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ABSTRACT

The rapid progress of large language models (LLMs) is fueled by the growing
reliance on datasets that blend real and synthetic data. While synthetic data offers
scalability and cost-efficiency, it often introduces systematic distributional discrep-
ancies, particularly underrepresenting long-tail knowledge due to truncation effects
from data generation mechanisms like top-p sampling, temperature scaling, and
finite sampling. These discrepancies pose fundamental challenges in characterizing
and evaluating the utility of mixed real-synthetic datasets. In this paper, we iden-
tify a three-phase scaling behavior characterized by two breakpoints that reflect
transitions in model behavior across learning head and tail knowledge. We further
derive an LLM generalization bound designed for real and synthetic mixtures, re-
vealing several key factors that govern their generalization performance. Building
on our theoretical findings, we propose an effective yet efficient data valuation
method that scales to large-scale datasets. Comprehensive experiments across four
tasks, including image classification, sentiment classification, instruction following,
and complex reasoning, demonstrate that our method surpasses state-of-the-art
baselines in data valuation with significantly low computational cost.

1 INTRODUCTION
Large language models (LLMs) have achieved remarkable advances, driving unprecedented transfor-
mations across various tasks, including language understanding (Wong et al., 2024), generation (Wong
et al., 2024), instruction following (Lou et al., 2024), and reasoning (Plaat et al., 2024). Despite these
achievements, their performance is largely driven by the scale and quality of training datasets (Brown
et al., 2020; Hoffmann et al., 2022). To mitigate the scarcity and high cost of high-quality real data,
many modern training pipelines incorporate synthetically generated data, which can be scaled effi-
ciently through data augmentation or controlled generation (Thakur et al., 2023; Zhang et al., 2024b).
While synthetic data plays a critical role in scaling data at reduced cost, it often introduces systematic
distributional discrepancies, resulting in unintended negative impacts on model performance (Chen
et al., 2024b). In particular, synthetic datasets inherently bias training towards frequently occurring
knowledge while neglecting rare but significant knowledge (Seddik et al., 2024). Consequently,
such discrepancies can degrade the overall generalization capabilities of LLMs on downstream tasks,
leading to model collapse and failure to capture underrepresented knowledge (Shumailov et al., 2024).

One potential explanation for this challenge lies in the inherent long-tail distribution of knowledge
present in real-world data. Empirical studies have shown that real-world knowledge typically
follows a long-tail distribution, where a small amount of prevalent (“head”) knowledge appears
frequently, while numerous rare (“tail”) knowledge occur infrequently but collectively represent
a significant portion of essential knowledge (Zhang et al., 2024c), as shown by the orange curve
in Figure 1. For example, large language models usually perform well on general questions (e.g.,
normal disease diagnosis) but struggle when answering rare or highly specific questions (e.g., rare
disease diagnosis) (Kandpal et al., 2023). Synthetic data generation methods often exacerbate this
imbalance in the distribution of knowledge because their inherent generation biases towards common
knowledge make rare knowledge even more scarce in the training data. As a result, LLMs trained on
datasets of real and synthetic mixtures exhibit complex scaling behaviors, reducing learning efficiency
and generalization in pre-training and fine-tuning steps. These observations motivate us to ask two
fundamental research questions: (Q1) What are the scaling behaviors of large language models when
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Figure 1: The real-world knowledge follows a
long-tail distribution (illustrated with the greatest
common divisor task (Charton, 2023)). Synthetic
data is often sampled only from the head knowl-
edge, leading to a truncated tail.

Figure 2: Fine-grained three-phase scaling behav-
ior on real and synthetic mixtures, illustrated with
the greatest common divisor task (Charton, 2023).

trained on real and synthetic mixtures, and how do these behaviors impact the acquisition of tail
knowledge? and (Q2) How can we develop an salient data valuation framework to identify valuable
subsets of data, thereby better guiding the training process under real and synthetic mixtures?

To address the first question (Q1) on the scaling behaviors of LLMs trained on real–synthetic data
mixtures, we identify a three-phase scaling pattern in the training process of LLMs, as illustrated in
Figure 2. In particular, an initial Rapid-Learning Phase dominated by frequent (“head”) knowledge
present abundantly in both real and synthetic data; a subsequent Plateau Phase, in which additional
data provides diminishing returns due to the limited coverage of rare (“tail”) knowledge in synthetic
data; and a final Tail-Learning Phase, where sufficient real data containing the tail knowledge enables
further performance gains. We further introduce a novel theoretical framework based on the LLM
generalization bound. This framework reveals the generalization error in terms of empirical losses of
real and synthetic mixtures, the distribution discrepancies between training and test distributions, the
neural tangent kernel (NTK (Jacot et al., 2018)) reflecting training dynamics, and the proportion of
real data in the training set.

To empirically guide the LLM training process under real and synthetic mixtures and address the
second research question (Q2), we propose a scalable and theoretically grounded data valuation
framework. Traditional data valuation techniques, such as Leave-One-Out (LOO (Koh & Liang,
2017)) and Shapley Values (SV (Ghorbani & Zou, 2019)), require retraining the model multiple times
on different subsets, which is computationally infeasible for models with millions of parameters (Koh
& Liang, 2017; Jia et al., 2019). Our proposed data valuation framework is directly derived from our
LLM generalization bound, enabling computationally efficient and theoretically grounded estimation
of the contributions of individual data subsets without retraining, thereby potentially improving
training efficiency to guide the training process under real and synthetic mixtures.

Finally, we empirically validate both our theoretical findings and the effectiveness of the proposed
data valuation method through extensive experiments. Specifically, we evaluate our framework across
four representative tasks, covering image classification, sentiment classification, instruction-following,
and complex reasoning. Notably, we observe the predicted three-phase scaling behavior in an image
classification task explicitly characterized by a known long-tail distribution. Furthermore, experi-
mental results demonstrate that our valuation method outperforms existing baselines in effectively
identifying high-value data subsets with a low computation cost. In particular, our valuation scores
exhibit the highest correlation with ground-truth compared to the baseline methods, peaking at ∼ 20×
in the strongest case. We open-source our code at the anonymous link.

2 PRELIMINARY

In this section, we introduce the background that is pertinent to our work. Next, we briefly review
notations, LLM scaling law, and LLM generalization.

Notations. Modern LLMs are increasingly trained on datasets composed of real and synthetic
mixtures. Let S = S1 ∪ S2 denote the training dataset, where S1 ∼ D consists of real data drawn
from the true distribution D, and S2 ∼ D′ consists of synthetic data generated by model with an
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associated distribution D′. We assume that the overall training distribution can be written as:

DS = πD + (1− π)D′, (1)

where π ∈ [0, 1] is the proportion of real data in the training set. Suppose the total number of training
samples is |S|, then π|S| samples are drawn from D and (1− π)|S| from D′. Model performance is
evaluated on a test set T of size |T |, drawn from the distribution DT . Let LS(f) denote the empirical
error of model f on dataset S, and LDT

(f) denote its generalization error on DT .

LLM Scaling Law. Scaling laws reveal how model performance improves with increasing dataset
size, model parameters, and computational resources and guide large-scale training strategies (Kaplan
et al., 2020; Hoffmann et al., 2022; Hernandez et al., 2021). In practical scenarios, a critical challenge
arises from the reliance on synthetic data, which may lack the coverage of real-world data distribution.
This reliance can lead to model collapse: as the model fits more synthetic samples, it reinforces biases
from synthetic data D′, exhibiting severe generalization degradation relative to the true distribution
D (Shumailov et al., 2024; Dohmatob et al., 2024b;c; Jain et al., 2024). Recent efforts attempt to
extend scaling laws under real and surrogate data, but typically put strong modelling assumptions.
For example, a common design draws independent samples from real and synthetic distributions that
both belong to the Gaussian distribution x ∼ N (µ,Σ), with different parameters. However, these
efforts often overlook the long-tail nature of real-world knowledge.

LLM Generalization. To theoretically understand the LLM generalization, the neural tangent kernel
has emerged as a powerful analytical framework for characterizing the training dynamics of neural
networks with gradient descent (Jacot et al., 2018). Consider a L-layer LLM with ml parameters in
layer l = 1, . . . , L. Following prior literature (Lee et al., 2019), we assume m1 = · · · = mL−1 = m
and mL = 1 to simplify our analysis. Based on the formulation above, the NTK Θ ∈ R|S|×|S| of a
model f(x;θ) on the dataset S is defined as

Θ(x,x′;θ) = ∇θf(x;θ)
⊤∇θf(x

′;θ), (2)

where x (or x′) denotes any data point in dataset S. Interestingly, as m1, . . . ,mL−1 → ∞, the
NTK Θ0 based on the initialized model parameters θ0 will finally converge to a deterministic
form Θ∞ (Jacot et al., 2018; Yang & Littwin, 2021; Cao & Gu, 2019). However, existing LLM
generalization bounds do not explicitly account for training on real and synthetic mixtures.

Problem Definition. The goal of this paper is to analyze LLMs under real and synthetic mixtures
from two complementary perspectives. In particular, given the training set S contain π|S| samples
from true distribution D and (1− π)|S| from synthetic distribution D′, how can we (1) theoretically
reveal the scaling behavior of LLM model f as detailed in Section 3? and (2) how can we develop
a data valuation framework that estimates the contribution of each data subset in S to the model’s
performance as detailed in Section 4?

3 THEORETICAL ANALYSIS
In this section, we first analyze a fine-grained three-phase transition in the scaling behavior of LLMs
when trained on real and synthetic mixtures. We then derive a novel LLM generalization bound for
real and synthetic mixtures, which reveals four key factors that govern the generalization performance.

Three Phase Transitions. To understand the scaling behaviors of LLMs when trained on real
and synthetic mixtures and how these behaviors impact the acquisition of tail knowledge (Q1), we
analyze the behavior of LLMs under a realistic training setup. While prior work has investigated
scaling behaviors in the context of model collapse, these studies (Feng et al., 2024; Dohmatob et al.,
2024a;b;c) often rely on strong assumptions about model and data distributions (e.g., deterministic
settings, simplified linear regression models, or infinite original samples). In contrast, we consider a
practical scenario where the knowledge i in real data exhibits a long-tail distribution D. In natural
language datasets, the word or token frequencies often exhibit long-tail distributions (Zipf’s law (Zipf,
2013)), which means a few “head” tokens occur extremely frequently, while many “tail” tokens
appear rarely. We therefore model the true distribution D over knowledge i by:

pi ∝ i−β , i = 1, 2, . . . , (3)

where β > 1 characterizes the tail heaviness. Furthermore, when generating synthetic data via LLMs,
the resulting data distribution D′ typically exhibits truncation in the tail. Specifically, the techniques
of synthetic data generation inherently truncate or narrow the original distribution of generated
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tokens, thereby cutting off or diminishing probabilities for less frequent (tail) tokens (Dohmatob
et al., 2024c). For example, top-p (nucleus) sampling, where tokens beyond a cumulative probability
threshold are discarded; temperature scaling, which modifies the probability distribution sharpness;
or finite-sample biases, which restrict observation of low-frequency tokens. We assume the synthetic
data distribution p′ mirrors the true distribution p up to a finite cutoff k: p′i ∝ i−β for i ≤ k, and
p′i = 0 for i > k. Therefore, the training dataset of total size |S| is composed of real data pi with
proportion π and synthetic data p′i with proportion (1− π), where data is drawn from the distribution
DS with probability:

qi = πpi + (1− π)p′i. (4)

We further assume that if knowledge i is observed in the training set, it is predicted correctly with
probability ρ(i) = ai−α, a > 0; if knowledge i is not observed, the probability is γ(i) = bi−λ, b > 0.
Under the setting, we establish the following lemma for the test error on DT of this model with
respect to the true data distribution DS : Ltest = E(x,y)∼DT

[ℓ(fDS
(x), y)], where fDS

is the model
on DS and ℓ is the loss function:

Lemma 1 (Scaling Behavior with Three phases). Consider training data where the probability of
knowledge i is qi = πpi + (1− π)p′i, where pi ∝ i−β and p′i is cut off at rank k as defined above.
The test error Ltest exhibits distinct scaling regimes characterized by two breakpoints at sample
sizes |S| = kβ and |S| = kβ/π. We have1:
Phase 1 (Rapid-Learning): |S| ≤ c1k

β , where c1 is absolute constant,

Ltest ≍ a |S|
1−α−β

β − b |S|
1−λ−β

β + a k1−α−β − b k1−λ−β + k1−β . (5)

Phase 2 (Plateau): c1k
β < |S| < c2k

β/π, where c2 is absolute constant, Ltest enters a transition
state as the limited presence of tail knowledge prevents the rapid learning.
Phase 3 (Tail-Learning): |S| ≥ c2k

β/π,

Ltest ≍ a(π|S|)
1−α−β

β − b(π|S|)
1−λ−β

β + k1−β . (6)

Figure 3: Three-phase scaling behavior with
two breakpoints on real–synthetic mixtures,
for the same task as Figure 2.

Remark #1: For frequently occurring (head) knowl-
edge indexed by 1 through k, the performance scaling
exhibits a critical transition at sample size |S| = kβ ,
corresponding to the first breakpoint in Figure 3.

Remark #2: For infrequently occurring (tail) knowl-
edge beyond rank k, the performance scaling exhibits
a critical transition at sample size |S| = kβ/π, cor-
responding to the second breakpoint Figure 3.

Remark #3: This lemma highlights three phases of
performance improvement as training size |S| grows.
As shown in Figure 3, initially in the rapid-learning
phase, rapid performance gains occur predominantly
due to extensive coverage and repeated sampling of
head knowledge, supported by both real and synthetic data. As head knowledge becomes saturated, a
plateau phase follows, characterized by minimal improvements. This stagnation arises because the
model gains limited additional information from redundant head knowledge, and the data distribution
has not yet yielded sufficient tail-class observations. Leveraging targeted data valuation strategies
(as introduced in Section 4), one can efficiently identify and prioritize underrepresented knowledge,
potentially improving training efficiency. Finally, in the tail-learning phase, the model’s performance
significantly improves again as it learns from substantial accumulated real samples of tail knowledge.

LLM Generalization Bound. To provide a general theoretical understanding of LLMs trained
on real–synthetic data mixtures, we derive a novel generalization bound with relaxed assumptions.
Existing generalization bounds typically assume that all training data are drawn i.i.d. from a single
distribution (Lotfi et al., 2023). However, this assumption is overly simplistic for practical scenarios,
as real-world datasets often supplement limited real datasets with synthetic data generated from large

1The notation g(n) ≍ h(n) means that c1h(n) ≤ g(n) ≤ c2h(n) for sufficiently large n and absolute
constants c1, c2 > 0.
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models. Our LLM generalization bound reflects a realistic and growing training regime in LLMs. It
explicitly quantifies how empirical losses on training data of real-synthetic mixtures, the distributional
discrepancies, the NTK, and data composition collectively influence the expected test loss.

To characterize the distribution discrepancy under the setting of real and synthetic mixtures, we
introduce the H-discrepancy dH (Definition 1) in Appendix A. To analyze the training dynamics of
LLMs, we employ the NTK. Following the assumptions in Shu et al. (2022), we assume that the
existence of a function class H such that for any x, the deviation between the model f(x;θ) ∈ [0, 1]
and the optimal hypothesis f∗(x;θ) = argminf (LDT

(f) + LDS
(f)) is bounded by some h ∈ H

with h(x) ≤ 1. Our generalization bound is then derived based on both the NTK at initialization Θ0

and at convergence Θ∞, and the distribution discrepancy between S1, S2, and T :

Theorem 1 (LLM Generalization Bound under Real and Synthetic Mixtures). Let λmin(·) and
λmax(·) denote the minimum and maximum eigenvalue of a matrix. Assume λmin(Θ0) > 0
and ||∇θf(x;θ0)||2 ≤ B for any (x, y) ∈ S with ||x||2, y ∈ [0, 1]. There exist M ∈ N
such that for every m > M , when applying gradient descent with learning rate η <

min
{
2m−1 (λmin(Θ∞) + λmax(Θ∞))

−1
, |S|/λmax(Θ0)

}
, with probability at least 1− 2δ,

LDT
(f) ≤ πLS1(f) + (1− π)LS2(f) + πdH(T ,S1) + (1− π)dH(T ,S2)

+ 2B

√
ŷTΘ−1

0 ŷ

|S|
+

√
2max(π, 1− π) log(8/δ)

|S|
+ ε,

(7)

where each element in ŷ is defined as ŷ ≜ y − f(x;θ0) and ε ≜ 2c/
√
m+ 3

√
log(4/δ)/2|S|+√

log(4/δ)/2|T |+ LDT
(f∗) + LDS

(f∗), and c > 0 is a constant.

Remark: Theorem 1 shows that the generalization error on the test distribution is bounded in terms
of four key factors: (1) the empirical loss on training real samples and training synthetic samples; (2)
the distribution discrepancy between test data and train data of real and synthetic mixtures; (3) the
NTK-related value at initialization; and (4) the composition of the training dataset, specifically the
proportion π of real data and the total number of samples |S|.

4 METHOD
In this section, we introduce a data valuation framework designed for training settings involving
real–synthetic data mixtures to solve Q2. Existing data valuation methods (Lin et al., 2024; Flecken-
stein et al., 2023; Wang & Jia, 2023; Kwon & Zou, 2022; Xu et al., 2021) typically require multiple
retrainings or assume that all training data is drawn from a single distribution. These methods are
not scalable to large models and, more importantly, do not explicitly consider the real-world data
composed of real and synthetic mixtures. Our method is derived directly from the generalization
bound in Section 3, and is designed to estimate the contribution of data subsets (data contributors)
under real-synthetic mixtures, while remaining retraining-free and thus scalable to LLMs.

Specifically, we realize the discrepancy dH using multiple-kernel maximum mean discrepancy (MK-
MMD (Gretton et al., 2012c)) in reproducing kernel Hilbert spaces (Long et al., 2015; Sejdinovic
et al., 2012), which captures a wide class of hypotheses while retaining computational efficiency.
Moreover, the use of multiple kernels enables adaptive integration of features at different scales, which
is well-suited for LLM training scenarios where real and synthetic data may differ significantly in
linguistic style, topical coverage, or vocabulary distribution (Gretton et al., 2012b). In data valuation,
we compare the relative performances of data contributors; the constant ε in Theorem 1 is independent
of the ranking of data contributors. We therefore ignore ε while reducing computational cost. Given
a training dataset S = S1 ∪ S2, where S1 ∼ D (real data) and S2 ∼ D′ (synthetic data), and a test
distribution T ∼ DT , we define the data valuation score as (see Algorithm 1 in Appendix B):

v(S) =w1 [πLS1
(f) + (1− π)LS2

(f)] + w2 [πDist(T ,S1) + (1− π)Dist(T ,S2)]

+ w3

√
ŷ⊤Θ−1

0 ŷ

|S|
+ w4

√
max(π, 1− π)

|S|
,

(8)

where LSi
(f) denotes the empirical loss on real (i = 1) or synthetic (i = 2) data, Dist is the

MK-MMD metric (Gretton et al., 2012c), f and Θ0 are the model and empirical NTK at initialization.
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ŷ is evaluated on dataset S following its definition in Theorem 1. π is the proportion of real data in
the training set, w1, w2, w3, w4 balance the contribution of the four terms.

The valuation function v(S) in Eq.(8) directly reflects the components in our theoretical generalization
bound. Each component of the empirical losses, distribution discrepancies, and the NTK, corresponds
to a measurable quantity that influences generalization performance. This translation from theory to
scoring function is particularly suited for LLMs, where large-scale training makes retraining-based
valuation infeasible. The valuation function also provides a practical handle on the three-phase
scaling behavior in Section 3. In the first phase, v(S) highlights subsets from head classes that rapidly
reduce the empirical losses. During the plateau phase, where head-class performance saturates, the
NTK-based generalization term becomes critical, distinguishing data that meaningfully alters the
function class from data that is redundant or uninformative. In the final phase, as tail classes begin to
appear in real data, the function prioritizes examples that drive continued error reduction. Notably,
our scoring function v(S) is designed to be directly applicable in LLM-scale settings, but it also
supports integration with marginal-contribution-based valuation methods, see Appendix C for details.

5 EXPERIMENTS
In this section, we evaluate the effectiveness of our data valuation method under datasets of real and
synthetic mixtures. We conduct experiments across four representative tasks: image classification,
sentiment classification, instruction following, and complex reasoning. As detailed in Section 5.2,
we first verify that the three-phase generalization behavior predicted by our theoretical analysis
emerges in practice under a controlled long-tail setting. Section 5.3 compares our method against
five recent data valuation baselines across all tasks and various backbones. Our method achieves
higher correlation with ground-truth while maintaining significantly low computational cost. Finally,
Section 5.4 demonstrates that the relative values computed using our scoring function remain stable
under subsampling, supporting the scalability of our framework for large-scale LLM tasks. Beyond
the main results, we include an extended analysis of contributors’ ranking visualization across data
valuation methods in Appendix E.
5.1 EXPERIMENTAL SETUP

Tasks and Datasets. We consider the following four tasks: (1) Image Classification is the task of
assigning a label to a given image. We use the CIFAR-100 dataset (Krizhevsky et al., 2009) as the
real data, and generate synthetic data by applying corruption transformations from the CIFAR-100-C
benchmark (Hendrycks & Dietterich, 2019). (2) Sentiment Classification is the task of determining
the sentiment polarity (positive or negative) of a given text, such as a movie review. We use the
IMDb (Maas et al., 2011) as the real dataset and the FinGPT Sentiment Train dataset (Yang et al.,
2023) as synthetic data. (3) Instruction Following involves generating an appropriate response or
action based on a natural language instruction, testing a model’s ability to comprehend and execute
commands or answer questions accurately. We use the Natural-Instructions dataset (Mishra et al.,
2021) as the real dataset and the Magpie-Pro-1M dataset (Xu et al., 2024) as the synthetic dataset. (4)
Complex Reasoning, particularly in mathematical problem-solving, requires generating multi-step
reasoning processes to arrive at a solution, often using a technique called chain-of-thought (CoT)
reasoning, where the model breaks down a problem into intermediate steps before providing the final
answer. We use the human-annotated portions of the NuminaMath-CoT training set (Li et al., 2024)
as real data and the synthetically generated portions as synthetic data.

Baselines. We compare against five representative baselines designed for efficient data valuation:
DAVINZ (Wu et al., 2022), Deviation (Lin et al., 2024), LOGRA (Choe et al., 2024), TracIn (Pruthi
et al., 2020), and TRAK (Park et al., 2023). These baselines are selected based on two criteria: (1)
they do not require repeated model retraining, making them scalable to LLMs; and (2) they operate
with access to checkpoints, gradients, and training/test data.

Implementation Details. For all tasks, each method receives the same inputs: training data (real and
synthetic), test data, model checkpoints, and access to model gradients. Due to the large-scale nature
of LLM, we compute gradients for only 1% of the training data when evaluating gradient-based
baselines to reduce computational overhead and improve efficiency. We use ResNet-18 for image
classification task. For sentiment classification, instruction following, and complex reasoning tasks,
we consider four backbones, including Qwen2.5-0.5B, Qwen3-0.6B, Qwen3-1.7B, and Llama-3.2-
1B-Instruct. We use the Pearson, Spearman, and Kendall correlations between the data valuation
scores and the ground truth as evaluation metrics. Following prior work (Wu et al., 2022), we use
ground truth to refer to the test performance of models trained to convergence on different subsets of
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Figure 4: Model accuracy as the increase of train-
ing size |S| on CIFAR-100, under a long-tail
class distribution. Dashed grey lines mark pre-
dicted transition breakpoints at |S| = kβ (left)
and |S| = kβ/π (right).

Figure 5: Test loss as the increase of training
size |S| on CIFAR-100, under a long-tail class
distribution. Dashed grey lines mark predicted
transition breakpoints at |S| = kβ (left) and
|S| = kβ/π (right).

Figure 6: Simulation of three-phase scaling behavior under real-synthetic mixtures. Each curve
represents a different mixture ratios of real and synthetic data π. The right panel shows a zoomed
view of the range |S| ∈ [103, 106].

data. Specifically, the ground truth represents test accuracy for image classification and sentiment
classification tasks, IFEval score for instruction following, and correctness for complex reasoning
achieved by fully trained models, where each model is trained using data from different contributors.
Further details about the experimental setups are provided in Appendix D.

5.2 VALIDATING THEORETICAL ANALYSIS

To empirically validate our theoretical insights on the three-phase scaling behavior in Section 3, we
conduct experiments using CIFAR-100 as the real data and its corrupted variant (CIFAR-100-C) as
the synthetic data. The proportion of real data is set to π = 0.0625, and we vary the total training
sample size from 102 to 106. We treat each of the 100 classes as one knowledge. To simulate a
long-tail distribution, we manually construct a class frequency with pi ∝ i−2 and apply a tail cutoff
at k = 70. The model backbone is ResNet-18. We evaluate the test performance on a balanced
test set with 10,000 samples, measuring both accuracy and loss separately for the overall classes,
head classes (i ≤ 70), and tail classes (i > 70). Figures 4 and 5 plot the model’s accuracy and
test loss, respectively, as the increase of training sample size |S|. The results exhibit a three-phase
behavior consistent with our theoretical predictions: Phase 1 (rapid-learning), we observe a sharp
decrease in head-class loss, indicating that the model quickly learns head knowledge from both real
and synthetic data. Phase 2 (plateau), the overall loss reduction slows down, reflecting diminishing
returns from saturated head information. Phase 3 (tail-learning), tail-class accuracy improves and
loss drops rapidly, as the model learns tail knowledge from the increased number of real data.

In addition, we further validate our theoretical results with respect to diverse mixture ratios π ranging
from 0 to 1. The knowledge follows a long-tail distribution with β = 1.5 and tail cutoff k = 100.
The model predicts a knowledge i correctly with probability ρ(i) = i−0.5 if observed and γ(i) = i−1

if unobserved. Figure 6 demonstrates that the three-phase scaling behavior holds consistently across
different mixture ratios of real and synthetic data.
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Figure 7: Comparison of data valuation methods
on the image classification task. We report Pear-
son, Spearman, and Kendall correlations, with
higher values indicating better performance.

Figure 8: Runtime (in seconds) of data valuation
methods on the image classification task. The
reported values represent the average time for all
data contributors.

Table 1: Comparison of data valuation methods across three tasks: sentiment classification, instruction
following, and complex reasoning. For each task, we report the Pearson, Spearman, and Kendall
correlations, where higher is better (↑). The best results are shown in bold.

Backbone Method Sentiment Instruction Reasoning

Pear. Spear. Kend. Pear. Spear. Kend. Pear. Spear. Kend.

Qwen2.5-0.5B

DAVINZ -0.46 -0.42 -0.33 -0.16 -0.40 -0.33 -0.00 -0.02 -0.01
Deviation 0.63 0.76 0.56 0.05 -0.20 0.00 -0.03 0.00 -0.00
LOGRA -0.64 -0.79 -0.60 -0.09 0.20 0.00 0.08 0.08 0.05
TracIn -0.68 -0.81 -0.64 -0.94 -1.00 -1.00 -0.11 -0.12 -0.09
TRAK 0.43 0.36 0.29 -0.01 0.20 0.00 -0.15 -0.14 -0.10
Ours 0.70 0.87 0.64 1.00 1.00 1.00 0.11 0.14 0.10

Qwen3-0.6B

DAVINZ -0.67 -0.71 -0.49 0.88 0.80 0.67 0.04 0.06 0.04
Deviation 0.32 0.20 0.13 -0.80 -0.80 -0.67 0.14 0.15 0.10
LOGRA -0.62 -0.77 -0.58 -0.87 -0.80 -0.67 -0.07 -0.04 -0.03
TracIn -0.69 -0.66 -0.49 -0.87 -0.80 -0.67 0.05 0.06 0.04
TRAK 0.64 0.73 0.54 -0.91 -0.80 -0.67 -0.01 -0.02 -0.02
Ours 0.86 0.71 0.63 1.00 1.00 1.00 0.25 0.26 0.18

Qwen3-1.7B

DAVINZ -0.41 -0.32 -0.33 0.66 0.20 0.00 0.43 0.41 0.30
Deviation -0.23 -0.52 -0.42 -0.87 -0.80 -0.67 -0.10 -0.09 -0.07
LOGRA 0.19 0.24 0.11 -0.60 -0.20 0.00 -0.41 -0.40 -0.30
TracIn -0.03 0.02 0.07 -0.63 -0.60 -0.33 0.22 0.34 0.24
TRAK 0.40 0.32 0.33 -0.60 -0.20 0.00 -0.17 -0.18 -0.13
Ours 0.70 0.81 0.69 1.00 1.00 1.00 0.44 0.41 0.30

Llama-3.2-1B-Instruct

DAVINZ 0.70 0.62 0.45 0.14 0.80 0.67 -0.11 -0.06 -0.04
Deviation 0.59 0.79 0.58 -0.05 -0.40 -0.33 0.16 0.15 0.10
LOGRA 0.51 0.65 0.49 -0.07 -0.80 -0.67 -0.06 0.06 0.05
TracIn 0.63 0.45 0.36 0.27 0.00 0.00 -0.04 -0.18 -0.12
TRAK -0.53 -0.38 -0.27 -0.25 -0.80 -0.67 -0.01 -0.03 -0.02
Ours 0.96 0.84 0.72 -0.21 -0.80 -0.67 0.24 0.27 0.19

5.3 EFFECTIVE AND EFFICIENT DATA VALUATION

We compare our method against five recent baselines across the four tasks, including image clas-
sification, sentiment classification, instruction following, and complex reasoning. Effectiveness
is measured by correlations between data valuation scores and ground-truth including Pearson,
Spearman, and Kendall correlations, and efficiency is assessed by runtime.

From Figure 7, Figure 8, and Table 1, we have the following observations: (1) Across most tasks and
backbones, our method achieves the highest correlation scores with ground-truth performance, and
these gains are consistent across correlation measures, demonstrating its effectiveness in identifying
valuable data contributors. In particular, on the sentiment task with Qwen3-1.7B, our approach
attains a Spearman correlation of 0.81, significantly exceeding the second-best method of 0.32. (2) In
addition to its effectiveness, our method incurs a low runtime, requiring only 8 seconds on average.
This is significantly faster than Retrain (627 seconds), Deviation (553 seconds), and TRAK (166
seconds), highlighting better computational efficiency.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Relative scores of our method’s NTK and MMD components of selected data contributors
under different training sizes. Scores are min-max normalized across contributors within each
subsampling size to highlight relative rankings.

Size Contributor 1 Contributor 2 Contributor 3 Contributor 4 Contributor 5

MMD NTK MMD NTK MMD NTK MMD NTK MMD NTK

100 0.00 0.00 0.18 0.55 0.00 0.33 0.38 0.96 1.00 1.00
400 0.00 0.00 0.17 0.53 0.03 0.36 0.20 0.74 1.00 1.00

1,000 0.00 0.00 0.15 0.66 0.03 0.54 0.32 0.91 1.00 1.00
4,000 0.00 0.00 0.23 0.65 0.06 0.53 0.29 0.92 1.00 1.00

5.4 STABILITY OF RELATIVE VALUATION UNDER SUBSAMPLING

To examine the stability of our method under subsampled training sets, we analyze whether MMD

score πDist(T ,S1) + (1− π)Dist(T ,S2) and NTK score
√

ŷ⊤Θ−1
0 ŷ/|S| in Eq.(8) remain stable

when computed on a small fraction of the data. Specifically, we conduct an image classification
task with the first five contributors, and compute their scores using training subsets of size 100, 400,
1,000, and 4,000. For comparability, we apply min-max normalization to the scores within each
subsampling size, focusing on the relative rankings rather than absolute values.

As shown in Table 2, both MMD and NTK scores maintain stability in their relative contributor
rankings across different subsample sizes. For example, contributor 1 consistently receives the
lowest normalized MMD and NTK scores, while contributor 5 consistently receives the highest score,
regardless of training size. This suggests that the relative quality of contributors given by our method
is consistent across diverse subsampling sizes.

6 RELATED WORK
Data Valuation. Data valuation methods quantify the contribution or importance of individual data
subsets of a dataset to the performance of machine learning models. Traditional retraining-based
approaches, such as LOO (Koh et al., 2019; Koh & Liang, 2017), SV-based methods (Ghorbani & Zou,
2019), and downsampling Yoon et al. (2020), require extensive computation due to model retraining,
making them infeasible for LLMs. Recently, gradient-based methods emerged as efficient alternatives,
leveraging model gradients and checkpoints for data valuation. TracIn (Pruthi et al., 2020) specifically
traces the gradient descent path of training, estimating influence based on gradient similarity across
training checkpoints. TRAK (Park et al., 2023) approximates the influence using kernel methods
derived from gradients and efficient random projections, scaling effectively to large-scale models
and datasets. DAVINZ (Wu et al., 2022) leverages the NTK to estimate data valuation directly from
initialization gradients, enabling a training-free evaluation. LOGRA (Choe et al., 2024) introduces a
label-only gradient attribution approach, estimating data valuation by analyzing gradient alignment
without relying on explicit labels. Despite these advances, current methods still face significant
limitations when dealing with datasets composed of real and synthetic data.

LLM Model Collapse. LLMs trained with increasing amounts of synthetic data have been observed
to suffer from model collapse, a phenomenon where model performance degrades over training (Shu-
mailov et al., 2024; Dohmatob et al., 2024b). One key cause is synthetic data often exhibits reduced
diversity and redundancy in knowledge compared to real data, especially when generated from earlier
versions of the same model (Havrilla et al., 2024; Chen et al., 2024a). As synthetic data are reused or
recursively generated, the information content becomes increasingly narrow and biased, resulting in
amplified errors (Shumailov et al., 2023; Zhang et al., 2024a). These issues motivate a principled
understanding of the LLM training behaviors on datasets of real and synthetic mixtures.

7 CONCLUSION
LLMs trained on datasets composed of real and synthetic mixtures exhibit complex scaling behaviors.
In this work, we identify a fine-grained three-phase scaling behavior with two breakpoints, reflecting
transitions in the model’s ability to acquire head and tail knowledge. We further derive a general
LLM generalization bound to reveal key factors that influence the performance of LLMs. Building on
this theoretical bound, we develop a practical data valuation method that estimates the contribution of
individual data subsets. Empirical results on four diverse tasks show that our method achieves higher
correlation with ground-truth than baseline methods, while remaining computationally efficient at
LLM-scale tasks.
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REPRODUCIBILITY STATEMENT

We take several steps to ensure that our work is fully reproducible. In particular, we provide proofs
of the theoretical results in Appendix A. In addition, we provide a detailed explanation of our
method in Section 4, along with pseudo code in Algorithm 1. The experimental details, including
the choice of hyperparameters and data preprocessing, are outlined in detail in Section 5.1 and
Appendix appendix D. An anonymized version of the code used to reproduce our results can be found
at https://anonymous.4open.science/r/3phaseLLM-E5E2/. All datasets used in
our experiments are publicly accessible.

ETHICS STATEMENT

Our work does not involve human or animal subjects, personally identifiable data, or sensitive
information. The datasets used are publicly available, and we follow their respective licenses. The
methods and findings presented do not pose foreseeable risks of misuse, discrimination, or harm. We
therefore believe our work raises no specific ethical concerns under the ICLR Code of Ethics.
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A PROOFS OF THEORETICAL ANALYSIS

This section provides complete proofs for the theoretical analysis. We first give the definition
of distribution discrepancy (Gretton et al., 2012a) between DT and DS as a measure to quantify
distribution divergence in Definition 1.

Definition 1. Given any function space H, the distribution discrepancy between DT and DS is
defined as:

dH(DT ,DS) ≜ sup
h∈H

|Ex′∼DT
[h(x′)]− Ex∼DS

[h(x)]| ,

which can be empirically estimated using samples S and T from the respective DS and DT :

dH(T ,S) ≜ sup
h∈H

∣∣∣∣∣∣ 1

|T |

|T |∑
i=1

h(x′
i)−

1

|S|

|S|∑
i=1

h(xi)

∣∣∣∣∣∣ .
We then introduce the following lemma, which is adapted from the proof of Theorem 1 in (Wu et al.,
2022) and the proof of Theorem 2 in (Shu et al., 2022).

Lemma 2. Assume that λmin(Θ0) > 0 and ||∇θf(x;θ0)||2 ≤ B for any (x, y) ∈ S sampled
from DS with ||x||2 ≤ 1 and y ∈ [0, 1]. Given the loss function ℓ(f, y) ≜ (f − y)2/2 and define
ŷ ≜ y − f(x), there exist constants c > 0 and M ∈ N such that for every m > M , when applying
gradient descent with learning rate

η < min
{
2m−1 (λmin(Θ∞) + λmax(Θ∞))

−1
, |S|λ−1

max(Θ0)
}
,

for all the functions ft obtained during the optimization, with high probability (1 − δ) over the
dataset S of size |S|, we have

LDS
(ft) ≤ LS(ft) + 2B

√
ŷ⊤Θ−1

0 ŷ/|S|+ ε,

where ŷ = [ŷ1, . . . , ŷ|S|]
⊤, ε ≜ 2c/

√
m + 3

√
log(4/δ)/2|S|, and λmin(·), λmax(·) denote the

minimum and maximum eigenvalue of a matrix, respectively.

With the above definition and lemma, we are now ready to prove Theorem 1.

Theorem 1 (LLM Generalization Bound under Real and Synthetic Mixtures). Let λmin(·) and
λmax(·) denote the minimum and maximum eigenvalue of a matrix. Assume λmin(Θ0) > 0
and ||∇θf(x;θ0)||2 ≤ B for any (x, y) ∈ S with ||x||2, y ∈ [0, 1]. There exist M ∈
N such that for every m > M , when applying gradient descent with learning rate η <

min
{
2m−1 (λmin(Θ∞) + λmax(Θ∞))

−1
, |S|/λmax(Θ0)

}
, with probability at least 1− 2δ,

LDT
(f) ≤ πLS1(f) + (1− π)LS2(f) + πdH(T ,S1) + (1− π)dH(T ,S2)

+ 2B

√
ŷTΘ−1

0 ŷ

|S|
+

√
2max(π, 1− π) log(8/δ)

|S|
+ ε,

(7)

where each element in ŷ is defined as ŷ ≜ y − f(x;θ0) and ε ≜ 2c/
√
m + 3

√
log(4/δ)/2|S| +√

log(4/δ)/2|T |+ LDT
(f∗) + LDS

(f∗), and c > 0 is a constant.

Proof. Let ϕS and ϕT be the probability density function for data distribution DS and DT , respec-
tively. From (Ben-David et al., 2010), the generalization performance on DT can therefore be
bounded using the generalization performance on DS by assuming that the loss function ℓ(·, ·) is
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µ-Lipschitz continuous, where µ > 0 denotes a Lipschitz constant:

LDT
(f) ≤LDT

(f∗) + E(x,y)∼DT
|ℓ(f(x), y)− ℓ(f∗(x), y)|

≤LDT
(f∗) + E(x,y)∼DS

|ℓ(f(x), y)− ℓ(f∗(x), y)|+∣∣E(x,y)∼DS
|ℓ(f(x), y)− ℓ(f∗(x), y)| − E(x,y)∼DT

|ℓ(f(x), y)− ℓ(f∗(x), y)|
∣∣

≤LDT
(f∗) + E(x,y)∼DS

[|ℓ(f(x), y)− ℓ(f∗(x), y)|] +∣∣∣∣∫ (ϕS(x)− ϕT (x)) (ℓ(f(x), y)− ℓ(f∗(x), y)) dx

∣∣∣∣
≤LDT

(f∗) + E(x,y)∼DS
(ℓ(f(x), y) + ℓ(f∗(x), y))+

µ

∣∣∣∣∫ (ϕS(x)− ϕT (x))|f(x)− f∗(x)| dx
∣∣∣∣

≤LDT
(f∗) + E(x,y)∼DS

ℓ(f(x), y) + E(x,y)∼DS
ℓ(f∗(x), y)+

µ

∣∣∣∣∫ (ϕS(x)− ϕT (x))h(x) dx

∣∣∣∣
≤LDT

(f∗) + LDS
(f∗) + LDS

(f) + µ sup
h∈H

|EDS
[h(x)]− EDT

[h(x)]|

≤LDT
(f∗) + LDS

(f∗) + LDS
(f) + µdH(DS ,DT ).

(9)

Next, we approximate dH(DS ,DT ) using dH(T ,S1) and dH(T ,S2) where T , S1, and S2 denote
the test, real and synthetic datasets. Following Hoeffding’s inequality and the assumption stated in
the main text that h(x) ≤ 1, we have:

P

∣∣∣∣∣∣EDS
[h(x)]− 1

|S|

|S|∑
i=1

h(xi)

∣∣∣∣∣∣ ≥ ε


≤P

∣∣∣∣∣∣EDS
[h(x)]− 1

π|S|

π|S|∑
i=1

h(xi)

∣∣∣∣∣∣ ≥ ε

2π

+

P

∣∣∣∣∣∣EDS
[h(x)]− 1

(1− π)|S|

|S|∑
i=π|S|+1

h(xi)

∣∣∣∣∣∣ ≥ ε

2(1− π)


≤2 exp

(
−ε2|S|

2π

)
+ 2 exp

(
− ε2|S|
2(1− π)

)
≤4max

{
exp

(
−ε2|S|

2π

)
, exp

(
− ε2|S|
2(1− π)

)}
=4 exp

(
− ε2|S|
2max(π, 1− π)

)
.

(10)

Then the following inequality holds with probability at least 1− δ:

|EDS
[h(x)]− EDT

[h(x)]| −

∣∣∣∣∣∣ 1

|S|

|S|∑
i=1

h(xi)−
1

|T |

|T |∑
i=1

h(x′
i)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣EDS
[h(x)]− 1

|S|

|S|∑
i=1

h(xi)

∣∣∣∣∣∣+
∣∣∣∣∣∣EDT

[h(x)]− 1

|T |

|T |∑
i=1

h(x′
i)

∣∣∣∣∣∣
≤

√
2max(π, 1− π) log(4/δ)

|S|
+

√
log(4/δ)

2|T |
.

(11)
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Based on the inequality above, we can approximate dH(DS ,DT ) using dH(T ,S1) and dH(T ,S2)
as below with probability at least 1− δ:

dH(DS ,DT ) = sup
h∈H

|EDS
[h(x)]− EDT

[h(x)]|

≤ sup
h∈H

∣∣∣∣∣∣ 1

|S|

|S|∑
i=1

h(xi)−
1

|T |

|T |∑
i=1

h(x′
i)

∣∣∣∣∣∣+√
2max(π, 1− π) log(4/δ)

|S|
+

√
log(4/δ)

2|T |

≤π sup
h∈H

∣∣∣∣∣∣ 1

|T |

|T |∑
i=1

h(x′
i)−

1

π|S|

π|S|∑
i=1

h(xi)

∣∣∣∣∣∣+
(1− π) sup

h∈H

∣∣∣∣∣∣ 1

|T |

|T |∑
i=1

h(x′
i)−

1

(1− π)|S|

|S|∑
i=π|S|+1

h(xi)

∣∣∣∣∣∣+√
2max(π, 1− π) log(4/δ)

|S|
+

√
log(4/δ)

2|T |

≤πdH(T ,S1) + (1− π)dH(T ,S2) +

√
2max(π, 1− π) log(4/δ)

|S|
+

√
log(4/δ)

2|T |
.

(12)

For the empirical loss, we have:

LS(f) =
1

|S|

|S|∑
i=1

ℓ(f(xi), yi)

=
π

π|S|

π|S|∑
i=1

ℓ(f(xi), yi) +
1− π

(1− π)|S|

|S|∑
i=π|S|+1

ℓ(f(xi), yi)

= πLS1
(f) + (1− π)LS2

(f).

(13)

Note that µ = 1 for loss function ℓ(f, y) ≜ (f − y)2/2 when f, y ∈ [0, 1]. By combining the
results in Eq.(9), Eq.(12) and Eq.(13), and integrating the conclusion in Lemma 2, we complete the
proof.

Theorem 1 provides a general theoretical understanding of LLMs trained on mixtures of real and
synthetic data. Building on this foundation, we next reveal a three-phase transition in the scaling
behavior of LLMs under certain assumptions on data and model in Lemma 1.
Lemma 1 (Scaling Behavior with Three phases). Consider training data where the probability of
knowledge i is qi = πpi + (1− π)p′i, where pi ∝ i−β and p′i is cut off at rank k as defined above.
The test error Ltest exhibits distinct scaling regimes characterized by two breakpoints at sample sizes
|S| = kβ and |S| = kβ/π. We have1:
Phase 1 (Rapid-Learning): |S| ≤ c1k

β , where c1 is absolute constant,

Ltest ≍ a |S|
1−α−β

β − b |S|
1−λ−β

β + a k1−α−β − b k1−λ−β + k1−β . (5)

Phase 2 (Plateau): c1k
β < |S| < c2k

β/π, where c2 is absolute constant, Ltest enters a transition
state as the limited presence of tail knowledge prevents the rapid learning.
Phase 3 (Tail-Learning): |S| ≥ c2k

β/π,

Ltest ≍ a(π|S|)
1−α−β

β − b(π|S|)
1−λ−β

β + k1−β . (6)
1The notation g(n) ≍ h(n) means that c1h(n) ≤ g(n) ≤ c2h(n) for sufficiently large n and absolute

constants c1, c2 > 0.
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Proof. From Eq. (9) and triangle inequality, we have

LDT
(f) ≤ LDS

(f) + dH (DS ,DT ) + LDT
(f∗) + LDS

(f∗)

≤ LD(f) + dH (DS ,D) + dH (DS ,DT ) + LDT
(f∗) + 2LDS

(f∗) + LD(f
∗)

≤ LD(f) + dH (D,DT ) + 2dH (DS ,D) + LDT
(f∗) + 2LDS

(f∗) + LD(f
∗),

(14)

where D is the true distribution.

We also have
LD(f) ≤ LDT

(f) + dH (DT ,D) + LDT
(f∗) + LD(f

∗). (15)

Suppose dH (D,DT ) = 0 as D and DT follow the same distribution, then we have

LDT
(f) = E(x,y)∼DT

[ℓ(f(x), y)]

≍LD(f) + dH (DS ,D) = E(x,y)∼D[ℓ(f(x), y)] + dH (DS ,D)
(16)

for any f gained based on the training dataset S ∼ DS .

Calculating expectation on DS , we have:

Etest = EDS

[
E(x,y)∼DT

[ℓ(f(x), y)]
]

≍ EDS

[
E(x,y)∼D[ℓ(f(x), y)]

]
+ EDS

[dH (DS ,D)] .
(17)

For the first term,

EDS

[
E(x,y)∼D[ℓ(f(x), y)]

]
≍
∑
i≥1

pi

[
(1− (1− qi)

|S|)(1− ρ(i)) + (1− qi)
|S|(1− γ(i))

]
≍
∑
i≥1

pi(1− ρ(i)) +
∑

1≤i≤k

pi(ρ(i)− γ(i))(1− pi)
|S| +

∑
i≥k+1

pi(ρ(i)− γ(i))(1− πpi)
|S|

≍ 1

β − 1
− a

α+ β − 1
+

a

β
|S|

1−α−β
β

[
Γ

(
α+ β − 1

β
, |S|k−β

)
− Γ

(
α+ β − 1

β
, |S|

)]
−

b

β
|S|

1−λ−β
β

[
Γ

(
λ+ β − 1

β
, |S|k−β

)
− Γ

(
λ+ β − 1

β
, |S|

)]
−

a

β
(π|S|)

1−α−β
β Γ

(
α+ β − 1

β
, π|S|(k + 1)−β

)
+

b

β
(π|S|)

1−λ−β
β Γ

(
λ+ β − 1

β
, π|S|(k + 1)−β

)
,

(18)

where Γ(s, x) =
∫∞
x

ts−1e−t dt is the upper incomplete gamma function.

When |S| ≤ c1k
β , where c1 is a constant, we have Γ

(
α+β−1

β , |S|k−β
)
− Γ

(
α+β−1

β , |S|
)

=

Θ(1) − o(1) = Θ(1); when |S| > c1k
β , we have Γ

(
α+β−1

β , |S|k−β
)
− Γ

(
α+β−1

β , |S|
)

=

o(1) − o(1) = o(1). Similarly, when |S| ≤ c1k
β , where c1 is a constant, we have

Γ
(

λ+β−1
β , |S|k−β

)
− Γ

(
λ+β−1

β , |S|
)

= Θ(1) − o(1) = Θ(1); when |S| > c1k
β , we

have Γ
(

λ+β−1
β , |S|k−β

)
− Γ

(
λ+β−1

β , |S|
)

= o(1) − o(1) = o(1). The test loss for

knowledge 1 to k is related to
∑

1≤i≤k pi
[
(1− (1− qi)

|S|)(1− ρ(i)) + (1− qi)
|S|(1− γ(i))

]
,

thus the breakpoint for head knowledge is |S| = c1k
β . When π|S| ≥ c2k

β , where c2

is a constant, we have Γ
(

α+β−1
β , π|S|(k + 1)−β

)
= Θ(1); when π|S| < c2k

β , we have

Γ
(

α+β−1
β , π|S|(k + 1)−β

)
= β

1−α−βΘ((π|S|k−β)
α+β−1

β ). Similarly, when π|S| ≥ c2k
β , where

c2 is a constant, we have Γ
(

λ+β−1
β , π|S|(k + 1)−β

)
= Θ(1); when π|S| < c2k

β , we have

Γ
(

λ+β−1
β , π|S|(k + 1)−β

)
= β

1−λ−βΘ((π|S|k−β)
λ+β−1

β ). The test loss for knowledge beyond
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rank k is related to
∑

i≥k+1 pi
[
(1− (1− qi)

|S|)(1− ρ(i)) + (1− qi)
|S|(1− γ(i))

]
, thus the break-

point for tail knowledge is |S| = c2k
β/π.

For the second term,

EDS
[dH (DS ,D)] ≍

∞∑
i=k+1

pi =

∫ ∞

k+1

x−βdx =
(k + 1)1−β

β − 1
. (19)

By combining the results above, we complete the proof.

B PSEUDO CODE

This section presents the pseudo code for the proposed data valuation method in Algorithm 1.

Algorithm 1 LLM Data Valuation

1: Input: Datasets {S(i)}Ki=1 from K contributors, each consists of real and synthetic mixtures;
validation set T ; model f with initialized NTK kernel matrix Θ0; weighting coefficients
w1, w2, w3, w4.

2: for i = 1 to K do
3: Evaluate v(S(i)) by (8).
4: end for
5: Output: Valuation scores {v(S(i))}Ki=1.

C GENERALIZATION TO MARGINAL EVALUATION

In LLM-scale training datasets, computing marginal contributions through retraining-based methods
like leave-one-out or Shapley value becomes computationally costly due to the model size and
dataset scale. To address this, we utilize v(S) as the data valuation function, following the existing
work (Choe et al., 2024; Park et al., 2023).

While this method is our default for LLM-scale applications, our scoring function v(S) remains
compatible with marginal estimation for general-purpose data valuation scenarios with smaller
models or datasets. Given a collection of data contributors {S(1), . . . ,S(K)}, we define the marginal
contribution of contributor i with respect to a coalition C ⊆ [K] \ {i} as:

∆i,C = v(SC ∪ S(i))− v(SC), (20)

where SC = {S(i)}i∈C . The final value of S(i) can then be aggregated over all coalitions via:

ϕi =
∑

C⊆[K]\{i}

wC ×∆i,C , (21)

where wC ≥ 0 denotes coalition weights. In particular, for the SV (Ghorbani & Zou, 2019),
wC = |C|!(K − |C| − 1)!/K!. For LOO (Koh & Liang, 2017; Koh et al., 2019), wC = 1C=⊆[K]\{i}.

D EXPERIMENT DETAILS

Here we provide expanded descriptions of the tasks and datasets, baselines, and implementation
details that complement Section 5.1.

D.1 TASKS AND DATASETS

Image Classification. We use the CIFAR-100 dataset (Krizhevsky et al., 2009) as the real data,
and generate synthetic data by applying corruption transformations from the CIFAR-100-C bench-
mark (Hendrycks & Dietterich, 2019). These transformations include noise (Gaussian, shot, impulse),
blur (defocus, glass, motion, zoom), weather (snow, frost, fog, brightness), and digital (contrast,
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elastic, pixelation, JPEG artifacts). We treat each class as a separate data contributor and use retrained
accuracy as the ground-truth for evaluation. We construct the dataset using a long-tail distribution
over classes, with the frequency of class i is set as pi ∝ i−2. Each data contributor is assigned all the
data from a single class, resulting in a total of 100 contributors. The proportion of real data for each
contributor is fixed at π = 6.25%.

Sentiment Classification. We use the IMDb (Maas et al., 2011) as the real dataset and the FinGPT
Sentiment Train dataset (Yang et al., 2023) as synthetic data. For evaluation, we use the SST-2 (Socher
et al., 2013) as the test set. Since the test set contains only positive and negative labels, we filter the
training data to include only samples with positive and negative labels, excluding neutral samples, to
ensure consistency in the binary classification setup. The evaluation metric is accuracy, calculated as
the proportion of test samples where the predicted label matches the ground-truth label. We use 10
data contributors, as detailed in Table 3.

Table 3: Data composition of each contributor S(i) in the sentiment classification task. All sample
counts are reported in thousands (k), and each contributor contains 14k samples with varying real
data proportion π.

Contributor S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9) S(10)

Real samples 9 8 7 6 5 4 3 2 1 0
Synthetic samples 5 6 7 8 9 10 11 12 13 14
Total samples 14 14 14 14 14 14 14 14 14 14
π 64% 57% 50% 43% 36% 29% 21% 14% 7% 0%

Instruction Following. We use the Natural-Instructions dataset (Mishra et al., 2021) as the real
dataset and the Magpie-Pro-1M dataset (Xu et al., 2024) as the synthetic dataset. The test set
is the IFEval benchmark (Zhou et al., 2023). Evaluation is conducted using the IFEval criteria,
which include metrics such as instruction-following accuracy—assessing whether the model’s output
adheres to the instruction’s intent, format, and constraints, as defined by a set of predefined rules and
templates. We use 4 data contributors, as detailed in Table 4.

Table 4: Data composition of each contributor S(i) in the instruction following task. All sample
counts are reported in millions (m), and each contributor contains a different total number of samples
with a fixed real data proportion π.

Contributor S(1) S(2) S(3) S(4)

Real samples 0.077 0.077 0.077 0.077
Synthetic samples 0.180 0.077 0.033 0.009
Total samples 0.257 0.154 0.110 0.086
π 30% 50% 70% 90%

Complex Reasoning. We use the human-annotated portions of the NuminaMath-CoT training set (Li
et al., 2024) as real data and the synthetically generated portions as synthetic data. The test set is the
NuminaMath-CoT test set. During training, we perform supervised fine-tuning (SFT) by providing
complete reasoning steps and final answers to encourage the model to learn CoT reasoning. For
evaluation, we employ a powerful language model Qwen3-32B (Team, 2025) as the judgment model
to grade the model’s output using in-context learning: given the ground-truth reasoning steps and
answer alongside the model’s output, the judgment model determines correctness. The output is
deemed correct only if both the reasoning steps and the final answer match the reference solution.
For this task, we construct 100 separate data contributors. Specifically, we partition both the real and
synthetic datasets into 5050 equal-sized and non-overlapping partitions. Contributor i ∈ {1, . . . , 100}
is then assigned (101− i) partitions of real data and (i− 1) partitions of synthetic data, yielding 100
contributors with varying synthetic-data proportions π.
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D.2 BASELINES

We compare against four representative baselines designed for efficient data valuation. These baselines
are selected based on two criteria: (1) they do not require repeated model retraining, making them
scalable to LLMs; and (2) they operate with access to checkpoints, gradients, and training/test data.

• DAVINZ (Wu et al., 2022), which computes data values from NTK-based approximations at
initialization.

• Deviation (Lin et al., 2024), which measures deviation in model predictions via kernel ridge
regression.

• LOGRA (Choe et al., 2024), a label-only gradient attribution method.
• TracIn (Pruthi et al., 2020), which tracks training-time gradient similarity.
• TRAK (Park et al., 2023), which approximates influence scores using randomized kernel projec-

tions.

D.3 IMPLEMENTATION DETAILS

All image classification experiments are conducted on a single NVIDIA A100 GPU (80GB). All
LLM experiments, including sentiment classification, instruction following, and complex reasoning,
are conducted on NVIDIA A100 GPUs (80GB each). To combine the four components in our
proposed score (Eq.(8)), we treat their respective weights as tunable hyperparameters. In our paper,
we optimize the weights w1, w2, w3, w4 by fitting a linear regression, where the target is the average
of the empirical loss and the MMD score.

E SUPPLEMENTARY EXPERIMENTS

This section reports additional experimental analysis complementing the main results, including
ranking visualization across data valuation methods.

Figure 9: Top-20 contributor selections across data valuation methods on image classification task,
where cell colors represent the contributor’s class ID.

To complement correlation-based summaries, we visualize the top-ranked contributors selected by
each method on the image classification task. In this task, each contributor corresponds to a single
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class (100 classes in total), ordered by decreasing sample size (C1 has the most samples while C100
has the fewest). Figure 9 reports the top-20 classes (contributors) deemed most valuable by each data
valuation method. We observe that our approach uniquely balances head classes with tail classes,
whereas LOGRA, DAVINZ, and Deviation concentrate primarily on head classes, and TracIn and
TRAK tend to prioritize tail classes.

F THE USE OF LARGE LANGUAGE MODELS

Large language models are employed in a limited and transparent manner during the preparation of
this manuscript. Specifically, we use LLMs to assist with grammar checking and minor wording
improvements in the writing of this paper. All scientific contributions are entirely the work of the
authors.
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