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Abstract
Radiology report generation (RRG) requires001
advanced medical image analysis, effective002
temporal reasoning, and accurate text gener-003
ation. While multimodal large language mod-004
els (MLLMs) align with pre-trained vision005
encoders to enhance visual-language under-006
standing, most existing methods rely on single-007
image analysis or rule-based heuristics to pro-008
cess multiple images, failing to fully leverage009
temporal information in multi-modal medical010
datasets. In this paper, we introduce Libra, a011
temporal-aware MLLM tailored for chest X-ray012
report generation. Libra combines a radiology-013
specific image encoder with a novel Tempo-014
ral Alignment Connector (TAC), designed to015
accurately capture and integrate temporal dif-016
ferences between paired current and prior im-017
ages. Extensive experiments on the MIMIC-018
CXR dataset demonstrate that Libra establishes019
a new state-of-the-art benchmark among simi-020
larly scaled MLLMs, setting new standards in021
both clinical relevance and lexical accuracy.022

1 Introduction023

Radiology reports are critical for biomedical ra-024

diology analysis, offering structured summaries025

of imaging studies such as chest X-rays (CXRs).026

Commonly divided into sections like Findings, Im-027

pression, Indication, Technique, Comparison, and028

History (Ganeshan et al., 2018), these reports guide029

diagnostic and therapeutic decisions (Najjar, 2023).030

However, manually generating such reports is both031

complex and time-consuming. Automating radiol-032

ogy report generation (RRG) holds great promise033

for alleviating radiologist burnout, increasing ef-034

ficiency, and improving communication (Zhang035

et al., 2020b). Despite this, the intricate nature036

of medical imaging demands precise and detailed037

documentation, making RRG a challenging task.038

Recent advances in Multimodal Large Language039

Models (MLLMs), such as LLaVA (Liu et al.,040

2023) and InstructBLIP (Dai et al., 2023), have041

(a)

Provide a detailed 
description of the findings
in the radiology image. 

prior study

In comparison with the 
prior imaging study, 
there is no significant 
change noted in the streak 
of atelectasis at the left 
base. No evidence of 
vascular congestion …

Provide a detailed 
description of the findings
in the radiology image. 

prior study

Frontal views of the chest 
were obtained. The 
patient remains 
intubated, unchanged 
from prior. Left-sided Port-
A-Cath is again seen, 
terminating at the …

(b)

MLLM

Original 
Report

MLLM

Original 
Report

As compared to the 
previous radiograph, the 
patient has been 
extubated     and the 
nasogastric tube has been 
removed.     The left 
pectoral Port-A-Cath …

The study reveals 
a streak of atelectasis at 
the left base. There is no 
convincing evidence of  
vascular congestion, or 
acute focal pneumonia. 
An incidental …

Figure 1: Examples of hallucinations in RRG using the
MLLM (MAIRA-1 (Hyland et al., 2024)). (a) Single-
image case: spurious references to nonexistent prior
studies. (b) Temporal image case: inaccurate interpreta-
tion of temporal changes when integrating prior studies.

demonstrated potential in vision-language tasks. 042

However, their performance diminishes in spe- 043

cialised biomedical contexts due to the significant 044

domain shift between general-purpose and medical 045

image-text data (Tu et al., 2023). These models 046

often lack fine-grained detail for medical imaging 047

tasks, resulting in surface-level understanding akin 048

to layperson interpretations. While continued pre- 049

training on medical datasets and domain-specific 050

fine-tuning (e.g., LLaVA-Med (Li et al., 2023a), 051

MedBLIP (Chen et al., 2023b)) improve perfor- 052

mance, they still cannot fully capture the complexi- 053

ties of medical image analysis (Xiao et al., 2024). 054

One critical gap in the current MLLM-based 055

approaches is their limited ability to incorporate 056

temporal context, which is pivotal in clinical prac- 057

tice. Radiologists routinely compare current imag- 058

ing results with prior studies to identify temporal 059

changes, a process crucial for understanding dis- 060

ease progression and guiding treatment decisions. 061

Indeed, the MIMIC-CXR database (Johnson et al., 062

2019b) reveals that 67% of patients underwent at 063
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least two studies at different time intervals, under-064

scoring the necessity of temporal reasoning. How-065

ever, most MLLMs designed for RRG tasks focus066

on single-image analysis, neglecting this temporal067

dimension (Zhang et al., 2024c). As illustrated in068

Figure 1, MAIRA-1 (Hyland et al., 2024) intro-069

duces hallucinated prior references in single-image070

analysis and misinterprets temporal changes when071

integrating prior studies.072

Although recent models1 like MedVersa (Zhou073

et al., 2024) and MAIRA-2 (Bannur et al., 2024)074

have introduced multi-image processing, they do075

not explicitly model or extract temporal differences.076

Instead, they rely on inserting visual tokens from077

different studies at specific points within textual078

inputs and delegate the reasoning task to the LLM.079

Similarly, Banerjee et al. (2024) and Chaves et al.080

(2024) leverage GPT-4V (OpenAI et al., 2024)081

to eliminate hallucinated references to prior stud-082

ies in the dataset but lacks dedicated mechanisms083

for modelling temporal progression. Additionally,084

existing MLLMs often rely on embeddings from085

the last or penultimate layer of the image encoder086

(Chen et al., 2023a; Zhang et al., 2024a), primarily087

capturing global features. However, RRG tasks088

require fine-grained details2 (Sloan et al., 2024),089

which a single-layer embedding often cannot fully090

represent (Jiang et al., 2024). To tackle these lim-091

itations, we enhance MLLM temporal awareness092

for RRG tasks by addressing two main challenges:093

• Designing robust MLLM architectures that094

seamlessly handle prior study references in RRG.095

• The scarcity of effective feature alignment pro-096

jectors in MLLMs capable of handling the high-097

granularity requirements of downstream tasks.098

To overcome these gaps, we propose Libra099

(Leveraging Temporal Images for Biomedical100

Radiology Analysis), a novel temporal-aware101

framework tailored for RRG tasks. Libra employs102

a pre-trained visual transformer encoder, RAD-103

DINO (Pérez-García et al., 2024), to generate ro-104

bust image features, which are then refined using105

a new projector crafted for the temporal aware-106

ness, before being fed into the medical large lan-107

guage model (LLM), Meditron (Chen et al., 2023c).108

Through a two-stage training strategy, Libra aligns109

temporal visual features with the text embedding110

space, improving temporal coherence in RRG.111

1Detailed related work is discussed in Appx. A, and our
research objectives are explained in Appx. B.

2E.g., severity and temporal progression of findings.

Our modular approach integrates state-of-the-art 112

open-source pre-trained models for medical image 113

and text processing while introducing a dedicated 114

temporal-aware adapter to align visual and textual 115

modalities within the embedding space. This paper 116

makes the following contributions: 117

◦Libra, a temporal-aware MLLM designed to 118

model temporal references and mitigate temporal 119

hallucinations in RRG tasks. 120

◦Temporal Alignment Connector (TAC), 121

comprising the Layerwise Feature Extractor (LFE) 122

and Temporal Fusion Module (TFM), which ex- 123

tracts high-granularity image features from multi- 124

ple encoder layers and integrates temporal refer- 125

ences from the prior study when available. 126

◦Extensive evaluation on the MIMIC-CXR 127

dataset, achieving state-of-the-art results on aver- 128

age among similarly scaled MLLMs, with case 129

analysis illustrating Libra’s architectural benefits. 130

2 Libra 131

2.1 Model Architecture 132

Our Libra model follows the standard architecture 133

of MLLMs, such as LLaVA (Liu et al., 2023), com- 134

prising an image encoder, a text decoder and a 135

connector module to map visual features into the 136

text embedding space. Figure 2 shows the over- 137

all architecture of Libra. Specifically, we utilise a 138

frozen biomedical image encoder, i.e. RAD-DINO 139

(Pérez-García et al., 2024), a visual transformer 140

extensively pre-trained on medical scans using the 141

DINOv2 image-only self-supervised learning ap- 142

proach (Oquab et al., 2024). The text encoder is de- 143

ployed by Meditron-7B (Chen et al., 2023c), which 144

builds on Llama-2 and is further pre-trained on 145

specialised medical corpora. 146

To effectively connect the image encoder and 147

LLM, we design a novel Temporal Alignment Con- 148

nector (TAC) tailored to capture and integrate tem- 149

poral information from paired images taken at dif- 150

ferent time points. Meanwhile, when no prior im- 151

age is available, we employ a dummy prior image, 152

which is simply a copy of the current image, to 153

mitigate spurious references to nonexistent scans, 154

as shown in Figure 2 (bottom). This design enables 155

Libra to effectively manage temporal data (e.g., sta- 156

ble, improved, worsening) and enhances its ability 157

to generate accurate and coherent radiology reports. 158
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Technology: ... }
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Figure 2: The overall architecture of Libra. The core component, the Temporal Alignment Connector (TAC),
processes paired temporal images to enhance temporal reasoning. TAC consists of two key modules: (a) the
Layerwise Feature Extractor (LFE), which aggregates multi-layer image features from the image encoder, and (b)
the Temporal Fusion Module (TFM), which aligns the extracted features and integrates temporal differences before
feeding them into the LLM. When no prior image is available, a dummy prior image is used to support temporal
modelling, mitigate hallucinations, and prevent spurious references to nonexistent prior studies.

2.2 Temporal Alignment Connector159

To address the challenges of integrating temporal160

information and aligning high-granularity visual161

features for RRG tasks, TAC bridges the image en-162

coder and the LLM. It processes visual features163

from two temporal snapshots to produce a uni-164

fied representation sensitive to temporal changes.165

As shown in Figure 2 (right), TAC includes two166

key components: the Layerwise Feature Extractor,167

which extracts high-granularity image representa-168

tions, and the Temporal Fusion Module, which in-169

tegrates temporal references from the prior study.170

2.2.1 Layerwise Feature Extractor171

To leverage abundant image feature representations172

encoded by a pre-trained image encoder, we ex-173

tract image patch token features of all the hidden174

layers for a given pair of input images. By default,175

the RAD-DINO image encoder (Pérez-García et al.,176

2024) has 12 hidden layers and processes 518 × 518177

input images into 14 × 14 patches, generating 1,369178

patch token sequences per hidden layer. Rather179

than relying on a single global feature token (e.g.,180

the [CLS] token), we collect same-dimensional181

patch embeddings from each layer per image, de-182

noted as Eimg ∈ RN×Dimg , where N = 1, 369 is183

the number of patch tokens and Dimg is the embed-184

ding dimension of the image encoder.185

Then, these embeddings are concatenated across 186

all layers as E′
img = {Eimg

i }ni=1, where n is the 187

number of hidden layers. Drawing from the pro- 188

gressive compression strategy in VGG (Simonyan 189

and Zisserman, 2015), our Layerwise Feature Ex- 190

tractor (LFE) reduces dimensionality across layers 191

while preserving critical information. First, we 192

utilise Squeeze-and-Excitation (SE) Networks (Hu 193

et al., 2019), which construct informative features 194

by integrating both spatial and channel-wise infor- 195

mation within local receptive fields at each layer. 196

The SE block is applied to obtain calibrated fea- 197

ture representations, using GELU (Hendrycks and 198

Gimpel, 2023) as the activation function. 199

Next, we employ a specialised pointwise con- 200

volution module to align the feature spaces across 201

different layers, using a depthwise 2D convolu- 202

tion with filters and stride of 1, without bias. The 203

compressed features are represented as Aimg ∼ 204

Conv2dkj (SE
k
j (E

′
img)), where k is the original 205

layer number and j is the layer number after com- 206

pression. Following the size-reduction pattern of 207

convolutional layers in VGG, the image features are 208

compressed according to {k, j} ∈ {12, 6, 3, 1}3. 209

Through three stages of progressive compression, 210

3Since RAD-DINO has 12 hidden layers, the prime fac-
torisation chain provides the factors as {12, 6, 3, 1}.
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we obtain the final patch-level representation:211

A′
img = Conv2d126 (SE12

6 (E′
img)) (1)212

A′′
img = Conv2d63(SE

6
3(A

′
img)) (2)213

Aimg = Conv2d31(SE
3
1(A

′′
img)) (3)214

For simplicity, we use LFE(·) to denote the215

above three stages of compression, which project a216

given input image E′
img into its feature representa-217

tion of the fixed dimension, Aimg ∈ R1×N×Dimg :218

Aimg = LFE(E′
img) (4)219

By progressively refining each image’s represen-220

tations through multiple stages, the LFE generates221

a unified and compact feature set suitable for tem-222

poral alignment. This design ensures that both223

high-granularity and global context are retained, as224

illustrated in (a) of Figure 2.225

2.2.2 Temporal Fusion Module226

The Temporal Fusion Module (TFM) is inspired by227

the transformer decoder and is designed to integrate228

temporal information by leveraging prior images229

as auxiliary context. It takes as input a paired set of230

compressed features from both the current and prior231

images, denoted as Acurr
img and A

prior
img , respectively,232

which are obtained after processing through the233

LFE. The temporal fusion process is defined as:234

Zimg = TFM(Acurr
img , A

prior
img ) (5)235

where TFM learns to weigh the current image using236

prior image features, refining the representation to237

enhance temporal awareness. The resulting feature238

sequence, Zimg ∈ RN×d, serves as the input to the239

LLM, where N is the number of patch tokens and d240

is the hidden dimension of the LLM. This process241

encapsulates the temporal evolution of the patient’s242

condition, allowing the language model to generate243

accurate and contextually aware radiology reports.244

Prior Image Prefix Bias The dataset contains245

samples with and without a prior image. When a246

prior image is not available, we set Aprior
img = Acurr

img .247

However, this “dummy prior image” is indistin-248

guishable from a true prior in raw features. To249

differentiate it, we add a trainable bias, as bprior.250

Following the attention scaling techniques for251

adjusting hidden space degrees of freedom with252

a chi-square distribution (Vaswani, 2017), a non-253

linear scaling function amplifies higher similarity254

values. The cosine similarity between the current255

and prior images is scaled with an exponent of 4
√
d,256

where d is the hidden dimension of the LLM:257

b′prior = bprior ·

(
cos(Acurr

img , A
prior
img ) + 1

2

) 4√
d

(6)258

A′prior
img = Aprior

img + b′prior (7)259

This nonlinear scaling emphasises high similar- 260

ity values, modulating the influence of prior image 261

features. When no prior image is available, the 262

high similarity score ensures that the effect of the 263

dummy prior is adequately represented. This ad- 264

justment prevents samples with a dummy prior im- 265

age from undergoing redundant rounds of parallel 266

multi-head self-attention during subsequent propa- 267

gation through the transformer blocks, in Figure 2. 268

Transformer Block The Transformer Block in 269

TFM follows the standard Transformer design but 270

is optimized for handling temporal image pairs. It 271

consists of multi-head self-attention (SelfAttn), 272

multi-head cross-attention (CrossAttn), and two 273

multi-layer perceptron (MLP ) sub-layers. As illus- 274

trated in (b) of Figure 2. The paired (Acurr
img , A

′prior
img ) 275

are processed with layer normalization (LN ) and 276

residual connections: 277
278T self

curr = LN(Acurr
img + SelfAttn(Acurr

img ;A
curr
img)) (8) 279

280T self
prior = LN(A′prior

img + SelfAttn(A′prior
img ;A′prior

img )) (9) 281

282T cross
img = LN(T self

curr + CrossAttn(T self
curr ;T

self
prior)) (10) 283

284T out
img = LN(Acurr

img +MLPattn(T
cross
img )) (11) 285

286Zimg = MLPfinal(T
out
img) (12) 287

where MLPattn is a simple neural network com- 288

posed of two fully connected layers with GELU 289

as the activation function. After that, the features 290

are processed through MLPfinal, a straightforward 291

neural network consisting of four fully connected 292

layers with the same activation function, but with 293

hidden dimensions matching those of the LLM. 294

2.3 Prompt Design 295

To enhance Libra’s ability to perceive temporal 296

changes and integrate medical information in RRG, 297

we design a structured prompting strategy, consist- 298

ing of a system prompt and a clinical prompt, as 299

shown in Figure 2 (left). The system prompt en- 300

ables the LLM to recognise temporal variations, 301

while standard report sections (Indication History, 302

Comparison, Technique) are integrated into the clin- 303

ical prompt (see Appx. C for a detailed example). 304

The full prompt is: “Provide a detailed descrip- 305

tion of the findings in the radiology image. Follow- 306

ing clinical context:{...}.” There are datasets, e.g. 307

MIMIC-CXR (Johnson et al., 2019b), where the 308

report sections are unavailable. For these datasets, 309

we set the prompt as follows: “Provide a detailed 310

description of the findings in the radiology image.” 311

After tokenising and embedding prompts, the re- 312

fined image features (Zimg) are inserted between 313

the system prompt and clinical prompts. 314
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2.4 Temporal-aware Training315

Libra focuses on frontal-view images, either316

posterior-anterior (PA) or anterior-posterior (AP),317

and targets the Findings sections of RRG, as these318

contain the most direct clinical observations. It319

employs a two-stage training strategy, inspired by320

recent MLLM fine-tuning techniques (McKinzie321

et al., 2024), to progressively learn visual feature322

alignment and temporal information extraction.323

Temporal Feature Alignment In the first stage,324

the visual encoder and LLM weights are frozen,325

while the TAC is trained. This stage focuses on326

Findings and Impression generation from paired im-327

ages and performing CXR-related visual question328

answering (VQA) tasks to extract high-quality im-329

age representations and capture temporal changes.330

Downstream Task Fine-tuning In the second331

stage, we apply Low-Rank Adaptation (LoRA) (Hu332

et al., 2021) to fine-tune the LLM on the Findings333

generation task, while keeping the visual encoder334

and TAC weights frozen. LoRA achieves perfor-335

mance comparable to full fine-tuning at a substan-336

tially lower computational cost. The detailed train-337

ing configuration, including learning rate schedules338

and hyperparameters, is provided in Appx. D.339

3 Experiments340

3.1 Task and Dataset341

Task Description We focus on generating the342

Findings section of radiology reports for frontal343

CXRs, ensuring a fair comparison with prior work.344

The Findings section provides radiologists’ obser-345

vations, encompassing both normal and abnormal346

findings. While additional sections like Indication347

and Technique primarily serve as routine records348

(e.g., clinical history or specific physician requests),349

they also assist the model in understanding tempo-350

ral changes across images. Hence, we incorpo-351

rate clinical instructions about the current image as352

prompts to guide Libra to complete the RRG task.353

The most common CXR is frontal views, either354

PA or AP. Although lateral views are occasionally355

used to supplement anatomical assessments (Islam356

et al., 2023), they are excluded in this study to357

maintain consistency with previous research on358

RRG tasks, such as Chaves et al. (2024) and Hyland359

et al. (2024). Both current and prior images in our360

experiments exclusively utilise single frontal views.361

Dataset Description Libra is trained and eval-362

uated using the MIMIC-CXR dataset (Johnson363

et al., 2019b) and its derivative datasets, including364

Medical-Diff-VQA (Hu et al., 2023) and MIMIC- 365

Ext-MIMIC-CXR-VQA (Bae et al., 2023). All 366

datasets are split according to the official labels 367

to prevent data leakage. Detailed dataset descrip- 368

tions and preprocessing steps are in Appx. E. 369

Following the dataset scaling law utilised in 370

multi-stage MLLM fine-tuning methods (Zhu et al., 371

2023), we adopt a two-stage training strategy, as 372

noted in Sec. 2.4. The first stage trains TAC on 373

∼1.2M CXR-image text pairs from MIMIC-CXR 374

and its derivatives, including Findings, Impression, 375

and VQA tasks, enabling it to learn CXR token dis- 376

tributions and image-text relationships. The second 377

stage fine-tunes the model on downstream tasks, 378

refining the LLM to align high-granularity CXR 379

features with the Findings section of reports. 380

Beyond Findings section generation, the first 381

stage incorporates Impression section and VQA 382

tasks. The Impression section, which summarises 383

diagnoses and proposes further investigations 384

(Babar et al., 2021), facilitates alignment between 385

CXRs and their textual descriptions. We use the 386

same system and clinical prompts as for Findings, 387

replacing ‘Findings’ with ‘Impression’. For VQA, 388

the system prompts remain unchanged, while clini- 389

cal prompts are adapted to address medical-specific 390

questions, guiding caption generation. These VQA 391

tasks refine the MLLM’s biomedical vocabulary 392

usage and strengthen image-text alignment. 393

3.2 Evaluation Metrics 394

We evaluate the generated reports using lexical and 395

radiology-specific metrics, adhering to established 396

protocols. Lexical metrics include ROUGE-L (Lin, 397

2004), BLEU-{1, 4} (Papineni et al., 2002), ME- 398

TEOR (Banerjee and Lavie, 2005) and BERT (De- 399

vlin et al., 2019). Radiology-specific metrics in- 400

clude RadGraph-F1 (Jain et al., 2021), RGER (Del- 401

brouck et al., 2022a), F1-CheXpert (Irvin et al., 402

2019), CheXbert vector similarity (Smit et al., 403

2020a), and RadCliQ (Yu et al., 2022) version 0. 404

These clinical metrics typically emphasise the 405

accuracy of medical findings, prioritising the detec- 406

tion of clinically relevant entities. However, they do 407

not evaluate the model’s ability to capture temporal 408

information. Therefore, we introduce the tempo- 409

ral entity F1 score (F1temp) to assess this aspect. 410

In particular, the temporal entity F1 score specifi- 411

cally measures the accuracy of entities related to 412

progression over time described in the report 4. 413

4Full metric descriptions, including F1temp, are in Appx. F.
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Metric LLaVA-Med‡ CheXagent‡ GPT-4V‡ Med-PaLM LLaVA-Rad MAIRA-1 Libra (%)

Lexical:
ROUGE-L 27.6 21.5 13.2 27.5 30.6 28.9 36.2 (+18.3%)
BLEU-1 35.4 16.9 16.4 32.3 38.1 39.2 51.2 (+30.6%)
BLEU-4 14.9 4.7 17.8 11.5 15.4 14.2 24.3 (+36.5%)
METEOR 35.3 – – – – 33.3 48.7 (+38.0%)

Clinical:
RadGraph-F1 19.1 – – 26.7 – 24.3 32.4 (+21.3%)
RGER 23.8 20.5 13.2 – 29.4 29.6 36.9 (+25.0%)
RadCliQ0(↓) 3.30 – – – – 3.10 2.76 (+11.0%)
CheXbert vector 36.9 – – – – 44.0 46.3 (+5.2%)
CheXpert-F1:

Micro-F1-14 42.7 39.3 35.5 53.6 57.3 55.7 55.3 (-3.4%)
Macro-F1-14 26.9 24.7 20.4 39.8 39.5 38.6 40.2 (+1.1%)
Micro-F1-5 43.9 41.2 25.8 57.9 57.4 56.0 58.9 (+1.8%)
Macro-F1-5 36.3 34.5 19.6 51.6 47.7 47.7 52.6 (+2.0%)

Table 1: Findings generation performance on the MIMIC-CXR test split. ‡ denotes results from Chaves et al. (2024),
while ‘–’ indicates missing data. The best performances in bold, and the second-best scores are underlined. Metrics
where lower values are better are marked with ‘↓’. Percentage (%) shows improvement over the best existing model.

Temporal Entity F1 Building on the work of414

Bannur et al. (2023), we set a reward list compris-415

ing common radiology-related keywords indicative416

of temporal changes. Temporal entities are then417

extracted from both the ground truth (Egt) and the418

generated reports (Egr) without applying stemming419

or lemmatization, preserving the precision of tem-420

poral descriptions. After extraction, we compute421

precision (Ptemp) and recall (Rtemp), which are sub-422

sequently used to calculate the F1temp, defined as423

the harmonic mean of precision and recall (Van Ri-424

jsbergen, 1974), also known as the F1 score.425

F1temp = (1 + β2) · PtempRtemp

β2 · Ptemp +Rtemp
(13)426

Ptemp =
|Egr ∩ Egt|+ ϵ

|Egr|+ ϵ
(14)427

Rtemp =
|Egr ∩ Egt|+ ϵ

|Egt|+ ϵ
(15)428

where ϵ is a small value, set to a default of429

1 × 10−10, to prevent division by zero (it is also430

added to the numerator for special cases where no431

temporal entities are present in the ground truth).432

3.3 Baselines433

While the MIMIC-CXR dataset provides an “offi-434

cial” test split, strict comparisons with prior studies435

are challenging due to differences in inclusion cri-436

teria and pre-processing steps. For instance, Yu437

et al. (2022) and Jeong et al. (2023) included only438

one image per study, resulting in a test set of 1,597439

samples, while Tanida et al. (2023) followed the440

Chest ImaGenome split (Wu et al., 2021). Such441

variations in test set distributions can significantly442

impact the reported results (Park et al., 2024). To443

ensure fairness 5, we use a widely adopted test set444

focused on frontal-view CXRs, aligned with previ-445

ous studies such as MAIRA-1 (Hyland et al., 2024)446

and LLaVA-Rad (Chaves et al., 2024).447

5The test set includes 2,461 frontal-view samples.

Recent concurrent work, such as M4CXR (Park 448

et al., 2024), employs multi-turn chain-of-thought 449

prompting (Wei et al., 2023) for report generation, 450

which differs from our task setup. Additionally, 451

we do not compare with MAIRA-2 (Bannur et al., 452

2024), a model designed for grounded radiology 453

report generation incorporating lateral views and 454

prior study reports for each subject within the input 455

prompt. Bannur et al. (2024) emphasises a positive 456

transfer between this distinct task setup and stan- 457

dard RRG, which falls beyond our study’s scope. 458

For comparison and discussion of the latest concur- 459

rent and non-LLM-based models, see Appx. G. 460

Considering these factors, we compared our 461

model with state-of-the-art models, including 462

LLaVA-Med (Li et al., 2023a), CheXagent (Chen 463

et al., 2024b), GPT-4V (OpenAI et al., 2024), Med- 464

PaLM (Tu et al., 2023), LLaVA-Rad and MAIRA-1. 465

Table 1 presents the results. As many of these mod- 466

els are not publicly available, we present their eval- 467

uation results as reported in the original sources. 468

3.4 Results 469

From Table 1, Libra6 achieves competitive results 470

across most traditional lexical and clinical met- 471

rics, excelling in ROUGE-L, BLEU, METEOR, 472

and RadGraph-based scores. It also leads in the 473

radiologist-aligned RadCliQ metric and CheXbert 474

vector similarity. In the CheXpert classification, it 475

attains the highest Macro-F1 scores and a competi- 476

tive Micro-F1. Overall, Libra demonstrates robust 477

performance in RRG by effectively leveraging tem- 478

poral information, with only minor gaps in select 479

clinical metrics. These results highlight the effec- 480

tiveness of its TAC in capturing temporal contexts 481

and generating clinically relevant radiology reports. 482

6Libra was tested on single-image inputs without priors
for fair comparison with models lacking temporal modelling.
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Metric Libra-1 w/o TFM w/o LFE w/o PIPB w/o TAC

Lexical:
ROUGE-L 27.56 27.33 (-0.85%) 27.21 (-1.27%) 27.43 (-0.48%) 26.17 (-5.04%)
BLEU-1 34.84 34.17 (-1.92%) 34.21 (-1.82%) 34.60 (-0.67%) 33.03 (-5.20%)
BLEU-4 11.51 11.13 (-3.33%) 11.11 (-3.47%) 11.43 (-0.73%) 10.02 (-12.98%)
METEOR 35.50 35.06 (-1.24%) 34.96 (-1.52%) 35.28 (-0.62%) 33.98 (-4.28%)
BERTScore 55.87 55.60 (-0.49%) 55.49 (-0.69%) 55.74 (-0.23%) 54.63 (-2.22%)

F1temp 26.63 25.96 (-2.51%) 26.21 (-1.57%) 26.58 (-0.18%) 25.39 (-4.65%)

Clinical:
RadGraph-F1 22.52 22.20 (-1.42%) 22.03 (-2.19%) 22.35 (-0.74%) 21.51 (-4.48%)
RGER 27.32 26.89 (-1.59%) 26.72 (-2.19%) 27.09 (-0.84%) 25.97 (-4.96%)
RadCliQ0 (↓) 3.10 3.12 (-0.65%) 3.12 (-0.65%) 3.11 (-0.32%) 3.15 (-1.61%)
CheXbert vector 42.02 41.57 (-1.07%) 41.37 (-1.54%) 41.92 (-0.24%) 40.93 (-2.59%)
CheXpert-F1:

Micro-F1-14 52.48 51.74 (-1.42%) 51.68 (-1.53%) 52.13 (-0.67%) 51.13 (-2.57%)
Macro-F1-14 36.87 36.04 (-2.25%) 36.12 (-2.03%) 36.14 (-1.97%) 35.85 (-2.76%)
Micro-F1-5 56.63 55.37 (-2.23%) 55.79 (-1.49%) 55.87 (-1.34%) 54.51 (-3.74%)
Macro-F1-5 49.33 47.76 (-3.18%) 47.82 (-3.06%) 47.98 (-2.75%) 47.22 (-4.28%)

Table 2: Results of ablation experiments for the Temporal Alignment Connector. ‘↓’ indicates that lower is better.
Values in (%) indicate the percentage decrease compared with the Libra-1.

4 Ablation Studies483

We conducted ablation studies on Libra’s key com-484

ponents, evaluating module and dataset configu-485

rations. All experiments were performed on the486

MIMIC-CXR test split for the Findings generation,487

with prior images included by default and consis-488

tent hyperparameters during training and inference.489

Does the Temporal Alignment Connector im-490

prove model performance? To evaluate the im-491

pact of TAC on Libra’s performance in RRG,492

we used a model initialised with the RAD-DINO493

(Pérez-García et al., 2024) image encoder, TAC,494

and Meditron-7b (Chen et al., 2023c) as the LLM.495

The baseline (Libra-1) was conducted by fine-496

tuning only the TAC for the Findings generation497

task. As shown in Table 2, we performed ablation498

studies by progressively removing different TAC499

components, including the Temporal Fusion Mod-500

ule (TFM), Layerwise Feature Extractor (LFE),501

Prior Image Prefix Bias (PIPB), and the entire TAC.502

Removing TFM restricted the model to single-503

image processing, akin to LLaVA (Liu et al., 2023),504

but with a four-layer MLP for aligning image fea-505

tures with the LLM’s hidden dimensions. Without506

LFE, the model used the penultimate layer of the507

encoder. Removing PIPB excluded the mechanism508

for differentiating true and dummy prior images.509

Finally, removing the entire TAC left the model510

reliant solely on the image encoder and LLM.511

The results indicate that removing any TAC sub-512

module leads to performance declines across all513

metrics compared to Libra-1. TFM removal caused514

a notable drop in the F1temp score (↓>2%), high-515

lighting its role in capturing temporal information.516

LFE removal significantly decreased RadGraph- 517

related scores, underscoring its importance in ex- 518

tracting detailed image features. PIPB removal 519

impacted clinical metrics more than lexical met- 520

rics, indicating its role in enhancing clinical rele- 521

vance. Complete TAC removal led to substantial 522

declines in all metrics, demonstrating its critical 523

role in integrating image details and temporal in- 524

formation. The evaluation confirms that TAC plays 525

a vital role in improving Libra’s ability to generate 526

high-quality, temporally aware radiology reports. 527

For additional ablation studies exploring TAC’s 528

contributions, including its impact under general- 529

domain and radiology-specific pre-trained models, 530

its performance after the second training stage, and 531

its robustness through extended fine-tuning and 532

diverse conditions, and an analysis of whether in- 533

corporating temporal information improves Libra’s 534

performance in RRG tasks, please refer to Appx. H. 535

Are additional Impression and VQA datasets 536

necessary during the feature alignment? To as- 537

sess the impact of incorporating additional datasets 538

during the first stage of training, we compared a 539

model (Libra-f ) trained solely on the Findings data 540

with Libra, which also used Impression and VQA 541

data for feature alignment, as shown in Table 3. 542

After the first stage, Libra outperformed Libra-f 543

in lexical metrics but showed a slight decline in 544

clinical scores. This decline stems from VQA tasks 545

emphasizing fine-grained, grounded descriptions 546

rather than holistic findings. VQA focuses on in- 547

dividual symptoms, whereas Findings integrates 548

multiple normal and abnormal observations, affect- 549

ing F1temp by reducing identified temporal entities. 550
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Metric Stage: 1 Stage: 2

Libra-f Libra Libra-f Libra

Lexical:
ROUGE-L 27.56 27.27▼ 35.31 36.66△

BLEU-1 34.84 41.24△ 49.92 51.25△

BLEU-4 11.51 13.59△ 23.05 24.54△

METEOR 35.50 39.44△ 47.99 48.90△

BERTScore 55.87 56.00△ 61.28 62.50△

F1temp 26.63 24.80▼ 33.52 35.34△

Clinical:
RadGraph-F1 22.52 20.45▼ 30.77 32.87△

RGER 27.32 25.19▼ 35.44 37.27△

RadCliQ0 (↓) 3.10 3.31▼ 2.83 2.72△

CheXbert vector 42.02 35.33▼ 45.32 46.85△

CheXpert-F1:
Micro-F1-14 52.48 43.63▼ 54.11 55.87△

Macro-F1-14 36.87 25.68▼ 37.16 40.38△

Micro-F1-5 56.63 49.75▼ 58.76 60.07△

Macro-F1-5 49.33 40.40▼ 51.99 53.75△

Table 3: Ablation results for dataset configurations. △

denotes improvement, while ▼ indicates decline.

In the second stage, fine-tuning on Findings551

restored balance, further improving performance.552

These results indicate that additional datasets en-553

hance Libra’s RRG ability, while second-stage fine-554

tuning ensures well-rounded report generation.555

5 Performance Analysis556

We qualitatively assess Libra’s ability to generate557

temporally consistent radiology reports.558

Cases without Prior Image As shown in Fig-559

ure 3 (a), Libra produced detailed descriptions be-560

yond the ground truth, identifying “sternal wires”561

and their type. This demonstrates its capability562

to deliver clinically relevant information without563

spurious referencing nonexistent prior studies.564

Cases with Prior Image In Figure 3 (b), new565

abnormalities such as pleural effusion and pneumo-566

nia appeared in the current image. Without a prior567

image, Libra correctly described the present find-568

ings but did not infer disease progression, avoiding569

spurious references while still suggesting further570

investigations. When the prior image was consid-571

ered, Libra effectively captured these progressive572

changes, provided detailed descriptions, and explic-573

itly referenced the comparison. This facilitated a574

clear understanding of temporal changes and more575

accurate descriptions of disease progression.576

Evaluating Temporal Consistency To assess577

temporal reasoning, we swapped image order, us-578

ing the prior image as the current image and vice579

versa. The generated report then reflected an im-580

proved patient condition, aligning with the reversed581

input sequence but contradicting the ground truth582

of the original current image. Notably, the report583

Cardiomediastinal contours are normal. Previously present bibasilar
opacities have nearly completely resolved with minimal residual
linear opacification remaining at the right lung base. No new areas of
consolidation are identified, and there are no pleural effusions.

The lungs are well expanded and clear. The cardiomediastinal
silhouette, hilar contours, and pleural surfaces are normal. No
pleural effusion or pneumothorax is present. Sternal wires are intact.

Original 
Report

Libra

The lungs are well expanded and clear. The cardiomediastinal
silhouette, hilar contours, and pleural surfaces are normal. No
pleural effusion or pneumothorax is present. Median sternotomy 
wires are intact.

In comparison with the study of ___ , there is again evidence of a 
superior mediastinal mass consistent with the known thyroid 
enlargement that is better seen on the recent CT scan. Continued
bibasilar opacification most likely represents atelectasis, though in 
the appropriate clinical setting, superimposed pneumonia would 
have to be considered. The cardiac silhouette is within normal limits, 
though there may be some mild elevation of pulmonary venous 
pressure. Small pleural effusions are probably present bilaterally.

with 
prior
image

swap 
order

As compared to ___ radiograph, cardiomediastinal contours are 
stable. New patchy and linear opacities have developed at the lung 
bases, right greater than left, and may reflect patchy atelectasis, 
aspiration, or developing infectious pneumonia. Small pleural
effusions are present bilaterally.

Cardiac silhouette is upper limits of normal in size and accompanied 
by pulmonary vascular congestion and minimal interstitial edema. 
Patchy bibasilar opacities are present, and could reflect patchy
atelectasis, aspiration, or developing infectious pneumonia. Follow 
up radiographs may be helpful in this regard. Small bilateral
pleural effusions are also demonstrated.

Original 
Report

The heart is normal in size. The mediastinal and hilar contours 
appear stable. The aortic arch is calcified. There is no definite pleural
effusion or pneumothorax. Streaky opacity in the right costophrenic 
angle suggests minor atelectasis, which has decreased. There is 
similar mild spinal curvature.

Current image

Prior image

Original 
Report

Libra

(a)

(b)

(w/o 
prior image)

(prior image)

(current 
image)

Figure 3: Radiological symptoms, while temporal

changes are in red . Key highlights presented in bold.
Heatmap analysis is available in Appx. I.

closely resembled the original description of the 584

prior image, as shown at the bottom of Figure 3 585

(b). This indicates that Libra can effectively adapt 586

to both temporal contexts, generating accurate and 587

contextually consistent reports that simulate the 588

conditions of standard clinical practice. 589

6 Conclusion 590

In this study, we introduced Libra, a temporal- 591

aware multimodal large language model tailored 592

for chest X-ray report generation tasks. Libra 593

employs a two-stage training framework, leverag- 594

ing a radiology-specific image encoder and lan- 595

guage model connected via the Temporal Align- 596

ment Connector, enabling seamless integration of 597

visual and textual modalities. Trained solely on the 598

open-access MIMIC-CXR dataset (Johnson et al., 599

2019b), Libra demonstrates notable performance 600

gains across key metrics compared to similarly 601

scaled models. Through qualitative and quanti- 602

tative analysis, we showed that Libra effectively 603

utilises temporal relationships between current and 604

prior scans, addressing challenges such as halluci- 605

nations in referencing prior studies. This highlights 606

Libra’s ability to generate clinically accurate and 607

temporally consistent radiology reports, setting a 608

new paradigm for multimodal medical AI research. 609

Future work will focus on expanding Libra’s clin- 610

ical applicability by incorporating diverse imaging 611

modalities and enhancing temporal reasoning capa- 612

bilities, and extending it in an agentic way. 613
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Limitations614

Despite Libra’s ability to model temporal paired615

images for radiology report generation (RRG), cer-616

tain limitations remain. First, Libra relies on single617

prior images for temporal modelling, whereas clin-618

ical practice often involves multiple prior scans619

with varied intervals and angles. Extending the620

model to handle multiple temporally sequenced621

images remains an open challenge. Second, our622

study is based on a single-source dataset with in-623

herent biases in patient demographics and imaging624

protocols, which may limit generalizability across625

broader clinical settings. Lastly, while Libra is626

designed for CXR-based RRG, its applicability to627

other imaging modalities (e.g., CT, MRI) and inte-628

gration with structured medical knowledge remains629

unexplored. For a detailed discussion of these limi-630

tations and future directions, see Appx. J.631

Ethics Statement632

This work presents Libra, a model designed to en-633

hance radiology report generation by integrating634

temporal and visual information. While Libra has635

the potential to improve clinical workflows, reduce636

radiologist workload, and enhance diagnostic con-637

sistency, its deployment must be approached with638

caution to ensure ethical and responsible use.639

Our research exclusively utilises the publicly640

available and “de-identified” MIMIC-CXR dataset641

(Johnson et al., 2019b), in accordance with its offi-642

cial documentation, ensuring adherence to ethical643

and privacy standards under CITI Data or Spec-644

imens Only Research certification. By relying645

solely on open datasets, we prioritise transparency646

and reproducibility, aligning with best practices in647

ethical AI research.648

This work is intended to support, not replace,649

medical professionals, ensuring it serves as a com-650

plementary tool within clinical practice. While the651

societal implications are largely positive, further652

validation across diverse patient populations and653

healthcare systems is necessary to address potential654

biases inherent in the dataset. Additionally, it is655

crucial to mitigate the risks of over-reliance on AI656

systems, which could inadvertently undermine hu-657

man oversight or exacerbate healthcare disparities.658

Future efforts will aim to extend the model’s659

capabilities to encompass multiple imaging modal-660

ities and broader datasets, ensuring greater general-661

isability, fairness, and adaptability across diverse662

clinical settings.663

References 664

Peter Anderson, Xiaodong He, Chris Buehler, Damien 665
Teney, Mark Johnson, Stephen Gould, and Lei Zhang. 666
2018. Bottom-Up and Top-Down Attention for Im- 667
age Captioning and Visual Question Answering . In 668
2018 IEEE/CVF Conference on Computer Vision and 669
Pattern Recognition (CVPR), pages 6077–6086, Los 670
Alamitos, CA, USA. IEEE Computer Society. 671

Zaheer Babar, Twan van Laarhoven, Fabio Massimo 672
Zanzotto, and Elena Marchiori. 2021. Evaluating 673
diagnostic content of ai-generated radiology reports 674
of chest x-rays. Artificial Intelligence in Medicine, 675
116:102075. 676

Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol Cho, 677
Gyubok Lee, Sunjun Kweon, Jungwoo Oh, Lei Ji, 678
Eric I-Chao Chang, Tackeun Kim, and Edward Choi. 679
2023. Ehrxqa: A multi-modal question answering 680
dataset for electronic health records with chest x-ray 681
images. Preprint, arXiv:2310.18652. 682

Oishi Banerjee, Hong-Yu Zhou, Subathra Adithan, 683
Stephen Kwak, Kay Wu, and Pranav Rajpurkar. 2024. 684
Direct preference optimization for suppressing hal- 685
lucinated prior exams in radiology report generation. 686
Preprint, arXiv:2406.06496. 687

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: 688
An automatic metric for MT evaluation with im- 689
proved correlation with human judgments. In Pro- 690
ceedings of the ACL Workshop on Intrinsic and Ex- 691
trinsic Evaluation Measures for Machine Transla- 692
tion and/or Summarization, pages 65–72, Ann Arbor, 693
Michigan. Association for Computational Linguis- 694
tics. 695

Shruthi Bannur, Kenza Bouzid, Daniel C. Castro, Anton 696
Schwaighofer, Sam Bond-Taylor, Maximilian Ilse, 697
Fernando Pérez-García, Valentina Salvatelli, Harshita 698
Sharma, Felix Meissen, Mercy Ranjit, Shaury Sri- 699
vastav, Julia Gong, Fabian Falck, Ozan Oktay, 700
Anja Thieme, Matthew P. Lungren, Maria Teodora 701
Wetscherek, Javier Alvarez-Valle, and Stephanie L. 702
Hyland. 2024. Maira-2: Grounded radiology report 703
generation. Preprint, arXiv:2406.04449. 704

Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fer- 705
nando Pérez-García, Maximilian Ilse, Daniel C. Cas- 706
tro, Benedikt Boecking, Harshita Sharma, Kenza 707
Bouzid, Anja Thieme, Anton Schwaighofer, Maria 708
Wetscherek, Matthew P. Lungren, Aditya Nori, Javier 709
Alvarez-Valle, and Ozan Oktay. 2023. Learning 710
to exploit temporal structure for biomedical vision- 711
language processing. Preprint, arXiv:2301.04558. 712

Aurelia Bustos, Antonio Pertusa, Jose-Maria Salinas, 713
and Maria de la Iglesia-Vayá. 2020. Padchest: A 714
large chest x-ray image dataset with multi-label an- 715
notated reports. Medical Image Analysis, 66:101797. 716

Yiming Cao, Lizhen Cui, Lei Zhang, Fuqiang Yu, 717
Zhen Li, and Yonghui Xu. 2023. Mmtn: Multi- 718
modal memory transformer network for image-report 719
consistent medical report generation. Proceedings 720

9

https://doi.org/10.1109/CVPR.2018.00636
https://doi.org/10.1109/CVPR.2018.00636
https://doi.org/10.1109/CVPR.2018.00636
https://doi.org/10.1016/j.artmed.2021.102075
https://doi.org/10.1016/j.artmed.2021.102075
https://doi.org/10.1016/j.artmed.2021.102075
https://doi.org/10.1016/j.artmed.2021.102075
https://doi.org/10.1016/j.artmed.2021.102075
https://arxiv.org/abs/2310.18652
https://arxiv.org/abs/2310.18652
https://arxiv.org/abs/2310.18652
https://arxiv.org/abs/2310.18652
https://arxiv.org/abs/2310.18652
https://arxiv.org/abs/2406.06496
https://arxiv.org/abs/2406.06496
https://arxiv.org/abs/2406.06496
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://arxiv.org/abs/2406.04449
https://arxiv.org/abs/2406.04449
https://arxiv.org/abs/2406.04449
https://arxiv.org/abs/2301.04558
https://arxiv.org/abs/2301.04558
https://arxiv.org/abs/2301.04558
https://arxiv.org/abs/2301.04558
https://arxiv.org/abs/2301.04558
https://doi.org/10.1016/j.media.2020.101797
https://doi.org/10.1016/j.media.2020.101797
https://doi.org/10.1016/j.media.2020.101797
https://doi.org/10.1016/j.media.2020.101797
https://doi.org/10.1016/j.media.2020.101797
https://doi.org/10.1609/aaai.v37i1.25100
https://doi.org/10.1609/aaai.v37i1.25100
https://doi.org/10.1609/aaai.v37i1.25100
https://doi.org/10.1609/aaai.v37i1.25100
https://doi.org/10.1609/aaai.v37i1.25100


of the AAAI Conference on Artificial Intelligence,721
37(1):277–285.722

Juan Manuel Zambrano Chaves, Shih-Cheng Huang,723
Yanbo Xu, Hanwen Xu, Naoto Usuyama, Sheng724
Zhang, Fei Wang, Yujia Xie, Mahmoud Khademi,725
Ziyi Yang, Hany Awadalla, Julia Gong, Houdong Hu,726
Jianwei Yang, Chunyuan Li, Jianfeng Gao, Yu Gu,727
Cliff Wong, Mu Wei, and 8 others. 2024. Towards728
a clinically accessible radiology foundation model:729
open-access and lightweight, with automated evalua-730
tion. Preprint, arXiv:2403.08002.731

Fei-Long Chen, Du-Zhen Zhang, Ming-Lun Han, Xiu-732
Yi Chen, Jing Shi, Shuang Xu, and Bo Xu. 2023a.733
Vlp: A survey on vision-language pre-training. Ma-734
chine Intelligence Research, 20(1):38–56.735

Qiuhui Chen, Xinyue Hu, Zirui Wang, and Yi Hong.736
2023b. Medblip: Bootstrapping language-image pre-737
training from 3d medical images and texts. Preprint,738
arXiv:2305.10799.739

Weixing Chen, Yang Liu, Ce Wang, Jiarui Zhu, Shen740
Zhao, Guanbin Li, Cheng-Lin Liu, and Liang Lin.741
2024a. Cross-modal causal intervention for medical742
report generation. Preprint, arXiv:2303.09117.743

Zeming Chen, Alejandro Hernández Cano, Angelika744
Romanou, Antoine Bonnet, Kyle Matoba, Francesco745
Salvi, Matteo Pagliardini, Simin Fan, Andreas746
Köpf, Amirkeivan Mohtashami, Alexandre Sallinen,747
Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk,748
Deniz Bayazit, Axel Marmet, Syrielle Montariol,749
Mary-Anne Hartley, Martin Jaggi, and Antoine750
Bosselut. 2023c. Meditron-70b: Scaling medical751
pretraining for large language models. Preprint,752
arXiv:2311.16079.753

Zhihong Chen, Yaling Shen, Yan Song, and Xiang Wan.754
2021. Cross-modal memory networks for radiology755
report generation. In Proceedings of the 59th Annual756
Meeting of the Association for Computational Lin-757
guistics and the 11th International Joint Conference758
on Natural Language Processing (Volume 1: Long759
Papers), pages 5904–5914, Online. Association for760
Computational Linguistics.761

Zhihong Chen, Yan Song, Tsung-Hui Chang, and Xi-762
ang Wan. 2020. Generating radiology reports via763
memory-driven transformer. In Proceedings of the764
2020 Conference on Empirical Methods in Natural765
Language Processing (EMNLP), pages 1439–1449,766
Online. Association for Computational Linguistics.767

Zhihong Chen, Yan Song, Tsung-Hui Chang, and768
Xiang Wan. 2022. Generating radiology re-769
ports via memory-driven transformer. Preprint,770
arXiv:2010.16056.771

Zhihong Chen, Maya Varma, Jean-Benoit Delbrouck,772
Magdalini Paschali, Louis Blankemeier, Dave Van773
Veen, Jeya Maria Jose Valanarasu, Alaa Youssef,774
Joseph Paul Cohen, Eduardo Pontes Reis, Emily B.775
Tsai, Andrew Johnston, Cameron Olsen, Tan-776
ishq Mathew Abraham, Sergios Gatidis, Akshay S.777

Chaudhari, and Curtis Langlotz. 2024b. Chexagent: 778
Towards a foundation model for chest x-ray interpre- 779
tation. Preprint, arXiv:2401.12208. 780

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 781
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 782
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 783
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 784
source chatbot impressing gpt-4 with 90%* chatgpt 785
quality. 786

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 787
Maarten Bosma, Gaurav Mishra, Adam Roberts, 788
Paul Barham, Hyung Won Chung, Charles Sutton, 789
Sebastian Gehrmann, Parker Schuh, Kensen Shi, 790
Sasha Tsvyashchenko, Joshua Maynez, Abhishek 791
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin- 792
odkumar Prabhakaran, and 48 others. 2022. Palm: 793
Scaling language modeling with pathways. Preprint, 794
arXiv:2204.02311. 795

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 796
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 797
Boyang Li, Pascale Fung, and Steven Hoi. 798
2023. Instructblip: Towards general-purpose vision- 799
language models with instruction tuning. Preprint, 800
arXiv:2305.06500. 801

Jean-Benoit Delbrouck, Pierre Chambon, Christian 802
Bluethgen, Emily Tsai, Omar Almusa, and Curtis 803
Langlotz. 2022a. Improving the factual correctness 804
of radiology report generation with semantic rewards. 805
In Findings of the Association for Computational 806
Linguistics: EMNLP 2022, pages 4348–4360, Abu 807
Dhabi, United Arab Emirates. Association for Com- 808
putational Linguistics. 809

Jean-Benoit Delbrouck, Pierre Chambon, Christian 810
Bluethgen, Emily Tsai, Omar Almusa, and Curtis P. 811
Langlotz. 2022b. Improving the factual correctness 812
of radiology report generation with semantic rewards. 813
Preprint, arXiv:2210.12186. 814

Dina Demner-Fushman, Marc D Kohli, Marc B Rosen- 815
man, Sonya E Shooshan, Laritza Rodriguez, Sameer 816
Antani, George R Thoma, and Clement J McDon- 817
ald. 2016. Preparing a collection of radiology ex- 818
aminations for distribution and retrieval. Journal 819
of the American Medical Informatics Association, 820
23(2):304–310. 821

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 822
Kristina Toutanova. 2019. Bert: Pre-training of deep 823
bidirectional transformers for language understand- 824
ing. Preprint, arXiv:1810.04805. 825

Xinpeng Ding, Yongqiang Chu, Renjie Pi, Hualiang 826
Wang, and Xiaomeng Li. 2024. HiA: Towards 827
Chinese Multimodal LLMs for Comparative High- 828
Resolution Joint Diagnosis . In proceedings of Med- 829
ical Image Computing and Computer Assisted In- 830
tervention – MICCAI 2024, volume LNCS 15012. 831
Springer Nature Switzerland. 832

Emil Fischer. 1894. Einfluss der configuration auf die 833
wirkung der enzyme. Berichte der deutschen chemis- 834
chen Gesellschaft, 27(3):2985–2993. 835

10

https://arxiv.org/abs/2403.08002
https://arxiv.org/abs/2403.08002
https://arxiv.org/abs/2403.08002
https://arxiv.org/abs/2403.08002
https://arxiv.org/abs/2403.08002
https://arxiv.org/abs/2403.08002
https://arxiv.org/abs/2403.08002
https://doi.org/10.1007/s11633-022-1369-5
https://arxiv.org/abs/2305.10799
https://arxiv.org/abs/2305.10799
https://arxiv.org/abs/2305.10799
https://arxiv.org/abs/2303.09117
https://arxiv.org/abs/2303.09117
https://arxiv.org/abs/2303.09117
https://arxiv.org/abs/2311.16079
https://arxiv.org/abs/2311.16079
https://arxiv.org/abs/2311.16079
https://doi.org/10.18653/v1/2021.acl-long.459
https://doi.org/10.18653/v1/2021.acl-long.459
https://doi.org/10.18653/v1/2021.acl-long.459
https://doi.org/10.18653/v1/2020.emnlp-main.112
https://doi.org/10.18653/v1/2020.emnlp-main.112
https://doi.org/10.18653/v1/2020.emnlp-main.112
https://arxiv.org/abs/2010.16056
https://arxiv.org/abs/2010.16056
https://arxiv.org/abs/2010.16056
https://arxiv.org/abs/2401.12208
https://arxiv.org/abs/2401.12208
https://arxiv.org/abs/2401.12208
https://arxiv.org/abs/2401.12208
https://arxiv.org/abs/2401.12208
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500
https://doi.org/10.18653/v1/2022.findings-emnlp.319
https://doi.org/10.18653/v1/2022.findings-emnlp.319
https://doi.org/10.18653/v1/2022.findings-emnlp.319
https://arxiv.org/abs/2210.12186
https://arxiv.org/abs/2210.12186
https://arxiv.org/abs/2210.12186
https://doi.org/10.1093/jamia/ocv080
https://doi.org/10.1093/jamia/ocv080
https://doi.org/10.1093/jamia/ocv080
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1002/cber.18940270364
https://doi.org/10.1002/cber.18940270364
https://doi.org/10.1002/cber.18940270364


Dhakshinamoorthy Ganeshan, Phuong-Anh Thi Duong,836
Linda Probyn, Leon Lenchik, Tatum A McArthur,837
Michele Retrouvey, Emily H Ghobadi, Stephane L838
Desouches, David Pastel, and Isaac R Francis. 2018.839
Structured reporting in radiology. Academic radiol-840
ogy, 25(1):66–73.841

Tiancheng Gu, Dongnan Liu, Zhiyuan Li, and Weidong842
Cai. 2023. Complex organ mask guided radiology843
report generation. Preprint, arXiv:2311.02329.844

Dan Hendrycks and Kevin Gimpel. 2023. Gaussian er-845
ror linear units (gelus). Preprint, arXiv:1606.08415.846

Wenjun Hou, Yi Cheng, Kaishuai Xu, Wenjie Li, and847
Jiang Liu. 2023a. RECAP: Towards precise radiol-848
ogy report generation via dynamic disease progres-849
sion reasoning. In Findings of the Association for850
Computational Linguistics: EMNLP 2023, pages851
2134–2147, Singapore. Association for Computa-852
tional Linguistics.853

Wenjun Hou, Kaishuai Xu, Yi Cheng, Wenjie Li, and854
Jiang Liu. 2023b. Organ: Observation-guided radi-855
ology report generation via tree reasoning. Preprint,856
arXiv:2306.06466.857

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan858
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and859
Weizhu Chen. 2021. Lora: Low-rank adaptation of860
large language models. Preprint, arXiv:2106.09685.861

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and En-862
hua Wu. 2019. Squeeze-and-excitation networks.863
Preprint, arXiv:1709.01507.864

Xinyue Hu, Lin Gu, Qiyuan An, Mengliang Zhang,865
Liangchen Liu, Kazuma Kobayashi, Tatsuya Harada,866
Ronald M. Summers, and Yingying Zhu. 2023. Ex-867
pert knowledge-aware image difference graph repre-868
sentation learning for difference-aware medical vi-869
sual question answering. In Proceedings of the 29th870
ACM SIGKDD Conference on Knowledge Discov-871
ery and Data Mining, KDD ’23, page 4156–4165,872
New York, NY, USA. Association for Computing873
Machinery.874

Zhongzhen Huang, Xiaofan Zhang, and Shaoting875
Zhang. 2023. Kiut: Knowledge-injected u-876
transformer for radiology report generation. Preprint,877
arXiv:2306.11345.878

Stephanie L. Hyland, Shruthi Bannur, Kenza Bouzid,879
Daniel C. Castro, Mercy Ranjit, Anton Schwaighofer,880
Fernando Pérez-García, Valentina Salvatelli, Shaury881
Srivastav, Anja Thieme, Noel Codella, Matthew P.882
Lungren, Maria Teodora Wetscherek, Ozan Oktay,883
and Javier Alvarez-Valle. 2024. Maira-1: A spe-884
cialised large multimodal model for radiology report885
generation. Preprint, arXiv:2311.13668.886

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu,887
Silviana Ciurea-Ilcus, Chris Chute, Henrik Marklund,888
Behzad Haghgoo, Robyn Ball, Katie Shpanskaya,889
Jayne Seekins, David A. Mong, Safwan S. Halabi,890
Jesse K. Sandberg, Ricky Jones, David B. Larson,891

Curtis P. Langlotz, Bhavik N. Patel, Matthew P. Lun- 892
gren, and Andrew Y. Ng. 2019. Chexpert: A large 893
chest radiograph dataset with uncertainty labels and 894
expert comparison. Preprint, arXiv:1901.07031. 895

S. K. M Shadekul Islam, MD Abdullah Al Nasim, Is- 896
mail Hossain, Md Azim Ullah, Kishor Datta Gupta, 897
and Md Monjur Hossain Bhuiyan. 2023. Intro- 898
duction of medical imaging modalities. Preprint, 899
arXiv:2306.01022. 900

Saahil Jain, Ashwin Agrawal, Adriel Saporta, 901
Steven QH Truong, Du Nguyen Duong, Tan Bui, 902
Pierre Chambon, Yuhao Zhang, Matthew P. Lungren, 903
Andrew Y. Ng, Curtis P. Langlotz, and Pranav Ra- 904
jpurkar. 2021. Radgraph: Extracting clinical enti- 905
ties and relations from radiology reports. Preprint, 906
arXiv:2106.14463. 907

Jaehwan Jeong, Katherine Tian, Andrew Li, Sina Har- 908
tung, Fardad Behzadi, Juan Calle, David Osayande, 909
Michael Pohlen, Subathra Adithan, and Pranav Ra- 910
jpurkar. 2023. Multimodal image-text matching im- 911
proves retrieval-based chest x-ray report generation. 912
Preprint, arXiv:2303.17579. 913

Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin’e Zhao, 914
Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin Li, and 915
Hongkai Xiong. 2024. From clip to dino: Visual 916
encoders shout in multi-modal large language models. 917
Preprint, arXiv:2310.08825. 918

Alistair E. W. Johnson, Tom J. Pollard, Nathaniel R. 919
Greenbaum, Matthew P. Lungren, Chih ying Deng, 920
Yifan Peng, Zhiyong Lu, Roger G. Mark, Seth J. 921
Berkowitz, and Steven Horng. 2019a. Mimic-cxr- 922
jpg, a large publicly available database of labeled 923
chest radiographs. Preprint, arXiv:1901.07042. 924

Alistair E W Johnson, David J Stone, Leo A Celi, and 925
Tom J Pollard. 2018. The mimic code repository: en- 926
abling reproducibility in critical care research. Jour- 927
nal of the American Medical Informatics Association, 928
25(1):32–39. 929

Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz, 930
Nathaniel R Greenbaum, Matthew P Lungren, Chih- 931
ying Deng, Roger G Mark, and Steven Horng. 932
2019b. Mimic-cxr, a de-identified publicly available 933
database of chest radiographs with free-text reports. 934
Scientific data, 6(1):317. 935

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto 936
Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau- 937
mann, Hoifung Poon, and Jianfeng Gao. 2023a. 938
Llava-med: Training a large language-and-vision 939
assistant for biomedicine in one day. Preprint, 940
arXiv:2306.00890. 941

Mingjie Li, Bingqian Lin, Zicong Chen, Haokun Lin, 942
Xiaodan Liang, and Xiaojun Chang. 2023b. Dynamic 943
graph enhanced contrastive learning for chest x-ray 944
report generation. Preprint, arXiv:2303.10323. 945

11

https://doi.org/10.1016/j.acra.2017.08.005
https://arxiv.org/abs/2311.02329
https://arxiv.org/abs/2311.02329
https://arxiv.org/abs/2311.02329
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.18653/v1/2023.findings-emnlp.140
https://doi.org/10.18653/v1/2023.findings-emnlp.140
https://doi.org/10.18653/v1/2023.findings-emnlp.140
https://doi.org/10.18653/v1/2023.findings-emnlp.140
https://doi.org/10.18653/v1/2023.findings-emnlp.140
https://arxiv.org/abs/2306.06466
https://arxiv.org/abs/2306.06466
https://arxiv.org/abs/2306.06466
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1709.01507
https://doi.org/10.1145/3580305.3599819
https://doi.org/10.1145/3580305.3599819
https://doi.org/10.1145/3580305.3599819
https://doi.org/10.1145/3580305.3599819
https://doi.org/10.1145/3580305.3599819
https://doi.org/10.1145/3580305.3599819
https://doi.org/10.1145/3580305.3599819
https://arxiv.org/abs/2306.11345
https://arxiv.org/abs/2306.11345
https://arxiv.org/abs/2306.11345
https://arxiv.org/abs/2311.13668
https://arxiv.org/abs/2311.13668
https://arxiv.org/abs/2311.13668
https://arxiv.org/abs/2311.13668
https://arxiv.org/abs/2311.13668
https://arxiv.org/abs/1901.07031
https://arxiv.org/abs/1901.07031
https://arxiv.org/abs/1901.07031
https://arxiv.org/abs/1901.07031
https://arxiv.org/abs/1901.07031
https://arxiv.org/abs/2306.01022
https://arxiv.org/abs/2306.01022
https://arxiv.org/abs/2306.01022
https://arxiv.org/abs/2106.14463
https://arxiv.org/abs/2106.14463
https://arxiv.org/abs/2106.14463
https://arxiv.org/abs/2303.17579
https://arxiv.org/abs/2303.17579
https://arxiv.org/abs/2303.17579
https://arxiv.org/abs/2310.08825
https://arxiv.org/abs/2310.08825
https://arxiv.org/abs/2310.08825
https://arxiv.org/abs/1901.07042
https://arxiv.org/abs/1901.07042
https://arxiv.org/abs/1901.07042
https://arxiv.org/abs/1901.07042
https://arxiv.org/abs/1901.07042
https://doi.org/10.1093/jamia/ocx084
https://doi.org/10.1093/jamia/ocx084
https://doi.org/10.1093/jamia/ocx084
https://doi.org/10.13026/4jqj-jw95
https://doi.org/10.13026/4jqj-jw95
https://doi.org/10.13026/4jqj-jw95
https://arxiv.org/abs/2306.00890
https://arxiv.org/abs/2306.00890
https://arxiv.org/abs/2306.00890
https://arxiv.org/abs/2303.10323
https://arxiv.org/abs/2303.10323
https://arxiv.org/abs/2303.10323
https://arxiv.org/abs/2303.10323
https://arxiv.org/abs/2303.10323


Chin-Yew Lin. 2004. ROUGE: A package for auto-946
matic evaluation of summaries. In Text Summariza-947
tion Branches Out, pages 74–81, Barcelona, Spain.948
Association for Computational Linguistics.949

Fenglin Liu, Shen Ge, and Xian Wu. 2021a.950
Competence-based multimodal curriculum learning951
for medical report generation. In Proceedings of the952
59th Annual Meeting of the Association for Compu-953
tational Linguistics and the 11th International Joint954
Conference on Natural Language Processing (Vol-955
ume 1: Long Papers), pages 3001–3012, Online. As-956
sociation for Computational Linguistics.957

Fenglin Liu, Xian Wu, Shen Ge, Wei Fan, and Yuexian958
Zou. 2021b. Exploring and Distilling Posterior and959
Prior Knowledge for Radiology Report Generation960
. In 2021 IEEE/CVF Conference on Computer Vi-961
sion and Pattern Recognition (CVPR), pages 13748–962
13757, Los Alamitos, CA, USA. IEEE Computer963
Society.964

Fenglin Liu, Changchang Yin, Xian Wu, Shen Ge, Ping965
Zhang, and Xu Sun. 2021c. Contrastive attention966
for automatic chest X-ray report generation. In Find-967
ings of the Association for Computational Linguistics:968
ACL-IJCNLP 2021, pages 269–280, Online. Associa-969
tion for Computational Linguistics.970

Guanxiong Liu, Tzu-Ming Harry Hsu, Matthew Mc-971
Dermott, Willie Boag, Wei-Hung Weng, Peter972
Szolovits, and Marzyeh Ghassemi. 2019. Clinically973
accurate chest x-ray report generation. Preprint,974
arXiv:1904.02633.975

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae976
Lee. 2023. Visual instruction tuning. Preprint,977
arXiv:2304.08485.978

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard979
Socher. 2017. Knowing when to look: Adaptive980
attention via a visual sentinel for image captioning.981
In 2017 IEEE Conference on Computer Vision and982
Pattern Recognition (CVPR), pages 3242–3250.983

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier,984
Sam Dodge, Bowen Zhang, Philipp Dufter, Dhruti985
Shah, Xianzhi Du, Futang Peng, Floris Weers, An-986
ton Belyi, Haotian Zhang, Karanjeet Singh, Doug987
Kang, Ankur Jain, Hongyu Hè, Max Schwarzer, Tom988
Gunter, Xiang Kong, and 13 others. 2024. Mm1:989
Methods, analysis and insights from multimodal llm990
pre-training. Preprint, arXiv:2403.09611.991

Xin Mei, Rui Mao, Xiaoyan Cai, Libin Yang, and Erik992
Cambria. 2024. Medical report generation via mul-993
timodal spatio-temporal fusion. In Proceedings of994
the 32nd ACM International Conference on Multime-995
dia, MM ’24, page 4699–4708, New York, NY, USA.996
Association for Computing Machinery.997

Yasuhide Miura, Yuhao Zhang, Emily Tsai, Curtis Lan-998
glotz, and Dan Jurafsky. 2021a. Improving factual999
completeness and consistency of image-to-text radi-1000
ology report generation. In Proceedings of the 20211001
Conference of the North American Chapter of the1002

Association for Computational Linguistics: Human 1003
Language Technologies, pages 5288–5304, Online. 1004
Association for Computational Linguistics. 1005

Yasuhide Miura, Yuhao Zhang, Emily Bao Tsai, Cur- 1006
tis P. Langlotz, and Dan Jurafsky. 2021b. Im- 1007
proving factual completeness and consistency of 1008
image-to-text radiology report generation. Preprint, 1009
arXiv:2010.10042. 1010

Reabal Najjar. 2023. Redefining radiology: a review of 1011
artificial intelligence integration in medical imaging. 1012
Diagnostics, 13(17):2760. 1013

Aaron Nicolson, Jason Dowling, and Bevan Koopman. 1014
2023. Improving chest X-ray report generation by 1015
leveraging warm starting. Artificial Intelligence in 1016
Medicine, 144:102633. 1017

Farhad Nooralahzadeh, Nicolas Perez Gonzalez, 1018
Thomas Frauenfelder, Koji Fujimoto, and Michael 1019
Krauthammer. 2021. Progressive transformer-based 1020
generation of radiology reports. In Findings of the 1021
Association for Computational Linguistics: EMNLP 1022
2021, pages 2824–2832, Punta Cana, Dominican Re- 1023
public. Association for Computational Linguistics. 1024

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 1025
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 1026
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 1027
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 1028
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 1029
ing Bao, Mohammad Bavarian, Jeff Belgum, and 1030
262 others. 2024. Gpt-4 technical report. Preprint, 1031
arXiv:2303.08774. 1032

Maxime Oquab, Timothée Darcet, Théo Moutakanni, 1033
Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer- 1034
nandez, Daniel Haziza, Francisco Massa, Alaaeldin 1035
El-Nouby, Mahmoud Assran, Nicolas Ballas, Wo- 1036
jciech Galuba, Russell Howes, Po-Yao Huang, 1037
Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu 1038
Sharma, and 7 others. 2024. Dinov2: Learning ro- 1039
bust visual features without supervision. Preprint, 1040
arXiv:2304.07193. 1041

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 1042
Jing Zhu. 2002. Bleu: a method for automatic evalu- 1043
ation of machine translation. In Proceedings of the 1044
40th Annual Meeting on Association for Computa- 1045
tional Linguistics, ACL ’02, page 311–318, USA. 1046
Association for Computational Linguistics. 1047

Jonggwon Park, Soobum Kim, Byungmu Yoon, Jihun 1048
Hyun, and Kyoyun Choi. 2024. M4cxr: Explor- 1049
ing multi-task potentials of multi-modal large lan- 1050
guage models for chest x-ray interpretation. Preprint, 1051
arXiv:2408.16213. 1052

Linus Pauling, Robert B. Corey, and H. R. Branson. 1053
1951. The structure of proteins: Two hydrogen- 1054
bonded helical configurations of the polypeptide 1055
chain. Proceedings of the National Academy of Sci- 1056
ences, 37(4):205–211. 1057

12

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2021.acl-long.234
https://doi.org/10.18653/v1/2021.acl-long.234
https://doi.org/10.18653/v1/2021.acl-long.234
https://doi.org/10.1109/CVPR46437.2021.01354
https://doi.org/10.1109/CVPR46437.2021.01354
https://doi.org/10.1109/CVPR46437.2021.01354
https://doi.org/10.1109/CVPR46437.2021.01354
https://doi.org/10.1109/CVPR46437.2021.01354
https://doi.org/10.18653/v1/2021.findings-acl.23
https://doi.org/10.18653/v1/2021.findings-acl.23
https://doi.org/10.18653/v1/2021.findings-acl.23
https://arxiv.org/abs/1904.02633
https://arxiv.org/abs/1904.02633
https://arxiv.org/abs/1904.02633
https://arxiv.org/abs/2304.08485
https://doi.org/10.1109/CVPR.2017.345
https://doi.org/10.1109/CVPR.2017.345
https://doi.org/10.1109/CVPR.2017.345
https://arxiv.org/abs/2403.09611
https://arxiv.org/abs/2403.09611
https://arxiv.org/abs/2403.09611
https://arxiv.org/abs/2403.09611
https://arxiv.org/abs/2403.09611
https://doi.org/10.1145/3664647.3681377
https://doi.org/10.1145/3664647.3681377
https://doi.org/10.1145/3664647.3681377
https://doi.org/10.18653/v1/2021.naacl-main.416
https://doi.org/10.18653/v1/2021.naacl-main.416
https://doi.org/10.18653/v1/2021.naacl-main.416
https://doi.org/10.18653/v1/2021.naacl-main.416
https://doi.org/10.18653/v1/2021.naacl-main.416
https://arxiv.org/abs/2010.10042
https://arxiv.org/abs/2010.10042
https://arxiv.org/abs/2010.10042
https://arxiv.org/abs/2010.10042
https://arxiv.org/abs/2010.10042
https://www.mdpi.com/2075-4418/13/17/2760
https://www.mdpi.com/2075-4418/13/17/2760
https://www.mdpi.com/2075-4418/13/17/2760
https://doi.org/10.1016/j.artmed.2023.102633
https://doi.org/10.1016/j.artmed.2023.102633
https://doi.org/10.1016/j.artmed.2023.102633
https://doi.org/10.18653/v1/2021.findings-emnlp.241
https://doi.org/10.18653/v1/2021.findings-emnlp.241
https://doi.org/10.18653/v1/2021.findings-emnlp.241
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2408.16213
https://arxiv.org/abs/2408.16213
https://arxiv.org/abs/2408.16213
https://arxiv.org/abs/2408.16213
https://arxiv.org/abs/2408.16213
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1073/pnas.37.4.205


Chantal Pellegrini, Ege Özsoy, Benjamin Busam, Nas-1058
sir Navab, and Matthias Keicher. 2023. Radialog:1059
A large vision-language model for radiology report1060
generation and conversational assistance. Preprint,1061
arXiv:2311.18681.1062

Fernando Pérez-García, Harshita Sharma, Sam Bond-1063
Taylor, Kenza Bouzid, Valentina Salvatelli, Max-1064
imilian Ilse, Shruthi Bannur, Daniel C. Castro,1065
Anton Schwaighofer, Matthew P. Lungren, Maria1066
Wetscherek, Noel Codella, Stephanie L. Hyland,1067
Javier Alvarez-Valle, and Ozan Oktay. 2024. Rad-1068
dino: Exploring scalable medical image encoders be-1069
yond text supervision. Preprint, arXiv:2401.10815.1070

Han Qin and Yan Song. 2022. Reinforced cross-modal1071
alignment for radiology report generation. In Find-1072
ings of the Association for Computational Linguistics:1073
ACL 2022, pages 448–458, Dublin, Ireland. Associa-1074
tion for Computational Linguistics.1075

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,1076
and Yuxiong He. 2020. Zero: Memory optimizations1077
toward training trillion parameter models. Preprint,1078
arXiv:1910.02054.1079

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,1080
Jerret Ross, and Vaibhava Goel. 2017. Self-Critical1081
Sequence Training for Image Captioning . In 20171082
IEEE Conference on Computer Vision and Pattern1083
Recognition (CVPR), pages 1179–1195, Los Alami-1084
tos, CA, USA. IEEE Computer Society.1085

Santosh Sanjeev, Fadillah Adamsyah Maani, Arsen1086
Abzhanov, Vijay Ram Papineni, Ibrahim Almakky,1087
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A Related Work1273

A.1 Radiology Report Generation1274

Radiology report generation (RRG) aims to address1275

the long-tail distribution of observations in chest X-1276

rays (CXRs) and produce fine-grained descriptions1277

of clinical findings, making it a key objective in1278

automated medical imaging analysis (Wang et al.,1279

2018).1280

Early RRG systems relied on recurrent neural1281

networks (RNNs) (Liu et al., 2019), which have1282

since been largely replaced by transformer-based1283

architectures (Miura et al., 2021b; Chen et al.,1284

2022), including large language models (LLMs)1285

such as PaLM (Chowdhery et al., 2022) and Vicuna-1286

7B (Chiang et al., 2023). These models excel at1287

language generation, offering substantial improve-1288

ments in fluency and factual accuracy.1289

To further enhance clinical accuracy, some meth-1290

ods incorporate reinforcement learning (RL) to op-1291

timise for task-specific rewards, such as captur-1292

ing “clinically relevant” features (Liu et al., 2019;1293

Irvin et al., 2019) or maintaining logical consis-1294

tency (Miura et al., 2021a; Delbrouck et al., 2022a).1295

However, these approaches often rely on external1296

tools like CheXbert (Smit et al., 2020a) or Rad-1297

Graph (Jain et al., 2021), adding complexity to the1298

optimisation process.1299

Recent advancements in LLMs have shown1300

that plain auto-regressive language modelling can1301

achieve strong performance in RRG tasks. How-1302

ever, RL-based objectives and task-specific optimi-1303

sations remain complementary, offering additional1304

opportunities for improvement. Research on lever-1305

aging temporal information in RRG tasks can be1306

broadly categorised into LLM-based and non-LLM-1307

based methods, each presenting distinct advantages1308

and challenges.1309

A.2 LLM-based Model1310

LLM-based models have achieved significant suc-1311

cess in the RRG task, primarily due to advance-1312

ments in visual instruction tuning (Liu et al., 2023).1313

Structurally, these models (Li et al., 2023a; Chaves1314

et al., 2024; Hyland et al., 2024; Zhou et al., 2024;1315

Park et al., 2024) typically consist of an image en-1316

coder and an adapter that connects the encoder’s1317

outputs to the LLM. Most existing adapters use1318

single-layer hidden representations (e.g., the last1319

or penultimate layer) from pre-trained image en-1320

coders, limiting their ability to integrate features1321

from multiple images effectively.1322

In end-to-end training, LLM-based models han- 1323

dle multiple image inputs by concatenating them 1324

with textual prompts, forming a composite input 1325

to the LLM. For instance, the input format is of- 1326

ten structured as “<Current Image Placeholder> + 1327

<Prior Image Placeholder> + <Prompt>”. However, 1328

this approach provides limited guidance on the re- 1329

lationship between the images within the prompt. 1330

Ding et al. (2024) proposed the High-Resolution 1331

Instruction-Aware Adapter (HiA) to refine image- 1332

text representations, improving the model’s ability 1333

to follow textual prompts with multiple images. 1334

While this enhances instruction adherence, it does 1335

not explicitly model relationships between paired 1336

images. 1337

In contrast to this vanilla approach, Libra ex- 1338

plicitly models temporal relationships in paired 1339

images through its Temporal Alignment Connector 1340

(TAC). Instead of simply concatenating images in 1341

the LLM’s latent space, TAC leverages all hidden- 1342

layer features from the image encoder to provide 1343

richer feature representations. By directly mod- 1344

elling temporal dynamics, Libra enables more pre- 1345

cise and context-aware radiology report generation. 1346

A.3 non-LLM-based Model 1347

Non-LLM-based models typically employ trans- 1348

former encoder-decoder architectures or their vari- 1349

ants, which often require separate training for indi- 1350

vidual modules. These approaches handle “single-” 1351

and “double-” image inputs by symbolically differ- 1352

entiating tasks and employing distinct architectures 1353

tailored for each input type. Additionally, they fre- 1354

quently incorporate extra information such as prior 1355

reports, symptom labels, and knowledge graphs. 1356

For instance, Serra et al. (2023) uses symbolic 1357

alignment in its Longitudinal Projection Module 1358

along with a separately trained BERT-based (De- 1359

vlin et al., 2019) text generator. RECAP (Hou 1360

et al., 2023a) implements a two-stage training pro- 1361

cess: classification tasks followed by report gen- 1362

eration, leveraging a transformer encoder-decoder 1363

with symbolic task differentiation. TiBiX (Sanjeev 1364

et al., 2024) incorporates causal attention layers 1365

and learnable padding tokens to handle cases with- 1366

out prior images, while BioViL-T (Bannur et al., 1367

2023) is a self-supervised vision-language train- 1368

ing framework that features a CNN–Transformer 1369

hybrid multi-image encoder trained jointly with a 1370

BERT-based text model. 1371

On one hand, the difference in model parameter 1372

sizes, and on the other, as LLM-based models gen- 1373
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erally outperform other types of models (i.e. non-1374

LLM-based) in the RRG task, papers on non-LLM-1375

based models or those using small language mod-1376

els (SLMs) typically do not compare their methods1377

with LLM-based approaches. Nonetheless, we con-1378

ducted comparisons and discussions to reaffirm this1379

observation, as detailed in Appx. G.2.1380

A.4 Radiological Image Representation1381

Radiology-specific pre-trained image encoder mod-1382

els are essential for RRG tasks due to the unique1383

characteristics of radiological images, which fall1384

outside the distribution of general-domain image1385

models (Pérez-García et al., 2024).1386

Several notable advancements have been made in1387

this domain. Zhou et al. (2023) proposed Masked1388

Record Modeling (MRM), a unified framework1389

combining self-supervision with radiology report1390

supervision to enhance radiograph representation1391

learning. Similarly, BioViL-T (Bannur et al., 2023)1392

employs a CNN-Transformer hybrid architecture1393

to model multimodal relationships and leverage1394

temporal structures for tasks such as disease pro-1395

gression classification and report generation. In1396

addition, BiomedCLIP (Zhang et al., 2024c) is a1397

multimodal biomedical foundational model pre-1398

trained across diverse biomedical tasks.1399

RAD-DINO (Pérez-García et al., 2024) is a med-1400

ical image encoder that employs a pure image-1401

based self-supervised learning approach from DI-1402

NOv2 (Oquab et al., 2024) for continuous pretrain-1403

ing, focusing exclusively on image data to avoid1404

the limitations of text supervision. Recent works1405

have extensively applied RAD-DINO to RRG tasks,1406

including MAIRA-2 (Bannur et al., 2024) and1407

M4CXR (Park et al., 2024). Notably, Pérez-García1408

et al. (2024) demonstrated that RAD-DINO outper-1409

forms other image encoders in RRG tasks.1410

Building on this evidence, our model incorpo-1411

rates RAD-DINO as its image encoder to ensure1412

high-quality radiological image representations,1413

providing a robust foundation for downstream RRG1414

tasks.1415

B Research Objectives1416

B.1 Temporal Information1417

Temporal changes are critical for understanding1418

disease progression. In radiology, paired images1419

and their corresponding reports document subtle1420

evolutions of symptoms over time. This temporal1421

information is often captured by comparing cur-1422

rent scans with prior ones to highlight symptom 1423

evolution or newly identified findings. 1424

The relative positioning of scans within the time- 1425

line determines the extent of temporal information. 1426

Therefore, the relative timing between scans is key: 1427

when the prior scan is recent, reported changes 1428

tend to be minimal; conversely, an older prior scan 1429

reveals more pronounced differences. 1430

Importantly, while temporal context enriches the 1431

diagnostic narrative, it does not alter the factual 1432

observations present in the current scan—it merely 1433

provides additional layers of interpretative insight. 1434

B.2 Research Aims 1435

This study aims to enhance radiology report gener- 1436

ation (RRG) by effectively incorporating temporal 1437

information into the modelling process. In clinical 1438

practice, chest X-ray (CXR) analysis often depends 1439

on comparing the current scan with the prior im- 1440

age to capture disease progression and evolution. 1441

Our primary objective is to leverage these temporal 1442

cues to generate more accurate, context-aware ra- 1443

diological reports that faithfully reflect both stable 1444

conditions and clinically significant changes. 1445

Unlike previous LLM-based models (discussed 1446

in Appx. A.2), which depend on the LLM to in- 1447

fer temporal information solely from text, our ap- 1448

proach explicitly models temporal relationships at 1449

the architectural level. Inspired by the principle 1450

“structure determines function” (Fischer, 1894; 1451

Pauling et al., 1951; Watson and Crick, 1953), 1452

we introduce the Temporal Alignment Connector 1453

(TAC), a dedicated module designed to capture tem- 1454

poral dynamics. Details are provided in Sec. 2.2. 1455

B.3 Research Scope 1456

This study focuses on frontal chest X-rays, treating 1457

each examination per image while incorporating 1458

a single prior image as an auxiliary input when 1459

available. Rather than modelling patient-level lon- 1460

gitudinal history, our goal is to generate a report for 1461

the current image while leveraging temporal infor- 1462

mation from one preceding scan. To ensure fairness 1463

in benchmarking, Libra was evaluated on single- 1464

image inputs without priors (see Table 1). Yet, 1465

temporal information remains implicitly present 1466

through several factors: 1467

• Explicit temporal states (e.g., “stable” or “un- 1468

stable”) are frequently described in reports. 1469

• Latent temporal progression exists in datasets, 1470

as prior studies influence diagnostic phrasing. 1471
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• The absence of a prior image itself constitutes1472

a temporal scenario, representing an extreme case1473

where the patient’s condition is assumed stable due1474

to a lack of comparative reference.1475

Our model can effectively handle scenarios with1476

limited temporal information in the RRG task. For1477

instance, in a case where a patient has two scans1478

taken just milliseconds apart, the current and prior1479

images would be nearly identical, as no pathologi-1480

cal changes would manifest within such a short in-1481

terval. This extreme scenario demonstrates how the1482

model handles clinical practice under limited tem-1483

poral information. In such cases, the correct diag-1484

nosis for this minimal interval would be that the pa-1485

tient’s condition is “stable”; our model should then1486

generate a report reflecting this stability. When no1487

prior image is available, we employ a dummy prior1488

image (a copy of the current image) to maintain1489

input consistency and mitigate spurious references1490

to nonexistent priors.1491

However, in clinical practice, patients often un-1492

dergo multiple prior scans, sometimes from differ-1493

ent orientations, providing a more complex tem-1494

poral context. This lies beyond the scope of our1495

current study, and a detailed discussion of such1496

scenarios is provided in Appx. J.1497

C Prompt Example1498

We selected examples from the MIMIC-CXR1499

(Johnson et al., 2019b) dataset and synthesised1500

them using GPT-4 (OpenAI et al., 2024) to en-1501

sure ethical compliance, as illustrated in Table 4.1502

Following the rule-based approach by Hyland et al.1503

(2024), we extracted key sections from the report of1504

the current image. Each example combines a fixed1505

system prompt with a dynamic clinical prompt tai-1506

lored to the current scan. We utilised four clinical1507

instructions from the original report: {Indication},1508

{History}, {Comparison}, and {Technique}. In1509

contrast, MAIRA-2 (Bannur et al., 2024), which1510

incorporates prior image reports, our approach fo-1511

cuses exclusively on the current image’s context,1512

maintaining a clear distinction from prior study1513

information of the report.1514

D Training Configuration1515

Libra is trained using a standard auto-regressive1516

language modelling loss (cross-entropy). For this1517

study, we employ Meditron-7b (Chen et al., 2023c)1518

as the LLM, with a total batch size of 16 throughout1519

the training process. The training is conducted on a1520

Original Radiology Report

EXAMINATION: Chest (Portable AP)
INDICATION: Dyspnea and cough, right-sided back
pain.
HISTORY: Intubation with pulmonary edema.
COMPARISON: Chest radiographs on ___ and CT
chest without contrast on ___.
TECHNIQUE: Portable upright chest radiograph.
FINDINGS: In comparison with the prior study, there
are diffuse bilateral pulmonary opacifications, more
prominent on the right. These findings could indicate
severe pulmonary edema, but superimposed pneumonia
or developing ARDS cannot be excluded. Monitoring
and support devices are appropriately positioned.

Prompt Content

[System prompt]: {
The assistant specialised in comparing Chest X-ray
images, identifying differences, and noting temporal
changes.
}
+
<Image Representation Placeholder>
+
[Clinical prompt]: {
Provide a detailed description of the findings in the
radiology image. Following clinical context:
Indication: Dyspnea and cough, right-sided back pain.
History: Intubation with pulmonary edema.
Comparison: Chest radiographs on ___ and CT chest
without contrast on ___.
Technique: Portable upright chest radiograph.
}

Table 4: Examples of Libra’s system and clinical
prompts for Findings section generation in RRG task.

computational infrastructure equipped with A6000 1521

GPU (48GB of memory) and using DeepSpeed 1522

optimization (Rajbhandari et al., 2020) with ZeRO- 1523

2 for stage 1 and ZeRO-3 for stage 2, and BF16 1524

precision is enabled. 1525

A cosine learning rate scheduler is employed, 1526

starting with a warm-up phase of 0.03. In the first 1527

stage of training, we run for 1 epoch (∼385 hours) 1528

with a learning rate of 2×10−5. In the second stage, 1529

the model is trained for 3 epochs (∼213 hours) at 1530

the same learning rate. The LoRA (Hu et al., 2021) 1531

parameters are set to r = 128 and alpha = 256. 1532

The final checkpoint for all runs is selected based 1533

on the observation of the minimum loss on the 1534

evaluation dataset throughout the training process. 1535

Note: Prior work, especially in the medical do- 1536

main, typically employs full model fine-tuning for 1537

RRG tasks. However, due to hardware constraints, 1538

we can only adopt a lightweight training technique 1539

for parameter-efficient adaptation. As a result, our 1540

approach may underperform full model fine-tuning 1541

strategies in the second stage, despite maintaining 1542

computational efficiency. 1543
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Dataset Task Type # Samples % Has Prior
Train (%) Valid (%) Test (%) Train Valid Test

MIMIC-CXR Findings 162 955 (13.43%) 1286 (0.88%) 2461 (2.78%) 58.43 60.11 86.03
Impression 199 548 (16.45%) 1671 (1.14%) 2343 (2.64%) 64.85 67.09 85.49

Medical-Diff-VQA Difference 131 563 (10.85%) 16 372 (11.17%) 16 389 (18.48%) 100 100 100
Abnormality 116 394 (9.59%) 14 512 (9.90%) 14 515 (16.37%) 100 100 100
Presence 124 654 (10.28%) 15 549 (10.61%) 15 523 (17.51%) 100 100 100
View 44 970 (3.71%) 5696 (3.89%) 5599 (6.31%) 100 100 100
Location 67 187 (5.54%) 8510 (5.81%) 8496 (9.58%) 100 100 100
Level 53 728 (4.43%) 6722 (4.59%) 6846 (7.72%) 100 100 100
Type 22 067 (1.82%) 2709 (1.85%) 2702 (3.05%) 100 100 100

MIMIC-Ext-MIMIC Presence 109 455 (9.02%) 26 153 (17.84%) 4566 (5.15%) 0 0 0
-CXR-VQA Anatomy 37 952 (3.13%) 10 210 (6.96%) 1963 (2.21%) 0 0 0

Attribute 49 948 (4.12%) 13 111 (8.94%) 2578 (2.91%) 0 0 0
Abnormality 60 692 (5.00%) 16 109 (10.99%) 3199 (3.61%) 0 0 0
Size 16 000 (1.32%) 4000 (2.73%) 705 (0.80%) 0 0 0
Plane 7992 (0.66%) 1992 (1.36%) 386 (0.44%) 0 0 0
Gender 7992 (0.66%) 1992 (1.36%) 396 (0.45%) 0 0 0

Total Multi-type 1 213 097 (100%) 146 594 (100%) 88 669 (100%) 64.73 49.09 83.67

Table 5: Datasets used for training and evaluating Libra include statistics on the proportion of samples that contain
prior images. The first stage uses the full dataset, while the second stage fine-tunes for downstream tasks.

E Datasets Description1544

MIMIC-CXR (Johnson et al., 2019b) This is1545

a large, publicly accessible dataset comprising1546

377,110 DICOM images across 227,835 studies,1547

each accompanied by a radiology report (Johnson1548

et al., 2019b). For images, we use the commonly1549

available JPEG files from MIMIC-CXR-JPG (John-1550

son et al., 2019a), rather than the original DICOM1551

files, and we preprocess the dataset to exclude non-1552

AP/PA scans. For each report, we extract the Find-1553

ings, Impression, Indication, History, Comparison,1554

and Technique sections using rule-based heuristics1555

supported by the official MIMIC code repository1556

(Johnson et al., 2018).1557

For the Findings section generation task, studies1558

without extractable Findings are discarded, while1559

other missing sections are permitted. The same1560

approach is applied to the Impression section gen-1561

eration task. In all our experiments, we adhere to1562

the official MIMIC-CXR dataset split.1563

Meanwhile, we retrieve prior images by follow-1564

ing the chronological order of studies as indicated1565

by the official labels, selecting the closest prior1566

study as the reference image. It is important to1567

note that, to prevent data leakage between the train,1568

validation, and test sets, prior images are retrieved1569

only from within the same split.1570

Medical-Diff-VQA (Hu et al., 2023) This1571

dataset is a derivative of the MIMIC-CXR dataset,1572

focused on identifying differences between pairs of1573

main and reference images. The data split adheres1574

to the original labelling, ensuring no data leakage1575

occurs. In total, this dataset comprises 700,7031576

question-answer pairs derived from 164,324 main- 1577

reference image pairs. As shown in Table 5, the 1578

questions are divided into seven categories: abnor- 1579

mality, location, type, view, presence, and differ- 1580

ence. 1581

Each pair consists of a main (current) image and 1582

a reference (prior) image, both taken from different 1583

studies of the same patient. The reference image is 1584

always selected from an earlier visit, with the main 1585

image representing the later visit. Of the seven 1586

question types, the first six types focus on the main 1587

image, while the “difference” questions involve 1588

both images. 1589

MIMIC-Ext-MIMIC-CXR-VQA (Bae et al., 1590

2023) This dataset extends MIMIC-CXR for 1591

VQA tasks tailored to CXRs. It includes questions 1592

generated from 48 unique templates covering seven 1593

content types: presence, anatomy, attribute, abnor- 1594

mality, size, plane, and gender, as shown in Table 5. 1595

Each template was developed with the guidance of 1596

board-certified medical experts to ensure clinical 1597

relevance, addressing both standard medical VQA 1598

content and more complex logical scenarios. In 1599

total, the dataset consists of 377,391 unique entries. 1600

Since annotations are based on single images, the 1601

current image serves as a dummy prior image for 1602

all entries in our experiment. 1603

For this study, we carefully selected datasets that 1604

provide complete reports and temporal informa- 1605

tion (i.e., prior images) to ensure alignment with 1606

our research objectives (see Appx. B) for the RRG 1607

task. After thoroughly evaluating other datasets, we 1608

found them unsuitable for the following reasons: 1609
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CheXpert (Irvin et al., 2019) This dataset in-1610

cludes annotated scans with label-specific annota-1611

tions rather than full medical reports. While useful1612

for training image encoders or annotation models,1613

it is not appropriate for the RRG task, which re-1614

quires complete diagnostic reports.1615

PadChest (Bustos et al., 2020) Although it in-1616

cludes reports and corresponding prior images, its1617

reports are in Spanish, placing cross-language train-1618

ing beyond the scope of our model.1619

IU-Xray (Demner-Fushman et al., 2016) This1620

dataset lacks patient-level metadata and prior study1621

information, which is critical for our focus on tem-1622

poral information in chest X-rays.1623

Chest ImaGenome Dataset (Wu et al., 2021)1624

Although derived from MIMIC-CXR (Johnson1625

et al., 2019b), it does not follow the official split,1626

raising concerns about potential data leakage be-1627

tween training, validation, and test sets.1628

Meanwhile, the following two datasets were pro-1629

cessed using GPT-4 (OpenAI et al., 2024) to elimi-1630

nate hallucinated references to prior exams. While1631

this prevents erroneous comparisons, it also re-1632

moves essential temporal information originally1633

present in the reports, potentially affecting tasks1634

that rely on temporal reasoning.1635

LLaVA-Rad MIMIC-CXR Dataset (Chaves1636

et al., 2024) This dataset was refined using GPT-1637

4 (OpenAI et al., 2024) through a structured text-1638

cleaning pipeline. The process involved: (1) cor-1639

recting typographical errors and split words, (2)1640

removing redundant or repeated phrases to improve1641

clarity, (3) eliminating explicit temporal references1642

(e.g., “Compared to the prior study, no significant1643

interval change was noted”) to ensure the report1644

focuses exclusively on the current image, and (4)1645

restructuring content into standardised sections, in-1646

cluding Indication, Findings, and Impression.1647

ReXPref-Prior Dataset (Banerjee et al., 2024)1648

A modified version of MIMIC-CXR (Johnson et al.,1649

2019b) in which GPT-4 (OpenAI et al., 2024) sys-1650

tematically removes all references to prior exams1651

from both the Findings and Impression sections.1652

While this adjustment prevents spurious prior-study1653

references, it also eliminates crucial temporal con-1654

text, limiting its suitability for applications requir-1655

ing longitudinal assessment of disease progression.1656

F Evaluation Metrics 1657

F.1 Lexical Metrics 1658

We employed standard natural language genera- 1659

tion metrics to quantify the overlap between gener- 1660

ated and reference reports. Specifically, ROUGE- 1661

L (Lin, 2004) measures the length of the longest 1662

common subsequence between the generated and 1663

reference reports. BLEU-{1, 4} (Papineni et al., 1664

2002) calculates n-gram precision and applies a 1665

brevity penalty to discourage overly short predic- 1666

tions. METEOR (Banerjee and Lavie, 2005), com- 1667

putes the weighted harmonic mean of unigram pre- 1668

cision and recall, with an additional penalty for 1669

fragmenting consecutive word sequences. Finally, 1670

we report BERTScore (Zhang et al., 2020a), which 1671

leverages pre-trained contextual embeddings from 1672

BERT (Devlin et al., 2019) to match words in can- 1673

didate and reference sentences based on cosine 1674

similarity. We used default parameters for all of 1675

these evaluation metrics. 1676

F.2 Clinical Metrics 1677

For radiology-specific metrics, we used as many 1678

of the same evaluation scores as possible from pre- 1679

vious studies (Tu et al., 2023; Hyland et al., 2024; 1680

Bannur et al., 2024; Chaves et al., 2024), including 1681

the following: 1682

RadGraph-based metrics RadGraph model 1683

(Jain et al., 2021) is designed to parse radiology 1684

reports into structured graphs. These graphs con- 1685

sist of clinical entities, which include references 1686

to anatomy and observations, as well as the rela- 1687

tionships between these entities. This structured 1688

representation enables a more detailed and system- 1689

atic analysis of radiology reports, facilitating down- 1690

stream tasks such as information extraction, report 1691

generation, and clinical decision support. 1692

These include RadGraph-F1 (Jain et al., 2021), 1693

which computes the overlap in entities and rela- 1694

tions separately and then reports their average. And 1695

a variant of it, RGER (Delbrouck et al., 2022b), 1696

which matches entities based on their text, type, 1697

and whether they have at least one relation7. 1698

CheXpert F1 This set of metrics utilizes the 1699

CheXbert automatic labeler (Smit et al., 2020a) 1700

to extract “present”, “absent”, or “uncertain” la- 1701

bels for each of the 14 CheXpert pathologies (Irvin 1702

et al., 2019) from the generated reports and their 1703

7RGER is implemented as F1RadGraph with
reward=partial by the radgraph package.
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Ground Truth Candidate ROUGE-L RadGraph-F1 F1temp

Compare with
prior scan,
pleural effusion
has worsened.

The pleural effusion has progressively worsened since
previous scan.

0.47 0.86 1.0

The pleural effusion is noted again on the current scan. 0.22 0.80 0.0

Table 6: Evaluation of candidate reports using the Temporal Entity F1 score (F1temp). Descriptions of temporal
changes are marked.

corresponding references. In line with prior work,1704

we report CheXpert-F1 for all 14 classes, as well1705

as for the 5 most common findings in CXR reports,1706

referring to these as “[Macro/Micro]-F1-[5/14]”.1707

CheXbert vector similarity We also employ1708

CheXbert vector similarity (Yu et al., 2022), which1709

calculates the cosine similarity between the em-1710

beddings of the generated and reference reports1711

after processing them through the CheXbert model1712

(Smit et al., 2020a).1713

RadCliQ In addition, we utilise RadCliQ (Radi-1714

ology Report Clinical Quality) (Yu et al., 2022),1715

a composite metric that combines RadGraph-F11716

and BLEU scores in a linear regression model to1717

estimate the number of errors that radiologists are1718

likely to detect in a report. To maintain consistency1719

with previous research, we use version 0 of it.1720

Both the CheXbert vector similarity, RadCliQ0,1721

and RadGraph-F1 metrics are calculated using the1722

code released by Yu et al. (2022).1723

F.3 Temporal Entity F11724

We introduced F1temp, a metric specifically de-1725

signed to detect temporal entities reflecting changes1726

over time. Unlike traditional lexical or radiology-1727

specific metrics, F1temp evaluates the quality of1728

temporal information in radiology reports.1729

As shown in Table 6, the differences in lexical1730

(ROUGE-L (Lin, 2004)) and clinical (RadGraph-1731

F1 (Jain et al., 2021)) metrics between the two1732

candidates are relatively smaller compared to the1733

F1temp score. This demonstrates that Temporal En-1734

tity F1 effectively captures and evaluates the qual-1735

ity of temporal information in radiology reports,1736

distinguishing it more accurately than other stan-1737

dard metrics in the context of temporal information1738

descriptions.1739

G Analysis of Concurrent Work and 1740

Non-LLM-based Models 1741

G.1 Discussion on Performance with 1742

Radiology Foundation Models 1743

As shown in Table 7, these models belong to the 1744

category of radiology foundation models. 1745

DaDialog (Pellegrini et al., 2023) is a conver- 1746

sational MLLM designed for a broad range of 1747

dialogue-based medical assistance tasks. To en- 1748

hance structured findings extraction, it employs 1749

the publicly available CheXbert model (Smit et al., 1750

2020b) to extract symptom labels from scans, facil- 1751

itating a structured representation of findings. 1752

MedVersa (Zhou et al., 2024) and M4CXR (Park 1753

et al., 2024) support a diverse set of tasks, includ- 1754

ing medical report generation, visual grounding, 1755

and visual question answering. These models aim 1756

to provide general-purpose multimodal medical as- 1757

sistance by leveraging vision-language pre-training 1758

strategies. 1759

MAIRA-2 (Bannur et al., 2024) specialises in 1760

grounded radiology report generation, which dif- 1761

fers from traditional report generation tasks by re- 1762

quiring explicit image-level localization of findings 1763

and symptoms. Grounded radiology reporting, as 1764

defined by Bannur et al. (2024), structures the re- 1765

port as a list of sentences, where each sentence: (1) 1766

is linked to zero or more spatial image annotations, 1767

and (2) describes at most a single finding from an 1768

image. To support this task, MAIRA-2 introduces 1769

a custom dataset, explicitly designed to provide 1770

structured annotations aligning textual descriptions 1771

with spatial regions of interest in radiological im- 1772

ages. This approach contrasts with conventional 1773

RRG models that generate unstructured free-text 1774

reports. 1775

It is worth noting that the inference sets differ 1776

slightly across these models. Additionally, all these 1777

models leverage supplementary radiology informa- 1778

tion, such as lateral view scans, prior study reports, 1779

or both (as detailed in Appx. A.2), to enhance their 1780

performance in radiology-related tasks. 1781
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Metric RaDialog MedVersa MAIRA-2 M4CXR Libra (%)

Lexical:
ROUGE-L 31.6 – 38.4 28.5 36.7 (-4.4%)
BLEU-1 39.2 – 46.5 33.9 51.3 (10.3%)
BLEU-4 14.8 17.8 23.4 10.3 24.5 (4.7%)
METEOR – – 42.0 – 48.9 (16.4%)
BERTScore – 49.7 – – 62.5 (25.8%)

Clinical:
RadGraph-F1 – 28.0 34.6 21.8 32.9 (-4.9%)
RGER – – 39.7 – 37.6 (-5.3%)
RadCliQ0(↓) – 2.7 2.6 – 2.7 (-3.8%)
CheXbert vector – 46.4 50.6 – 46.9 (-7.3%)
CheXpert-F1:

Micro-F1-14 39.2 – 58.5 60.6 55.9 (-7.8%)
Macro-F1-14 – – 42.7 40.0 40.4 (-5.4%)
Micro-F1-5 – – 58.9 61.8 60.1 (-2.8%)
Macro-F1-5 – – 51.5 49.5 53.8 (4.5%)

Table 7: Findings section generation performance of Libra and the latest concurrent work. The best performances
are highlighted in bold, and the second-best scores are underlined. ‘↓’ indicates that lower values are better. ‘–’
indicates missing data. The percentage (%) indicates the improvement over the best existing model.

Despite these considerations, Libra achieves the1782

highest scores on most lexical metrics, including1783

BLEU-{1, 4}, METEOR, and BERTScore, while1784

trailing slightly behind MAIRA-2 on ROUGE-L. In1785

clinical metrics, Libra predominantly ranks second,1786

just behind the best-performing model. For clini-1787

cal metrics, Libra consistently ranks second, just1788

behind the top-performing model. In metrics that1789

evaluate medical entities and their relationships,1790

such as RadGraph-F1, RGER, and RadCliQ, Libra1791

also ranks second. Similarly, Libra comes second1792

in the CheXbert vector embedding score. However,1793

in the CheXpert metrics, Libra ranks first in Macro-1794

F1 for the 5-class subset, with only a slight dip in1795

the Micro-F1 score for the 14-class subset.1796

Incorporating lateral images and prior study re-1797

ports could enhance clinical scores. Addition-1798

ally, strategies like chain-of-thought reasoning and1799

grounded report generation further improve per-1800

formance in RRG tasks. Looking ahead, we plan1801

to develop model architectures that can automati-1802

cally adapt to multiple tasks and diverse scenarios,1803

enabling more efficient handling of additional radi-1804

ological information.1805

G.2 Discussion on Performance with1806

non-LLM-based Models1807

To compare with non-LLM-based models, we se-1808

lected evaluation metrics commonly used in these1809

studies. These include BLEU-{1, 2, 3, 4} (Pap-1810

ineni et al., 2002), METEOR (MTR) (Banerjee and1811

Lavie, 2005), and ROUGE-L (R-L) (Lin, 2004).1812

For clinical metrics, we report CheXbert (Irvin1813

et al., 2019), Precision (P), Recall (R), and F1.1814

Baseline For performance evaluation, we com- 1815

pare our model with the following baselines: ST 1816

(Vinyals et al., 2015), ATT2IN (Rennie et al., 1817

2017), ADAATT (Lu et al., 2017), TopDown 1818

(Anderson et al., 2018), R2Gen (Chen et al., 1819

2020), R2GenCMN (Chen et al., 2021), M2TR 1820

(Nooralahzadeh et al., 2021), CMCL (Liu et al., 1821

2021a),PPKED (Liu et al., 2021b), AlignTrans- 1822

former (You et al., 2021), CA (Liu et al., 2021c), 1823

LKBMA (Yang et al., 2022b), KnowMAT (Yang 1824

et al., 2022a), XPRONET (Wang et al., 2022), 1825

CMM-RL (Qin and Song, 2022), RAMT (Zhang 1826

et al., 2024b), CMCA (Song et al., 2022), KiUT 1827

(Huang et al., 2023), DCL (Li et al., 2023b), 1828

MMTN (Cao et al., 2023), METrans (Wang et al., 1829

2023), ORGAN (Hou et al., 2023b), COMG (Gu 1830

et al., 2023), BioViL-T (Bannur et al., 2023), 1831

RGRG (Tanida et al., 2023), RECAP (Hou et al., 1832

2023a), CvT2DistilGPT2 (Nicolson et al., 2023), 1833

VLCI (Chen et al., 2024a), TiBiX (Sanjeev et al., 1834

2024), MedM2G (Zhan et al., 2024), MS-TF (Mei 1835

et al., 2024). 1836

To ensure fairness, Libra also utilizes prior im- 1837

ages, aligning with other models that leverage prior 1838

images or additional information. As demonstrated 1839

in Table 8, Libra, similar to other LLM-based mod- 1840

els, consistently outperforms non-LLM-based mod- 1841

els. This advantage is largely attributed to advance- 1842

ments in LLMs and visual instruction tuning (Liu 1843

et al., 2023), enabling multimodal large language 1844

models (MLLMs) to achieve superior performance 1845

in RRG tasks. 1846
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Model Lexical Metrics Clinical Metrics

B-1 B-2 B-3 B-4 MTR R-L P R F1

ST‡ 29.9 18.4 12.1 8.4 12.4 26.3 24.9 20.3 20.4
ATT2IN‡ 32.5 20.3 13.6 9.6 13.4 27.6 32.3 23.9 20.4
ADAATT‡ 29.9 18.5 12.4 8.8 11.8 26.6 26.8 18.6 18.1
TopDown‡ 31.7 19.5 13.0 9.2 12.8 26.7 32.0 23.1 23.8
R2Gen 35.3 21.8 14.5 10.3 14.2 27.0 33.3 27.3 27.6
R2GenCMN 35.3 21.8 14.8 10.6 14.2 27.8 34.4 27.5 27.8
XPRONET 34.4 21.5 14.6 10.5 13.8 27.9 – – –
CMCL 34.4 21.7 14.0 9.7 13.3 28.1 – – –
PPKED 36.0 22.4 14.9 10.6 14.9 28.4 – – –
AlignTransformer 37.8 23.5 15.6 11.2 15.8 28.3 – – –
CA 35.0 21.9 15.2 10.9 15.1 28.3 35.2 29.8 30.3
LKBMA 38.6 23.7 15.7 11.1 – 27.4 42.0 33.9 35.2
M2TR 37.8 23.2 15.4 10.7 14.5 27.2 24.0 42.8 30.8
KnowMAT 36.3 22.8 15.6 11.5 – 28.4 45.8 34.8 37.1
RAMT 36.2 22.9 15.7 11.3 15.3 28.4 38.0 34.2 33.5
CMM-RL 38.1 23.2 15.5 10.9 15.1 28.7 34.2 29.4 29.2
CMCA 36.0 22.7 15.6 11.7 14.8 28.7 44.4 29.7 35.6
KiUT 39.3 24.3 15.9 11.3 16.0 28.5 37.1 31.8 32.1
DCL – – – 10.9 15.0 28.4 47.1 35.2 37.3
MMTN 37.9 23.8 15.9 11.6 16.1 28.3 – – –
METrans 25.0 16.9 12.4 15.2 – 29.1 36.4 30.9 31.1
ORGAN 38.6 25.6 17.2 12.3 16.2 29.3 41.6 41.8 38.5
COMG 36.3 23.5 16.7 12.4 12.8 29.0 – – –
MedM2G 41.2 26.9 17.9 14.2 – 30.9 – – –
CvT2DistilGPT2 39.2 24.5 16.9 12.4 15.3 28.5 35.9 41.2 38.4
RGRG 37.3 24.9 17.5 12.6 16.8 26.4 46.1 47.5 44.7
BioViL-T – – – 9.2 – 29.6 – – 17.5
VLCI 40.0 24.5 16.5 11.9 15.0 28.0 48.9 34.0 40.1
TiBiX 32.4 23.4 18.5 15.7 16.2 33.1 30.0 22.4 25.0
RECAP 42.9 26.7 17.7 12.5 16.8 28.8 38.9 44.3 39.3
MS-TF 43.6 27.5 18.4 12.9 17.7 30.5 – – 41.1

Libra 51.3 38.0 30.0 24.5 48.9 36.7 59.7 52.5 55.9

Table 8: Findings Generation Performance of Libra and non-LLM-based Models. The best performances are
highlighted in bold, and the second-best scores are underlined. ‡ denotes results from Chen et al. (2021), and ‘–’
indicates missing data. These results are taken from the best performances reported in their original papers.

H Additional Ablation Studies1847

H.1 Impact of Temporal Information on1848

Libra in RRG1849

Temporal information is embedded in paired im-1850

ages and referenced in the corresponding radiology1851

reports, capturing changes over time through ref-1852

erences to prior symptoms and their progression,1853

as discussed in Appx. B.1. As shown in Table 5,1854

86% of the test data includes prior images, provid-1855

ing a solid foundation for evaluating the impact of1856

temporal information.1857

During training, Libra integrates the ability to1858

perceive and utilise temporal information into its1859

architecture. To evaluate whether Libra effectively1860

leverage temporal information during inference,1861

we assess its performance using prior images when1862

available as references to determine their impact1863

on the overall capability.1864

In Table 9, the inclusion of prior images sub-1865

stantially enhances Libra’s performance across all1866

Metric Libra

w/o prior w/ prior (%)

Lexical:
ROUGE-L 36.17 36.66 (+1.35%)
BLEU-1 51.20 51.25 (+0.10%)
BLEU-4 24.33 24.54 (+0.86%)
METEOR 48.69 48.90 (+0.43%)
BERTScore 61.94 62.50 (+0.90%)

F1temp 32.72 35.34 (+8.00%)

Clinical:
RadGraph-F1 32.42 32.87(+1.39%)
RGER 36.92 37.57(+1.76%)
RadCliQ0(↓) 2.76 2.72 (+1.45%)
CheXbert vector 46.31 46.85 (+1.17%)
CheXpert-F1:

Micro-F1-14 55.25 55.87 (+1.12%)
Macro-F1-14 40.15 40.38(+0.57%)
Micro-F1-5 58.93 60.07(+1.93%)
Macro-F1-5 52.61 53.75(+2.17%)

Table 9: Ablation results for Libra without (w/o) and
with (w/) the prior image. Values in (%) indicate the
percentage improvement.
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Metric Libra-b w/o TFM w/o LFE w/o PIPB w/o TAC

Lexical:
ROUGE-L 27.26 26.80 (-1.69%) 26.57 (-2.53%) 27.00 (-0.95%) 24.58 (-9.83%)
BLEU-1 34.94 33.61 (-3.81%) 33.68 (-3.61%) 34.47 (-1.35%) 31.40 (-10.13%)
BLEU-4 11.74 10.97 (-6.56%) 10.94 (-6.81%) 11.57 (-1.45%) 8.89 (-24.28%)
METEOR 35.37 34.50 (-2.46%) 34.30 (-3.03%) 34.93 (-1.24%) 32.41 (-8.37%)
BERTScore 55.51 54.97 (-0.97%) 54.75 (-1.37%) 55.26 (-0.45%) 53.07 (-4.40%)

F1temp 24.77 23.54 (-4.97%) 24.00 (-3.11%) 24.68 (-0.36%) 22.52 (-9.08%)

Clinical:
RadGraph-F1 21.67 21.06 (-2.81%) 20.73 (-4.34%) 21.35 (-1.48%) 19.77 (-8.77%)
RGER 26.28 25.45 (-3.16%) 25.14 (-4.34%) 25.84 (-1.67%) 23.74 (-9.67%)
RadCliQ0 (↓) 3.17 3.20 (-0.95%) 3.22 (-1.58%) 3.18 (-0.32%) 3.27 (-3.15%)
CheXbert vector 39.58 38.74 (-2.12%) 38.37 (-3.06%) 39.49 (-0.23%) 37.56 (-5.10%)
CheXpert-F1:

Micro-F1-14 49.06 47.68 (-2.81%) 47.57 (-3.04%) 48.40 (-1.35%) 46.57 (-5.08%)
Macro-F1-14 33.07 31.60 (-4.45%) 31.78 (-3.90%) 31.78 (-3.90%) 31.27 (-5.44%)
Micro-F1-5 54.55 52.14 (-4.42%) 52.94 (-2.95%) 53.10 (-2.66%) 50.72 (-7.02%)
Macro-F1-5 47.24 44.28 (-6.27%) 44.39 (-6.04%) 44.68 (-5.42%) 43.48 (-7.96%)

Table 10: Results of ablation experiments for the Temporal Alignment Connector. ‘↓’ indicates that lower is better.
Values in (%) indicate the percentage decrease compared with the Libra-b.

metrics. Notably, clinical scores exhibit greater1867

improvements compared to lexical scores, under-1868

scoring the importance of temporal information1869

in generating high-quality medical reports beyond1870

merely improving linguistic fluency.1871

The F1temp score shows the most substantial im-1872

provement, with an increase of 8%, highlighting1873

Libra’s capability to effectively leverage temporal1874

changes provided by prior images. These results1875

validate the role of temporal information in enhanc-1876

ing the quality of the generated Findings section1877

and improving Libra’s overall performance.1878

H.2 Impact of the Temporal Alignment1879

Connector under General-Domain1880

Pre-trained Models1881

Domain-specific pre-trained models (i.e., RAD-1882

DINO (Pérez-García et al., 2024) and Meditron1883

(Chen et al., 2023c)) inherently incorporate domain-1884

specific knowledge, such as phrasing conventions,1885

pronoun usage, and even temporal information em-1886

bedded in the training corpus. To isolate the struc-1887

tural impact of TAC, we used a general-domain1888

image encoder (DINOv2 (Oquab et al., 2024)) and1889

a LLM (Vicuna-7B-v1.5 (Chiang et al., 2023)), al-1890

lowing the structural enhancements of TAC to be1891

observed more directly.1892

We replicated the first ablation setup from Sec. 4.1893

We first conducted a baseline experiment, referred1894

to as Libra-b, by fine-tuning only the adapter for1895

the Findings generation task. As shown in Table 10,1896

we then conducted ablation studies by sequentially1897

removing different components from the model, in-1898

cluding the Temporal Fusion Module (TFM), Lay-1899

erwise Feature Extractor (LFE), Prior Image Prefix 1900

Bias (PIPB), and the entire TAC. Removing TFM 1901

restricts the model to processing only the current 1902

image, using a configuration similar to LLaVA (Liu 1903

et al., 2023), but with a four-layer MLP to align the 1904

image feature with the LLM’s hidden dimensions. 1905

Notably, without TFM, the model cannot process 1906

prior images or dummy prior images, and is lim- 1907

ited to only the current image as input. Without 1908

LFE, the model follows the LLaVA setup, using the 1909

penultimate layer of the image encoder to process 1910

single or paired images. 1911

The ablation results are consistent with those ob- 1912

served using domain-specific models, as presented 1913

in Table 2. Removing any TAC submodule led to 1914

declines across all metrics. Specifically, remov- 1915

ing TFM caused a notable drop in the F1temp score 1916

(↓>4%), emphasising its role in capturing tempo- 1917

ral information. The absence of LFE significantly 1918

reduced RadGraph-related scores, demonstrating 1919

its importance for detailed image feature extrac- 1920

tion. PIPB removal primarily impacted clinical 1921

metrics, while removing the entire TAC resulted in 1922

substantial declines across all metrics. These find- 1923

ings reaffirm the critical role of TAC in integrating 1924

image details and temporal information effectively. 1925

H.3 Impact of the Temporal Alignment 1926

Connector After the Second-Stage 1927

Fine-tuning 1928

To further evaluate the impact of the Temporal 1929

Alignment Connector (TAC) on Libra’s perfor- 1930

mance, we followed the setup of the first ablation 1931

study in Sec. 4. After the first stage of alignment, 1932

24



Metric Libra-2 w/o TFM w/o LFE w/o PIPB w/o TAC

Lexical:
ROUGE-L 35.31 35.16 (-0.42%) 35.09 (-0.64%) 35.23 (-0.23%) 34.41 (-2.55%)
BLEU-1 49.92 49.44 (-0.97%) 49.47 (-0.90%) 49.75 (-0.34%) 48.61 (-2.63%)
BLEU-4 23.05 22.67 (-1.66%) 22.65 (-1.75%) 22.97 (-0.35%) 21.51 (-6.70%)
METEOR 47.99 47.69 (-0.62%) 47.62 (-0.77%) 47.84 (-0.31%) 46.95 (-2.16%)
BERTScore 61.28 61.13 (-0.24%) 61.07 (-0.34%) 61.21 (-0.12%) 60.60 (-1.12%)

F1temp 33.52 33.10 (-1.27%) 33.25 (-0.79%) 33.49 (-0.09%) 32.73 (-2.36%)

Clinical:
RadGraph-F1 30.77 30.55 (-0.72%) 30.43 (-1.10%) 30.65 (-0.40%) 30.07 (-2.27%)
RGER 35.44 35.16 (-0.79%) 35.05 (-1.10%) 35.29 (-0.42%) 34.55 (-2.51%)
RadCliQ0 (↓) 2.83 2.84 (-0.35%) 2.84 (-0.35%) 2.85 (-0.71%) 2.85 (-0.71%)
CheXbert vector 45.32 45.08 (-0.53%) 44.97 (-0.77%) 45.27 (-0.11%) 44.73 (-1.30%)
CheXpert-F1:

Micro-F1-14 54.11 53.73 (-0.70%) 53.70 (-0.76%) 54.00 (-0.20%) 53.41 (-1.30%)
Macro-F1-14 37.16 36.74 (-1.13%) 36.78 (-1.02%) 36.79 (-1.00%) 36.64 (-1.40%)
Micro-F1-5 58.76 58.10 (-1.12%) 58.32 (-0.75%) 58.36 (-0.68%) 57.65 (-1.89%)
Macro-F1-5 51.99 51.16 (-1.60%) 51.19 (-1.54%) 51.27 (-1.38%) 50.87 (-2.15%)

Table 11: Results of ablation experiments for the Temporal Alignment Connector after the second stage. ‘↓’ indicates
that lower is better. Values in (%) indicate the percentage decrease compared with the Libra-2.

the model underwent a second stage of fine-tuning.1933

This stage was designed to optimise the model’s1934

performance on the Findings section generation1935

task by leveraging the aligned visual and textual1936

features learned during the initial stage.1937

In this phase, we applied Low-Rank Adaptation1938

(LoRA) Hu et al. (2021) to fine-tune the pre-trained1939

LLM (Meditron Chen et al. (2023c)), while keeping1940

the visual encoder (RAD-DINO Pérez-García et al.1941

(2024)) and TAC weights frozen. The baseline for1942

this experiment is Libra-2 (in Table 11), which is1943

derived from Libra-1 (in Table 2) after undergoing1944

LoRA fine-tuning.1945

We conducted ablation studies by progressively1946

removing different TAC components, including1947

TFM, LFE, the Prior Image Prefix Bias (PIPB),1948

and the entire TAC. Results consistently showed1949

declines across all metrics compared to Libra-2,1950

mirroring the trends observed in Sec. 4. This rein-1951

forces that the performance improvements brought1952

by TAC are stable and unaffected by changes in1953

training stages. It further confirms that TAC has1954

embedded the capability to process temporal infor-1955

mation within the model.1956

H.4 Robustness Evaluation of the Temporal1957

Alignment Connector1958

To evaluate the robustness of the Temporal Align-1959

ment Connector (TAC), we introduced an addi-1960

tional round of LoRA fine-tuning to induce over-1961

training. Following the setup in Appx. H.3, after1962

integrating the first LoRA weights, a new set of1963

LoRA adapters was reinitialised for the LLM and1964

trained for one epoch under the same second-stage1965

fine-tuning configuration. The baseline for this ex- 1966

periment is Libra-3 (as shown in Table 12), which 1967

is derived from Libra-2 (illustrated in Table 11) 1968

following this additional fine-tuning step. 1969

The results reveal that, compared to Libra-2, 1970

Libra-3 exhibits minimal changes in lexical scores, 1971

while clinical scores decline due to overfitting 1972

caused by the additional fine-tuning. Notably, the 1973

CheXpert (Smit et al., 2020a) (Macro-F1-[5/14]) 1974

scores exhibit the most influential reduction. 1975

Despite this decline, ablation studies confirm 1976

that TAC’s performance improvements remain ro- 1977

bust, unaffected by variations in training strategies. 1978

This resilience stems from TAC’s ability to cap- 1979

ture and retain temporal image representations dur- 1980

ing the initial training phase, which are preserved 1981

through subsequent fine-tuning. 1982

These findings underscore TAC’s reliability as 1983

a critical component for temporal information pro- 1984

cessing in RRG tasks. It ensures stability even 1985

under diverse training conditions. 1986

H.5 Impact of Radiology-Specific Pre-trained 1987

Models on Libra 1988

Aligning radiology images with textual informa- 1989

tion is a key challenge in RRG tasks. To demon- 1990

strate the benefits of using radiology-specific pre- 1991

trained models for more accurate feature represen- 1992

tation and improved MLLM performance, we ini- 1993

tialised a Libra model with RadDINO, the TAC, 1994

and Meditron-7b, conducting the first stage of train- 1995

ing, denoted as Libra-1 (This is consistent with the 1996

baseline setup of the previous ablation study in 1997

Sec. 4). Then we replaced the image encoder and 1998
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Metric Libra-3 w/o TFM w/o LFE w/o PIPB w/o TAC

Lexical:
ROUGE-L 35.58 35.53 (-0.14%) 35.51 (-0.21%) 35.55 (-0.08%) 35.28 (-0.86%)
BLEU-1 49.54 49.38 (-0.32%) 49.39 (-0.30%) 49.48 (-0.11%) 49.10 (-0.88%)
BLEU-4 23.61 23.48 (-0.55%) 23.47 (-0.58%) 23.58 (-0.12%) 23.07 (-2.28%)
METEOR 47.61 47.51 (-0.21%) 47.49 (-0.26%) 47.56 (-0.10%) 47.26 (-0.73%)
BERTScore 61.54 61.49 (-0.08%) 61.47 (-0.11%) 61.52 (-0.04%) 61.31 (-0.37%)

F1temp 33.51 33.37 (-0.42%) 33.42 (-0.27%) 33.50 (-0.03%) 33.24 (-0.79%)

Clinical:
RadGraph-F1 29.82 29.75 (-0.24%) 29.71 (-0.37%) 29.78 (-0.13%) 29.59 (-0.76%)
RGER 35.60 35.51 (-0.26%) 35.47 (-0.37%) 35.55 (-0.14%) 35.30 (-0.84%)
RadCliQ0 (↓) 2.91 2.92 (-0.34%) 2.92 (-0.34%) 2.91 ( – ) 2.93 (-0.68%)
CheXbert vector 44.77 44.69 (-0.18%) 44.65 (-0.26%) 44.75 (-0.04%) 44.57 (-0.45%)
CheXpert-F1:

Micro-F1-14 52.45 52.33 (-0.23%) 52.32 (-0.25%) 52.41 (-0.08%) 52.22 (-0.44%)
Macro-F1-14 30.77 30.65 (-0.38%) 30.66 (-0.34%) 30.67 (-0.33%) 30.63 (-0.47%)
Micro-F1-5 54.42 54.22 (-0.38%) 54.28 (-0.25%) 54.30 (-0.23%) 54.08 (-0.63%)
Macro-F1-5 44.58 44.34 (-0.54%) 44.35 (-0.52%) 44.37 (-0.46%) 44.26 (-0.72%)

Table 12: Results of ablation experiments for the Temporal Alignment Connector with additional LoRA fine-tuning
after the second stage. ‘↓’ indicates that lower is better. Values in (%) indicate the percentage decrease compared
with the Libra-3.

Metric Libra-1 w/o RadDINO w/o Meditron w/o RadDINO+Meditron

Lexical:
ROUGE-L 27.56 27.66 (0.36%) 27.29 (-0.98%) 27.26 (-1.09%)
BLEU-1 34.84 35.32 (1.38%) 34.91 (0.20%) 34.94 (0.29%)
BLEU-4 11.51 12.56 (9.12%) 11.61 (0.87%) 11.74 (2.00%)
METEOR 35.50 35.65 (0.42%) 35.53 (0.08%) 35.37 (-0.37%)
BERTScore 55.87 55.89 (0.04%) 55.58 (-0.52%) 55.51 (-0.64%)

F1temp 26.63 25.53 (-4.13%) 24.78 (-6.95%) 24.77 (-6.98%)

Clinical:
RadGraph-F1 22.52 22.11 (-1.82%) 23.13 (2.71%) 21.67 (-3.77%)
RGER 27.32 26.72 (-2.20%) 27.53 (0.77%) 26.28 (-3.81%)
RadCliQ0 (↓) 3.10 3.13 (-0.97%) 3.08 (0.65%) 3.17 (-2.26%)
CheXbert vector 42.02 40.78 (-2.95%) 41.94 (-0.19%) 39.49 (-6.02%)
CheXpert-F1:

Micro-F1-14 52.84 51.55 (-2.44%) 51.45 (-2.63%) 49.06 (-7.15%)
Macro-F1-14 36.87 34.58 (-6.21%) 37.20 (0.90%) 33.07 (-10.31%)
Micro-F1-5 56.63 55.00 (-2.88%) 55.39 (-2.19%) 54.55 (-3.67%)
Macro-F1-5 49.33 47.26 (-4.20%) 47.62 (-3.47%) 47.24 (-4.24%)

Table 13: Ablation results for radiology-specific pre-trained models in Libra. ‘↓’ indicates that lower is better.
Values in (%) indicate the percentage improvement compared to Libra-c.

LLM with their general-domain counterparts, DI-1999

NOv2 and Vicuna-7B-v1.5, respectively. Finally,2000

we replaced both components, which is also re-2001

ferred to as Libra-b (in Table 10).2002

As shown in Table 13, substituting radiology-2003

specific pre-trained models with general-domain2004

models resulted in a notable decline in clinical2005

scores, while the impact on lexical scores was min-2006

imal. Notably, replacing the radiology-specific im-2007

age encoder caused a more pronounced decline in2008

clinical metrics compared to replacing the language2009

model. This suggests that accurate medical image2010

representation provides greater benefits in RRG2011

tasks, indicating the importance of incorporating2012

domain-specific knowledge into pre-trained models2013

to enhance Libra’s performance.2014

H.6 Incremental Component Analysis 2015

We conducted an incremental study to evaluate 2016

the effectiveness of each component in Libra’s ar- 2017

chitecture. Starting with a baseline model similar 2018

to LLaVA—comprising a pre-trained CLIP image 2019

encoder, a randomly initialised four-layer MLP 2020

adapter, and Vicuna-7B-v1.5 as the LLM—we 2021

trained the adapter on the Findings section gen- 2022

eration task. 2023

Improvements were introduced incrementally, as 2024

summarised in Table 14. First, we replaced the im- 2025

age encoder with DINOv2. Next, we incorporated 2026

the LFE (prefix module of TAC) and subsequently 2027

added the TFM (suffix module), completing the 2028

TAC connector. We then replaced the image en- 2029

coder and LLM with RAD-DINO and Meditron, 2030
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Metric Stage 1: Temporal Feature Alignment Stage 2
∗Initial /DINO +LFE +TFM /RAD-DINO /Meditron ‡Dataset Libra

Lexical:
ROUGE-L 23.77 24.58 26.57 27.26 27.29 27.56 27.27 36.66
BLEU-1 31.48 31.40 33.68 34.94 34.91 34.84 41.24 51.25
BLEU-4 8.41 8.89 10.94 11.74 11.61 11.51 13.59 24.54
METEOR 32.1 32.41 34.3 35.37 35.53 35.50 39.44 48.90
BERTScore 52.76 53.07 54.75 55.51 55.58 55.87 56.00 62.50

F1temp 21.60 22.52 24.00 24.77 24.78 26.63 24.80 35.34

Clinical:
RadGraph-F1 18.58 19.70 20.73 21.67 23.13 22.52 20.45 32.87
RGER 23.05 23.74 25.14 26.28 27.53 27.32 25.19 37.57
RadCliQ0(↓) 3.35 3.26 3.22 3.17 3.08 3.10 3.31 2.72
CheXbert vector 35.59 37.94 38.37 39.49 41.94 42.02 35.33 46.85
CheXpert-F1:

Micro-F1-14 44.75 46.57 47.57 49.06 51.45 52.48 43.63 55.87
Macro-F1-14 25.13 31.27 31.07 33.07 37.20 36.87 25.68 40.38
Micro-F1-5 45.97 50.72 52.94 54.55 55.39 56.63 49.75 60.07
Macro-F1-5 36.55 43.48 44.39 47.24 47.62 49.33 40.40 53.75

Table 14: Results of ablation experiments for key components of Libra on Findings section generation performance.
∗ indicates our initialised model. / denotes component replacement. + signifies structural addition. ‡ represents
dataset configuration. The best performances are highlighted in bold, and the second-best scores are underlined. ‘↓’
indicates that lower is better.

respectively. The dataset for the first stage was2031

expanded, and final fine-tuning was conducted for2032

downstream tasks to produce Libra.2033

With each enhancement, the model’s perfor-2034

mance improved, demonstrating the critical role2035

of each component. Notably, the addition of the2036

TFM during the alignment stage provided the most2037

significant improvement, showcasing its ability to2038

capture temporal information, which is essential2039

for the RRG task.2040

However, data expansion in the first stage led2041

to improved lexical scores but a slight decline in2042

clinical metrics, likely due to the VQA task’s fo-2043

cus on fine-grained grounded information rather2044

than holistic report generation, as mentioned in2045

Sec. 4. This shift also affected the F1temp score, as2046

temporal entities are often linked to specific symp-2047

toms. These declines were subsequently addressed2048

through second-stage fine-tuning, resulting in over-2049

all improved performance.2050

Evaluation of Libra’s Temporal Awareness2051

Another approach to investigating the model’s abil-2052

ity to capture temporal information is to evaluate2053

it separately within the test split based on the pres-2054

ence or absence of prior images, in Table 15.2055

With the addition of the TFM, the model exhib-2056

ited temporal awareness. It is worth noting that,2057

for the first time, the F1temp score of samples with2058

prior images surpassed those without, and this trend2059
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Table 15: Results of ablation experiments for Libra
on the F1temp score. Among 2,461 test samples, 2,117
include a prior image, while 344 do not.

persisted through subsequent optimisations. This 2060

indicates that the structural enhancements have re- 2061

sulted in a sustained improvement in the model’s 2062

temporal perception capabilities. An effective ex- 2063

ample is in Sec. 5. 2064

I Heatmap Analysis and Temporal 2065

Feature Representation 2066

The heatmap in Figure 4 corresponds to the exam- 2067

ple in (a) of Figure 3, where no prior image was 2068

used as a reference. It illustrates the clear differ- 2069

ences in feature representations across layers of 2070

the RAD-DINO (Pérez-García et al., 2024) image 2071
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Current Image RAD-DINO layer 1  RAD-DINO layer 12  LFE   TAC

Current Image RAD-DINO layer 1 RAD-DINO layer 12 LFE TAC

Figure 4: Heat map visualisation of image representations from different image encoder layers and the Temporal
Alignment Connector (TAC), up-sampled using a Gaussian filter. Warm colours (red, yellow) indicate regions with
higher weight allocations in the intermediate outputs of the “hidden-state” within the model blocks, while cool
colours (blue, green) represent regions with lower weight.

Current Image Current LFE TAC-1 Prior LFE Prior Image

Current Image (Prior) Current LFE (prior) TAC-2 Prior LFE (Current) Prior Image (Current)

Swap order

Figure 5: Heat map visualisation of image representations from the Temporal Alignment Connector (TAC), up-
sampled using a Gaussian filter. The arrows (‘→’) represent the direction of temporal information, pointing from the
prior image to the true current image. Warm colours (red, yellow) indicate regions with higher weight allocations in
the intermediate outputs of the “hidden-state” within the model blocks, while cool colours (blue, green) represent
regions with lower weight.

encoder. The shallow layers primarily capture the2072

overall lung structure, while the deeper layers focus2073

on specific disease regions.2074

After passing through the Layerwise Feature Ex-2075

tractor (LFE), the image feature representations2076

assign higher weights to larger symptom regions,2077

achieving finer granularity. Following the Tempo-2078

ral Alignment Connector (TAC), the model inte-2079

grates the weighted dummy prior image, produc-2080

ing a uniform feature distribution that reflects tem-2081

poral information. This indicates no significant2082

changes compared to the prior study and facilitates2083

smoother image feature representations for down-2084

stream text generation by the LLM.2085

The heatmap in Figure 5 corresponds to the ex-2086

ample in (b) of Figure 3, where a prior image is2087

provided. After processing through the LFE, the2088

model captures fine-grained feature representations2089

in symptom areas. When processed by the TAC,2090

these features are integrated with the differences2091

between the two images, effectively reflecting tem-2092

poral information, as demonstrated in TAC-1 (top) 2093

of Figure 5. 2094

When the image order is swapped, treating the 2095

prior image as the current image, the LFE output 2096

remains unchanged. However, comparing TAC-2 2097

(bottom of Figure 5) and TAC-1 outputs reveals sig- 2098

nificant differences in lung feature representations. 2099

This highlights the model’s directional temporal 2100

perception and confirms that the TAC module effec- 2101

tively encodes temporal information from different 2102

time points, while the LFE focuses solely on image 2103

features without temporal encoding. 2104

This behaviour aligns with the design of the TAC, 2105

where residual connections prioritise the current 2106

image as the main modality and the prior image as 2107

the auxiliary. Swapping the image order changes 2108

the main modality, altering the temporal state of 2109

symptoms in the generated report, such as reversing 2110

descriptions from “improving” to “worsening,” as 2111

discussed in Sec. 5. 2112
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J Extended Discussion on Limitations2113

While our work represents a step forward in lever-2114

aging temporal information for radiology report2115

generation, it also has several limitations that war-2116

rant further exploration.2117

Handling Multiple Prior Scans Our current2118

model is designed to process a single prior scan2119

alongside the current scan. While this approach2120

aligns with standard clinical workflows, which typ-2121

ically prioritise the most recent prior study for2122

comparisons, it overlooks scenarios where multiple2123

prior scans could offer a richer temporal perspec-2124

tive. For instance, analysing a sequence of images2125

spanning an extended period could provide deeper2126

insights into gradual disease progression. Future2127

efforts should focus on extending our framework2128

to incorporate multiple prior scans efficiently, en-2129

abling a more nuanced understanding of temporal2130

patterns in clinical data.2131

Temporal Information Beyond Image Compar-2132

isons Currently, our model captures temporal in-2133

formation through paired image comparisons and2134

corresponding textual reports. However, clinical2135

assessments often draw upon a broader context,2136

including historical notes, laboratory results, and2137

other longitudinal patient data. Expanding our2138

approach to integrate these diverse temporal data2139

sources could facilitate a more holistic understand-2140

ing of disease trajectories and patient history, sig-2141

nificantly enhancing clinical applicability.2142

Sparse Temporal Data Challenges In cases2143

where prior scans are unavailable or minimally in-2144

formative (e.g., taken within a short interval), our2145

“dummy prior image” provides a workaround. How-2146

ever, the model’s ability to interpret and generate2147

meaningful outputs under these constraints may2148

still be limited. Future research could focus on syn-2149

thesising or imputing temporal context to enhance2150

performance under these constraints.2151

Computational Complexity The use of tem-2152

poral alignment mechanisms and multi-layer fea-2153

ture integration increases computational demands,2154

posing challenges for deployment in resource-2155

constrained environments. Future optimisation ef-2156

forts should focus on reducing computational over-2157

head while maintaining performance.2158

Generalisability Across Modalities and Datasets2159

Our study is limited to frontal-view chest X-2160

rays and the MIMIC-CXR dataset (Johnson et al.,2161

2019b). The applicability of our approach to other 2162

imaging modalities (e.g., CT, MRI) and datasets 2163

(e.g., CheXpert (Irvin et al., 2019), PadChest (Bus- 2164

tos et al., 2020)) remains unexplored. Future stud- 2165

ies should assess the model’s generalisability to a 2166

broader range of datasets and imaging contexts. 2167

Based on the identified limitations, we outline the 2168

following directions: 2169

• Develop frameworks for integrating multiple 2170

prior scans with dynamic temporal reasoning to 2171

better capture longitudinal changes. 2172

• Expand the model to incorporate multi-modal 2173

imaging and textual data for more comprehensive 2174

diagnostic insights. 2175

• Investigate the integration of diverse tempo- 2176

ral data sources, such as electronic health records 2177

(EHRs), to enhance clinical applicability. 2178

• Exploring lightweight model architectures for 2179

faster inference while maintaining high perfor- 2180

mance. 2181

These advancements aim to address the current 2182

limitations while broadening the applicability of 2183

temporal-aware multimodal models in radiology 2184

and other clinical domains. 2185
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