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Abstract

We have recently seen great progress in learning interpretable music representations,
ranging from basic factors, such as pitch and timbre, to high-level concepts, such
as chord and texture. However, most methods rely heavily on music domain
knowledge. It remains an open question what general computational principles
give rise to interpretable representations, especially low-dim factors that agree with
human perception. In this study, we take inspiration from modern physics and use
physical symmetry as a self-consistency constraint for the latent space of time-series
data. Specifically, it requires the prior model that characterises the dynamics of the
latent states to be equivariant with respect to certain group transformations. We
show that physical symmetry leads the model to learn a linear pitch factor from
unlabelled monophonic music audio in a self-supervised fashion. In addition, the
same methodology can be applied to computer vision, learning a 3D Cartesian
space from videos of a simple moving object without labels. Furthermore, physical
symmetry naturally leads to counterfactual representation augmentation, a new
technique which improves sample efficiency.

1 Introduction

Interpretable representation-learning models have achieved great progress for various types of time-
series data. Taking the music domain as an example, tailored models [Ji ez all |2020] have been
developed to learn pitch, timbre, melody contour, chord progression, texture, etc. from music audio.
These human-interpretable representations have greatly improved the performance of generative
algorithms in various music creation tasks, including inpainting [Wei ef al.l 2022]], harmonization [Yi
et al.l 2022], (re-)arrangement, and performance rendering [Jeong ez al.,[2019].

However, most representation learning models still rely heavily on domain-specific knowledge. For
example, to use pitch scales or instrument labels for learning pitch and timbre representations [Luo
et al.l 2020, 2019; |[Engel et al., [2020; Lin et al., 2021} |[Esling et al., |2018] and to use chords and
rhythm labels for learning higher-level representations [Akamal 2019; |Yang et al.,|2019; |Wang ef
al.l 2020; Wei and Xial, 2021]]. Such an approach is presumably very different from human learning;
even without formal music training, we see that many people can learn pifch, a fundamental music
concept, simply from the experience of listening to music. Hence, it remains an open question how to
learn interpretable pitch factor using inductive biases that are more general. In other words, what
general computational principle gives rise to the concept of pitch.

We see a similar issue in other domains. For instance, various computer-vision models [McCarthy
and Ahmed, 2020; |Trevithick and Yang, [2021; Mescheder et al.| 2019; Riegler ef al.,|2017] can learn
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3D representations of human faces or a particular scene by using domain knowledge (e.g., labelling
of meshes and voxels, 3D convolution, etc.) But when these domain setups are absent, it remains a
non-trivial task to learn the 3D location of a simple moving object in a self-supervised fashion.
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Figure 1: An illustration of physical symmetry as our inductive bias.

Inspired by modern physics, we explore to use physical symmetry (i.e., symmetry of physical laws) as
a weak self-consistency constraint for the learned latent z space of time-series data x. As indicated in
Figure[I] this general inductive bias requires the learned prior model R, which is the induced physical
law describing the temporal flow of the latent states, to be equivariant to a certain transformation .S
(e.g., translation or rotation). Formally, 2,1 = R(z)if and only if 23}, ; = R(2), where 2% = S(2).
In other words, R and S are commutable for z, i.e., R(S(z)) = S(R(2)). Note that our equivariant
assumption applies only to the latent z space. This is fundamentally different from most existing
symmetry-informed models [Bronstein ez al.,|2021]], in which the equivariant property also imposes
assumptions on the raw data space.

Specifically, we design self-supervised learning with physical symmetry (SPSﬂ a method that
adopts an encoder-decoder framework and applies physical symmetry to the prior model. We show
that SPS learns a linear pitch factor (that agree with human music perception) from monophonic
music audio without any domain-specific knowledge about pitch scales, fO, or harmonic series. The
same methodology can be applied to the computer vision domain, learning 3D Cartesian space from
monocular videos of a bouncing ball shot from a fixed perspective. In particular, we see four desired
properties of SPS as a self-supervised algorithm for interpretability:

» Conciseness: SPS does not require contrastive samples, bach normalization, or a large batch
size. We can even drop the Gaussian prior regularization, which is usually required to learn
a meaningful latent space. (See Section [3.2]- Section[d])

» Sample efficiency: SPS learns low-dimensional representations of a dynamic system in a
very sample-efficient way. (See Section[d]- Section[5.2])

* Robustness: Even with an incorrect symmetry assumption, SPS can still learn more inter-
pretable representations than baselines. (See Section[5.3])

* Extendability: SPS can be easily combined with other learning techniques. For example, if
we further assume an extra global invariant style code, the model becomes a disentangled
sequential autoencoder, capable of learning content-style disentanglement from temporal
signals. (See appendix.)

2 Intuition

The idea of using physical symmetry for representation learning comes from modern physics. In
classical physics, scientists usually first induce physical laws from observations and then discover
symmetry properties of the law. (E.g., Newton’s law of gravitation, which was induced from planetary
orbits, is symmetric with respect to Galilean transformations.) In contrast, in modern physics,
scientists often start from a symmetry assumption, based on which they derive the corresponding law
and predict the properties (representations) of fundamental particles. (E.g., general relativity was
developed based on a firm assumption of symmetry with respect to Lorentz transformations).

'The source code is publicly available at https://github.com/XuanjieLiu/Self-supervised-learning-via-
Physical-Symmetry. The demo page is available at https://xuanjieliu.github.io/SPS_demo/
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Analogously, we use physical symmetry as an inductive bias of our representation learning model,
which helps us learn a regularised prior and an interpretable low-dim latent space. If it is a belief
of many physicists that symmetry in physical law is a major design principle of nature, we regard
symmetry in physical law as a general inductive bias of perception. In other words, if physical
symmetry leads an Al agent to learn human-aligned concepts in a self-supervised fashion, we believe
that it could also provide insights into the ways that human minds perceive the world.

The introduction of physical symmetry naturally leads to counterfactual representation augmenta-
tion, a novel learning technique which helps improve sample efficiency. Representation augmentation
means to “imagine” extra pairs of zts and ztSH as training samples for the prior model 2. Through the
lens of causality, this augmentation can be seen as a counterfactual inductive bias of the prediction
on the representation level — what if the prior model makes predictions based on transformed latent
codes? As indicated in Figure [I] it requires the prediction of the z sequence to be equivariant
to certain group transformations, S. This regularisation also constrains the encoder and decoder
indirectly through the prior model since the network is trained in an end-to-end fashion.

3 Methodology

With physical symmetry, we aim to learn an interpretable low-dimensional representation z; of each
high-dimensional sample z; from time-series x;.7. We focus on two problems in this paper: 1) to
learn a 1D linear pitch factor of music notes from music audio, where each z; is a spectrogram of a
note, and 2) to learn 3D Cartesian location factors of a simple moving object (a bouncing ball) from
its trajectory shot by a fixed, single camera, where each z; is an image.

3.1 Model

Figure 2] shows the model design of SPS. During the training process, the temporal data input Xy is
first fed into the encoder E to obtain the corresponding representation z;.p. Then it is fed into three
branches. In the first branch (the green line), z;.7 is decoded directly by the decoder D to reconstruct
x| In the second branch (the orange line), z1.7 is passed through the prior model R to predict its
next timestep, Zs.7+1, which is then decoded to reconstruct X,.71 1. In the third branch (the blue line),
we transform z;.p with S, pass it through R, and transform it back using the inverse transformation
S~ to predict another version of the next timestep Za.7+1, and finally decode it to Xo.71. We get
three outputs from the model: X{.7, X2.711, and Xo.741.

The underlying idea of physical symmetry is that the dynamics of latent factor and its transformed
version follow the same physical law characterised by R. Therefore, zZ and Z should be close to each
other and so are X and X, assuming S is a proper transformation. This self-consistency constraint
helps the network learn a more regularised latent space.
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Figure 2: An overview of our model. x;.7 is fed into the encoder E to obtain the corresponding
representation z;.7, which is then fed into three different branches yielding three outputs respectively:
x|, Xo.741 and Xo.7+1. Here, R is the prior model and S is the symmetric operation. The inductive
bias of physical symmetry enforces R to be equivaraint with respect to .S, so z and Z should be close
to each other and so are X and X.



3.2 Training objective

The total loss contains four terms: reconstruction loss Ly, prior prediction loss Lprior, Symmetry-
based loss Lgym, and KL divergence loss Lk p. Formally,

L= L+ )\lcprior + )\2£sym + )\3£KLD7 (1)

where A1, A2 and A3 are weighting parameters. By referring to the notations in section[3.1]

Lrec = Lpce (X170, X1:7) + Loce(Xa:7, X2.7) + Lpce(X2.7, X2.7) )
Acprior = 52 (22:T7 Z2:T)7 (3)
Lsym = la(Zo:7, Zo.7) + lo(Zo:7, Z2.7). 4

Lk p is the Kulback-Leibler divergence loss between the prior distribution of z; and a standard
Gaussian. Lastly, we build two versions of SPS: SPSyag and SPSag, with the latter replacing the
VAE with an AE (and trivially doesn’t have Lk p).

3.3 Symmetry-based counterfactual representation augmentation

During training, S is the counterfactual representation augmentation since it creates extra imaginary
sequences of z (i.e., imaginary experience) to help train the prior. In practice, for each batch we apply
K different transformations Sy.x to z and yield K imaginary sequences. Thus, the two terms of
symmetry-based loss can be specified as:

K

ly(2Z2.7,22:7) = % Z (S, M (R(Sk(z1:7-1)))s 22.7) ©)
k=1
1 K

lo(Z2er, Bar) = 22 > LSy (R(Sk(m17-1))) 22:7) (6)
k=1

where the lower case k denotes the index of a specific transformation and we refer to K as the
augmentation factor. Likewise, the last term of reconstruction loss can be specified as:

K
Lpce(X2:7, X2.1) = % Z Lace(D(S;,  (R(Sk(z1:7-1)))), X2:7) @)
k=1

Each S applied to each sequence z;.7 belongs to a certain group, and different groups are used for
different problems. For the music problem, we assume z; be to 1D and use random S € G = (R, +).
In other words, we add a random scalar to the latent codes. As for the video problem, we assume z;
be to 3D and use random S € G = (R?, +) x SO(2). In other words, random rotation and translation
are applied on two dimensions of z;.

4 Results

We test SPS under two modalities of temporal signals: music (section[d.1]) and video (section4.2).
Each model is executed with 10 random initialisations, and evaluated on the test set. The highlight
of this section is that SPS effectively learns interpretable low-dimensional factors that align with
human perceptions. Also, by utilizing small training sets, we show the high sampling efficiency of
our model. In the appendix, we further show that SPS also maintains accuracy in both reconstruction
and prediction tasks (section[A.2)). Additionally, we present supplementary results trained on more
complicated datasets and a more advanced configuration of our model, called SPS+, which enables
content-style disentanglement in addition to interpretable learning. The findings from these more
complex scenarios align closely with those observed in the simpler cases presented in this section.



4.1 Learning linear pitch factor from music audio

4.1.1 Dataset and training setups

We synthesise a training dataset of 27 audio clips, each containing 15 notes in major scales with the
first 8 notes ascending and the last 8 notes descending. We vary the starting pitch by integer numbers
of MIDI pitch such that every MIDI pitch in the range A#4 to C7 is present in the training set. Only
the accordion is used to generate the clips. For each clip in the training set, we uniformly randomly
shift its pitch upwards by a decimal between 0 and 1, in this way generate the test set for evaluation.

We convert each audio clip into a sequence of image segments for processing. First, we run STFT
(with sample rate = 16000/s, window length = 1024, hop length = 512, with no padding and no
logarithmic frequency scale) over each audio clip to obtain a power spectrogram. After normalising
the energy to the range [0, 1], we slice the power spectrogram into fifteen image segments, each
containing one note. The CNN encoder, in each timestep, takes one segment as input. For the latent
space, we assume z; € R and sample counterfactual representation augmentation S ~ U ([—1,1])
where S € G = (R, +). Note this assumption does not indicate any domain-specific inductive bias of
music, such as the logarithmic relationship between pitch and frequency or the relationship between
FO and harmonics.

4.1.2 Results on interpretable pitch space
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Figure 3: A visualisation of the mapping between the 1D learned factor z and the true pitch, in which
a straight lines indicates a better result. In the upper row, models encode notes in the test set to z. The
x axis shows the true pitch and the y axis shows the learned pitch factor. In the lower row, the = axis
traverses the z space. The models decode z to audio clips. We apply YIN to the audio clips to detect
the pitch, which is shown by the y axis. In both rows, a linear, noiseless mapping is ideal, and our
method performs the best.

Figure [3|demonstrates that the 1D pitch factor learned by our model exhibits a linear relationship with
the conventional numerical ordering used to represent pitch by humans (e.g. MIDI pitch numbers).
The plot shows the mappings of two tasks and six models. In the embedding task (the first row),
the z-axis is the true pitch and the y-axis is embedded z. In the synthesis task (the second row), the
z-axis is z and the y-axis is the detected pitch (by YIN algorithm, a standard pitch-estimation method
by [De Cheveigné and Kawaharal, 2002]) of decoded (synthesised) notes. The first two models are
SPS based on VAE and AE, respectively, trained with counterfactual representation augmentation
factor K = 4. The third and fourth models are trained without constraints of physical symmetry
(K = 0), serving as our ablations. The fifth one is a vanilla 5-VAE, trained only to reconstruct, not to
predict. The last one is SPICE [Gfeller et al., 2020]], a SOTA unsupervised pitch estimator with strong
domain knowledge on how pitch linearity is reflected in log-frequency spectrograms. As the figure
shows, 1) without explicit knowledge of pitch, our model learns a more interpretable pitch factor
than 8-VAE, and the result is comparable to SPICE, and 2) without the Gaussian prior assumption of
latent variable distribution, our model SPSAg also learns a continuous representation space.



Table 1: The linearity of learned pitch factor and synthesized sound pitch evaluated by R2.

Methods Learned factor R? ©  Synthesis R? 1
SPSvag, K=4 (Ours) 0.999+0.001 0.986+0.025
SPSAg, K=4 (Ours) 0.998+0.001 0.986+0.025
SPSvag, K=0 (Ablation) 0.99740.002 0.910£0.040
SPSag, K=0 (Ablation) 0.9934-0.006 0.83240.129
B-VAE 0.772+0.333 0.53440.275
SPICE 1.000 N/A

Table shows a more quantitative analysis using R? as the metric to evaluate the linearity of the pitch
against z mapping from the encoder and the decoder. All models except SPICE are trained with 10
random initializations.

4.2 Learning object 3D coordinates from videos of a moving object

4.2.1 Dataset and training setups

We run physical simulations of a bouncing ball in a 3D space. The ball is randomly thrown and
affected by gravity and the bouncing force (elastic force). A fixed camera records a 20-frame video
of each 4-second simulation to obtain one trajectory (see Figure d)). The ball’s size, gravity, and
proportion of energy loss per bounce are constant across all trajectories. For each trajectory, the ball’s
initial location and initial velocity are randomly sampled. We utilize 512 trajectories for training, and
an additional 512 trajectories for evaluation.

For the latent space, we set the dimension of the latent space to 3, but only constrain 2 of them by
augmenting the representations with S € G 2 (R?, +) x SO(2). Those two dimensions are intended
to span the horizontal plane. The third one, which is the unaugmented latent dimension, is intended
to encode the vertical height.

Figure 4: Two example trajectories from the bouncing ball dataset.

4.2.2 Results on interpretable 3D representation

Figure[5]visually evaluates the interpretability of the learned location factors by traversing the z space,
one dimension at a time, and using the learned decoder to synthesise images. If the learned factors
are linear w.r.t. the 3D Cartesian coordinates, the synthesised ball should display linear motions as
we change z linearly. In brief, SPS learns an a more interpretable and linear z space. Here, subplot
(a) depicts the results of SPSyag with K=4. We see that the un-augmented dimension, z5, controls
the height of the ball, while z; and z3 move the ball along the horizontal (ground) plane. Each axis is
much more linear than in (b) and (c). Subplot (b) evaluates SPSyag with counterfactual representation
augmentation K=0, essentially turning off SPS. As z; varies, the ball seems to travel along curves in
the 3D space, showing the ablation learns some continuity w.r.t. the 3D space, but is obviously far
from linear. In (c), the 5-VAE fails to give consistent meaning to any axis.

Table 2] further shows quantitative evaluations on the linearity of the learned location factor, in which
we see that SPS outperforms other models by a large margin. To measure linearity, we fit a linear
regression from z to the true 3D location over the test set and then compute the Mean Square Errors
(MSE). Therefore, a smaller MSE indicates a better fit. To give an intuitive example, the MSEs of (a),
(b) and (¢) in Figure|§|are 0.09, 0.58 and 0.62 respectively. Here, we also include the results of SPSag.
Very similar to the music experiment in session .1 we again see that even without the Gaussian
prior assumption, our model SPSAg learns an interpretable latent space comparable to SPSyag.



(a) SPSvag, K=4 (Ours) (b) SPSvag, K=0 (Ablation) (c) 5-VAE (Baseline)
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Figure 5: A visualisation of latent-space traversal performed on three models: (a) ours, (b) ablation,
and (c) baseline, in which we see (a) achieves better linearity and interpretability. Here, row ¢ shows
the generated images when changing z; and keeping z.; = 0, where the x axis varies z; from —20,
to +20,. We center and normalise z, so that the latent space from different runs is aligned for fair
comparison. Specifically, in (a), changing 2z controls the ball’s height, and changing z;, z3 moves
the ball parallel to the ground plane. In contrast, the behavior in (b) and (c) are less interpretable.

Table 2: Linear fits between the true location and the learned location factor. We run the encoder on
the test set to obtain data pairs in the form of (location factor, true coordinates). We then run a linear
fit on the data pairs to evaluate factor interpretability. Two outliers are removed from the 50 runs.

Method zaxis MSE | yaxisMSE | zaxis MSE | MSE |
SPSyag, K=4 (Ours) 0.11 + 0.09 0.31 + 0.34 0.26 +£0.34 0.26 +0.30
SPSag, K=4 (Ours) 0.13 £ 0.07 0.39 £ 0.33 021 +0.17 0.24 +0.17

SPSyag, K=0 (Ablation)  0.33 £+ 0.10 0.80 £0.18 0.75+0.17 0.62+0.14
SPSag, K=0 (Ablation) 0.26 &+ 0.09 0.44 + 0.27 0.55+0.17 042 +0.15
B-VAE 0.36 + 0.03 0.70 £0.01 0.68 +£0.03 0.58 +0.01

5 Analysis

To better understand the effects of counterfactual representation augmentation (first introduced in
section [3.3), we ran extra experiments with different S and K. We choose the vision problem
since a 3D latent space manifests a more obvious difference when physical symmetry is applied.
In section we show that a larger augmentation factor K leads to higher sample efficiency. In
section ﬁe visualise the change of learned latent space against training epoch according to
different values of K. In section[5.3] we show that some deliberately incorrect group assumptions S
can also achieve good results.

5.1 Counterfactual representation augmentation improves sample efficiency

Figure[6] shows that a larger factor of counterfactual representation augmentation leads to a lower
linear projection loss (the measurement defined in section [#.2.2)) of the learned 3D representation.
Here, K is the augmentation factor, and K = 0 means the model is trained without physical symmetry.
The comparative study is conducted on 4 training set sizes (256, 512, 1024, and 2048), in which each
box plot shows the results of 10 experiments trained with a fixed K and random initialisation. We see
that a larger K leads to better results and compensates for the lack of training data. E.g., the loss
trained on 256 samples with K = 4 is comparable to the loss trained on 1024 samples with K = 0,
and the loss trained on 512 samples with K = 4 is even lower than the loss trained on 2048 samples
with K = 0. Furthermore, when K = 0, increasing the number of training samples beyond a certain
point does not further shrink the error, but increasing K still helps.

5.2 Counterfactual representation augmentation improves interpretability

Figure[7] visualises the latent space during different stages of model training, and we see that a larger
K leads to a better enforcement of interpretability. The horizontal axis shows the training epoch.
Three experiments with different K values (x0, x4, x16) are stacked vertically. Each experiment is



256 Samples 512 Samples 1024 Samples 2048 Samples

Ch
+—
T+
—H
13—
1—

Linear proj. loss |
o o
[CRES

—
S | -
H
—
1
H ]

o
=

i o _ = O
16 1

16

o
I
—
(=2}
o
= = tH
=]
I
—
o
o 4

K K

Figure 6: A comparison of linear projection MSEs among different augmentation factors (X) and
training set sizes, which shows that counterfactual representation augmentation improves sample
efficiency.
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Figure 7: A visualisation of the learned latent space against training epoch, in which we see that a
larger K leads to a stronger enforcement on learning a linear latent space. Here, we plot how the
encoder projects an equidistant 3D grid of true Cartesian coordinates onto the z space. Different
colours denote respective axes in the true coordinates.

trained twice with random initialisation. Each subplot shows the orthogonal projection of the z space
onto the plane spanned by z; and z3, therefore hiding most of the y-axis (i.e. ball height) wherever a
linear disentanglement is fulfilled. During training, the role of physical symmetry is to “straighten”
the encoded grid and a larger K yields a stronger effect.

5.3 Counterfactual representation augmentation with deliberately incorrect group
assumptions

Additionally, we test SPS with deliberately incorrect group assumptions. The motivation is as follows.
In real applications, researchers may incorrectly specify the symmetry constraint when the data
are complex or the symmetry is not known a priori. SPS is more useful if it works with various
groups assumptions close to the truth. In our analysis, we are surprised to find that SPS still learns
interpretable representations under alternate group assumptions via perturbing the correct one.

Figure 8] shows our results with the vision task (on the bouncing ball dataset). The x tick labels show
the augmentation method. Its syntax follows section e.g., “(R', +) x SO(2)” denotes augmenting
representations by 1D translations and 2D rotations. The y axis of the plot is still linear projection
loss (as discussed in section[A.5.3) that evaluates the interpretability of the learned representation. As
is shown by the boxplot, five out of five perturbed group assumptions yield better results than the “w/o
Symmetry” baseline. Particularly, (R3, +) x SO(2) and (R?, +) x SO(3) learn significantly more
linear representations, showing that some symmetry assumptions are “less incorrect” than others, and
that SPS can achieve good results under a multitude of group assumptions.
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Figure 8: Evaluation on various group assumptions, which shows that physical symmetry is a very
robust inductive bias as even the incorrect symmetry assumptions lead to better results than baseline.
Here, the y axis is linear projection loss between the learned location factor and the true coordinates,
so a lower value means better interpretability of representations. The leftmost box shows the baseline
without symmetry constraint. The next five boxes show five deliberately incorrect group assumptions,
trained with K'=4. The rightmost box shows the correct group assumption.

6 Related work

The idea of using a predictive model for better self-supervised learning has been well established
[Oord et al.| 2018} |Chung ef al.l 2015} |[LeCun, [2022]]. In terms of model architecture, our model
is very similar to VRNN [Chung ef al. 2015]]. In addition, our model can be seen as a variation of
joint-embedding predictive architecture (JEPA) in [LeCunl 2022] if we eliminate the reconstruction
losses on the observation. In fact, we see the network topology of a model as the “hardware” and see
the learning strategy (e.g., contrastive method, regularised method, or a mixed one) as the “software”.
The main contribution of this study lies in the learning strategy — to use physical symmetry to limit
the complexity of the prior model, and to use counterfactual representation augmentation to increase
sample efficiency.

The existing notation of “symmetry” as in [Higgins et al.l 2018} |Bronstein et al.| [2021]] is very
different from physical symmetry as an inductive for representation learning . Most current symmetry-
based methods care about the relation between observation x and latent z [Sanghil 2020; Quessard ef
al.,[2020; |Dupont et al.,[2020; Huang et al.|,[2021]]. E.g., when a certain transformation is applied
to x, z should simply keep invariant or follow a same/similar transformation. Such an assumption
inevitably requires some knowledge in the domain of x. In contrast, physical symmetry focuses
solely on the dynamics of z, and therefore we only have to make assumptions about the underlying
group transformation in the latent space. We see two most relevant works in the field of reinforcement
learning [Mondal ez al.| 2022; |Dupont et al.||2020], which apply an equivariant assumption similar to
the physical symmetry used in this paper. The major differences are twofold. First, to disentangle the
basic factors, our method requires no interactions with the environment. Second, our method is much
more concise; it needs no other tailored components or other inductive biases such as symmetric
embeddings network and contrastive loss used in [Dupont et al., [2020] or MDP homomorphism
applied in [Mondal et al.| 2022].

7 Limitation

We have identified several limitations in the generality and soundness of SPS. Firstly, when the
underlying concept following physical symmetry only contains partial information of the time
series and cannot fully reconstruct the inputs, SPS may not function properly. We hypothesize
that this issue is connected to content-style disentanglement, and present some preliminary results
in appendix [A.4] and [A5] Secondly, the current model lacks the ability to distill concepts from
multibody systems. For example, it is unable to learn the concept of pitch from polyphonic music
or understand 3D space from videos featuring multiple moving objects. Lastly, it is essential to
develop a formalized theory for quantifying the impact of counterfactual representation augmentation
in future work. This would involve measuring the degree of freedom in the latent space with and
without physical symmetry, and explaining why incorrect symmetry assumptions can still result in a
correct and interpretable latent space.



8 Conclusion

In this paper, we use physical symmetry as a novel inductive bias to learn interpretable and low-
dimensional representations from time-series data. Experiments show that physical symmetry
effectively distills an interpretable linear pitch concept, which agrees with human music perception,
from music audios without any labels. With the same method, we can learn the concept of 3D
Cartesian space from monocular videos of bouncing ball shot from a fixed perspective. In addition,
a robust training technique, counterfactual representation augmentation, is developed to enforce
physical symmetry during training. Analysis shows that counterfactual representation augmentation
leads to higher sample efficiency and better latent-space interpretability, and it stays effective even
when the symmetry assumption is incorrect. Last but not least, we see that with physical symmetry, our
sequential representation learning model can drop the the Gaussian prior regulation on the latent space.
Such a result empirically indicates that physical symmetry, as a causal (counterfactual) inductive bias,
might be more essential compared to the Gaussian prior as a purely statistical regularization.
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A Appendix

The appendix is structured into three main parts.

The first part (section [A.1] [A.2)) provides additional details about SPS. Section [A.T] focuses on
implementation-related aspects, while section [A.2] presents experimental results concerning the
reconstruction and prediction loss.

The second part (section [A.3]to [A.5) introduces an extended version of SPS called SPS+. Section[A.J]
describes the capabilities of SPS+ in achieving content-style disentanglement along with interpretable
learning. The related experiments are presented in section[A.4]and section[A.5]

The third part (section[A.6) presents two additional complex experiments conducted separately using
SPS+ and SPS, respectively.

A.1 SPS implementation details
A.1.1 Architecture details

Our models for both tasks share the following architecture. The encoder first uses a 2D-CNN with
ReLU activation to shrink the input down to an 8 x 8 middle layer, and then a linear layer to obtain z.
If the encoder is in a VAE (instead of an AE), two linear layers characterises the posterior, one for
the mean and the other for the log-variance. The prior model is a vanilla RNN of one layer with 256
hidden units and one linear layer projection head. The decoder consists of a small fully-connected
network followed by 2D transposed convolution layers mirroring the CNN in the encoder. Its output
is then passed through a sigmoid function. We use no batch normalisation or dropout layers.

Minor variations exist between the models for the two tasks. In the audio task, we use three
convolution layers in the encoder, with three linear and three 2D transposed convolution layers in
the decoder. In the vision task, as the data are more complex, we use four convolution layers in the
encoder, with four linear and four 2D transposed convolution layers in the decoder.

A.1.2 Training details

For both tasks, we use the Adam optimiser with learning rate = 10~3. The training batch size is
32 across all of our experiments. For all VAE-based models, including SPSyag (ours/ablation) and
[-VAE (baseline), we set /3 (i.e., A3 in Equation (I)) to 0.01, with A; = 1 and A, = 2. All BCE and
MSE loss functions are calculated in sum instead of mean. K = 4 for all SPS models except for
those discussed in section [5| where we analyse the influence of different K.

The RNN predicts z,, 1.7 given the first n embeddings z;.,,. We choose n = 3 for the audio task and
n = b5 for the vision task. We adopt scheduled sampling [Bengio ef al.,[2015] during the training
stage, where we gradually reduce the guidance from teacher forcing. After around 50000 batch
iterations, the RNN relies solely on the given z1.7 and predicts auto-regressively.

A.2 SPS reconstruction and prior prediction results

We investigate the reconstruction and prediction capacities of our model and show that they are
not harmed by adding symmetry constraints. For the music task, we compare our model, our
model ablating symmetry constraints, and a 5-VAE trained solely for the reconstruction of power
spectrogram. Table [3|reports per-pixel BCE of the reconstructed sequences from the original input
frames (Self-recon) and from the RNN predictions (Image-pred). We also include Lpyior, the MSE
loss on the RNN-predicted £ as defined in section The results show that our models slightly
surpasses the ablation and baseline models in all three metrics.

Similarly, Table [] displays the reconstruction and prediction losses on the test set for the video
task. Results show that adding symmetry constraints does not significantly hurt the prediction losses.
Frame-wise self-reconstruction is significantly lower for the SPS models, but only by a small margin.

A3 SPS+

SPS can use physical symmetry to learn interpretable factors that evolve over time. We call those
factors content representation. However, many problems can not be represented by content represen-
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Table 3: Reconstruction and prediction results on the audio task.

Methods Self-recon | Image-pred | Lprior 4
SPSvag, K=4 (Ours) 0.029240.0003  0.0296+0.0005 0.0012+0.0006
SPSAg, K=4 (Ours) 0.0292+£0.0002  0.0296+0.0002  0.00124-0.0003

SPSvag, K=0 (Ablation)  0.0291+0.0003  0.0295+0.0004 0.0030+0.0033
SPSag, K=0 (Ablation) 0.0291£0.0002 0.0295+0.0004 0.008740.0212
B-VAE 0.0303+0.0008 N/A N/A

Table 4: Reconstruction and prediction losses of the video task. Two outliers are removed from the
50 runs.

Method Self-recon | Image-pred | Loprior -
SPSyag, K=4 (Ours) 0.64382 + 9¢-05 0.6456 + 4e-04 0.14 4+ 0.05
SPSAg, K=4 (Ours) 0.64386 + 7e-05 0.6458 + 3e-04 0.17 £ 0.07

SPSvag, K=0 (Ablation)  0.64372 + 4e-05 0.6459 £ 2e-04 0.19 £0.10
SPSag, K=0 (Ablation) 0.64367 &+ 5e-05 0.6456 + 1e-04 0.11 £ 0.03
B-VAE 0.64345 + Se-05 N/A N/A

tation alone. For example, the bouncing balls can have different colours and the pitch scales can be
generated by different instruments. If the colour of a ball or the timbre of a sound scale are constant
within a trajectory, those latent spaces are hard to constrain by physical symmetry. We call such
invariant factors style representation. In order to deal with these problems, we combine SPS with a
simple content-style disentanglement technique: SPS+, a more general framework of SPS. We use
random pooling to constrain the style factors, and use physical symmetry to constrain the content
representation in the same way as SPS in Section [3.1]

A.3.1 Model

Figure [0 shows the design of SPS+, which belongs to the family of disentangled sequential autoen-
coders [Bai et al.l 2021; Hsu et al.l 2017; |Vowels et al.,|2021; | Yingzhen and Mandt, [2018; Zhu et
al.L|2020]. During the training process, the temporal data input X;.7 is first fed into the encoder E to
obtain the corresponding representation z,.7. ;.7 is then split into two parts: the style factor z;.7 ,
and the content factor z1.7 .. The style factor z;.7 , is passed through the random-pooling module
P, where one element z, s is randomly picked. The content factor z;.7 . is fed into three branches,
then combined with z; , to reconstruct. For random pooling in the training stage, one style vector is
randomly selected from all time steps (i.e., 15 for the music task and 20 for the vision task) of the
sequence to represent z. In the testing stage, only the first 5 (vision task) or 3 (music task) frames
are given, and z; will be selected from them.

A.3.2 Training objective

The following loss functions in SPS+ slightly vary from those in SPS. For SPS+, Lyior and Lgym
work on the content part of latent variables only. Other loss functions are exactly the same as those
defined in section[3.2]

Eprior = EQ(QQ:T@ Z2:T,c)7 (®)

»Csym = £2 (iZ:T,m iQIT,C) + 62 (iQ:TA,cv z2:T,c)~ (9)
1 K

62(i2:T,C7 ZZ:T,C) = E Z62(S£1(R(Sk(z1:T71,c)))a Z2:T,c)> (10)
k=1
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Figure 9: An overview of our model. x;.7 is fed into the encoder E to obtain the corresponding
representation z;.7, which is then split into two parts: the style factor z;.7 , and the content factor
z1.7,c. The style factor is passed through the random-pooling layer P, where an element z,  is
randomly selected. The content factor is fed into three different branches and combined with z, , to
reconstruct three outputs respectively: X|.p, X2.711 and Xo.711. Here, R is the prior model and S is
the symmetric operation. The inductive bias of physical symmetry enforces R to be equivaraint w.r.t.
to S, so z and Z should be close to each other and so are X and X.

LXK
(o(B2:m 0, 22m,c) = 32 > La(S (R(Sk(217-1,0))), Z2mc), (11)
k=1
K
. 1 1
Loce(Xer, Xair) = 5 > Lace(D(S; (R(Sk(21:7-1.0))), 2r.6), X2:1). (12)
k=1

A.4 SPS+ on learning pitch & timber factors from audios of multiple instruments
A.4.1 Dataset and setups

We synthesise a dataset that contains around 2400 audio clips played by multiple instruments.
Similar to the dataset in section [d.1.1] each clip contains 15 notes in major scales with the first 8
notes ascending and the last 8 notes descending. Each note has the same volume and duration. The
interval between every two notes is equal. We vary the starting pitch such that every MIDI pitch in the
range C2 to C7 is present in the dataset. For each note sequence, we synthesise it using 53 different
instruments, yielding 2376 audio clips. Specifically, two soundfonts are used to render those audio
clips respectively: FluidR3_GM [Wenl 2013] for the train set and GeneralUser GS v1.471 [Chris,
2017] for the test set. The pitch ranges for different instruments vary, so we limit each instrument to
its common pitch range (See Table[T4).

We assume 2, € R and z, € R?, and use random S € G = (R, +) to augment z. with K=4.

A.4.2 Results on pitch-timbre disentanglement

We evaluate the content-style disentanglement using factor-wise data augmentation following [ Yang et
all|2019]. Namely, we change (i.e., augment) the instrument (i.e., style) of notes while keeping their
pitch the same, and then measure the effects on the encoded z. and z5. We compare the normalised
z. and zg, ensuring they have the same dynamic range. Ideally, the change of z; should be much
more significant than z.. Here, we compare four approaches: 1) our model (SPS+), 2) our model
without splitting for z; (SPS with z € R? and S € G = (R, +)) as an ablation, 3) GMVAE [Luo et
al.,2019], a domain-specific pitch-timbre disentanglement model trained with explicit pitch labels,
and 4) TS-DSAE [Luo et al.| [2022], a recent unsupervised pitch-timbre disentanglement model based
on Disentangled Sequential Autoencoder (DSAE).

Figure [I0] presents the changes in normalised z. and z; measured by L2 distance when we change
the instrument of an anchor note whose pitch is D3 and synthesised by accordion. Table 3] provides
a more quantitative version by aggregating all possible instrument combinations and all different
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Figure 10: Comparisons for Az, and Az, for different instruments against accordion, with pitch kept
constant at MIDI pitch D3. Az, and Az, are changes in normalised z. and z;, so that higher black
bars relative to white bars means better results. All results are evaluated on the test set.

Table 5: Mean ratios of changes in normalised z. and z, under timbre augmentation across all
possible instrument combinations under different constant pitches in the test set.

Methods [|Azc||2/l|Azs|]2 4
SPSVAE+ (Ours) 0.49
SPSvar (Ablation) 2.20
GMVAE (Baseline) 0.67
TS-DSAE (Baseline) 0.65

pitch pairs. Both results show that SPS+ produces a smaller relative change in z. under timbre
augmentation, demonstrating a successful pitch-timbre disentanglement outperforming both the
ablation and baseline. Note that for the ablation model, z. varies heavily under timbre augmentation,
seemingly containing timbre information. This result indicates that the design of an invariant style
factor over the temporal flow is necessary to achieve good disentanglement.

We further quantify the results in the form of augmentation-based queries following [Yang et al.l[2019],
regarding the intended split in z as ground truth and the dimensions with the largest variances from
factor-wise augmentation after normalisation as predictions. For example, under timbre augmentation
under a given pitch for our model, if z; and z3 are the two dimensions of z that produce the largest
variances after normalisation, we count one false positive (z1), one false negative (z2), and one true
positive (z3). The precision would be 0.67. Table 6| shows the precision scores of the four approaches
against their corresponding random selection. The results are in line with our observation in the
previous evaluation, with our model more likely to produce the largest changes in dimensions in z,
under content augmentation and that in zs under style augmentation.

Table 6: Results on augmentation-based queries on the audio task. Precision, recall and F1 are
the same since the number of predicted and ground-truth positives are identical. Note that random
precisions for different approaches can be different as z. and z; are split differently.

Methods Timbre augmentation Pitch augmentation
Precision 1 Random Precision T Random
SPSyag+ (Ours) 0.98 0.67 0.82 0.33
SPSyag (Ablation) 0.50 0.67 0.02 0.33
GMVAE (Baseline) 0.93 0.50 0.83 0.50
TS-DSAE (Baseline) 0.81 0.50 0.68 0.50
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Figure 11: A visualisation of the mapping between the 1D content factor and the true pitch. In the
upper row, models encode notes in the test set to zpi¢ch. The x axis shows the true pitch and the y axis
shows the learned pitch factor. In the lower row, the x axis traverses the zpiich space. The models
decode zpjtcn to audio clips. We apply YIN to the audio clips to detect the pitch, which is shown by
the y axis. In both rows, a linear, noiseless mapping is ideal, and our method performs the best.

Table 7: Reconstruction and prediction results on the audio task.

Methods Self-recon | Image-pred | Lprior 4
SPSvyag+, K=4 (Ours) 0.0356 0.0359 0.0418
SPSvyag+, K=0 (Ablation)  0.0360 0.0363 0.0486
[-VAE (Baseline) 0.0359 N/A N/A

A.4.3 Results on interpretable pitch space

Figure [T shows that the pitch factor learned by SPS+ has a linear relation with the true pitch. Here,
We use Zpitch as the synonym of z. to denote the content factor. The plot shows the mappings of two
tasks and four models. In the embedding task (the first row), x-axis is the true pitch and y-axis is
embedded zp;itcn. In the synthesis task (the second row), z-axis is zpiicn and y-axis is the detected
pitch (by YIN algorithm, a standard pitch-estimation method by [De Cheveigné and Kawaharal [2002]))
of decoded (synthesised) notes. The fours models involved are: 1) our model, 2) our model without
symmetry (K=0), 3) a 8-VAE trained to encode single-note spectrograms from a single instrument
(banjo) to 1D embeddings, and 4) SPICE [Gfeller et al.|[2020], a SOTA unsupervised pitch estimator
with strong domain knowledge on how pitch linearity is reflected in log-frequency spectrograms. As
the figure shows, without explicit knowledge of pitch, our model learns a more interpretable pitch
factor than 5-VAE, and the result is comparable to SPICE.

Figure [12] shows a more quantitative analysis, using R? as the metric to evaluate the linearity of
the pitch against zp;¢c, mapping. Although SPICE produces rather linear mappings in Figure @, it
suffers from octave errors towards extreme pitches, hurting its R? performance.

A.4.4 Reconstruction and prior prediction

We investigate the reconstruction and prediction capacities of our model and show that they are not
harmed by adding symmetry constraints. We compare our model, our model ablating symmetry
constraints, and a 8-VAE trained solely for only image reconstruction. Table [7| reports per-pixel
BCE of the reconstructed sequences from the original input frames (Self-recon) and from the RNN
predictions (Image-pred). We also include L0y, the MSE loss on the RNN-predicted 2 as redefined
in section[A.3.2] The results show that our model surpasses the ablation and baseline models in all
three indexes.

17



Hl SPSyap+, K=4 (Ours) RXXA [-VAE (Baseline) SPICE (Baseline)
Embedding

1.0

o
A

%
XXX

RZ
0.51

%
0

XX

-
X

DR

9.

X

-

%%

0.0-

Synthesis

1.0

-
X

A
A

X
%a%

R2

D

e
o
XX

R

0.51

v
e
KX

X

%
2

.
KRR

Da

X

val

KRR

R

XX

o
-
%

X

0.0-

ouerJ
jouLIe)))
ouerd dL1309[7] -9
o]
Te)my) .
ouoydoxeg 98
jodumiy,
UIOTA

Figure 12: We use R? to evaluate mapping linearity. A larger R? indicates a more interpretable latent
space. Results are evaluated on the test set.

A.5 SPS+ on learning space & colour factors from videos of colourful bouncing balls

A.5.1 Dataset and setups

We run physical simulations of a bouncing ball in a 3D space and generate 4096 trajectories, yielding
a dataset of videos. Similar to the dataset in section[d.2.1] the simulated ball is affected by gravity and
bouncing force (elastic force). A fixed camera records a 20-frame video of each 4-second simulation
to obtain one trajectory (see Figure[I3). The ball’s size, gravity, and proportion of energy loss per
bounce are constant across all trajectories. In this dataset, the color of the ball varies by trajectory,
rather than a single color. For each trajectory, the ball’s colours are uniformly randomly sampled
from a continuous colour space.

Figure 13: Two example trajectories from the bouncing ball dataset.

We set z, € R? with the same counterfactual representation augmentation as in section (S €
G = (R?,+) x SO(2), K=4). Two of its dimensions are intended to span the horizontal plane and
the third unaugmented latent dimension is intended to encode the vertical height. We set z, € R?
which is intended to represent the ball’s colour space.

A.5.2 Result on space-colour disentanglement

Similar to section[A.4.2] we evaluate the space-colour disentanglement by augmenting the colour
(i.e., style) of the bouncing balls while keeping their locations, and then measure the effects on the
normalised z. and z;. Again, a good disentanglement should lead to a change in z; much more
significant than z.. Here, we compare two approaches: 1) our model (SPS+) and 2) our model
ablating splitting for z (SPS with z € R% and S € G = (R?, +) x SO(2)). Note that the ablation
model does not differently constrain z5 (corresponding to the y-axis) than zs. To ensure a meaningful
comparison, under colour augmentation, we consider 25 to be a part of z of the ablation model and a
part of z. of the complete model.

Figure [T4] presents the changes in normalised z. and z; measured by L2 distance when we change
the colour of an anchor ball whose location is (0, 1, 5) and rendered using white colour. Table |§|
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Table 8: Results on augmentation-based queries on the visual task. Since the ablation model does not
differently constrain z, (corresponding to the y-axis) than z5, we consider z. and z, differently for
the two approaches. Under colour augmentation, we consider z, to be a part of z, for the ablation
model and a part of z. for the complete model. Under location augmentation, we consider z- to be a
part of z,. for both models.

Methods Colour augmentation Location augmentation

Precision 1 Random Precision  Random

SPSyap+ (Ours) 0.99 0.40 0.88 0.40
SPSyar (Ablation)  0.64 0.60 0.36 0.40

Table 9: Mean ratios of changes in normalised z. and zs under colour augmentation across sampled
colour combinations keeping locations constant. Results are evaluated on the test set.

Methods [|Az||2/]|A%s||2 4
SPSVAE+ (OUI'S) 0.54
SPSyag (Ablation) 1.62

provides a more quantitative version by aggregating sampled colour combinations and location pairs.
Both results show that our model produces a smaller relative change in z. under timbre augmentation,
demonstrating a successful pitch-timbre disentanglement outperforming the ablation model. Note
that for the ablation model, z. varies heavily under colour augmentation. Table 8] shows the precision
scores of the SPS+ and its ablation against their corresponding random selection for the ball task.
These results agree with section[A.4.2]and again indicate that the design of an invariant style factor
helps with disentanglement.

3 [|Aze|l: HE |[Az]l2
SPSvae+ (Ours) SPSvag (Ablation)

JATITRITIAY

Figure 14: Comparisons of normalised Az. and Az, for different colours against white, with the
ball’s location kept constant at (0, 1, 5). Higher black bars (relative white bars) means better a result.
(Results are evaluated on the test set.)
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Figure[T5]evaluates the learned colour factor of our model. Each pixel shows the colour of the ball
synthesised by the decoder using different z coordinates. The ball colour is detected using naive
saturation maxima. In the central subplot, the location factor z;.3 stays at zeros while the colour
factor z4.5 is controlled by the subplot’s x, y axes. As shown in the central subplot, our model (a)
learns a natural 2D colour space. The surrounding subplots keep the colour factor z4.5 unchanged,
and the location factor 2; 3 is controlled by the subplot’s x, y axes. A black cross marks the point
where the entire z;.5 is equal to the corresponding black cross in the central subplot. As is shown
by the surrounding subplots, varying the location factor does not affect the colour produced by our
model (a), so the disentanglement is successful. The luminosity changes because the scene is lit by a
point light source, making the ball location affect the surface shadow. On the other hand, 3-VAE (b)
learns an uninterpretable colour factor.
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(a) SPSyag+, K=4 (Ours) (b) S-VAE (Baseline)

Z1

Figure 15: The colour map of the synthesised ball experiment through latent space traversal. Each
pixel represents the detected colour from one synthesised image of the ball. Each subplot varies two
dimensions of z, showing how the synthesised colour responds to the controlled z.

(a) SPSvag+, K=4 (Ours) (b) SPSyag+, K=0 (Ablation) (c) B-VAE (Baseline)

N ..... N ..... ” .....
” ..... ” ..... ” .....
—20 0 +20 —20 0 +20 —20 0 +20

Figure 16: Row 7 shows the generated images when changing z; and keeping z; = 0, where the =
axis varies z; from —2¢ to +20. In (a), changing 2o controls the ball’s height, and changing 21, z3
moves the ball parallel to the ground plane.

A.5.3 Results on interpretable 3D representation

Figure [I6]illustrates the interpretability of learned content factor using latent space traversal. Each
row varies only one dimension of the learned 3D content factor, keeping the other two dimensions at
zero. Figure[T6{a) shows the results of our model. We clearly observe that: i) increasing z1 (the first
dimension of z. ) mostly moves the ball from left to right, increasing zo moves the ball from bottom
to top, and increasing z3 mostly moves the ball from far to near. Figure[T6{b) is the ablation model
without physical symmetry, and (c) shows the result of our baseline model 3-VAE, which is trained to
reconstruct static images of a single colour (green). Neither (b) nor (c) learns an interpretable latent
space.

Table 10: Linear fits between the true location and the learned location factor. We run the encoder on
the test set to obtain data pairs in the form of (location factor, true coordinates). We then run a linear
fit on the data pairs to evaluate factor interpretability.

Method raxisMSE| gyaxisMSE| zaxisMSE| MSE|
SPSyag+, K=4 (Ours) 0.11 0.06 0.09 0.09
SPSvag+, K=0 (Ablation) 0.35 0.72 0.68 0.58
(-VAE (Baseline) 0.37 0.76 0.73 0.62
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Table 11: Reconstruction and prediction results on the video task with variable colours.

Method Self-recon | Image-pred | Loprior |
SPSvag+, K=4 (Ours) 0.6457 0.6464 0.0957
SPSyag+, K=0 (Ablation) 0.6456 0.6464 0.1320
[5-VAE (Baseline) 0.6455 N/A N/A

Table 12: R? aggregated across all instruments in the test set. A larger R? indicates a more
interpretable latent space.

Method Self-recon] Image-pred| Lprior . Embedding R*1  Synthesis R? 1
SPSvag+, K=4 (Ours) 0.0384 0.0396 0.7828 0.89 0.47
SPSvag+, K=0 (Ablation) 0.0388 0.0400 0.9909 0.83 0.25
[-VAE (Baseline) 0.0324 N/A N/A 0.19 0.29

Table [I0] quantitatively evaluates the linearity of the learned location factor. We fit a linear regression
from z. to the true 3D location over the test set and then compute the Mean Square Errors (MSEs).
A smaller MSE indicates a better fit. All three methods (as used in Figure [I6) are evaluated on a
single-colour (green) test set. Results show that our model achieves the best linearity in the learned
latent factors, which aligns with our observations in Figure@

A.5.4 Reconstruction and prior prediction

Similar to section[A.4.4] we show that our model suffers little decrease in reconstruction and prediction
performance while surpassing the ablation model in terms of Lo by table[TT}

A.6 More complicated tasks

The main part of this paper focuses on simple, straight-forward experiments. Still, we supplement our
findings by reporting our current implementation’s performance on more complicated tasks involving
natural melody and real-world video data.

A.6.1 Learning interpretable pitch factors from natural melodies

We report the performance of SPS+ on learning interpretable pitch factors from monophonic melodies
under a more realistic setup. We utilize the melodies from the Nottingham Dataset [Foxley, [2011]], a
collection of 1200 American and British folk songs. For simplicity, we quantise the MIDI melodies by
eighth notes, replace rests with sustains and break down sustains into individual notes. We synthesise
each non-overlapping 4-bar segment with the accordion soundfonts in FluidR3 GM [Wen, [2013],
resulting in around 5000 audio clips, each of 64 steps.

This task is more realistic than the audio task described in[A.4]since we use a large set of natural
melodies instead of one specified melody line. The task is also more challenging as the prior model
has to predict long and more complex melodies. To account for this challenge, we use a GRU [Cho
et al.| 2014] with 2 layers of 512 hidden units as the prior model. We perform early-stopping after
around 9000 iterations based on spectrogram reconstruction loss on the training set. The model and
training setup is otherwise the same as in[A.4]

Following[A.4.3] We evaluate our approach on notes synthesised with all instruments in GeneralUser
GS v1.471 [|Chris} 2017]] in the MIDI pitch range of C4 to C6, where most of the melodies in |[Foxley
[2011] take place. Note that this is a challenging zero-shot scenario since the model is trained on only
one instrument. We compare our model, our model ablating the symmetry loss and a 5-VAE baseline.
We visualise the embedded 2y, and synthesised pitches for different instruments in Figure E}
Following [12} R? results are shown in Figure18|and Table Even when tested on unseen timbres,
our model can learn linear and interpretable pitch factors and demonstrates better embedding and
synthesis performance compared with the ablation model, which outperforms the 3-VAE baseline.
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Figure 17: A visualisation of the mapping between the embedded 1D content factor and the true pitch
for the model trained on Nottingham dataset.
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Figure 18: R? for select instruments in the test set. A larger R? indicates a more linear and

interpretable latent space.

A.6.2 Learning an intepretable location factor from KITTI-Masks

In this task, we evaluate our method’s capability on a real-world dataset, KITTI-Masks [Klindt ez al.|
2021]]. The dataset provides three labels for each image: X and Y for the mask’s 2D coordinate, and
AR for the pixel-wise area of the mask. Based on the provided labels, we use simple geometrical
relation to estimate the person-to-camera distance d, computed as d = 1/ tan(av AR), where « is a
constant describing the typical camera’s Field of View (FoV).

We use a 3-dimensional latent code for all models. For SPS, all 3 dimensions are content factors z.
and no style factor z, is used. We apply group assumption (R?, +) to augment representations with
K = 1. To measure the interpretability, we fit a linear regression from z, to the ground truth labels
and calculate MSEs in the same way as in section[A.5.3] The results are shown in Table[I3] Linear
proj. MSE 1 measures the errors of linear regression from z,. to the original dataset labels. Linear
proj. MSE 2 measures the errors of linear regression from z. to the person’s 3-D location, estimated

from the labels.
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Table 13: Results of KITTI-Masks task, averaging on 30 random initialisations for each method.

Methods Self-recon |  Image-pred | Linear proj. MSE 1| Linear proj. MSE 2 |
SPSvag, K=4 (Ours) 0.030+0.001  0.084+0.006 0.215+0.067 0.203+0.065
SPSvag, K=0 (Ablation)  0.030£0.001  0.093+0.010 0.235+0.077 0.24340.088
B-VAE (Baseline) 0.028+0.001 N/A 0.403+0.194 0.39940.204

As is shown in Table B], MSE 2 is smaller than MSE 1 for SPS, indicating that SPS learns more
fundamental factors (person’s location) rather than superficial features (pixel-wise location and area).
For the baseline methods, MSE 2 is almost equal to MSE 1, and both of them are higher than those of
SPS. In summary, our experiment shows that SPS learns more interpretable representations than the
baseline (as well as the ablation method) on KITTI-Masks dataset.

(a) SPSvag, K=4 (Ours) (b) SPSvag, K=0 (Ablation) (c) B-VAE (Baseline)

—-2.0 0.0 2.0 —-2.0 0.0 2.0 —-2.0 0.0 2.0

Figure 19: Latent space traversal on different models. Row ¢ shows the generated images when
changing z; and keeping z»; = 0. For our model, the range of z; from -2 to 2 corresponds to the
human location from near-right to far-left, zo from near-left to far-right, and z3 from near to far.
We can see that other methods produce more non-linear trajectories, for example in (c), the human
location hardly changes when z; < 0, but it changes dramatically when z; > 0.

Figure [I9)shows the generated images, which illustrates that the factors learned by SPS are more
linear than those learned by other methods in the human location attribute. For the experiment, We
choose all sequences with length > 12 from KITTI-Masks as our dataset; we use 1058 sequences for
training and 320 sequences for evaluation; In the inference stage, only the first 4 frames are given. All
three methods are trained 30 times with different random initializations. Table[T3|shows the average
results evaluated on the same test set with 30 different seeds.

23



MIDI Note  MIDI Note

Instrument (from) (t0)
Accordion 58 96
Acoustic Bass 48 96
Banjo 36 96
Baritone Saxophone 36 72
Bassoon 36 84
Celesta 36 96
Church Bells 36 96
Clarinet 41 84
Clavichord 36 84
Dulcimer 36 84
Electric Bass 40 84
Electric Guitar 36 96
Electric Organ 36 96
Electric Piano 36 96
English Horn 36 85
Flute 48 96
Fretless Bass 36 84
Glockenspiel 36 96
Guitar 36 96
Harmonica 36 96
Harp 36 96
Harpsichord 36 96
Horn 36 96
Kalimba 36 96
Koto 36 96
Mandolin 36 96
Marimba 36 96
Oboe 36 96
Ocarina 36 96
Organ 36 96
Pan Flute 36 96
Piano 36 96
Piccolo 48 96
Recorder 36 96
Reed Organ 36 96
Sampler 36 96
Saxophone 36 84
Shakuhachi 36 96
Shamisen 36 96
Shehnai 36 96
Sitar 36 96
Soprano Saxophone 36 96
Steel Drum 36 96
Timpani 36 96
Trombone 36 96
Trumpet 36 96
Tuba 36 72
Vibraphone 36 96
Viola 36 96
Violin 36 96
Violoncello 36 96
Whistle 48 96
Xylophone 36 96

Table 14: Pitch range (in MIDI note) for each instrument in our dataset.
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