Goal

Topological methods in machine learning aim to quantitatively encode shape information from multi-dimensional data points. Validation relies on defining a validation measure to compare topological models. What could be a validation measure relating topological properties of the model and statistical properties of the data for the Mapper [1] and the Generative Simplicial Complex [2,3,4] models?

Research directions for validation

Different samples (blue/red) from the same distribution.
But very different Mapper nerves...

1) Input data
2) Filter function f
3) Cover $Im(f)$
4) Cluster preimages
5) Compute nerve

1) Input (labeled) data $x \in X$
2) Gaussian Mixture Model - Parameters θ estimated with Expectation Maximization (EM)
3) Delaunay complex of GMM centers \mathcal{W}
4) Gaussian kernel $g(x, w, \theta)$ convoluted to each simplex \mathcal{W} with its own prior weight π_{σ}
5) EM: prior weights of generative simplices which do not explain data tend towards 0
6) BIC: Simplices with 0 prior get pruned
7) Max A Posteriori gives class label for each simplex
8) Summary graph/simplex based on connected components in initial and pruned Delaunay complex

Looking for a Post-doc or PhD on these topics, please contact us!