4 5 1 2 3 4 5
max_depth max_depth
(c) dataset: cod-rna (d) dataset: senseit_aco

- 200

— 175

- 150

- 125

3
3

— 100

num_trees
num_trees

- 75

-50

=25

1 2 3 4 5 1 2 3 4 5
max_depth max_depth

Figure 9: Improvements in test F'1-macro for multiple datasets for different sizes of G BM models
are shown. (a) Top-left: senseit-sei (b) Top-right: higgs (c) Bottom-left:cod-rna and (d) Bottom-
right: senseit-aco. Here, model size is the combination of max_depth and number of trees in the
G BM model. Greater improvements are seen at lower sizes.

Figure [I0] shows a schematic of the setup.

The n-gram representation leads to a vocabulary of ~ 5000 terms, that is reduced to 600 terms
based on a y2-test in the interest of lower running time. DTs of different depth < 15 were trained.
A budget of T' = 3000 iterations was used, and the relative improvement in the F'1 macro score (as
in Equation [3)) is reported, averaged over three runs. Figure[TT|shows the results.

We see large improvements at small depths, that peak with 6 F'1 = 83.04% at depth = 3, and then
again at slightly larger depths, which peak at depth = 9 with §F'1 = 12.34%.

To obtain a qualitative idea of the changes in the DT using a oracle produces, we look at the
prediction rules for Polish surnames, when DT depth = 3. For each rule, we also present examples
of true and false positives.

Baseline rules - precision = 2.99%, recall = 85.71%, F1 = 5.77%:

Rule 1. k A ski N —v

 True Positives: jaskolski, rudawski
* False Positives: skipper (English), babutski (Russian)
Rule 2. k A —ski N —w

* True Positives: wawrzaszek, koziol
* False Positives: konda (Japanese), jagujinsky (Russian)

37

Under review as a conference paper at ICLR 2026

CAT UMY OTYT PAMT TMY" AMY"
1 1 1 1 1 1 0 0 —English

input: binary vector ¢ AMY — Greek
||A|| “M" ||Y|| -----

input: sequence

GRU

Y

Polish
L_lJapanese

7
. oRo o’go S

Polish Japanese English Greek

Figure 10: The feature representations for the oracle and the interpretable model may be different.
Consider the name “Amy”: the GRU is provided its letters, one at a time, in sequence, while the DT
is given an n-gram representation of the name.

80
60

40

% improvement (test)

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
depth of DT

Figure 11: Improvements & F'1 are shown for different depths of the DT.

Oracle-based DT rules - precision = 25.00%, recall = 21.43%, F1 = 23.08%:

Rule 1. ski A —(bV kin)

* True Positives: jaskolski, rudawski
* False Positives: skipper (English), aivazovski (Russian)

We note that the baseline rules are in conflict w.r.t. the literal “ski”, and taken together, they simplify
to £ A —w. This makes them extremely permissive, especially Rule 2, which requires the literal “k”
while needing “ski”” and “v” to be absent. Not surprisingly, these rules have high recall (= 85.71%)
but poor precision (= 2.99%), leading to F'1 = 5.77%.

In the case of the oracle-based DT, now we have only one rule, that requires the atypical trigram

“ski”. This improves precision (= 25%), trading off recall (= 21.43%), for a significantly improved
F1=23.08%.

The difference in rules may also be visualized by comparing the distribution of nationalities repre-
sented in their false positives, as in Figure[T2] We see that the baseline DT rules, especially Rule 2,
predict many nationalities, but in the case of the DT learned using the oracle, the model confusion

38

Under review as a conference paper at ICLR 2026

40000
rule
B baseline-DT, Rule 1
baseline-DT, Rule 2
mmm oracle-DT, Rule 1

—
10000 —

8000

6000

4000

False Positives

2000

OII-___ —_—

russian english japanese arabic czech german greek dutch korean vietnamese irish
nationality

chinese scottish

Figure 12: The distribution of nationalities in false positive predictions for the baseline and oracle
based models, shown for predicting Polish names. Only nationalities with non-zero counts are

shown.

is concentrated around Russian names, which is reasonable given the shared Slavic origin of many
Polish and Russian names.

We believe this is a particularly powerful and exciting application of our technique, and opens up a
wide range of possibilities for translating information between models of varied capabilities.

39

	Introduction
	Related Work
	Methodology
	Overview
	Terminology and Notation
	Algorithm

	Experiments
	Effectiveness of our Technique
	Experiment Settings
	Metrics
	Observations

	Summary of other Findings

	Limitation: Runtimes
	Conclusion and Future work
	Appendix
	1. Uncertainty Metrics
	Sampling from the IBMM
	Default Parameters
	Notes on the Main Algorithm
	Smoothing the Optimization Landscape
	Effect of Smoothing
	Datasets
	Validation Results
	Comparison with the Approach based on Density Trees
	Evaluating Competitiveness
	Measurement
	Explainable Clustering
	Protoype-based Classification

	Runtimes
	Multivariate Model Sizes
	Different Feature Spaces

