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ABSTRACT

A desirable property of interpretable models is small size, so that they are easily
understandable by humans. This leads to the following challenges: (a) small sizes
typically lead to diminished accuracy, and, (b) different techniques offer bespoke
levers, e.g., L1 regularization, for making this size-accuracy trade-off that might
be insufficient to reach the desired balance.
We address these challenges here. Earlier work has shown that learning the train-
ing distribution creates accurate small models. Our contribution is a new tech-
nique that exploits this idea. The training distribution is modeled as a Dirich-
let Process for flexibility in representation. Its parameters are learned using
Bayesian Optimization; a design choice that makes the technique applicable to
non-differentiable loss functions. To avoid challenges with high data dimension-
ality, the data is first projected down to one-dimension using uncertainty scores of
a separate probabilistic model, that we refer to as the uncertainty oracle.
Based on exhaustive experiments we show that this technique possesses multi-
ple merits: (1) it significantly enhances small model accuracies, (2) is versatile:
it may be applied to different model families with varying notions of size, e.g.,
depth of a decision tree, non-zero coefficients in a linear model, simultaneously
the maximum depth of a tree and number of trees in Gradient Boosted Models, (3)
is practically convenient because it needs only one hyperparameter to be set and
works with non-differentiable losses, (4) works across different feature spaces be-
tween the uncertainty oracle and the interpretable model, e.g., a Gated Recurrent
Unit trained using character sequences may be used as an oracle for a Decision
Tree that uses character n-grams, and, (5) may augment the accuracies of fairly old
techniques to be competitive with recent task-specialized techniques, e.g., CART
Decision Tree (1984) vs Iterative Mistake Minimization (2020), on the task of
cluster explanation.

1 INTRODUCTION

In recent years, Machine Learning (ML) models have become increasingly pervasive in various real
world systems. This has led to a growing emphasis on models to be understandable, especially
in high human-impact domains, e.g., medicine and healthcare (Caruana et al., 2015; Mienye et al.,
2024), defence applications (Gunning, 2016; Moustafa et al., 2023), law enforcement (Angwin et al.,
2016; Hall et al., 2022; Herrewijnen et al., 2024).

An important aspect of model interpretability is its size (smaller is better); this has been established
through user studies (Feldman, 2000; Kulesza et al., 2013; Piltaver et al., 2016; Lage et al., 2019;
Poursabzi-Sangdeh et al., 2021), and is also evidenced by its popularity as an algorithm design
criteria (Tibshirani, 1996; Ribeiro et al., 2016; Herman, 2017; Lipton, 2018; Murdoch et al., 2019;
Lakkaraju et al., 2016; Good et al., 2023). However, smaller sizes typically imply relatively lower
capacity and thus, lower accuracy. A practitioner may control this size-accuracy trade-off using
bespoke levers offered by a training algorithm, e.g., early stopping in Decision Trees (DT), L1
regularization in linear models. However, this presents certain challenges: (1) one needs to be
intimately aware of how various hyperparameters (hence referred to as hyperparams) interact, and
(2) the desired trade-off might not even be achievable within its hyperparam search space.
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(b) Regions learned by CART 
when depth=5. F1=0.63.
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(c) Regions learned by CART when 
depth=5 using our technique. F1=0.77.

Figure 1: Application of our technique is shown on the toy dataset in (a). Learning a DT constrained
to a depth of 5 using the CART (Breiman et al., 1984) algorithm produces the regions shown in (b).
Additionally learning the training distribution using our technique produces the regions in (c). For
both (b) and (c) the F1-macro scores on a held-out set are reported.

Here we propose a model-agnostic1 technique that often produces better accuracies for small-sized
models on classification problems. The underlying strategy is to learn a distribution over training
instances, that represents their informational value for learning, and sample a new training set ac-
cordingly; models thus constructed have been shown to possess favorable size-accuracy trade-offs
(Ghose & Ravindran, 2020). Our technique is an implementation of this principle.

The distribution used is a mixture model based on the Dirichlet Process - picked for its flexibility
of representation and maturity within the Bayesian nonparametrics community. Its parameters are
learned using Bayesian Optimization, so as to accommodate non-differentiable losses, e.g., many
DT and rules learners. To make this process computationally efficient, we avoid directly learning
the distribution over the input space which may have high dimensionality. Instead we first project
instances down to a single dimension, using an auxiliary model’s prediction uncertainty scores. We
refer to this model as the uncertainty oracle.

As an illustration, consider the toy dataset in Figure 1(a). Figure 1(b) visualizes class regions learned
by a DT of depth = 5 using the CART (Breiman et al., 1984) algorithm. The F1-macro score on
a held-out set is 0.63. When the training distribution is also learned using our technique, we obtain
the regions in Figure 1(c) and a F1-macro score of 0.77, for the same tree depth. The oracle used is
a Gradient Boosted Model (GBM) Friedman (2001).

Our primary contribution is a model-agnostic technique that produces small accurate models. It
is also agnostic to the notion of model size, e.g., number of terms of with non-zero coefficients in a
linear model or depth of a DT, both the number of trees and depth per tree in GBMs. We show that
this produces relative improvements of ∼ 100% in some cases. It is convenient to use as it works
with with non-differentiable losses, and only one hyperparam needs to be set.

Additionally, we show that: (1) it is more accurate than its predecessor (Ghose & Ravindran, 2020),
(2) it can elevate the performance of fairly old techniques to be competitive with relatively new
ones, and (3) can use an uncertainty oracle that is trained on a different feature space than what the
target model uses. The last property allows for a broad choice of oracles, e.g., in the case of text
classification, the oracle might be a Gated Recurrent Unit (GRU) that is learned using a sequence of
characters while the target model might be a DT over n-grams.

The rest of the paper is organized as follows: we first review related work in §2. We then detail
our technique in §3. We follow that up with rigorous empirical validations in §4.A side effect of
allowing non-differentiable losses is high running times; we discuss this limitation, and a mitigation
in §5. Finally, we conclude with a discussion on future work in §6.

1We use the term to mean agnostic to the model family, as is accepted usage in the area of XAI, e.g., SHAP
(Lundberg & Lee, 2017), LIME (Ribeiro et al., 2016).
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Figure 2: Overview of our technique. Left: Training instances are characterized by their proximity
to class boundaries. As a proxy for this quantity, we use the prediction uncertainty scores of a prob-
abilistic oracle (these may also be seen as an 1D projection): higher uncertainty indicates proximity
to a boundary. These scores are calculated once. Right: The size-constrained model is learned iter-
atively. A sampling distribution, parameterized by Φ, over the uncertainty values (shown in Step
1) is used to sample training instances (as in Step 2), which is used to train a size-constrained
model (shown in Step 3). Its accuracy on a held-out set - Step 4 - is used to modify Φ. This
loop, Steps 1-4, is executed by a BayesOpt algorithm.

2 RELATED WORK

The concept of using a different training distribution relative to test is common in the case of class
imbalance, e.g., undersample the majority class data (Japkowicz & Stephen, 2002; Chawla et al.,
2002; He et al., 2008; Santhiappan et al., 2018), but it was shown to be a general strategy for
improving accuracy in Ghose & Ravindran (2020). Their technique relies on a specialized DT,
called density tree, that encodes the geometric placement of training data. We believe that using
these trees - which are primarily learned using the CART algorithm - inherently limits the accuracy
of their technique. This work may be seen as a non-trivial extension: since the uncertainty oracle
can come from an arbitrary model family, it provides greater flexibility and accuracy.

The interaction of two models - the oracle and the interpretable model - suggests an overlap with
the area of Knowledge Distillation Gou et al. (2021). But there is a critical difference: in theory, we
don’t require the oracle model; here it happens to be a convenient tool for dimensionality reduction.
Indeed, there are other ways to achieve a similar outcome, e.g., within Active Learning, it is common
to infer proximity to a class boundary by noting the labels of an instance’s neighbors (Margatina
et al., 2021; Chen et al., 2023); these setups might be thought of as rudimentary k-Nearest Neighbor
(kNN) models. With our use of the oracle, we avoid having to worry about neighborhood-related
hyperparams, such as neighbor distance.This should not be seen as distillation for the same reason
as we don’t consider using such kNNs as effecting distillation. The oracle’s peripheral role is also
underscored by the fact that its labels are ignored. This lack of fidelity wrt the oracle is also why
our technique shouldn’t be seen an explanation technique, i.e., XAI, such as TREPAN (Craven &
Shavlik, 1995) or LIME (Ribeiro et al., 2016).

3 METHODOLOGY

We begin describing our technique with an overview. This is then used as a foundation for introduc-
ing details.

3.1 OVERVIEW

Our technique is visualized in Figure 2. Instead of learning the training distribution directly, which
might be expensive because of the dimensionality of the data, we first project the data down to one
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dimension. This is done just once, and is shown in the left panel in Figure 2. Since we are solving for
classification, we want this dimension to correspond to the “classifiability” of an in instance, or how
close is an instance to a class boundary. As a tractable proxy for this property, we train a separate
highly accurate probabilistic oracle model on the training data2, and use its prediction uncertainty
score as the projected value; high uncertainty scores typically denote proximity to class boundaries
Lewis & Catlett (1994).

The distribution is modeled as an Infinite Beta Mixture Model using a Dirichlet Process, which is
iteratively learned. Step 1 on the right panel in Figure 2 shows the current distribution, based on
which training data is sampled (Step 2). The size-constrained model of interest is then trained on
this sample - Step 3 - and its accuracy on a held-out set is calculated - Step 4. This score is
used as a feedback for the optimizer which repeats the process to learn better distribution parameters.
We use Bayesian Optimization (BayesOpt) (Shahriari et al., 2016; Garnett, 2023) to accommodate
models with non-differentiable loss functions. Note that we can’t just pick highly uncertain points,
because that has not been shown to consistently work well (Ghose & Nguyen, 2024).

3.2 TERMINOLOGY AND NOTATION

We introduce some nomenclature before discussing our algorithm.

1. A dataset is denoted as a set of instance-label pairs, D = {(x1, y1), (x2, y2), ..., (xN , yN )}.
A joint distribution over a dataset is denoted by p(X,Y ).

2. To distinguish between the distribution we are given (in form of the dataset) and the one
we learn, we refer to the former as the original distribution. In all experiments here, the
test and held-out data follow the original distribution; for the training data, we learn a new
distribution.

3. We let acc(M,p) denote some classification accuracy metric for model M on data repre-
sented p(X,Y ).

4. trainF,f (p, η) is understood to produce a model of size η (for some pre-decided notion of
size) from the model family F using a specific training algorithm f .
For instance, F might represent DTs and f might be the CART algorithm, and η = 5 might
denote a DT of depth = 5. We let η = ∗ denote unbounded size.

Let us state our objective using this notation. Typically, a model is trained on the same distribution as
the test (on which it is evaluated), i.e., we evaluate acc(trainF,f (p, η), p). In this work, the training
distribution is allowed to be different relative to the test. In other words, we seek p′ such that:

argmax
p′

acc(trainF,f (p
′, η), p) (1)

3.3 ALGORITHM

Referring to the high-level flow in Figure 2, we note that the proposed technique relies on a few
important ingredients. These are described below, while a more comprehensive discussion may be
found in §A.4:

1. Uncertainty score: This is needed for the one-time projection using the oracle. There
are multiple ways to measure prediction uncertainty; here we choose margin uncertainty
(Scheffer et al., 2001), since (a) it accounts for prediction probabilities of different classes,
(b) while also producing high scores even with two dominant predicted classes in a setting
with more classes. The uncertainty score for x, as provided by model M , is denoted by
uM (x) ∈ [0, 1]. The margin uncertainty is calculated as:

uM (x)← 1− (pC1 − pC2) (2)

Here, pC1
and pC2

denote the probabilities of the most confident and next most confident
classes. See §A.1 for further details.

2Performed using cross-validation or using a random held-out set, to avoid overfitting.
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2. Density model: Since we want to learn a distribution, we want the representation to be
flexible. We encode the density as a mixture model of Beta distributions. We use the latter
since (a) their support matches the range of uncertainty scores, i.e., uM (x) ∈ [0, 1], and
(b) a Beta mixture model can approximate any distribution in [0, 1] arbitrarily well (Dia-
conis & Ylvisaker, 1983). Further, in the interest of flexibility, we refrain from explicitly
dictating the number of Beta components, and thus, we use an Infinite Beta Mixture Model
(IBMM), where the component assignments are decided by a standard Dirichlet Process
(DP) (Ferguson, 1973). This is a popular tool in the area of Bayesian Nonparametrics Yee
Whye Teh & Blei (2006); Wang et al. (2011). Another advantage of this formulation is that
it leads to a fixed number of parameters irrespective of the number of active components
which makes it easy to pick an optimizer. We note here that Ghose & Ravindran (2020)
also use a DP-based IBMM, but for modeling the height of density trees.
Two sets of parameters are required to describe this density model:
(a) The shape parameters Ai, Bi of the ith Beta component. These are separately sampled

from prior distributions that are themselves Beta distributions, with shape parameters
a, b and a′, b′ respectively. Since naively doing this would restrict Ai or Bi to Beta’s
support, i.e., [0, 1], we also multiply the sampled value by a variable scale, that we
set to be large enough to cover the family of component distributions we require3.
Effectively then, Ai ∼ scale×Beta(a, b) and Bi ∼ scale×Beta(a′, b′).

(b) The DP needs just a concentration parameter α ∈ R>0 that decides the number of
active components, i.e., ones with instances assigned to them4.

In all, the density model requires five parameters, which we denote as Ψ = {α, a, b, a′, b′}.
To sample Ns instances given Ψ, we first determine the number of instances per component
using a standard technique like the Chinese Restaurant Process (Aldous, 1985) and then
sample component-wise. Please see §A.2 for details.

3. Optimization: As mentioned earlier, we use BayesOpt to accommodate non-differentiable
losses. It is also resilient to noise, which is relevant due to factors such as randomized
initialization of model parameters, different dataset splits across trials, etc. Specifically,
we use the hyperopt library (Bergstra et al., 2013), which implements the Tree Structured
Parzen Estimator (TPE) algorithm Bergstra et al. (2011). Because there is no tight coupling
between our formulation and the optimizer, it is possible to use a different BayesOpt library.
This can be a crucial practical consideration, and is discussed in §5.
For optimization, in addition to Ψ, we retain the following parameters, originally intro-
duced in Ghose & Ravindran (2020):
(a) Ns: This is the sample size - this is also learned.
(b) po ∈ [0, 1]: Proportion of the new training set that is uniformly sampled from the

original training data. This serves two purposes: (1) it acts as a “shortcut” for the
optimizer to mix in the original distribution as needed, and (2) it serves as a “probe
variable”, i.e., it shows how much of the original distribution is actually needed for
good accuracies.

Accounting for these, we now have a total of seven optimization variables: Ψ =
{α, a, b, a′, b′}, Ns, po, which are iteratively optimized, till the budgeted number of it-
erations, T , are exhausted. These variables are collectively denoted as Φ = {Ψ, Ns, po}.
Algorithm 1 outlines the overall technique; here the interpretable and oracle model fami-
lies are denoted by I and O, and the respective training algorithms are denoted by h and g
respectively. §A.4 provides additional details around model selection, robust estimation of
acc, etc.

Optimization variables and parameters: The task of the optimizer is to find Φ that maximizes
the held-out accuracy (line 11 in Algorithm 1) within T iterations. The optimizer here accepts box
constraints, and as such their lower/upper bounds, which need to be set by the user, are parameters
(along with T ) of the technique. We discuss in §A.3 that reasonable default bounds exist for param-
eters Φ, e.g., its easy to see po ∈ [0, 1]. So, in practice, T is the only parameter that a user needs
to set.

3NOTE: This is fixed at a value of 10000 and not learned; hence it isn’t counted as a parameter.
4Of course, in theory, there are an infinite number of components, but the number of active components

grows with data.
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Algorithm 1: Learning interpretable model using oracle
Data: Dataset D, model size η, trainO,h(), trainI,g(), iterations T
Result: Optimal parameters Φ∗, test set accuracy stest at Φ∗, and interpretable model M∗ at Φ∗

1 Create splits Dtrain, Dval, Dtest from D, stratified wrt labels. Here
|Dtrain| : |Dval| : |Dtest| :: 60 : 20 : 20.

2 MO ← trainO,h(Dtrain, ∗)
3 for t← 1 to T do
4 Φt ← suggest(s0, s1, ...st−1,Φ0,Φ1, ...,Φt−1) // s0,Φ0 initialized at t = 0,

see text. Note: Φt = {Ψt, Ns,t, po,t} where Ψt = {αt, at, bt, a
′
t, b

′
t}.

5 No ← po,t ×Ns,t

6 Nu ← Ns t −No

7 Do ← uniformly sample with replacement No points from Dtrain

8 Du ← sample Nu points from Dtrain using the DP-based IBMM given current values for
Nu,MO, Dtrain,Ψt // see Algorithm A.2 for details

9 Ds ← Do ⊎Du // Do, Du are assumed to be multisets
10 Mt ← trainI,g(Ds, η)
11 st ← acc(Mt, Dval)
12 end
13 t∗ ← argmaxt {s1, s2, ..., sT−1, sT }
14 Φ∗ ← Φt∗

15 M∗ ←Mt∗

16 stest ← acc(M∗, Dtest)
17 return Φ∗, stest, M∗

Smoothing: A final practical consideration is the smoothness of the optimization landscape. Uncer-
tainty scores over the training data may often result in a density that isn’t smooth, making it difficult
to learn a good distribution. We redress this by explicitly smoothing the density. We detail this in
§A.5.

This concludes our discussion of algorithmic details; next, we look at empirical validation.

4 EXPERIMENTS

We have performed extensive empirical investigations to validate the utility of our technique. These
may be grouped in the following manner:

1. Those that establish the effectiveness of the technique in various settings, i.e., different
datasets, interpretable models and oracles, across different model sizes. This is our key
result.

2. Benchmarking against the density tree approach.

3. Competitiveness: Even if our technique produces significant improvements, it leaves open
the question of these gains being competitive with task-specific techniques, e.g., cluster-
explanation trees and prototype-based classifiers. These set of experiments affirmatively
answer this question.

4. Additional properties - while these are not as rigorous as the previous groups, they highlight
some interesting properties: (a) model size can be multivariate, and (b) it is possible to have
different feature spaces between the oracle and the target models.

All experiments were performed on an Intel i7-7700HQ machine with 32 GB RAM.

Due to space constraints, only the key result - point 1 above - is presented in detail in the main paper
(some aspects are relegated to the Appendix), while other findings are only summarized here, with
details being provided in the Appendix.
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4.1 EFFECTIVENESS OF OUR TECHNIQUE

We begin describing this set of experiments with the various settings.

4.1.1 EXPERIMENT SETTINGS

We tested our technique across the following configurations:

1. Datasets: We use the following 13 publicly available standard classification datasets for
our experiments: cod-rna, ijcnn1, higgs, covtype.binary, phishing, a1a, pendigits, letter,
Sensorless, senseit aco, senseit sei, covtype, connect-4. These were obtained from the
LIBSVM website (Chang & Lin, 2011a). For details, such as number of classes and extent
of imbalance, please see §A.7.
10000 instances from each dataset are used. The split ratio used in Algorithm 1 is |Dtrain| :
|Dval| : |Dtest| :: 60 : 20 : 20, where the splits are stratified wrt labels.

2. Interpretable model families: we use Linear Probability Models (LPM)5 and the DTs (pro-
duced by the CART algorithm). These were picked as they are commonly considered
interpretable Räz (2024).
The notion of model size for LPMs is the number of non-zero coefficients, and sizes η ∈
{1, 2, ..., 15} are explored (except for cod-rna, that has 8 features, and so we cannot have a
sizes greater than 8).
For DTs, the notion of size is depth. For a dataset, we first learn a tree (with no size
constraints) with the highest F1-macro score using standard 5−fold cross-validation. We
refer to this as the optimal tree Topt, and its depth as depth(Topt). We then explore model
sizes η ∈ {1, 2, ...,min(depth(Topt), 15)}. Stopping early makes sense since the model
is saturated in its learning at depth(Topt); changing the input distribution is not helpful
beyond this point.

3. Oracle families: As oracles we use Random Forests (RF) (Breiman, 2001) and GBMs
(Friedman, 2001). They were learned using cross-validation or using a held-out set, to
avoid overfitting, and were calibrated (Platt, 1999; Niculescu-Mizil & Caruana, 2005) for
reliable probability estimates.

4. Optimization budget: For DTs, we use T = 3000, while for LPMs T = 1000 is used.
These values were determined based on limited search. The budget for LPMs is lower
since for multi-class datasets (7 of 13 here) we construct one-vs-all models which makes
training LPMs time-consuming.

4.1.2 METRICS

For various combinations of models and oracles, i.e., {LPM,DT} × {GBM,RF}, we measure
the percentage relative improvement in the F1-macro score (on the test set Dtest) in terms of the
baseline score F1basetest and the one produced by our model, F1∗test:

δF1test =
100× (F1∗test − F1basetest )

F1basetest

(3)

We use the macro score since its not impacted by class imbalance.

In the interest of robustness we run five trials per configuration, i.e., a combination of dataset,
oracle family, model family and size, and utilize the validation set to accept the model produced
by our technique M∗. Specifically: indexing trials with i, we conduct an independent t-test on
{F1∗val}1≤i≤5 and {F1baseval }1≤i≤5. The null hypothesis is that M∗ doesn’t produce results different
M base. If we can reject the null at a significance of p = 0.1, we report δF1test as in Equation 36,
else we report δF1test = 0, i.e., we reject M∗. Here δF1test ∈ (−∞,∞); negative values are
possible since we pick a model based on Dval while we report based on Dtest.

5We have not used the more common Logistic Regression because: (1) LPMs are considered more inter-
pretable (Mood, 2010), and (2) LPMs results are indicative of behavior of linear models in general.

6The test scores from different trials are averaged first.
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4.1.3 OBSERVATIONS

Table 1 shows a portion of the results in the interest of space - for complete results, and analysis of
statistical significance (using the Wilcoxon signed-rank test (Wilcoxon, 1945)), please see §A.8.

Table 1: This table shows the average improvements, δF1, over five runs for the combinations model={LPM,
DT} and oracle=GBM, for different model sizes. The improvements are measured relative to the model at the
first iteration. Here, δF1 ∈ (−∞,∞). Negative improvements are shown in underlined. Complete results,
including analysis of statistical significance, are presented in §A.8.

dataset model ora size=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cod-rna lpm gbm 1.39 12.53 14.76 15.73 14.97 12.00 0.00 0.08 - - - - - - -
dt gbm 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 -0.28 0.08 - - - - -

ijcnn1 lpm gbm -0.16 3.36 3.93 0.00 5.19 4.18 3.85 3.79 3.69 2.99 2.97 3.21 3.11 3.26 3.02
dt gbm 1.96 12.00 10.15 11.37 10.63 7.18 3.63 4.52 2.91 1.78 1.93 2.29 1.47 2.26 0.00

higgs lpm gbm 29.29 17.80 11.40 6.56 3.06 2.68 3.16 2.90 2.67 2.82 2.65 1.79 2.62 2.19 1.63
dt gbm 0.00 0.00 1.86 0.26 0.93 0.45 - - - - - - - - -

covtype.binary lpm gbm 76.52 66.39 29.17 12.51 9.18 5.28 4.94 4.56 3.92 3.56 3.62 3.31 2.59 2.83 2.39
dt gbm 0.00 0.00 2.35 1.27 1.18 1.11 0.00 0.00 0.00 - - - - - -

phishing lpm gbm 0.00 1.88 2.88 3.05 3.22 3.25 2.99 1.69 1.42 1.45 1.29 0.00 0.00 0.00 0.00
dt gbm 0.00 0.00 0.00 0.07 0.39 0.00 0.28 0.22 0.44 0.23 0.00 0.00 0.00 0.00 0.00

a1a lpm gbm 0.00 2.55 7.58 8.98 8.40 8.03 8.90 8.23 8.17 7.90 5.96 7.10 6.97 6.18 5.73
dt gbm 0.00 5.54 2.39 3.84 3.55 2.55 1.51 2.25 4.87 - - - - - -

pendigits lpm gbm 51.39 23.44 16.18 8.95 8.84 6.63 4.86 1.83 2.27 2.16 2.44 2.16 3.33 2.97 2.73
dt gbm 14.02 6.72 5.11 13.14 6.42 4.20 2.46 1.09 0.98 0.16 -0.26 0.00 0.00 0.00 0.00

letter lpm gbm 57.06 48.48 59.85 29.76 36.09 19.27 20.37 16.08 17.55 15.16 17.26 16.51 18.46 17.19 15.55
dt gbm 0.00 13.98 25.05 33.96 32.05 15.49 11.17 0.00 4.26 3.50 1.99 0.00 0.00 0.00 0.00

Sensorless lpm gbm 216.47 257.56 178.31 117.01 90.70 83.90 73.50 65.95 61.57 57.97 56.54 57.15 55.45 66.24 68.24
dt gbm -0.01 42.42 68.13 44.38 17.39 10.32 1.82 1.44 0.79 0.64 0.41 0.12 0.00 -0.02 0.34

senseit aco lpm gbm 173.71 170.68 63.95 44.20 33.49 22.99 19.14 13.50 10.29 7.59 6.26 5.92 5.30 4.89 4.32
dt gbm 14.89 0.00 3.71 2.32 4.85 0.81 0.00 - - - - - - - -

senseit sei lpm gbm 160.59 65.27 23.44 10.48 6.76 4.86 4.82 4.46 4.79 4.12 4.54 5.17 3.91 4.21 4.46
dt gbm 2.66 1.01 3.49 2.29 0.95 1.30 1.37 0.00 - - - - - - -

covtype lpm gbm 36.87 49.24 12.78 11.21 7.84 7.15 7.15 8.07 7.70 8.25 10.94 8.35 4.37 8.77 5.84
dt gbm 342.27 92.85 43.23 20.04 8.14 8.05 5.67 3.26 4.92 3.52 2.72 0.00 0.00 0.00 1.74

connect-4 lpm gbm 37.62 11.66 12.01 6.84 5.68 6.82 4.58 2.10 3.82 3.21 3.02 3.64 2.32 2.97 3.40
dt gbm 89.33 29.23 20.20 12.10 9.73 9.88 7.82 7.43 0.57 4.61 1.08 3.35 2.23 1.15 1.55

We highlight some interesting trends:

1. The incidence of negative improvements is fairly low. Of course, this result set is in-
complete, but referring to the complete set in §A.8, we note that only 13 of 690 non-null
observations, or 1.88%, are negative. The average negative improvement is −0.24%.

2. As model size increases (left to right in Table 1), positive improvements (which can be high
for small sizes, e.g., > 100%) tend to reduce. This makes intuitive sense since beyond a
certain model size, when all informative patterns in the data have been captured, modifying
the training distribution should not have much/any effect.

3. For DTs, the drop in improvements happen earlier than for LPMs. An intuitive explanation
for this is that an unit increase in size for the LPM and DT do not lead to identical increase
in capacity. DTs are non-linear models to begin with, and then, increasing their depth by
one leads to a much larger increment in capacity, e.g., it doubles the number of leaves for a
binary tree.

4.2 SUMMARY OF OTHER FINDINGS

In the interest of space, we summarize our other findings below:

1. Benchmarking against the density tree approach: we perform this comparison since it is
the closest to ours in terms of methodology (see §2). The experiment settings are identical
to the previous section, §4.1. While we present a detailed discussion in §A.9, the salient
observations are:
(a) We report the scaled difference in test F1-macro score improvement (δF1ora −

δF1den)/max {δF1den, δF1ora}. The denominator ensures a range of [−1, 1],
where a positive value is desiredAveraged over model sizes and datasets this value
is 0.37 and 0.31 for LPMs and DTs respectively.
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(b) An aggregate score like the above might be influenced by outlier improvement scores;
so we also report the percentage of times we produce a better score. This is 81.38%
and 67.30% for LPMs and DTs respectively.

For additional details, please see §A.9.
2. Competitiveness: We compare against techniques specialized for certain tasks, to see if our

technique can elevate the performance of older techniques to be competitive:
(a) On the task of cluster explanation, decision trees are constructed whose leaves rep-

resent clusters. Some specialized algorithms in the area are ExShallow Laber et al.
(2021) and Iterative Mistake Minimization (IMM) Moshkovitz et al. (2020). While
these are recent algorithms, we show that CART-based Breiman et al. (1984) DTs
obtained by our technique outperform the more recent IMM.

(b) We consider prototype-based classification where, in the interest of interpretability,
we want a small number of prototypes. Here the notion of size is the number of
prototypes. We show that using our technique improves the performance of a sim-
ple Radial Basis Function Network (RBFN) Broomhead & Lowe (1988) to perform
similar to Stochastic Neighbor Compression (SNC) Kusner et al. (2014).

The Mean Rank is used as the primary metric, while the Friedman (Friedman, 1937) and
Wilcoxon signed-rank tests are used to measure statistical significance. Please see §A.10
for details.

3. We also conducted these experiments to highlight some interesting properties:
(a) It may be applied even in cases when model size is defined by more than one attribute,

e.g., max depth and num trees in the case of GBMs. This is because Algorithm 1
delegates size enforcement to trainI,g . See §A.12 for details.

(b) The technique works even if the oracle and the target model use different feature
representations. This is because all that is required of the oracle are uncertainty scores,
irrespective of how it arrives at them. We demonstrate this via a text classification
task of predicting nationalities from surnames (Rao & McMahan, 2019). A Gated
Recurrent Unit (GRU) (Cho et al., 2014) is used as the oracle. This is trained on a
sequence of characters. The interpretable target model is a DT that uses character
n-grams as input. See §A.13 for additional details.

5 LIMITATION: RUNTIMES

The cost of catering to non-differentiable loss functions, i.e., no gradient information, is high running
times. Our experiments used hyperopt on account of its popularity and maturity, but this leads to high
runtimes, e.g., for the a1a “dt gbm” setting in Table 1, at our budget of T = 3000, the optimizer runs
for close to an hour. But with a different surrogate model representation, e.g., Gaussian Processes,
and with a judiciously picked acquisition function such as a noise-resilient version of logEI (Ament
et al., 2023), the runtime can be reduced to ∼ 2 min. These preliminary results are presented in
§A.11. Our takeaway is that there exists a path to improving the runtime in future work.

6 CONCLUSION AND FUTURE WORK

In this work we presented a model-agnostic technique that obtains good size-accuracy trade-offs.
This was empirically shown to perform well in diverse settings. Conveniently, there is only one
hyperparameter to set (the number of iterations). Further, it can accommodate multivariate model
sizes and can be used with differing feature spaces between the oracle and the interpretable models.

For future work, we think the following themes are meaningful: (a) Extension to differentiable mod-
els/losses for faster learning. Techniques such as bilevel optimization, e.g., Pedregosa (2016), might
be useful here to learn instance weights directly, instead of a distribution. (b) We noted that im-
provements diminish with increasing model size (Section 4.1.2). It would be interesting to explore
whether applying the technique separately to smaller models obtained from decomposing a larger
model, e.g., subtrees within a DT, delays this effect. (c) Finally, exploring newer BayesOpt algo-
rithms would be a good way to improve the running time for our algorithm - our current experiments
(mentioned in §5) already indicate this to be a fruitful direction of study.

9
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A APPENDIX

A.1 1. UNCERTAINTY METRICS

Some other popular uncertainty metrics are:

1. Least confident: we calculate the extent of uncertainty w.r.t. the class we are most confi-
dent about:

uM (x) = 1− max
yi∈{1,2,...,C}

M(yi|x) (4)

Here, we have C classes, and M(yi|x) is the probability score produced by the model7.

2. Entropy: this is the standard Shannon entropy measure calculated over class prediction
confidences:

uM (x) =
∑

yi∈{1,2,...,C}

−M(yi|x) logM(yi|x) (5)

We do not use the least confident metric since it completely ignores confidence distribution across
labels. While entropy is quite popular, and does take into account the confidence distribution, we
do not use it since it reaches its maximum for only points for which the classifier must be equally
ambiguous about all labels; for datasets with many labels (one of our experiments uses a dataset
with 26 labels - see Table 3) we may never reach this maximum.

Fig 3 visually shows what uncertainty values look like for the different metrics. Panel (a) displays
a dataset with 4 labels. A probabilistic linear Support Vector Machine (SVM) is learned on this,
and uncertainty scores corresponding to the metrics “margin”, “least confident” and “entropy” are
visualized in panels (b), (c) and (d) respectively. Darker shades of gray correspond to high uncer-
tainty. Observe that only the “margin” metric in panel (b) achieves scores close to 1 at the two-label
boundaries.

There is no best uncertainty metric in general, and the choice is usually application specific (Settles,
2009).

A.2 SAMPLING FROM THE IBMM

Given our representation, the procedure to sample Ns points, from a dataset D, using an oracle MO

is shown in Algorithm 2. We also explain the steps below:

1. Determine partitioning over the Ns points induced by the DP . We use the Chinese
Restaurant Process Aldous (1985) for this. Let’s assume this step produces k partitions
{c1, c2, ..., ck} and quantities ni ∈ N where

∑k
i=1 ni = N . Here, ni denotes the number

of points that belong to partition ci.

2. We determine the Beta(Ai, Bi) component for each ci by sampling from the priors, i.e.,
Ai ∼ scale×Beta(a, b) and Bi ∼ scale×Beta(a′, b′).

3. Repeat for each ci: for each instance-label pair (xj , yj) in our training dataset, we calculate
the oracle uncertainty score, uMO

(xj). We then calculate pj = c ·Beta(uMO
(xj)|Ai, Bi).

c is a normalizing constant that scales the probabilities across instances to sum to 1. The
quantities pj are used as sampling probabilities for various (xj , yj), and ni points are sam-
pled with replacement based on them.

A.3 DEFAULT PARAMETERS

The optimizer we use, TPE, requires box constraints. Here we specify our search space for the
optimization variables, Φ in Algorithm 1:

7The possibly confusing name “least confident” for this idea originated within the context of
uncertainty sampling, where we are interested in sampling the most uncertain point, x∗ =
argminx[maxyi∈{1,2,...,C} M(yi|x)], which may be considered to be the instance with the “least most confi-
dent label”.
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(a) (b)

(c) (d)

Figure 3: Visualizations of different uncertainty metrics. (a) shows a 4-label dataset on which linear
SVM is learned. (b), (c), (d) visualize uncertainty scores based on different metrics, as per the linear
SVM, where darker shades imply higher scores.

Algorithm 2: Sample based on uncertainties and Ψ

Data: Sample size Ns, oracle MO, dataset D = {(xi, yi)}Ni=1, IBMM parameters
Ψ = {α, a, b, a′, b′}

Result: Sample D′, where |D′| = Ns

1 D′ = {} // assumed to be a multiset

2 {(c1, n1), (c2, n2), ..., (ck, nk)} ← partition Ns using the DP // Here
∑k

i=1 ni = Ns.
3 for i← 1 to k do
4 Ai ∼ scale×Beta(a, b)
5 Bi ∼ scale×Beta(a′, b′)
6 for j ← 1 to N do
7 pj ← c ·Beta(uMO

(xj);Ai, Bi) // c is a normalizing constant s.t.∑N
i c · pj = 1.

8 end
9 temp← sample with replacement ni instance-label pairs based on pj

10 D′ ← D′ ⊎ temp // ⊎ is the multiset sum
11 end
12 return D′

1. po: We want to allow the algorithm to pick an arbitrary fraction of samples from the original
data; we set po ∈ [0, 1].

2. Ns: We set Ns ∈ [400, 10000]. The lower bound ensures we have statistically significant
results. The upper bound is set to a reasonably large value.

3. {a, b, a′, b′}: Each of these parameters are allowed a range [0.1, 10] to allow for a wide
range of shapes for the component Beta distributions.

4. scale: We fix scale = 10000 for our experiments, to allow for Ai and Bi to model skewed
distributions where shape parameter large values might be required. For small values, the
algorithm adapts by learning the appropriate {a, b, a′, b′}.

5. α: For a DP, α ∈ R>0. We use a lower bound of 0.1.
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Algorithm 3: Learning interpretable model using oracle - reproduction of Algorithm 1.
Data: Dataset D, model size η, trainO,h(), trainI,g(), iterations T
Result: Optimal parameters Φ∗, test set accuracy stest at Φ∗, and interpretable model M∗ at Φ∗

1 Create splits Dtrain, Dval, Dtest from D, stratified wrt labels. Here
|Dtrain| : |Dval| : |Dtest| :: 60 : 20 : 20.

2 MO ← trainO,h(Dtrain, ∗)
3 for t← 1 to T do
4 Φt ← suggest(s0, s1, ...st−1,Φ0,Φ1, ...,Φt−1) // s0,Φ0 initialized at t = 0,

see text. Note: Φt = {Ψt, Ns,t, po,t} where Ψt = {αt, at, bt, a
′
t, b

′
t}.

5 No ← po,t ×Ns,t

6 Nu ← Ns t −No

7 Do ← uniformly sample with replacement No points from Dtrain

8 Du ← sample Nu points from Dtrain using the DP-based IBMM given current values for
Nu,MO, Dtrain,Ψt // see Algorithm A.2 for details

9 Ds ← Do ⊎Du // Do, Du are assumed to be multisets
10 Mt ← trainI,g(Ds, η)
11 st ← acc(Mt, Dval)
12 end
13 t∗ ← argmaxt {s1, s2, ..., sT−1, sT }
14 Φ∗ ← Φt∗

15 M∗ ←Mt∗

16 stest ← acc(M∗, Dtest)
17 return Φ∗, stest, M∗

To determine the upper bound, we rely on the following empirical relationship (Ohlssen
et al., 2007) between the number of components k and α:

E[k|α] ≈ 5α+ 2 (6)

We empirically estimated a fairly inclusive upper bound on the number of components to
be 500, which provides us the α upper bound of 99.6. Thus, we use α ∈ [0.1, 99.6].

A.4 NOTES ON THE MAIN ALGORITHM

We provide some additional details in reference to the main algorithm - Algorithm 1 - in the paper.
For convenience, we reproduce the algorithm here, as Algorithm 3. Our notes follow:

1. We will consider the initialization to happen at t = 0, while the iterations range from 1 to
T . Φ0 is set to: α = 0.1, a = 1, b = 1, a′ = 1, b′ = 1, Ns = |Dtrain|, po = 1. A model
is constructed based on Φ0 and a score s0 is recorded. (Φ0, s0) serve as the history for the
iteration at t = 1. The values for α, a, b, a′, b′ carry no significance and are arbitrary, since
setting po → 1 forces sampling only from the original distribution. Combined with Ns =
|Dtrain|, this setting mimics the baseline, i.e., training the interpretable model without our
algorithm, thus providing the optimizer with a good initial reference point in its search
space.

2. The optimizer is represented by the function call suggest() which takes as input all past
parameter values and validation scores. suggest() denotes a generic optimizer; not all
optimizers require this extent of historical information.

3. While the training algorithm for the oracle, trainO,h() is taken as input, a pre-constructed
oracle MO may also be used. This would eliminate the oracle training step in line 2.

4. acc() on the validation data, Dval, serves as both the objective and fitness function.
5. Evaluation on the test set, Dtest is done only once, in line 16, with the model that produces

the best validation score.
6. Since we sample with replacement, both temporary datasets Do and Du, procured from

uniformly sampling the original training data and sampling based on uncertainties respec-
tively, are multisets. Accordingly, line 9 uses the multiset sum operator ⊎ to combine them.
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7. Mt is created (line 10) with limited or no hyperparameter search using simple random
validation, i.e., a stratified (by labels) random sample of size 0.2Ns,t is used as the vali-
dation set. A restricted search is performed because often hyperparameters are correlated
with model size, and setting them to particular values would fail to produce a model of
the required size η. As an example, consider DTs: setting a high threshold for the number
of instances in a node for it be split (hyperparameter min samples split in scikit-learn’s
(Pedregosa et al., 2011) implementation) would produce only short trees.
We don’t use cross-validation since at small values of Ns,t, the amount of training data, i.e.,
(k−1

k )Ns,t for k-folds, may become too small to obtain a good model. For example, for
3-folds, the training data size is 0.67Ns,t. The data shortage problem can be addressed by
increasing the number of folds, but that also increases the running time per iteration owing
to the larger number of models that now need to be trained. As a practical compromise, we
perform simple validation thrice and average the outcomes. This number is configurable,
and may be decreased for models that are expensive to train.

8. Since the validation score st (line 11) needs to be reliable, in our implementation we repeat
lines 7-10 thrice and use the averaged validation score as st.

9. Class imbalance is accounted for in our implementation when training model Mt in line 10.
We either balance the data by sampling (this is the case with a Linear Probability Model),
or an appropriate cost function is used to simulate balanced classes (this is the case with
DTs and GBMs).

It is important to note here that Dval and Dtest are not modified by our algorithm in any way, and
therefore st and stest measure the accuracy on the original distribution.

A.5 SMOOTHING THE OPTIMIZATION LANDSCAPE

A practical consideration in our implementation is if we might facilitate finding the maxima Φ∗ in
Algorithm 1?

Since BayesOpt algorithms model the response surface of the actual objective function using a finite
number of evaluations (st in Algorithm 1), a certain degree of smoothness is assumed (Shahriari
et al., 2016; Brochu et al., 2010). Here, the optimization variables Φ influence the objective value
s via this indirect chain: Φt → Ds → Mt → st (symbols as in Algorithm 1), and for BayesOpt to
work well, it is required that small changes in Φt result in small changes in st.

However, we have noticed that an oracle might produce uncertainty score distributions that are
“spiky” or “jagged” - as an example, see the curve labelled “original” in Figure 4(a); which leads
us to hypothesize that this principle is violated in general. A spiky distribution implies that small
shifts Φt +∆Φt may lead to sampling of instances with very different uncertainties; and since such
instances may occur in regions far from those indicated by Φt, they produce models with different
class prediction behavior. This indirectly causes a disproportionate shift in st. While, in theory, a
good BayesOpt algorithm should adapt to such problem characteristics, in practice they make the
optimization problem harder, especially when the optimization budget is small.

To address this, we “flatten” the distribution8 within [0, 1]. Our transformation is simple: we divide
the interval [0, 1] into B bins, and map approximately |Dtrain|/B uncertainty scores to each bin,
while maintaining order between the original and mapped scores. Within a bin, the mapped scores
are linearly spread across its range. This distributes the mapped scores approximately uniformly in
the range [0, 1]. The algorithm is detailed in Algorithm 4.

Figure 4 visualizes the process of flattening. The original and modified uncertainty distributions for
the datasets Sensorless and covtype.binary are shown in Figure 4(a) and 4(b) respectively.

While Sensorless appears to have a non-smooth distribution, and flattening here might help, this
seems redundant for covtype.binary. However, since this step is computationally cheap, we
perform this for all our experiments, saving us the effort of assessing its need.

8Distribution transformations have a long history in statistics, e.g., power transforms like the Box-Cox (Box
& Cox, 1964) and Yeo-Johnson (Yeo & Johnson, 2000) transforms. Within ML, Batch Normalization (Ioffe
& Szegedy, 2015) is a popular example of a distribution transformation applied to a loss landscape (Santurkar
et al., 2018).
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Algorithm 4: Flatten distribution of uncertainty scores {u(x1), u(x2), ..., u(xN )}
Data: {u(x1), u(x2), ..., u(xN )}, number of bins B
Result: {u′(x1), u

′(x2), ..., u
′(xN )}

1 bin size← ⌈N/B⌉, bin range← 1/B
2 bin min← [ ], bin max← [ ]
3 Let sortedIndex(i) ∈ {1, 2, ..., N} be the index of u(xi) in the sequence of scores ordered by

non-decreasing values.
4 for j ← 1 to B do
5 bin min[j]← min{u(xi)|i ∈ {1, 2, ..., N} ∧ sortedIndex(i) = j}
6 bin max[j]← max{u(xi)|i ∈ {1, 2, ..., N} ∧ sortedIndex(i) = j}
7 end
8 for i← 1 to N do
9 j ← sortedIndex(i)

10 bin num← ⌈j/bin size⌉
11 boundary low ← (bin num− 1)× bin range+ δ
12 boundary high← bin num× bin range− δ

13 u′(xi)← low + u(xi)−bin min[j]
bin max[j]−bin min[j] × (boundary high− boundary low)

14 end
15 return {u′(x1), u

′(x2), ..., u
′(xN )}

(b) covtype.binary, GBM(a) Sensorless, GBM

Figure 4: Example of curve-flattening, for datasets (a) Sensorless and (b) covtype.binary.
The uncertainty scores shown are obtained using the GBM oracle.

Our transformation is invertible, which is useful in analyzing the observations from our experiments.
Note however, it is not differentiable because of the discontinuities at the bin-boundaries; we also
don’t require this property.

The transformation affects line 7 in Algorithm 2. Instead of sampling based on the actual oracle
uncertainty scores:

pj ← Beta(uMO
(xj);Ai, Bi) (7)

we sample based on the transformed uncertainty scores, u′
MO

(xj):

pj ← Beta(u′
MO

(xj);Ai, Bi) (8)
In §A.6 we show that smoothing indeed has a positive effect.

A.6 EFFECT OF SMOOTHING

We first consider the question: does flattening (§A.5) help? Table 2 contrasts improved F1 scores
obtained without (rows denoted as “original”) and with (denoted “flattened”) flattening the uncer-
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Table 2: Improved scores averaged over three trials, shown for different parameter settings, with
and without flattening. Here, Setting 1 is {max components = 500, scale = 10000} and Setting
2 is {max components = 50, scale = 10}. “curr.” signifies this is the current setting for our
experiments in the main paper, while “low” signifies lower values of parameters. Highlighted cells
indicate positive effect of flattening.

Setting 1 (curr.) Setting 2 (low)

dataset dist. 1 2 3 1 2 3

Sensorless original 0.39 0.54 0.57 0.38 0.42 0.41
flattened 0.44 0.53 0.55 0.43 0.54 0.59

covtype.binary original 0.66 0.69 0.71 0.64 0.66 0.71
flattened 0.68 0.73 0.73 0.65 0.71 0.71

tainty distribution. This is shown for the datasets Sensorless and covtype.binary, for
model size ∈ {1, 2, 3}, with model = LPM and oracle = GBM . Two different parameter set-
tings are used: (a) In Setting 1, maximum allowed Beta components are 500 and scale = 10000
(b) Setting 2 looks at much lower values of these parameters where maximum allowed components
is 50 and scale = 10. The scores presented are the average over three trials.

We observe that while flattening influences results, other parameters determine the magnitude of its
effect. At Setting 1, Sensorless is affected at size = 1 (flattening is better), but at higher sizes
the differences seem to be from random variations across trials. At Setting 2 however, the differences
are seen for size ∈ {1, 2, 3} (flattening is better). For covtype.binary only size = 2 seems to
be affected in either setting.

Recall we had noted in Figure 4 that the datasets Sensorless and covtype.binary have
non-smooth and smooth uncertainty distributions respectively. The observations in Table 2 align
well with the expectation that Sensorless is positively affected by the transformation, while
results for covtype.binary remain mostly unchanged.

Based on these tests, we hypothesize that for non-smooth uncertainty distributions, flattening makes
our technique robust across parameter settings. It does not affect smooth distributions in a significant
way. Of course, rigorous and extensive tests are required to conclusively establish this effect.

A.7 DATASETS

Table 3 provides details about the various datasets used in the experiments in §4. All of these are
publicly available on the LIBSVM website (Chang & Lin, 2011a).

The “Label Entropy” column indicates how balanced a dataset is wrt its classes. For a dataset with
N instances and C labels, this is calculated as:

Label Entropy =
∑

j∈{1,2,...,C}

−pj logC pj (9)

Here, pj =
|{xi|yi = j}|

N

Label Entropy ∈ [0, 1], where values close to 1 denote the dataset is nearly balanced, and values
close to 0 represent relative imbalance.

A.8 VALIDATION RESULTS

An extended version of the results shown in Table 1 are presented here in Table 4. This shows results
for all combinations of models and oracles: {LPM,DT} × {GBM,RF}.
We also perform a Wilcoxon signed-rank test (Wilcoxon, 1945) to measure statistical significance.
We use this test as it has been shown to be useful in comparing classifiers (Demšar, 2006; Benavoli
et al., 2016; Japkowicz & Shah, 2011). Results are shown in figure 5 for the following test setup:
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Table 3: We use the following datasets available on the LIBSVM website (Chang & Lin, 2011a).
Their original source is mentioned in the “Description” column. 10000 instances from each dataset
are used. A train : val : test split ratio of 60 : 20 : 20 is used for Dtrain, Dval and Dtest in
Algorithm 1. The splits are stratified wrt labels.

S.No. Dataset Dimensions # Classes Label Entropy Description

1 cod-rna 8 2 0.92 Predict presence of non-coding RNA common to a pair
of RNA sequences, based on individual sequence prop-
erties and their similarity (Uzilov et al., 2006).

2 ijcnn1 22 2 0.46 Time series data produced by an internal combustion
engine is used to predict normal engine firings vs mis-
firings (Prokhorov, 2001). Transformations as in Chang
& Lin (2001).

3 higgs 28 2 1.00 Predict if a particle collision produces Higgs bosons or
not, based on collision properties (Baldi et al., 2014).

4 covtype.binary 54 2 1.00 Modification of the covtype dataset (see row 12), where
classes are divided into two groups (Collobert et al.,
2002).

5 phishing 68 2 0.99 Various website features are used to predict if the web-
site is a phishing website (Mohammad et al., 2012).
Transformations used as in Juan et al. (2016)

6 a1a 123 2 0.80 Predict whether a person makes over 50K a year, based
on census data variables (Dua & Graff, 2017). Trans-
formations as in Platt (1998).

7 pendigits 16 10 1.00 Classify handwritten digit samples into the digits 0-9
(Alimoglu & Alpaydin, 1996; Dua & Graff, 2017).

8 letter 16 26 1.00 Images of the capital letters A-Z were produced by ran-
dom distortion of these characters from 20 fonts. The
task is to classify these character images as one of the
original letters (Michie et al., 1995). Transformations
as in Hsu & Lin (2002).

9 Sensorless 48 11 1.00 Based on phase current measurements of an electric mo-
tor, predict different error conditions (Paschke et al.,
2013). We use the transformations from Wang et al.
(2018).

10 senseit aco 50 3 0.95 Predict vehicle type using acoustic data gathered by a
sensor network (Duarte & Hu, 2004).

11 senseit sei 50 3 0.94 Predict vehicle type using seismic data gathered by a
sensor network (Duarte & Hu, 2004).

12 covtype 54 7 0.62 Predict forest cover type from cartographic variables
(Dean & Blackard, 1998; Dua & Graff, 2017).

13 connect-4 126 3 0.77 Predict if the first player wins, loses or draws, based on
board positions of the board game Connect Four (Dua
& Graff, 2017).
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Table 4: This table shows the average improvements, δF1, over five runs for different combinations of models
and oracles: {LPM,DT} × {GBM,RF}. This is an extended version of the results in Table 1. The im-
provements are measured relative to the model at the first iteration.The best improvement for a model size and
oracle is indicated in bold. Here, δF1 ∈ (−∞,∞). Negative improvements are shown in underlined.

dataset model ora 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cod-rna lpm gbm 1.39 12.53 14.76 15.73 14.97 12.00 0.00 0.08 - - - - - - -
lpm rf 2.66 13.91 14.69 15.34 16.06 12.49 8.30 0.00 - - - - - - -
dt gbm 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 -0.28 0.08 - - - - -
dt rf 0.00 0.00 1.78 2.28 0.39 -0.02 0.17 0.47 0.00 0.72 - - - - -

ijcnn1 lpm gbm -0.16 3.36 3.93 0.00 5.19 4.18 3.85 3.79 3.69 2.99 2.97 3.21 3.11 3.26 3.02
lpm rf 0.19 2.80 3.36 3.65 3.33 1.94 3.58 3.30 3.46 3.81 2.66 4.65 3.99 3.82 4.85
dt gbm 1.96 12.00 10.15 11.37 10.63 7.18 3.63 4.52 2.91 1.78 1.93 2.29 1.47 2.26 0.00
dt rf 4.06 12.10 8.95 10.75 10.13 8.25 5.38 2.46 2.63 1.25 1.46 1.37 1.91 0.00 1.38

higgs lpm gbm 29.29 17.80 11.40 6.56 3.06 2.68 3.16 2.90 2.67 2.82 2.65 1.79 2.62 2.19 1.63
lpm rf 26.71 17.29 15.06 10.60 5.35 4.04 2.35 2.03 1.66 1.89 2.91 2.94 3.31 2.58 2.22
dt gbm 0.00 0.00 1.86 0.26 0.93 0.45 - - - - - - - - -
dt rf 4.04 1.26 1.74 1.32 1.54 0.91 - - - - - - - - -

covtype.binary lpm gbm 76.52 66.39 29.17 12.51 9.18 5.28 4.94 4.56 3.92 3.56 3.62 3.31 2.59 2.83 2.39
lpm rf 96.77 63.38 14.36 9.61 6.79 3.94 2.93 2.81 2.96 2.84 2.31 2.26 2.00 2.43 2.22
dt gbm 0.00 0.00 2.35 1.27 1.18 1.11 0.00 0.00 0.00 - - - - - -
dt rf 0.00 0.00 2.10 2.33 2.44 2.39 1.84 2.19 1.65 0.70 - 0.89 - - -

phishing lpm gbm 0.00 1.88 2.88 3.05 3.22 3.25 2.99 1.69 1.42 1.45 1.29 0.00 0.00 0.00 0.00
lpm rf 0.00 2.14 3.29 3.22 3.59 3.79 3.29 2.05 1.42 1.44 1.24 1.23 1.16 1.26 1.02
dt gbm 0.00 0.00 0.00 0.07 0.39 0.00 0.28 0.22 0.44 0.23 0.00 0.00 0.00 0.00 0.00
dt rf 0.00 0.72 0.00 0.57 0.00 -0.17 0.13 0.48 0.13 0.05 0.03 -0.03 -0.28 0.00 -0.16

a1a lpm gbm 0.00 2.55 7.58 8.98 8.40 8.03 8.90 8.23 8.17 7.90 5.96 7.10 6.97 6.18 5.73
lpm rf 0.00 4.17 8.81 9.92 9.88 9.47 8.99 9.31 9.19 9.26 9.33 8.25 7.15 7.55 7.98
dt gbm 0.00 5.54 2.39 3.84 3.55 2.55 1.51 2.25 4.87 - - - - - -
dt rf 0.00 6.44 3.36 5.60 3.40 5.94 6.06 4.97 4.89 4.01 4.73 5.21 - - 4.53

pendigits lpm gbm 51.39 23.44 16.18 8.95 8.84 6.63 4.86 1.83 2.27 2.16 2.44 2.16 3.33 2.97 2.73
lpm rf 46.28 22.74 21.72 8.80 8.47 6.29 6.48 1.69 3.03 2.79 2.34 2.68 2.70 3.02 0.00
dt gbm 14.02 6.72 5.11 13.14 6.42 4.20 2.46 1.09 0.98 0.16 -0.26 0.00 0.00 0.00 0.00
dt rf 21.46 4.18 5.22 14.51 7.36 4.55 2.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

letter lpm gbm 57.06 48.48 59.85 29.76 36.09 19.27 20.37 16.08 17.55 15.16 17.26 16.51 18.46 17.19 15.55
lpm rf 61.06 65.34 64.26 23.69 35.20 26.15 22.10 20.74 20.91 20.31 19.28 21.40 20.77 19.39 18.18
dt gbm 0.00 13.98 25.05 33.96 32.05 15.49 11.17 0.00 4.26 3.50 1.99 0.00 0.00 0.00 0.00
dt rf 0.00 12.21 28.67 33.47 33.51 18.41 8.10 0.00 1.84 1.21 1.31 0.67 0.61 0.11 -0.08

Sensorless lpm gbm 216.47 257.56 178.31 117.01 90.70 83.90 73.50 65.95 61.57 57.97 56.54 57.15 55.45 66.24 68.24
lpm rf 224.18 210.28 134.44 115.00 85.85 74.96 66.77 61.10 66.88 64.65 69.00 70.09 72.91 80.14 82.15
dt gbm -0.01 42.42 68.13 44.38 17.39 10.32 1.82 1.44 0.79 0.64 0.41 0.12 0.00 -0.02 0.34
dt rf 0.00 52.54 57.10 44.61 16.63 6.19 2.19 0.96 0.51 0.00 0.48 0.33 0.00 0.00 0.10

senseit aco lpm gbm 173.71 170.68 63.95 44.20 33.49 22.99 19.14 13.50 10.29 7.59 6.26 5.92 5.30 4.89 4.32
lpm rf 177.67 181.26 79.86 42.86 37.60 28.80 23.75 19.06 13.91 10.74 8.48 6.09 5.20 5.32 4.62
dt gbm 14.89 0.00 3.71 2.32 4.85 0.81 0.00 - - - - - - - -
dt rf 20.03 2.54 3.64 5.91 3.34 2.63 0.00 0.00 - - - - - - -

senseit sei lpm gbm 160.59 65.27 23.44 10.48 6.76 4.86 4.82 4.46 4.79 4.12 4.54 5.17 3.91 4.21 4.46
lpm rf 165.98 63.72 31.58 14.94 9.07 5.79 4.95 5.07 5.24 4.70 4.60 3.74 4.30 4.35 4.35
dt gbm 2.66 1.01 3.49 2.29 0.95 1.30 1.37 0.00 - - - - - - -
dt rf 2.33 0.00 3.36 1.65 0.87 0.00 -1.23 - - - - - - - -

covtype lpm gbm 36.87 49.24 12.78 11.21 7.84 7.15 7.15 8.07 7.70 8.25 10.94 8.35 4.37 8.77 5.84
lpm rf 32.15 39.49 10.49 8.53 8.11 8.59 9.61 11.99 11.22 9.91 8.47 8.16 10.34 13.76 12.92
dt gbm 342.27 92.85 43.23 20.04 8.14 8.05 5.67 3.26 4.92 3.52 2.72 0.00 0.00 0.00 1.74
dt rf 354.45 98.94 50.87 14.10 9.46 7.38 4.76 4.20 0.94 1.81 2.30 0.71 -0.37 0.00 0.00

connect-4 lpm gbm 37.62 11.66 12.01 6.84 5.68 6.82 4.58 2.10 3.82 3.21 3.02 3.64 2.32 2.97 3.40
lpm rf 33.77 12.99 17.60 14.66 15.91 10.73 6.38 5.35 7.07 6.98 2.84 3.14 2.09 2.52 2.46
dt gbm 89.33 29.23 20.20 12.10 9.73 9.88 7.82 7.43 0.57 4.61 1.08 3.35 2.23 1.15 1.55
dt rf 113.71 21.91 20.52 11.23 16.86 10.96 10.64 9.11 6.51 5.88 6.76 2.16 2.97 0.61 0.00

1. We divide the analysis by model size. This is because size strongly influences δF1 (as in
Table 4).

2. Normalized model sizes are used. Binning of model sizes is done using Sturges rule
(Sturges, 1926).

3. The one-sided version of the paired test is performed for each bin, where pairs of scores
F1base and F1∗ for a dataset, for models with sizes assigned to the bin, are compared. In
cases were where multiple model sizes for a dataset fall within the same bin, F1base and
F1∗ are first averaged and then compared.

4. The following hypotheses are tested:

• H0, null hypothesis: accuracies of models produced by our technique are not better.
• H1, alternate hypothesis: accuracies of models trained using the oracle are better.

p-values are shown for each bin. Small p-values favor H1, i.e., our algorithm.
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Figure 5: These plots show the p-values for the Wilcoxon signed-rank test, with the null hypothesis
H0: using the oracle does not produce better F1 test scores. The bin boundaries are selected using
the Sturges rule (Sturges, 1926). Low p-values favor our algorithm.

5. Scores of δF1 = 0 are split equally between positive and negative ranks9.

A.9 COMPARISON WITH THE APPROACH BASED ON DENSITY TREES

As mentioned in §4.2 we benchmark against the density tree technique Ghose & Ravindran (2020)
because that’s the closest in terms of methodology. Their metric is slightly different from ours.
Instead of reporting results for F1∗, they report them for max(F1∗, F1base). This is an “outcome-
centric” view10, where you can’t do worse than your best model. For this case, δF1test ∈ [0,∞).
We also follow this scoring scheme in this section to match their reporting.

We report two scores for comparison (den and ora denote density trees and our oracle based tech-
nique respectively):

1. To compare improvements, we use the Scaled Difference in Improvement (SDI):

SDI =

{
(δF1ora − δF1den)/H, if H > 0

0, if H = 0
(10)

where H = max {δF1den, δF1ora}

Here δF1ora and δF1den are the improvements from our technique and by using density
trees, respectively. The scaling wrt H ensures that SDI ∈ [−1, 1] making it convenient to
interpret. Note that H ≥ 0 since both δF1ora ≥ 0 and δF1den ≥ 0 in the current scoring

9The zplit option in https://numpy.org/doc/stable/reference/generated/numpy.
histogram_bin_edges.html is used.

10Another reason provided is that with a sufficient budget the optimizer will eventually learn to set po = 1,
thus emulating Mbase exactly, if Mbase is indeed the best possible model. In this case δF1 = 0 as per Equation
3.
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scheme. For brevity, we average the SDI scores at the level of a dataset, across model
sizes, for a given model and oracle. This averaged score is denoted by SDI , and this is
what we report.

2. Since SDI is aggregated over model sizes, we also report the percentage of times
δF1ora > δF1den across these model sizes. This is denoted as pct better

All δF1ora and δF1den scores used are the averaged over five runs.

We consider our approach to be better if SDI > 0 and pct better > 50%. These scores are shown
in Table 5. Since the density trees approach lacks a notion of an oracle, we present results for GBMs
and RFs separately. Numbers that represent superior performance by density trees are underlined.
Note also the two special groupings:

• ANY: For each model size, the SDI score considered is the higher of the ones obtained
from using the GBM or RF as oracles. The SDI and pct better scores are computed
based on these scores. This grouping represents the ideal way to use our technique in
practice: try multiple oracles and pick the best.

• OVERALL: This averages results across datasets, to provide an aggregated view.

The cells identified by OVERALL and ANY provide comparison numbers aggregated over datasets,
model sizes and oracles.

Table 5: LPM, DT compared to the Density Tree approach. All δF1ora and δF1den scores used are the
average over five runs. Cases where density trees fare better are underlined. The line in the middle separates
binary class datasets (top) from multi-class ones (bottom).

LPM DT

dataset GBM RF ANY GBM RF ANY
cod-rna -0.38, 0.00% -0.45, 0.00% -0.33, 0.00% 0.51, 60.00% 0.50, 70.00% 0.65, 80.00%
ijcnn1 0.06, 66.67% 0.11, 80.00% 0.20, 93.33% 0.23, 53.33% 0.68, 100.00% 0.68, 100.00%
higgs -0.07, 40.00% -0.07, 40.00% 0.04, 46.67% 0.23, 50.00% 0.61, 83.33% 0.61, 83.33%
covtype.binary -0.16, 40.00% -0.33, 13.33% -0.15, 40.00% 0.23, 66.67% 0.26, 72.73% 0.38, 81.82%
phishing 0.30, 80.00% 0.37, 86.67% 0.38, 86.67% 0.11, 26.67% -0.00, 26.67% 0.23, 46.67%
a1a -0.03, 60.00% 0.13, 66.67% 0.13, 66.67% -0.06, 44.44% 0.43, 75.00% 0.52, 83.33%

pendigits 0.59, 100.00% 0.59, 93.33% 0.62, 100.00% 0.23, 60.00% 0.16, 46.67% 0.25, 60.00%
letter 0.79, 100.00% 0.81, 100.00% 0.81, 100.00% 0.02, 33.33% -0.34, 13.33% 0.06, 40.00%
Sensorless 0.64, 100.00% 0.65, 100.00% 0.66, 100.00% -0.23, 20.00% -0.39, 20.00% -0.23, 20.00%
senseit aco 0.55, 100.00% 0.63, 100.00% 0.63, 100.00% 0.50, 85.71% 0.37, 75.00% 0.39, 75.00%
senseit sei 0.61, 100.00% 0.66, 100.00% 0.67, 100.00% -0.25, 42.86% 0.51, 100.00% 0.51, 100.00%
covtype 0.20, 80.00% 0.39, 93.33% 0.43, 100.00% 0.26, 66.67% 0.16, 66.67% 0.40, 80.00%
connect-4 0.23, 73.33% 0.24, 66.67% 0.38, 86.67% -0.23, 33.33% -0.13, 53.33% 0.08, 66.67%
OVERALL 0.28, 75.00% 0.32, 75.00% 0.37, 81.38% 0.10, 47.06% 0.16, 57.23% 0.31, 67.30%

The predominance of non-underlined values indicate that our technique performs better in most
settings. In both cases, the OVERALL +ANY entries indicate that our technique works better on
average - in terms of both the extent of improvement SDI and its frequency pct better.
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Figure 6: (a) shows a standard measurement scheme with datasets in rows and model families in
columns. Statistical tests are performed on the column values. Row-wise ranks are first computed for
calculating the mean rank. (b) To account for model sizes, we allow rows to represent combinations
of datasets and model sizes. See text for details.

A.10 EVALUATING COMPETITIVENESS

As mentioned in the main paper in §4.2, we consider the following tasks for evaluating competitive-
ness:

1. Building cluster explanation trees.

2. Prototype-based classification.

For evaluation on each of these tasks, we follow a common theme: (a) first, we show that a traditional
technique is almost always not as good as newer and specialized techniques, and, (b) then we show
that its performance may be radically improved by learning the training distribution. Collectively,
these evaluations show that the strategy of learning the training distribution is both general - may
be applied to different tasks, models, notions of model sizes - and effective - results in competitive
performance. We first detail our measurement strategy.

A.10.1 MEASUREMENT

While each task-specific section contains a detailed discussion on the experiment setup, we discuss
some common aspects here:

1. To compare model families F1,F2,F3, each of which is, say, used to construct models
for different sizes η ∈ {2, 3}, for datasets D1, D2, D3, we use the mean rank, and support
our conclusions with statistical tests such as the Friedman (Friedman, 1937) and Wilcoxon
signed-rank (Wilcoxon, 1945) tests11.
Typically mean rank is used to compare model families based on their accuracies across
datasets - which, ignoring model sizes, may be visualized as a 3 × 3 table here, with rows
representing datasets, and columns denoting model families - see Figure 6(a). An entry
such as “D2,F3” represents the accuracy (or some other metric) of a model from family
F3 on dataset D2. Models are ranked on a per-dataset basis, i.e., row-wise, and the average
ranks (computed per family, i.e., column-wise) are reported (lower is better). For statistical
tests, the column values are directly used.

11The Wilcoxon signed-rank test was used here since it has been advocated by various studies for measuring
classification performance (Demšar, 2006; Benavoli et al., 2016; Japkowicz & Shah, 2011).
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However, we have an additional factor here - the model size. To avoid inventing a custom
metric, we assimilate it in the previous scheme by using the combination of datasets and
model sizes as a row - see Figure 6(b). We think of such combinations as “pseudo-dataset”
entries, i.e., now we have a 6 × 3 table, with rows for D2

1, D
3
1, D

2
2, D

3
2, D

2
3, D

3
3 , and same

columns as before. The entry for “D2
1,F3” indicates the accuracy of a model of size 2 from

family F3 on dataset D1.
Effectively, now the comparisons automatically account for model size since we use
pseudo-datasets instead of datasets.Note that no new datasets are being created - we are
merely defining a convention to include model size in the familiar dataset-model cross-
product table.

2. For each model family, model size and dataset combination (essentially a cell in this cross-
product table), models are constructed multiple times (we refer to these as multiple “trials”),
and their scores are averaged. Five trials were used in our experiments.

A.10.2 EXPLAINABLE CLUSTERING

The first task we investigate is the problem of Explainable Clustering. Introduced by Moshkovitz
et al. (2020), the goal is to explain cluster allocations as discovered by techniques such k-means
or k-medians. This is achieved by constructing axis-aligned decision trees with leaves that either
exactly correspond to clusters, e.g., Iterative Mistake Minimization (IMM) Moshkovitz et al. (2020),
or are proper subsets, e.g., Expanding Explainable k-Means Clustering (ExKMC) Frost et al. (2020).
We consider the former case here, i.e., a tree must possess exactly k leaves to explain k clusters.

For a specific clustering C, let C(xi) denote the assigned cluster for an instance xi, i = 1...N ,
where C(xi) ∈ {1, 2, ..., k}, and the cluster centroids by µj , j = 1, ..., k. The cost of clustering J
is then given by:

J =
1

N

k∑
j=1

∑
{xi|C(xi)=j}

||xi − µj ||22 (11)

In the case of an explanation trees with k leaves, µj are centroids of leaves. Cluster explanation
techniques attempt to minimize this cost.

The price of explainability maybe measured as the cost ratio12:

cost ratio =
JEx

JKM
(12)

Here JEx is the cost achieved by an explanation tree, and JKM is the cost obtained by a standard
k-means algorithm. It assumes values in the range [1,∞], where the lowest cost is obtained when
using k-means, i.e., JEx and JKM are the same.

One may also indirectly minimize the cost in the following manner: use k-means to produce a
clustering, use the cluster allocations of instances as their labels, and then learn a standard decision
tree for classification, e.g., CART. This approach has been shown to be often outperformed by tree
construction algorithms that directly minimize the cost in Equation 11, e.g., IMM.

⋄ Algorithms and Hyperparameters
The algorithms we compare and their hyperparameter settings are as follows:

1. Iterative Mistake Minimization (IMM) Moshkovitz et al. (2020): This generates a de-
cision tree via greedy partitioning using a criterion that minimizes number of mistakes
at each split (the number of points separated from their corresponding reference cluster
center). There are no parameters to tune. We used the implementation available here:
https://github.com/navefr/ExKMC, which internally uses the reference imple-
mentation for IMM.

2. ExShallow Laber et al. (2021): Here, the decision tree construction explicitly accounts for
minimizing explanation complexity while targeting a low cost ratio. The trade-off between

12This is referred to as the cost ratio in Frost et al. (2020), price of explainability in Moshkovitz et al. (2020)
and competitive ratio in Makarychev & Shan (2022).
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(e) avila(b) Sensorless (c) covtype (d) covtype.binary

(a) mice-protein (f) Mean Rank

Figure 7: Comparisons over explainable clustering algorithms are shown. (a) shows the comparison
for a specific dataset mice-protein. (b), (c), (d) and (e) show comparisons over other datasets -
miniaturized to fit the page. (f) shows mean ranks of these techniques over five datasets across model
sizes; the Friedman test is conducted over the top three techniques only, with p = 6.688× 10−6.

.

clustering cost and explanation size is controlled via a parameter λ. This is set as λ = 0.03
in our experiments; this value is used in the original paper for various experiments. We used
the reference implementation available here: https://github.com/lmurtinho/
ShallowTree.

3. CART: We use CART Breiman et al. (1984) as the traditional model to compare, and
maximize the classification accuracy for predicting clusters, as measured by the F1-macro
score. The implementation in scikit Pedregosa et al. (2011) is used. During training, we
set the following parameters: (a) the maximum number of leaves (this represents model
size η here) is set to the number of clusters k, and (b) the parameter class weight is set to
“balanced” for robustness to disparate cluster sizes. Results for CART are denoted with
label CART. We then apply our technique to CART; these results are denoted as c CART.
We set T = 2000, and use default settings for other parameters, e.g., Ns ∈ [400, |Xtrain|].
Since we are explaining clusters (and not predicting on unseen data), the training, validation
and test sets are identical.

⋄ Experiment Setup
The comparison is performed over five datasets (limited to 1000 instances), and for each dataset,
k = 2, 3, ..., 10 clusters are produced. Results for the cost ratio (Equation 12) are reported over five
trials. Evaluations are performed over the following publicly available datasets: avila, covtype, cov-
type.binary, Sensorless Chang & Lin (2011b) and mice-protein Dua & Graff (2017). We specifically
picked these datasets since CART is known to perform poorly on them Frost et al. (2020); Laber
et al. (2021), and thus these provide a good opportunity to showcase the power of this technique.

⋄ Observations
Figure 7 presents our results. Figure 7(a) shows the plot for the mice-protein dataset: the 95% con-
fidence interval, in addition to cost ratio, is shown13. Plots for other datasets are shown miniaturized
- (b), (c), (d), (e) in the interest of space. The cost for k-means is shown for reference a blue hori-
zontal line at y = 1. Figure 7(f) shows the mean ranks of the various techniques (lower is better)
across datasets and number of clusters (as described in §A.10.1, trials scores are averaged), and its
title shows the p-value= 6.688× 10−6 of a Friedman test conducted over the top three techniques:
we restrict the test to top candidates since otherwise it would be very easy to obtain a low score

13It might come as a surprise that the cost ratio increases with increasing k, but this seems to be a transient
phenomenon; at even higher values of k we do observe that cost ratios collectively decrease
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favorable to us, due to the high cost ratios for CART. The low score indicates with high confidence
that ExShallow, IMM and c CART do not produce the same outcomes.

From the plot of mean ranks in Figure 7(f), we observe that although CART performs quite poorly,
the application of our technique drastically improves its performance, to the extent that it competes
favorably with techniques like IMM and ExShallow; its mean rank places it between them. This is
especially surprising given that it doesn’t explicitly minimize the cost in Equation 11. We also note
the following p-values from Wilcoxon signed-rank tests:

• CART vs c CART: p = 1.4783 × 10−6. The low value indicates that using our technique
indeed significantly changes the accuracy of CART.

• IMM vs c CART: p = 0.0155. The relatively high value indicates that the performance of
c CART is competitive with IMM.

Here, both the Friedman and Wilcoxon tests are performed for combinations of datasets and k - a
“pseudo-dataset”, as discussed in §A.10.1.

A.10.3 PROTOYPE-BASED CLASSIFICATION

(b) covtype.binary (c) senseit-sei (d) senseit-aco (e) phishing

(f) Mean Rank(a) adult

Figure 8: Various prototype-based classifiers are compared. (a) shows comparison for the dataset
adult. Number of prototypes are shown as percentage of the training data on the x-axis, and is re-
ferred to as “compression”. (b), (c), (d) and (e) shows plots for other datasets - these are miniaturized
to fit the page. (f) shows the mean ranks of techniques based on five datasets; the Friedman test is
conducted over the top four techniques only, with p = 3.5025× 10−8.

.

Next, we consider prototype-based classification. At training time, such techniques identify “proto-
types” (actual training instances or generated instances), that maybe used to classify a test instance
based on their similarity to them. A popular technique in this family is the k-Nearest Neighbor
(kNN). These are simple to interpret, and if a small but effective set of protoypes maybe identified,
they can be convenient to deploy on edge devices Gupta et al. (2017); Zhang et al. (2020). Pro-
totypes also serve as minimal “look-alike” examples for explaining models (Li et al., 2018; Nauta
et al., 2021). Research in this area has focused on minimizing the number of prototypes that need to
be retained while minimally trading off accuracy.

We define some notation first. The number of prototypes we want is an input to our experiments, and
is denoted by Np. We will also use Kγ(xi, xj) = e−γ||xi−xj ||22 to denote the Radial Basis Function
(RBF) kernel, parameterized by the kernel bandwidth γ.

⋄ Algorithms and Hyperparameters
These are the algorithms we compare:
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1. ProtoNN Gupta et al. (2017): This technique uses a RBF kernel to aggregate influence
of prototypes. Synthetic prototypes are learned and additionally a “score” is learned for
each of them that designates their contribution towards each class. The prediction function
sums the influence of neighbors using the RBF kernel, weighing contribution towards each
class using the learned score values; the class with the highest total score is predicted. The
method also allows for reducing dimensionality, but we don’t use this aspect14. The various
parameters are learned via gradient based optimization.
We use the EdgeML library (Dennis et al., 2021), which contains the reference im-
plementation for ProtoNN. For optimization, the implementation uses the version of
ADAM Kingma & Ba (2015) implemented in TensorFlow Abadi et al. (2015); we set
num epochs = 200, learning rate = 0.05, while using the defaults for other param-
eters. The num epochs and learning rate values are picked based on a limited search
among values {100, 200, 300} and {0.01, 0.05} respectively. The search space explored
for γ is [0.001, 0.01, 0.1, 1, 10]. Defaults are used for the other ProtoNN hyperparameters.

2. Stochastic Neighbor Compression (SNC) Kusner et al. (2014): This also uses a RBF ker-
nel to aggregate influence of prototypes, but unlike ProtoNN, the prediction is performed
via the 1-NN rule, i.e., prediction uses only the nearest prototype. The technique bootstraps
with randomly sampled Np prototypes (and corresponding labels) from the training data,
and then modifies their coordinates for greater accuracy using gradient based optimiza-
tion; the labels of the prototypes stay unchanged in this process. This is another difference
compared to ProtoNN, where in the latter, each prototype contributes to all labels to vary-
ing extents. The technique maybe extended to reduce the dimensionality of the data (and
prototypes); we don’t use this aspect.
We were unable to locate the reference implementation mentioned in the paper, so we
implemented our own version, with the help of the JAXopt library Blondel et al. (2021).
For optimization, gradient descent with backtracking line search is used. A total of 100
iterations for the gradient search is used (based on a limited search among these values:
{100, 200, 300}), and each backtracking search is allowed up to 50 iterations. A grid search
over the following values of γ is performed: [0.001, 0.01, 0.1, 1, 10].

3. Fast Condensed Nearest Neighbor Rule Angiulli (2005): Learns a “consistent subset”
for the training data: a subset such that for any point in the training set (say with label l),
the closest point in this subset also has a label l. Of the multiple variations of this technique
proposed in Angiulli (2005), we use FCNN1, which uses the 1-NN rule for prediction.
There are no parameters to tune. We used our own implementation.
A challenge in benchmarking this technique is it does not accept Np as a parameter; instead
it iteratively produces expanding subsets of prototypes until a stopping criteria is met, e.g.,
if prototype subsets Vi and Vi+1 are produced at iterations i and i + 1 respectively, then
they satisfy the relationship Vi ⊂ Vi+1. For comparison, we consider the performance at
iteration i to be the result of Np prototypes where Np is defined to be |Vi|, i.e., instead of
setting Np, we use the value the algorithm produces at each iteration.

4. RBFN: For the traditional model, we use Radial Basis Function Networks (RBFN) Broom-
head & Lowe (1988). For a binary classification problem with classes {−1, 1}, given proto-
types xi, i = 1, 2, ..., p, the label of a test instance x is predicted as sgn(

∑p
i wiKγ(x, xi))

(a score of 0 is set to a label of 1). Weights wi are learned using linear regression. A one-
vs-rest setup is used for multiclass problems. For our baseline, we use cluster centres of a
k-means clustering as our prototypes, where k is set to Np. These results are denoted using
the term KM RBFN. In our version, denoted by c RBFN, the Np prototypes are sampled
from the training data. Np represents model size η here.
Note that the standard RBFN, and therefore the variants used here KM RBFN and c RBFN,
don’t provide a way to reduce dimensionality; this is the reason why this aspect of ProtoNN
and SNC wasn’t used (for fair comparison). We set T = 1000 and Ns was set to Np to get
the desired number of prototypes.

14The implementation provides no way to switch off learning a projection, so we set the dimensionality of the
projection to be equal to the original number of dimensions. This setting might however learn a transformation
of the data to space within the same number of dimensions, e.g., translation, rotation.
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Although all the above techniques use prototypes for classification, it is interesting to note variations
in their design: ProtoNN, SNC, KM RBFN use synthetic prototypes, i.e., they are not part of the
training data, while c RBFN and FCNN1 select Np instances from the training data. The prediction
logic also differs: ProtoNN, KM RBFN, c RBFN derive a label from some function of the influence
by all prototypes, while SNC and FCNN1 use the 1-NN rule.

⋄ Experiment Setup
As before, we evaluate these techniques over five standard datasets: adult, covtype.binary, senseit-
sei, senseit-aco, phishing Chang & Lin (2011b). 1000 training points are used, with Np ∈
{20, 40, 60, 80, 100, 140, 160, 180, 200}. Results are reported over five trials. The score reported
is the F1-macro score.

⋄ Observations
Results are shown in Figure 8. (a) shows the plot for the adult dataset. The number of prototypes
are shown on the x-axis as percentages of the training data. Plots for other datasets are shown in (b),
(c), (d) and (e); these have been miniaturized to fit the page. Figure 8(f) shows the mean rank (lower
is better) across datasets and number of prototypes (as described in §A.10.1, trials are aggregated
over). The p-value of the Friedman test is reported, p = 3.5025 × 10−8. Here too, we do not
consider the worst performing candidate, FCNN1 - so as to not bias the Friedman test in our favor.

We observe in Figure 8(f) that while both ProtoNN and SNC outperform c RBFN, the performance
of SNC and c RBFN are close. We also observe that FCNN1 performs poorly; this matches the
observations in Kusner et al. (2014).

We also consider the following p-values from Wilcoxon signed-rank tests:

1. KM RBFN vs c RBFN: p = 1.699 × 10−4. The low value indicates that our technique
significantly improves upon the baseline KM RBFN.

2. SNC vs c RBFN: p = 0.1260. The relatively high value here indicates that c RBFN is
competitive with SNC; in fact, at a confidence threshold of 0.1, their outcomes would not
be interpreted as significantly different.

As discussed in §A.10.1, these statistical tests are conducted over a combination of dataset and
model size.

A.11 RUNTIMES

For our experiments in the main paper, we used the hyperopt library on account of its popularity and
maturity. Its acquisition function approximates the Probability of Improvement (PI) utility function
(Song et al., 2022), which can exhibit greedy behavior (Garnett, 2023). In contrast, we might use a
different utility function, such as Expected Improvement (EI), which is relatively more exploratory,
and thus, is likely to find better extrema.

We present some initial results around this line of thought. Instead of using the naive EI, we use
a numerically stable version called LogEI (Ament et al., 2023) from the BoTorch (Balandat et al.,
2020) package. We also note that we might use an acquisition function that can explicitly account
for noise15, thus bypassing the need for estimating st in Algorithm 3 via averaging (see notes in
§A.4).

Table 6 shows results for datasets a1a and ijcnn1, where the interpretable model is a DT and the
oracle is a GBM. We assume homoscedastic noise with variance of 0.5. hyperopt was provided
a budget of T = 3000 evaluations as in the main paper, while BoTorch was allowed T = 200
iterations. We observe that significant speedups are obtained without mostly noticeable change in
the quality of results - the only exception seems to be for ijcnn1, for depth = 2. To take an example,
for the dataset a1a, for DT depth = 1, the time taken by hyperopt is 3193.27 seconds or 53 minutes,
while BoTorch offers of speedup of 21.57x; this is a runtime of 3193.27/21.57 = 148.04 seconds
or ∼ 2 minutes.

15We use this particular function: https://botorch.readthedocs.io/en/latest/
acquisition.html#botorch.acquisition.analytic.LogNoisyExpectedImprovement.
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Table 6: Difference between using BoTorch with the noisy LogEI acquisition function, and hyperopt.
The table shows: (a)hyperopt runtimes (in seconds), (b) percentage point (pp) difference between
the %-age improvements seen between BoTorch and hyperopt, and (c) the speedup in wallclock
runtime with BoTorch. BoTorch and hyperopt were run for 200 and 3000 iterations respectively.
For these examples, BoTorch runs significantly faster. Aside from one case - ijcnn1, depth = 2,the
performance degradation is reasonable. In some cases, it seems to perform better. Results are
averaged over three runs.

dataset tree depth = 1 2 3 4 5

a1a
timehyp = 3193.27s,
pp = +0.19,
speedup = 21.57x

4228.81s,
+1.87
27.02x

3867.64s,
+3.22,
25.23x

4843.54s,
−0.43,
34.50x

3610.96s,
+4.04,
27.86x

ijcnn1
4221.34s,
−2.39,
28.37x

3902.53s,
−7.84
24.62x

4613.63s,
−3.47,
29.01x

4362.36s,
−1.36,
27.20x

4962.23s,
+0.20,
29.59x

A.12 MULTIVARIATE MODEL SIZES

Our technique is applicable even when the model size has more than one attribute. This is because
Algorithm 1 delegates size enforcement to trainI,g . Consider GBMs, where we might consider a
bivariate size, η = [max depth, num trees]; here the quantities respectively denote the maximum
depth allowed for each constituent DT in a GBM, and the number of DTs in the GBM. In Figure
9, we show how improvements for GBMs vary when 1 ≤ max depth ≤ 5 (x-axis) and 1 ≤
num trees ≤ 5 (y-axis); the oracle used is a GBM as well (unconstrained in size). Results are
averaged over three runs for these datasets: (a) senseit-sei (b) higgs (c) cod-rna and (d) senseit-aco
here. We continue to observe pattern that as model sizes increase, in terms of both max depth and
num trees, improvements decrease.

A.13 DIFFERENT FEATURE SPACES

In our validation experiments in §4.1.2, the feature vector representation was identical for the oracle
and the interpretable model. This is also what Algorithm 1 implicitly assumes. Here, we consider
the possibility of going a step further and using different feature vectors. If fO and fI are the
feature vector creation functions for the oracle and the interpretable model respectively, and xi is a
“raw data” instance, then:

1. The oracle is trained on instances fO(xi), and provides uncertainties uO(fO(xi)).

2. The interpretable model is provided with data fI(xi), but the uncertainty scores available
to it are uO(fO(xi)).

The motivation for using different feature spaces is that the combination (O, fO) may be known to
work well together and/or a pre-trained oracle might be available only for this combination.

We illustrate this application with the example of predicting nationalities from surnames of indi-
viduals. Our dataset (Rao & McMahan, 2019) contains examples from 18 nationalities: Arabic,
Chinese, Czech, Dutch, English, French, German, Greek, Irish, Italian, Japanese, Korean, Polish,
Portuguese, Russian, Scottish, Spanish, Vietnamese. The representations and models are as follows:

1. The oracle model is a Gated Recurrent Unit (GRU) (Cho et al., 2014), that is learned on
the sequence of characters in a surname. The GRU is calibrated with temperature scaling
(Guo et al., 2017).

2. The interpretable model is a DT, where the features are character n-grams, n ∈ 1, 2, 3. The
entire training set is initially scanned to construct an n-gram vocabulary, which is then used
to create a sparse binary vector per surname - 1s and 0s indicating the presence and absence
of an n-gram respectively.
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(b) dataset: higgs
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(c) dataset: cod-rna
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(d) dataset: senseit_aco
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Figure 9: Improvements in test F1-macro for multiple datasets for different sizes of GBM models
are shown. (a) Top-left: senseit-sei (b) Top-right: higgs (c) Bottom-left:cod-rna and (d) Bottom-
right: senseit-aco. Here, model size is the combination of max depth and number of trees in the
GBM model. Greater improvements are seen at lower sizes.

Figure 10 shows a schematic of the setup.

The n-gram representation leads to a vocabulary of ∼ 5000 terms, that is reduced to 600 terms
based on a χ2-test in the interest of lower running time. DTs of different depth ≤ 15 were trained.
A budget of T = 3000 iterations was used, and the relative improvement in the F1 macro score (as
in Equation 3) is reported, averaged over three runs. Figure 11 shows the results.

We see large improvements at small depths, that peak with δF1 = 83.04% at depth = 3, and then
again at slightly larger depths, which peak at depth = 9 with δF1 = 12.34%.

To obtain a qualitative idea of the changes in the DT using a oracle produces, we look at the
prediction rules for Polish surnames, when DT depth = 3. For each rule, we also present examples
of true and false positives.

Baseline rules - precision = 2.99%, recall = 85.71%, F1 = 5.77%:

Rule 1. k ∧ ski ∧ ¬v
• True Positives: jaskolski, rudawski
• False Positives: skipper (English), babutski (Russian)

Rule 2. k ∧ ¬ski ∧ ¬v
• True Positives: wawrzaszek, koziol
• False Positives: konda (Japanese), jagujinsky (Russian)
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Figure 10: The feature representations for the oracle and the interpretable model may be different.
Consider the name “Amy”: the GRU is provided its letters, one at a time, in sequence, while the DT
is given an n-gram representation of the name.

Figure 11: Improvements δF1 are shown for different depths of the DT.

Oracle-based DT rules - precision = 25.00%, recall = 21.43%, F1 = 23.08%:

Rule 1. ski ∧ ¬(b ∨ kin)

• True Positives: jaskolski, rudawski
• False Positives: skipper (English), aivazovski (Russian)

We note that the baseline rules are in conflict w.r.t. the literal “ski”, and taken together, they simplify
to k ∧ ¬v. This makes them extremely permissive, especially Rule 2, which requires the literal “k”
while needing “ski” and “v” to be absent. Not surprisingly, these rules have high recall (= 85.71%)
but poor precision (= 2.99%), leading to F1 = 5.77%.

In the case of the oracle-based DT, now we have only one rule, that requires the atypical trigram
“ski”. This improves precision (= 25%), trading off recall (= 21.43%), for a significantly improved
F1 = 23.08%.

The difference in rules may also be visualized by comparing the distribution of nationalities repre-
sented in their false positives, as in Figure 12. We see that the baseline DT rules, especially Rule 2,
predict many nationalities, but in the case of the DT learned using the oracle, the model confusion
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Figure 12: The distribution of nationalities in false positive predictions for the baseline and oracle
based models, shown for predicting Polish names. Only nationalities with non-zero counts are
shown.

is concentrated around Russian names, which is reasonable given the shared Slavic origin of many
Polish and Russian names.

We believe this is a particularly powerful and exciting application of our technique, and opens up a
wide range of possibilities for translating information between models of varied capabilities.
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