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Abstract

Achieving truly practical dynamic 3D reconstruction requires online operation,
global pose and map consistency, detailed appearance modeling, and the flexibil-
ity to handle both RGB and RGB-D inputs. However, existing SLAM methods
typically merely remove the dynamic parts or require RGB-D input, while offline
methods are not scalable to long video sequences, and current transformer-based
feedforward methods lack global consistency and appearance details. To this end,
we achieve online dynamic scene reconstruction by disentangling the static and dy-
namic parts within a SLAM system. The poses are tracked robustly with a novel mo-
tion masking strategy, and dynamic parts are reconstructed leveraging a progressive
adaptation of a Motion Scaffolds graph. Our method yields novel view renderings
competitive to offline methods and achieves on-par tracking with state-of-the-art
dynamic SLAM methods. Project page: (cs-vision.github.io/ProDyG.github.io

1 Introduction

Dynamic scene reconstruction is fundamental to problems like action recognition, scene under-
standing, autonomous driving, robotics and augmented reality, because it provides a temporally
consistent spatial understanding of how objects and agents move and interact in their environment —
an essential prerequisite for any system to perceive, predict, and act in the world. This problem has
been tackled in various ways e.g. as an online SLAM task [4}, 189, 134], an offline reconstruction task
[291 73,79, 139, 56l 155]], and lately as a feedforward task [86, 87, [11} |69]]. However, most dynamic
SLAM works ignore the dynamic parts [89, 4]], only reconstructing the static world, only track rigid
objects [I85} 143] or are restricted to object-centric reconstruction [45, |58]. Offline methods typically
separate the reconstruction task into pose estimation followed by reconstruction [55} 56], or are not
scalable to long input videos due to their reliance on global optimization over all past frames [29, [73]].
Feed-forward methods train large transformers for online dynamic scene reconstruction, but are yet
to achieve global pose consistency and only produce point clouds [69} 11} 86].

Despite recent progress, existing methods fall short of at least one of the requirements for practical
dynamic scene reconstruction: (1) online operation, tightly coupling pose estimation and dense map
reconstruction for scalability; (2) global pose and map consistency; (3) expressive representations
like 3DGS [23]] for detailed appearance and geometry; and (4) flexibility to handle both RGB and
RGB-D input. SLAM systems often ignore dynamics or lack detail; feedforward methods trade
consistency and accuracy for speed; and offline methods are challenging to scale.

We propose ProDy(ﬂ, a method for Progressive, Dynamic scene reconstruction with Gaussians from
monocular input, that meets all four criteria. Our contributions are:

"Pronounced “Prodigy”.
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Figure 1: ProDyG: Given an online RGB stream, ProDyG robustly tracks the camera and progres-
sively reconstructs the static background and the dynamic foreground using 3D Gaussian Splat-
ting [23]] (3DGS). ProDyG reconstructs dynamic scenes with high-quality novel view synthesis, by
fusing observations from different timestamps into a consistent dynamic 3DGS [23]] representation
with Motion Scaffolds [29]. On the right, we show a rendering from a novel view overlaid with the
estimated camera trajectory and dynamic Gaussian trajectories.

* A motion mask prediction strategy, using dynamic flow and refined with semantic point
prompting [50]. This is integrated into the SLAM backend for robust pose estimation.

* An online dynamic reconstruction pipeline that uses Motion Scaffolds [29] to propagate
3DGS in space and time.

* Support for both RGB and RGB-D, with ProDyG as the first online RGB-only method.

» Competitive novel view synthesis results against state-of-the-art offline methods.

2 Related Work

Dynamic Dense SLAM. Dynamic dense SLAM methods mainly address two scenarios: filtering
dynamic content to reconstruct only static environments [4, 13190, 89, (77,19, 15,81} 441 15, 74,159,148
57,1821 137, 132} 188, 11}, 241 [7} 164, 126, [72, |51]], or explicitly tracking and reconstructing dynamic objects
alongside static structures [[85} 3143} 17,152} 153,78\ [14} 145,58l 18,165} 134,135, 31]]. Basic strategies for
handling dynamic elements include outlier filtering, robust loss functions [90\ |44 |5]], or covariance
scaling [I1]], but these fail with extensive dynamic content. Instead, a motion mask is estimated with
optical flow 88| [82]], semantic segmentation [26} 14} 3557, 4} [33L 77,151} 181} 74} 851591 72} 53] or a
combination of the two [34} 119} 15, 152]], with uncertainty-guided loss functions [89, 37]], with motion
segmentation networks [57]], point tracking [65], unsupervised clustering [[17] or via conditional
random fields [32]]. In many real-world scenarios, reconstructing dynamic objects is critical. Some
traditional works track rigid dynamic content during SLAM [85] 3} 43} [17, 52| 153} [78, 14] or
perform object-centric non-rigid reconstruction [45} 58| [8]. While the above-mentioned methods
can reconstruct dynamic point clouds [4, 85| (74, |59, 188, [17], surfels [52} |53]], oct-trees [81] or
signed distance functions [48| 45| 58| 18], they struggle to model photometric details and lighting
effects needed for scene understanding and photorealistic rendering. In response, neural implicit
methods [33}[77, 51} [19] have been proposed, but they are too slow for real-time SLAM. Dynamic
3DGS [23]] SLAM has emerged as a solution [[15} 34,135 311 189} 1321 [72 [26]] with concurrent works
such as DynaGSLAM [34]] using dynamic scene flow from optical flow to update the Gaussian
means, [65] adapts [79] to the online setting and [35]] uses an MLP to deform the dynamic parts.
These works cannot handle pure RGB input. For a recent survey on dynamic SLAM, we refer to [[71].

Dynamic 3D Reconstruction. Dynamic 3D reconstruction shares many similarities with dynamic
SLAM, but videos are processed offline [29} 73} 79} 9L 1211 180, 27, 128, 136 40, 411 1491 160, 184}, 2}, |16}
3912511911 118,138 168]]. These works typically implement a strategy for deforming dynamic content
over time. Some optimize a deformation field via an MLP [2, 160} 40, |80} 25} [73]], use motion basis
functions [16} 49,168 136l 29} 128 [2'7, 21} 139, 18], or extend 3D Gaussian Splatting [23] with a time
attribute [79,[9]. Due to the ill-posed nature of dynamic reconstruction, strong priors are commonly
used, such as point trackers, optical flow, and regularizers like as-rigid-as-possible (ARAP), constant
velocity, and acceleration [29, 141,156/ 168, |39]. Inductive biases also help, such as MLP smoothness
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Figure 2: ProDyG Architecture. We achieve motion-agnostic online tracking by leveraging [[54]
to first create keyframe-based coarse motion masks, from which we seed prompts for SAM2 to
distill per-frame fine-grained masks. ProDyG processes batches of frames incrementally, employing
a keyframe selection similar to [54]. Static background is reconstructed by optimizing the static
set of Gaussians with proxy depth maps [54]]. For dynamic reconstruction, we attach Gaussians to
Motion Scaffolds [29]], which are initialized by lifting 2D tracks to 3D, to encode a dense motion field.
Subsequent to a final geometric and photometric optimization, the Motion Scaffolds and dynamic
Gaussians are extended temporally when a new batch of images arrives.

Disparity d

and continuity, or selecting a sparse set of motion bases. While some of these works use SLAM for
pose estimation, reconstruction is a post-processing step [55,156].

Feed-forward Methods. Feed-forward methods inspired by DUSt3R [70]] and MASt3R [30] have
been proposed to solve dynamic 3D reconstruction. These works rely on large-scale training of
transformer networks and can infer pointmaps from dynamic input image pairs [86} 87, [11} 1316} 169].
However, they typically entangle static and dynamic points [69} [86], meaning that the motion of
dynamic points cannot be tracked over time. In concurrent work, [[11} 13} [87] propose to enable
3D correspondence estimation of dynamic 3D points. DAS3R [75] learns to predict motion masks
building on MonST3R [86]], and only predicts the static world, using 3DGS [23]]. Common to all
feed-forward methods is that they process the video either in image pairs or in a sliding window,
without guaranteeing global pose and map consistency, contrary to SLAM. In contrast, we perform
globally consistent and online dynamic reconstruction using SLAM.

3 Method

ProDyG is an online dynamic dense mapping and tracking system that robustly tracks a monocular
camera (sec. [3.1)) while also reconstructing and disentangling the static and dynamic parts (sec. [3.3)
with a 3D Gaussian Splatting representation (sec. [3.2). For an overview, see fig.[2]

3.1 Motion-Agnostic Online Camera Tracking

Flow-Based Robust Camera Tracking. We employ Splat-SLAM [54] as our tracking backend,
i.e. we maintain a factor graph storing camera extrinsics w;, disparity estimates d; € R(H*W)x1
per keyframe (node) i, and optical flow p;; — p; € RUIXWX2)x1 per edge (i, j), where p; is the
flattened pixel grid from keyframe ¢, and p;; represents the flattened predicted pixel coordinates when
p; is projected into keyframe j using optical flow. We also store the confidence w;; € RUTxW)x1
associated with the optical flow. Tracking is achieved following Dense Bundle Adjustment (DBA)
[66], where the keyframe poses w and disparities d are optimized with a reprojection error:

arg min > by *Pz‘jH;;j , pij = Kwi H(wi(1/d) K pi, 1]7), 2 = diag(w;; Ci). (1)
Ot (ig)eE
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Figure 3: Semantic-guided Motion Mask Refinement. The flow magnitude 7; (b) is thresholded to
yield (c). Point prompts from (c) are used as input to SAM2 [50] to yield the fine motion masks (d).

Here, £ are the edges of a local factor graph, applied in a sliding window manner, K is the camera
intrinsics, || - ||g;j denotes the Mahalanobis distance with confidence weights suppressed by a coarse

binary motion mask C';, defined as 1 where motion is detected and C; stands for negation of Cj.

We generate the coarse motion masks {C;} as follows. After each DBA iteration, we compute the
residual flow 7;; = (p;; — ps) — (pij — i) = Pij — pij by subtracting the camera-induced flow
D;ij — p; from the estimated optical flow p;; — p;. This residual is near zero in static regions and
larger in dynamic ones. Dynamic areas are identified by evaluating the normalized mean magnitude
7i(x,y) of 7;; over the connected target keyframes [V; for each keyframe i

_ ”fu(x Yl
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For each keyframe, C; is computed by thresholding 7;(x, y) at the top 20%, 3551gn1ng zero weight to
potentially dynamic regions during DBA. As 7;(z, y) is updated each DBA iteration, it is progressively
refined, enabling robust pose estimation in dynamic environments.

Semantic-Guided Motion Mask Refinement. To improve the separation of dynamic and static
regions for reconstruction (sec. [3.3), we use SAM2 [50] to generate fine-grained motion masks for
every frame. We show an example visualization of the input image, the mean magnitude 7; of the
residual flow, the coarse motion mask, and the fine motion mask in fig. E}

Our approach has two phases: initialization and incremental prediction. During initialization, we
generate fine motion masks by prompting SAM?2 at the centroids of connected regions in the median-
filtered coarse masks C;. During incremental prediction, we extend existing object-wise masks into
new frames and add new segmentations based on the coarse masks. We validate each segmentation by
counting prompt point candidates to filter false positives. Before this phase, we adjust the threshold
(top 20% at initialization) based on the dynamic pixel ratio in the latest fine motion mask, adapting to
sequence-specific motion. Detailed algorithms are in the supplemental material.

With the fine motion masks { M }, we further enhance our tracking robustness by replacing the coarse
mask C; with the fine during DBA (eq. ) as 2}, = diag(w;;(1 — M;)). This semantic-guided
approach provides more accurate exclusion of dynamic distractors for subsequent iterations of DBA,
including local BA, global BA and loop BA [54].

3.2 Static and Dynamic Map Representation

We represent the scene map G = {Gs, Ga(t)} as a set of 3D Gaussians [23]], split into static G =

{gi} Y+, and time-varying dynamic components Gy ( ) = {gi(t)}Y . Each Gaussian—whether static
or dynamlc—ls parameterized by a mean pu; € R?, rotation matrlx R; € R3%3, scale s; € R?,
opacity o; € [0,1], and RGB color ¢; € R3. Renderlng is performed by first projecting the 3D
Gaussians onto the image plane, approximated as 2D Gaussians. The 2D opacity at a pixel p is then

1 /
a;(p) = 0; exp (—2(17 —p)'S - ué)) : ?3)

where p) = Kw™'p; with w the camera-to-world pose, K the camera intrinsics, and E; =
PY,PT = P(R;S;S] R} )PT, with S; = diag(s;) and P the affine projection [92]]. Given the pose



w, we render a pixel p following the 3DGS [23] pipeline for RGB images C', RaDe-GS [83] for depth
maps D", and additionally compute opacity maps O as

i—1 i—1 i—1
Clp)=> cioi [[(1-0ay), D'(p) =) diei [[(1-0;), O@)=> a; [[(1-0,). 4
iek j=1 iek j=1 ek j=1
Here, K is the set of Gaussians projected to p. We use the unbiased RaDe-GS rasterizer, which
replaces the z-buffer depth with d;, the ray—Gaussian intersection depth along the viewing ray.

3.3 Progressive Dynamic Scene Reconstruction

We propose a progressive approach to dynamic scene reconstruction, which enables online processing
and allows the system to adapt to the continuously evolving scene geometry and camera motion.
ProDyG uses the same keyframe selection strategy as in Splat-SLAM [54], and the addition of new
keyframes triggers progressive reconstruction of both static and dynamic regions. To achieve global
map consistency, we apply 3DGS map deformations for static regions followed by photometric
optimization as in [54]]. For dynamic Gaussians, we extend the Motion Scaffold representation [29]]
to handle incremental updates. Next, we review the necessary steps.

Non-Keyframe Camera Poses and Depths. Dynamic scene reconstruction benefits from tempo-
rally dense supervision to capture smooth motion, yet the SLAM backend [54] operates on sparse
keyframes for efficiency. To bridge this gap, we derive the camera poses and depth maps for
non-keyframes that exist between keyframes.

To obtain non-keyframe camera poses, we follow the practice of DROID-SLAM [66]. For each non-
keyframe F} positioned between two neighboring keyframes F;, and F},, we construct a temporary
local graph with edges connecting both keyframes to F;. We then execute the recurrent update operator
and the Dense Bundle Adjustment (DBA) layer on this graph, which optimizes the non-keyframe
poses based on the already optimized keyframe poses.

For non-keyframe depth estimation, we leverage reprojection from neighboring keyframes. Given a
non-keyframe F; with its derived camera-to-world pose w; and neighboring keyframes Fy, and F3,
with poses wy, and wy,, we first back-project the pixels of both keyframes into 3D:

pg?(ph) = wtl(l/dtl)K_l[ptl’ 1]T ) pi?(ptz) = wtz(l/dtz)K_l[ptw 1]T ) (5)

where K is the camera intrinsic matrix, and d;, and d;, are the disparities of keyframes F}, and F,,
respectively. We then reproject all back-projected 3D points pf?’t , = p%? U pf? from both keyframes

to the camera of the non-keyframe F} and record their distance to the camera along the z-axis:

P> =w P, . pe=Kp® . DiP(p) = (1) - (6)

We filter out points that are back-projected from dynamic pixels or using invalid disparity estimates
(determined by a multi-view consistency check as in [54]). Using the remaining reprojected 2D
coordinates and their corresponding depth values, we bilinearly interpolate to create a reprojection

repro repro

depth map D, . Finally, to get dense depth, we align a monocular depth estimate D}°"® with D,
by estimating scale 6, and shift +; parameters through least squares fitting:

thyt = arg min Z ((QD;HOHO(u, 11) + ’Y) o D;epro(u7v))2 : Didigned _ etD;nonO +v . (D
P (uw)

Motion Scaffolds. We adopt Motion Scaffolds [[29] (MoSca) as our dynamic representation. MoSca a

structured graph (Vg4, £4) representing the underlying motion of the scene, where each node ISONRVA

encodes the motion trajectory of a specific region. Each MoSca node v(") is defined as

o™ = (@™, Q™ ..., QM rtm) | ®)

where ng) € SE(3) represents the per-timestep rigid transformation at time ¢, and (™) is an RBF

radius parameterizing the node’s influence. These nodes are initially anchored by lifting 2D pixel

trajectories using the estimated camera poses w; and depth maps D€ computed in eq. .



Similar to the static map deformation [54]], we also deform the dynamic Gaussians to reflect the
continuously updated pose and depth estimates from the SLAM backend. Each dynamic Gaussian is
defined relative to a MoSca node (not in world coordinates) and by re-anchoring the MoSca nodes,
the dynamic Gaussians are updated accordingly. The MoSca nodes are re-anchored in 3D when new
pose and depth updates are available. Thus, ProDyG achieves global dynamic map consistency prior
to optimization. This ensures better convergence and consistency between the static and dynamic
components of the scene.

Following MoSca [29], the set of dynamic Gaussians G4(t) at any query timestamp ¢ is formed by
warping each individual Gaussian g; (t°f) = (u;, R;, si, 05, ¢;; ™, Aw,) from its reference timestamp
tf’f (the timestamp where it is initialized) to ¢

Ga(t) = {(Ti(t) s, Ti(t) Ri 51, 04, €5 | Ti(t) = Wpa, W(pa) + Awgs 55 6) 14 )

Here, w(-) is the base RBF skinning weight parametrized by {r(’”)}megd(m*), where the neighbor-

hood &;(m*) consists of the nearest MoSca node v(™ ") and all nodes connected to v, and Aw;
are learnable per-Gaussian skinning weight corrections. The warping function W(-) is computed
using Dual Quaternion Blending (DQB) [22]:

W(X, W; tsre, tast) = DQB ({wm7 AQ(m/)}mGSd(m*)) ) (10)

where AQ(™ = dimz (QEWZZ)_l is the relative transformation between ¢, and t45; for node m.

Progressive Construction of Motion Scaffolds. After the initial bootstrapping phase of the SLAM
backend, we initialize the Motion Scaffolds and dynamic Gaussians. First, we employ CoTracker3
[20] to generate dense long-term 2D pixel trajectories within the fine motion masks {M; } (sec.
and corresponding per-timestamp visibility labels. Similar to [29], these 2D trajectories are first
lifted into 3D space at visible timestamps using the camera poses and depth maps estimated by the
backend, while we linearly interpolate between nearby observations at invisible timestamps. Finally,
we sample a subset of the lifted 3D tracks to serve as the initial positions for the MoSca nodes.

Subsequently, we carry out geometry optimization on the initialized MoSca nodes as described in
[29] to infer rotations and positions of invisible nodes, minimizing the as-rigid-as-possible (ARAP)
loss, velocity consistency loss and acceleration consistency loss.

After the geometry optimization of the Motion Scaffolds, we initialize the dynamic Gaussians
at 3D positions obtained by back-projecting pixels within the fine motion masks. Finally, we
perform a photometric optimization of both the Motion Scaffolds and the dynamic Gaussians using
a combination of losses following [29]]: an RGB loss L., that enforces color consistency, a depth
loss Lgepn that aligns rendered depth D with the aligned monocular depth D€ (eq. ), a track
loss Lk that ensures consistent motion with the 2D trajectories, and the aforementioned ARAP,
velocity, and acceleration losses for geometric regularization. In addition to [29]], we introduce a
novel motion mask loss that penalizes the rendered opacity of dynamic Gaussians at pixels identified
as static by the motion masks

1
Lok = = > O(p) , (1)
[Py

pe fptswlic

where P§@i¢ js the set of static pixels at timestamp ¢ given by negating the motion mask M, and O(p)
is the accumulated opacity of dynamic Gaussians at pixel p (eq. (@)). This loss effectively prevents
dynamic Gaussians from overflowing into static regions, maintaining a clean separation between
static and dynamic components of the scene.

As more frames become available, we extend our dynamic reconstruction. For each new frame batch,
we run CoTracker3 [20] in a temporal window of the new frame batch and an 8-frame overlap with
previously processed frames to ensure continuity in the reconstruction. First, we identify “recently
visible” tracks as those marked as visible for at least 4 frames within the 8 overlapping frames and
extend them into the new frame batch. These extended 2D tracks are then lifted into 3D using the
latest camera pose and depth estimates. To identify newly visible dynamic regions, we back-project



all pixels within the fine motion masks of the new frames into 3D and perform a spherical search
to determine whether each back-projected point has at least one lifted 3D track within a predefined
radius rgeqren. Pixels without nearby 3D tracks are marked as “newly-seen”, representing previously
unobserved portions of dynamic objects. To capture these newly-seen regions, we execute a second
run of the point tracker, specifically querying newly-seen pixels. Finally, we run a third tracking pass
within the entire dynamic regions of the new frames to replenish the density of visible 2D tracks.
This multi-stage tracking strategy ensures dense coverage of all dynamic elements in the scene.

Within the new temporal window, all extended and newly added 2D tracks are lifted into 3D using
the same procedure as during initialization. For temporal consistency, we warp new tracks to past
timestamps with DQB (Eqn[T0), using Motion Scaffolds from the previous update. This leverages the
latest photometric optimization to guide newly-seen 3D tracks through past frames despite invisibility.
We initialize dynamic Gaussians only at newly-seen pixels, then jointly optimize geometry and
appearance over the expanded MoSca and dynamic Gaussians using the same losses as during
initialization.

4 Experiments

4.1 Experimental Setup

Implementation Details. All experiments were conducted on a cluster with an AMD EPYC 7H12
or 7742 CPU and an NVIDIA A6000 GPU. The kernel size of the median filter used to denoise the
coarse motion masks is 5 x 5. The spherical search radius for “newly-seen” pixel identification is
T'search = 0.02m. For geometry and photometric optimization, we keep our loss weights identical with
those applied in MoSca [29], and set Apasx = 1 as the weight of L. For more implementation
details, we refer to the supplemental material.

Datasets. We evaluate our camera tracking on the Bonn RGB-D Dynamic Dataset [47] and the TUM
RGB-D Dataset [62] (dynamic scenes). Since existing works report tracking results on different sets
of sequences, we select four mostly used sequences from each dataset to evaluate our method. For
rendering, we report novel view synthesis (NVS) results both qualitatively and quantitatively on the
iPhone dataset [12]. To align with Shape of Motion [68]], we evaluate our method and all baselines
on the 5 sequences used in [68] with the 2x downsampled image resolution. For a fair comparison,
we use the preprocessed motion masks given by [68]] for all our experiments on the iPhone Dataset.

Baselines. For tracking, we compare with various works on RGB and RGB-D SLAM. The main
baseline is Splat-SLLAM [54]] since we base our tracking pipeline on it. For rendering, the baseline
methods are NVS-capable monocular Gaussian-based dynamic reconstruction methods including
Shape of Motion [68], DynOMo [56], MoSca [29] and Gaussian Marbles [61]].

Metrics. For tracking, we evaluate ATE RMSE [cm] [63] after aligning the estimated camera
trajectory with the ground truth via Umeyama alignment [[67]]. For NVS, we report PSNR, SSIM and
LPIPS evaluated within the covisibility masks provided by [12] and averaged over all novel views.

4.2 Tracking

In tab. I} we evaluate tracking performance on the Bonn RGB-D Dynamic Dataset [47]] and the TUM
RGB-D Dataset [62]. For both datasets, ProDyG performs competitively among all the RGB-D and
RGB SLAM works and shows a significant advantage over the main baseline Splat-SLAM [54]]. This
improvement validates the effectiveness of our motion-agnostic camera tracking method introduced
in sec. WildGS-SLAM [89] is the only baseline method to outperform ProDyG on both datasets.
Since both methods build upon the tracking framework of Splat-SLAM [54]], we attribute this
performance gap to two key factors: (1) WildGS-SLAM employs a test-time-optimized MLP that
produces soft uncertainty masks to suppress confidence weights. As it reconstructs only the static
background, it can aggressively suppress regions beyond actual dynamic object boundaries (e.g.
moving shadows) without degrading mapping quality. In contrast, ProDyG prioritizes accurate
dynamic reconstruction and therefore requires motion masks with precise boundaries, which may
miss some effective distractors. (2) WildGS-SLAM benefits from additional DINOv?2 [46]] features
and on-the-fly training of the uncertainty MLP at the cost of higher computational complexity, while
the primary computational overhead of our tracking approach comes from SAM?2 [50]] inference.



Bonn RGB-D Dynamic Dataset [47] TUM RGB-D Dataset [62]

Method Type

Ball Ball2 Pers Pers2 Avg. f£3/ws £3/wx £3/wr £3/whs Avg.
RGB-D Input
ORB-SLAM?2 [44] S 6.5 23.0 6.9 79 11.1 40.8 72.2 80.5 72.3 66.45
NICE-SLAM [90] S 24.4 20.2 24.5 53.6 30.7 79.8 86.5 244.0 152.0 140.57
ReFusion [48]] R 17.5 25.4 28.9 46.3 29.5 1.7 9.9 40.6 10.4 15.7
DynaSLAM (N+G) [4] R 3.0 29 6.1 7.8 5.0 0.6 1.5 35 2.5 2.03
DG-SLAM [76] R 3.7 4.1 4.5 6.9 4.8 0.6 1.6 43 - -
RoDyn-SLAM [19] R 7.9 11.5 14.5 13.8 11.9 1.7 8.3 - 5.6 -
DDN-SLAM (RGB-D) [33] R 1.8 4.1 43 38 35 1.0 1.4 39 2.3 2.15
RGB Input
DSO [10] S 7.3 21.8 30.6 26.5 21.6 1.5 12.9 13.8 40.7 17.23
DROID-SLAM [66] S 7.5 4.1 43 5.4 53 12 1.6 4.0 22 2.25
MonoGS [42] S 153 17.3 26.4 352 23.6 1.1 215 17.4 442 21.05
Splat-SLAM [54] S 8.8 3.0 4.9 25.8 10.6 23 1.3 3.9 22 2.43
DDN-SLAM (RGB) [33] R - - - 2.5 2.8 8.9 4.1 4.58
MegaSaM [37] R 3.7 2.6 4.1 4.0 3.6 0.6 1.5 2.6 1.8 1.63
WildGS-SLAM [89] R 2.7 2.4 3.6 3.1 2.94 0.4 1.3 33 1.6 1.63
DynaMoN (MS) [33] D 6.8 3.8 24 35 4.1 1.4 1.4 3.9 2.0 2.18
DynaMoN (MS&SS) [53] D 2.8 2.7 14.8 2.2 5.6 0.7 1.4 3.9 1.9 1.98
D4DGS-SLAM™ [63] D 3.6 39 4.5 52 43 - -
4D-GS SLAM™ [35] D 2.4 3.7 8.9 9.4 6.1 0.5 2.1 2.6 -
ProDyG (Ours) D 2.7 2.6 49 2.9 3.29 1.6 1.2 3.0 1.7 1.89

Table 1: Tracking Performance on Bonn RGB-D Dynamic Dataset [47] and TUM RGB-D

Dataset [62]. (ATE RMSE | [cm]). Best results are highlighted as first, second, third and
concurrent works with*. We take the numbers from [89] except [89, 165, 135]]. We categorize each
method into static reconstruction (S), robust against dynamics (R) and producing a globally consistent
dynamic model (D). ProDyG is competitive with WildGS-SLAM [89] and MegaSaM [37]] while
explicitly reconstructing a consistent dynamic model, contrary to [89,[37].

4.3 Rendering

In tab. 2] we evaluate NVS performance quantitatively on the iPhone Dataset [12]. Notably, we
differentiate the experiment setups of each methods using the checkboxes, whether the reconstruction
or tracking is executed online, and whether the input modalities are RGB only or RGB-D. As shown
in tab. 2] ProDyG outperforms the offline method Shape of Motion [68] in both PSNR and SSIM,
while running both the tracking and dynamic scene reconstruction online. This is a significantly
more difficult task. Compared to MoSca [29], which is an offline method that shares the same
representation of the motion field with our framework, ProDyG shows only minimal disadvantages
when optimized with RGB-D input. This demonstrates the effectiveness of our progressive dynamic
reconstruction. DynOMo [56] is the only method capable of online reconstruction with precomputed
camera poses, and ProDyG shows a significant advantage over DynOMo when tested under the same
constraint. Furthermore, ProDyG still maintains reasonably good performance when only having
access to RGB images, while none of the baseline methods is capable of operating under the same
setting. Finally, we evaluate NVS when estimated poses from the SLAM backend are loaded offline
to the online mapper. The performance is very similar in both RGB-D and RGB-only modes, showing
that our method can find the offline solution, even when optimized in pure online mode.

In fig. 4 we show qualitative comparisons of novel view renderings on the iPhone Dataset [12].
Compared to other methods, DynOMo [56] exhibits worse quality in novel view renderings due to
lack of motion constraints (e.g. 2D point tracking). Therefore, ProDyG is essentially the first method
to support high-quality novel view synthesis of dynamic scenes through online reconstruction from
monocular videos. Due to the motion mask loss (eq. (IT))), dynamic objects reconstructed by our
method tend to show more accurate silhouettes than Shape of Motion [68] and MoSca [29].

Limitations. Our dynamic representation struggles with objects that move predominantly outside the
viewing frustum and later reappear, due to insufficient photometric constraints for Motion Scaffolds.
This causes optimization to be dominated by regularization terms, often leading to undesired deforma-
tions. This issue is an inherent limitation also observed in MoSca [29]]. Additionally, similar to most
monocular dynamic view synthesis methods, our system requires per-scene test-time optimization,
thereby limiting its applicability in real-time scenarios. Furthermore, ProDyG cannot effectively
handle large changes in novel viewpoints, which would necessitate generative models or data-driven
priors to hallucinate unseen regions. These challenges highlight key directions for future work.



Shape of Gaussian ProDyG ProDyG ProDyG ProDyG
Motion DynOMo MoSca [29] Marbles (Ours) (Ours) (Ours) (Ours)

Online Reconstr. X v X X v v v v
Online Tracking X X X X X v X v
RGB-only X X X X X X v v
PSNR?T 17.43 11.98 18.44 16.00 17.65 17.87 1541 1540
SSIM 1t 0.591 0.436 0.666 - 0.634 0.643 0.603 0.582
LPIPS| 0.303 0.748 0.311 0.437 0390 0377 0462 0.492

Table 2: Novel View Synthesis Evaluation on iPhone Dataset [12]. All results are averaged over
the 5 sequences evaluated in [68]], with the standard 2x downsampling. All methods except [68] are
evaluated without ground truth camera poses. Best results are highlighted as first , second , third .
Our method shows superior PSNR and SSIM over the offline Shape of Motion and falls short of the
state-of-the-art offline method MoSca [29] by a small margin under the extra constraints of online
reconstruction and tracking. When tested with precomputed camera poses, ProDyG outperforms the
only online competitor DynOMo [56] by a significant advantage. Notably, our method still works
reasonably well with RGB-only input while being online.

paper-windmill

apple

f "N ’ :M ﬁ} 2
DynOMo [56]] SoM [68] MoSca [29] ProDyG (Ours)  Ground Truth

Figure 4: Qualitative Novel View Synthesis Results on iPhone [12]. All methods are trained with
access to ground truth depth maps. Dynamic objects reconstructed by our method tend to show more
accurate silhouettes than [68] and [29]. Note that ProDyG is the only one among the methods to
perform both tracking and reconstruction online.

5 Conclusion

We proposed ProDyG, a progressive dynamic 3D reconstruction framework that meets four key criteria
for practical deployment: online operation, global pose and map consistency, detailed appearance
and geometry modeling through 3D Gaussian Splatting, and flexibility to operate with either RGB or
RGB-D input. Our novel flow-based motion-mask prediction integrated with the SLAM backend
enables robust camera tracking in dynamic environments, while our online dynamic reconstruction
pipeline updates and optimizes Motion Scaffolds and dynamic Gaussians in a progressive manner.
Our experiments demonstrate that ProDyG achieves competitive performance in both tracking and
novel view synthesis.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in a separate paragraph towards the end of the experi-
ment section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not derive new theoretical results in this paper.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer:

Justification: There are details related to hyperparameters that are not covered in the paper,
but disclosed in the works which we reference. All information will, however, be made
available once the source code is published.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We wished to have provided the code at submission time, but to improve

readability of the code, we choose to release this after submission time, but as soon as
possible.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:

Justification: We provide all information necessary to understand the results, but as men-
tioned before, some hyperparamters that are the same as in Splat-SLAM [54]] and MoSca
[29] are not disclosed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

Answer: [Yes]

Justification: We include the CPU and GPU specs used to benchmark the runtime of our
system, but believe that small differences in the setup of that hardware may still result in
differences in runtime across devices.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We provide a framework for dynamic dense SLAM whose primary objective
is AR/VR applications and household robotics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We target dense dynamic scene reconstruction with the primary objective of
household AR/VR and robotics.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We will not release data or models that have a high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit the authors where we are inspired by their works, and we respect

their licenses, but we do not describe their licenses etc. This will be properly done when
releasing the code publicly.

Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: We do not release assets (code) yet, but hope to do so as soon as possible.
Then we will document this.

Guidelines:
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15.

16.

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: All data we use is publicly available covering scenes where appropriate licenses
and compensation have been taken care of for potential participants.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: All data we use is publicly available covering scenes where appropriate licenses
and compensation have been taken care of for potential participants.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: We do not use LL.Ms for our methodology in any way.

Guidelines:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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