
 

 

Abstract 

Reinforcement learning (RL) is becoming a potential 

solution for solving optimization problems in power 

and energy systems. However, a major issue with con-

ventional RL is that it does not guarantee the safe oper-

ation of critical infrastructures such as microgrids or 

power systems. Therefore, this paper proposes a safe 

RL-based optimization framework with a human-in-

the-loop approach for the operation of a community en-

ergy storage system (CESS) in community microgrid 

(MG) systems. The proposed framework not only max-

imizes the CESS’s profit but also reduces the amount of 

load shedding in the MG during emergency situations. 

To demonstrate the effectiveness of the proposed 

framework, safe Q-learning is implemented to optimize 

the operation of the CESS with human input, aiming to 

avoid all catastrophic actions at critical states.   

1 Introduction 

A community microgrid (MG) is a small-scale power sys-
tem, which is a localized group of electricity sources and 
loads [Cornélusse et al., 2019]. The MG comprises various 
sources of distributed generation, such as diesel generators 
(DGs), photovoltaics (PV), wind turbines, energy storage 
systems (ESSs), and intelligent control mechanisms, provid-
ing a reliable and efficient energy supply. Therefore, com-
munity MGs can offer various benefits to regional and rural 
communities, such as improving the reliability of their elec-
tricity network and reducing their electricity bills [Syed and 
Morrison, 2021], [Salehi et al., 2022]. The MG typically 
connects to a utility grid in normal operation, but it can also 
disconnect and operate in island mode under emergency 
conditions, functioning autonomously to supply the commu-
nity’s demand. 

 

 

In order to efficiently operate community MGs, many opti-
mization algorithms have been introduced to minimize op-
eration costs or enhance system reliability. For instance, 
[Al-Sorour et al., 2022] have presented a peer-to-peer mech-
anism aimed at reducing net energy trading with the utility. 
The approach uses a two-day-ahead energy forecast and also 
allows energy trading among local prosumers using a 
mixed-integer linear programming (MILP) model. [Balder-
rama et al., 2019] have developed a two-stage linear pro-
gramming optimization framework for a community is-
landed MG in a rural neighborhood. However, such methods 
often show an inability to adapt dynamically to changing 
conditions. They require a reconfiguration of the model and 
objectives as system dynamics change. Therefore, they fre-
quently face many challenges in handling the uncertainty in 
the MG system caused by the high penetration of renewable 
distributed generators (RDGs). 

To overcome such limitations, a machine learning-based op-
timization approach, specifically, reinforcement learning 
(RL), is becoming crucial. RLs offer the ability to continu-
ously learn and adapt to new situations without human re-
programming [Erick et al., 2020]. [Hasan et al., 2022] have 
developed a control strategy for MGs in which universal 
droop control, virtual inertia control, and an RL-based con-
trol mechanism have been combined for online tuning of the 
controllers’ parameters. [Mbuwir et al., 2020] have pro-
posed a framework combining distributed optimization and 
RL for congestion management. This approach offers mi-
crogrids a potential solution to provide flexibility and avoid 
congestion problems in distribution grids. 

Despite the potential of RL in optimizing the operation of 
MGs, implementing conventional RL algorithms in critical 
infrastructure such as power and energy systems and MGs 
poses significant safety risks. In order to avoid catastrophic 
failures, integrating safety into the conventional RL-based 
optimization framework is necessary and is gaining increas-
ing attention in both academia and industry [Qiu et al., 
2022], [Gu et al., 2022].  

Therefore, in this study, a safe Q-learning-based optimiza-
tion framework with a human-in-the-loop approach is pro-
posed for the optimal operation of a CESS in a community  
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Fig. 1. Community microgrid systems. 

MG system. The CESS is controlled to maximize its profit 
in grid-connected mode and to minimize the load shedding 
amount in the MG during islanded mode. Adding humans in 
the loop in the training process can ensure that the CESS 
agent’s decisions are continuously overseen and adjusted by 
experienced operators. Therefore, the CESS agent can guar-
antee that its operation is always within the predefined 
safety operation boundary. This approach also ensures not 
only that the energy supplied is cost-effective but also that 
it enhances the system’s reliability against operational risks. 
The effectiveness of the proposed model is also validated in 
the numerical results section using several test scenarios. 

2 System Model 

In this section, we develop an optimization framework for a 
CESS integrated with a community MG in both grid-con-
nected and islanded modes. The main operational objective 
aims to maximize the profit of the CESS and to minimize 
the operational cost as well as the load shedding amount of 
the MG system. Additionally, all safety issues are also ad-
dressed with safe Q-learning and the human-in-the-loop ap-
proach.    

2.1 Community Microgrid Systems  

A typical community MG is depicted in Fig. 1, which in-
cludes multiple prosumers, wind turbines, photovoltaic sys-
tems (PVs), and diesel generators (DGs) to supply its de-
mand [Cornélusse et al., 2019], [Trivedi et al., 2022]. The 
optimal operation of the community MG is carried out by a 
microgrid energy management system (MG-EMS). The 
community MG is also connected to a community energy 
storage system (CESS) and to the utility grid for economical 
operation and enhanced MG reliability. 

Although the operation of the CESS is independent from the 
community MG in normal operation, the CESS is also con-
trolled to support the MG and maintain power balance dur-
ing emergency operations, including islanded mode. The 
CESS is controlled using the Q-learning method, and safety 
operation is taken into account with human feedback during 
the training process. The Q value is set by human input for 
specific state-action pairs, as illustrated in Fig. 2.     

2.2 System Operation Strategy  

This section presents the system operation strategy, includ-
ing safe Q-learning-based operation of the CESS and MILP-
based operation of the MG. Algorithm 1 presents a detailed 
safe Q-learning framework with a human-in-the-loop ap-
proach. The CESS agent observes the system state and de-
termines an action using the Q-table. During the training 
process, the agent executes the selected action and receives 
feedback from the MG after running the MILP model. The 
adjusted reward is then calculated based on the profit of the 
CESS and potential load shedding information from the 
MG-EMS. The agent observes the new state and updates the 
Q-table policy. The same process is carried out with a large 
number of episodes for training convergence. The Q-table is 
used to determine the optimal operation of the CESS. 

The detailed interaction among the CESS agent, MG-EMS, 
and human monitoring is summarized in Fig. 3. State infor-
mation is observed by both the CESS agent and a human, 
and then the CESS agent selects an action, informing both 
the MG-EMS and the human monitor. The MG-EMS per-
forms optimization and estimates the load shedding that 
should be performed in the MG system, while the human 
monitor determines the Q value applied for some critical 
states to avoid catastrophic actions, as shown in Tables 1 and 
2. Finally, the Q table is updated using state, action, new 
state, and adjusted reward information. The optimal output 
of the CESS can be found with an optimal policy (i.e., Q-
table). Human monitoring not only ensures that the agent 
does not take catastrophic actions at critical states but also 
ensures that the training process is converging and stable by 
regularly validating the Q-table. 

A detailed mathematical model is presented in the next sec-
tion for both MG and CESS operation. 
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Fig. 2. Safe Q-learning-based operation with human 

feedback (Q-value adjustment). 
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2.3 Mathematical Model 

First, a detailed mathematical model is presented, showing 
the action selection of the CESS agent and Q-table update in 
different scenarios. At each given state 𝑠𝑡, the agent selects 
an action following Equation (1) with the epsilon- greedy 
algorithm. The actions could be {-1, 0, 1}, corresponding to 
the {discharging mode, idle mode, charging mode} of the 
CESS. 
 

𝑎𝑡 = {
𝑎𝑟𝑔𝑚𝑎𝑥{𝑄(𝑠𝑡 , 𝑎𝑖)}, 𝑖𝑓 𝛽 ≥ 𝜀   

𝑟𝑎𝑛𝑑{𝑎𝑖},                        𝑖𝑓 𝛽 < 𝜀
 

(1) 

∀𝑖 ∈ {−1,0,1} 

where: 𝑎𝑡 is a selected action at t, 𝑠𝑡 is the observed state at 
t, 𝑄(𝑠𝑡 , 𝑎𝑖) is Q value at state 𝑠𝑡 and action 𝑎𝑖 with i in {-
1,0,1}, 𝛽 is a random value between 0 and 1, 𝜀 is epsilon 
value for epsilon greedy algorithm.  

The reward of the CESS is calculated using Equation (2) 
based on the charging/discharging amount.  

𝑟𝑡 = −𝑃𝑅𝑏𝑢𝑦,𝑡 . 𝑃𝑐ℎ𝑎𝑟,𝑡 + 𝑃𝑅𝑠𝑒𝑙𝑙,𝑡 . 𝑃𝑑𝑖𝑠,𝑡  ∀𝑡 ∈ 𝑇   (2) 

where: 𝑟𝑡  is the reward value at t, 𝑃𝑅𝑏𝑢𝑦,𝑡  and 𝑃𝑅𝑠𝑒𝑙𝑙,𝑡  are 

buying price and selling price with the utility grid or MG at 

 
 

 
Fig. 3. Interaction among CESS agent, MG-EMS, and human monitoring and feedback. 

 

1. Initialize MG environment state

2. Load RL agent with initial policy Q table

3. For loop: each episode from 1 to N:

4. Reset environment to a starting condition

5. While loop: each timestep from 1 to K:

6. Agent observes current state

7. Selects action based on Q table and epsilon greedy

8. Carry out action in the environment

9. Formulate and run MILP

10. Input: Current state, action, operational constraints

11. Output: Adjusted reward

12. Update agent with new state and adjusted reward

13. Ensure actions meet pre-defined safety constraints (tables 1 and 2)

14. Environment transitions to new state based on action

15. Adjust policy based on the learning algorithm

16. End while loop

17. End for loop

18. Analyze performance of the policy

19. Determine the optimal operation of CESS

20. End

Algorithm 1: Safe RL with human-in-the-loop approach
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t, 𝑃𝑐ℎ𝑎𝑟,𝑡 and 𝑃𝑑𝑖𝑠,𝑡 are the amount of charging and discharg-

ing power at t, respectively.  

The final reward for the CESS agent should be the sum of 
the CESS profit and the potential penalty for load shedding 
at the MG, as expressed in Equations (3) and (4).   

𝑟𝑡
𝑚𝑔

= −𝑝𝑒𝑛𝑡 . 𝑃𝑠ℎ𝑒𝑑,𝑡                   ∀𝑡 ∈ 𝑇 (3) 

𝑟𝑡 = 𝑟𝑡 + 𝑟𝑡
𝑚𝑔

                                  ∀𝑡 ∈ 𝑇 (4) 

where: 𝑟𝑡
𝑚𝑔

 is the reward at t considering the response of 

MG environment. 𝑝𝑒𝑛𝑡  and 𝑃𝑠ℎ𝑒𝑑,𝑡  are penalty and load 

shedding amount at t, respectively. 

The Q-table is updated for each state and action pair using 
the Bellman’s equation [Bui et al., 2019], [Sutton et al., 
2018], as shown in Equation (5). 

𝑄(𝑠𝑡 , 𝑎𝑡)

= 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 (
𝑟𝑡 + 𝛾. max(𝑄(𝑠𝑡+1, 𝑎𝑖))

−𝑄(𝑠𝑡 , 𝑎𝑡)
) 

∀𝑡 ∈ 𝑇 

(5) 

where: 𝛾 ∈ [0,1] is the discount factor for the updated Q-ta-
ble. 

The operational constraints for the CESS are shown in Equa-
tions (6) to (9). The amounts of charging and discharging 
power are bounded, as expressed in Equations (6) and (7), 
respectively. These boundaries are calculated at each inter-
val based on the current SOC of the CESS, the capacity, and 
the efficiency. The current SOC of the CESS is updated us-
ing Equation (8) based on the actual amounts of charging 
and discharging power. Finally, the SOC of the CESS must 
always remain between the predefined minimum and maxi-
mum setpoints of the SOC, as shown in Equation (9).     

0 ≤ 𝑃𝑑𝑖𝑠,𝑡 ≤ 𝑆𝑂𝐶𝑡−1. 𝑃max
𝐶𝐸𝑆𝑆 . 𝜂𝐶𝐸𝑆𝑆            ∀𝑡 ∈ 𝑇 (6) 

0 ≤ 𝑃𝑐ℎ𝑎𝑟,𝑡 ≤ (1 − 𝑆𝑂𝐶𝑡−1).
𝑃max

𝐶𝐸𝑆𝑆

𝜂𝐶𝐸𝑆𝑆

   ∀𝑡 ∈ 𝑇 
(7) 

𝑆𝑂𝐶_𝑡 = 𝑆𝑂𝐶𝑡−1 + 𝑃𝑐ℎ𝑎𝑟,𝑡 . 𝜂𝐶𝐸𝑆𝑆 −
𝑃𝑑𝑖𝑠,𝑡

𝜂𝐶𝐸𝑆𝑆

  

∀𝑡 ∈ 𝑇 

(8) 

𝑆𝑂𝐶𝑚𝑖𝑛  ≤ 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥  ∀𝑡 ∈ 𝑇 (9) 

where: 𝑆𝑂𝐶𝑡 is the state of charge of the CESS at t, 𝑃max
𝐶𝐸𝑆𝑆 is 

capacity of the CESS, 𝜂𝐶𝐸𝑆𝑆 is the operation efficiency of 
the CESS, 𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 are the minimum and max-
imum SOC of the CESS, respectively. 

The MILP-based mathematical model for the operation of 
the MG is presented in Equations (10)–(13), including an 
objective function and three major operational constraints. 
The objective function aims to minimize the operation cost 
of the MG in both grid-connected and islanded modes. The 
operation cost consists of the generation cost of the DG, the 

trading cost with the utility, and the load shedding penalty 
in islanded mode, as given in Equation (10). The MG oper-
ation status can be determined by 0 or 1, as in Equation (11), 
depending on its operation mode.    

min {∑ (𝐶𝑑𝑔. 𝑃𝑑𝑔,𝑡 + (1 − 𝑢𝑡). 𝑝𝑒𝑛𝑡 . 𝑃𝑠ℎ𝑒𝑑,𝑡

𝑁−𝑡

𝑡

+ 𝑢𝑡(𝑃𝑅𝑏𝑢𝑦,𝑡 . 𝑃𝑏𝑢𝑦,𝑡

− 𝑃𝑅𝑠𝑒𝑙𝑙,𝑡 . 𝑃𝑠𝑒𝑙𝑙,𝑡))} 

(10) 

𝑢𝑡 = {
0,                   𝑖𝑓 𝑖𝑠𝑙𝑎𝑛𝑑𝑒𝑑 𝑚𝑜𝑑𝑒   
1,     𝑖𝑓 𝑔𝑟𝑖𝑑 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑑𝑒

 

∀𝑡 ∈ 𝑇 

(11) 

where: 𝐶𝑑𝑔 𝑎𝑛𝑑 𝑃𝑑𝑔,𝑡 are the generation cost and generation 

amount, respectively, of the DG at t. 𝑢𝑡  is the operation 

mode of the microgrid system. 

The operational boundary of the DG is given in Equation 
(12). 

𝑃𝑑𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑑𝑔,𝑡 ≤ 𝑃𝑑𝑔

𝑚𝑎𝑥  ∀𝑡 ∈ 𝑇  (12) 

where: 𝑃𝑑𝑔
𝑚𝑖𝑛  and 𝑃𝑑𝑔

𝑚𝑎𝑥  are the minimum and maximum set-

points of DG. 

Power balance is always maintained in the MG system, as 
expressed in Equation (13). The power supply typically 
comes from various sources, including the DG, RDGs, the 
CESS, and the utility grid; however, load shedding some-
times must still be performed to maintain power balance 
throughout the system during islanded mode.  

𝑃𝑑𝑔,𝑡 + 𝑃𝑅𝐷𝐺,𝑡 − 𝑃𝑐ℎ𝑎𝑟,𝑡 + 𝑃𝑑𝑖𝑠,𝑡

+ 𝑢𝑡 . (𝑃𝑏𝑢𝑦,𝑡 − 𝑃𝑠𝑒𝑙𝑙,𝑡)

= 𝑃𝑙𝑜𝑎𝑑,𝑡 − (1 − 𝑢𝑡). 𝑃𝑠ℎ𝑒𝑑,𝑡 

∀𝑡 ∈ 𝑇 

(13) 

where: 𝑃𝑅𝐷𝐺,𝑡  is the output of the RDG at t, 𝑃𝑙𝑜𝑎𝑑,𝑡  is the 
load amount in the MG system at t. 

2.4 Training Safe Q-Learning with HITL 

This section presents different rules for the safe operation of 
the CESS in both grid-connected and islanded modes. In 
grid-connected mode, two constraints should be considered 
that form the safety operation boundary of the CESS. The 
rule is outlined in Table 1, considering the minimum and 
maximum amounts of SOC of the CESS. If the SOC falls to 
10%, charging action is prohibited; if the SOC rises to 90%, 
discharging action is prohibited, and therefore the Q-value 
of such state-action pairs is set to -Infinity. The CESS agent 
will always avoid that action in real-time operation.  

Similarly, the CESS operational boundaries are also consid-
ered in islanded mode. Additionally, two more constraints 
are considered to assist the MG in maintaining power bal-
ance within the system while simultaneously reducing the 
penalty of the load shedding amount. If there is a power 



 

 

shortage in the MG, the Q-values for the charging and idle 
modes are set at -Infinity to avoid taking such actions during 
the real-time operation of the CESS. Conversely, if there is 
surplus power, the Q-values for the discharging and idle 
modes are set at -Infinity, as given in Table 2. 

Con-

straints 

Q values 

Discharging 

mode 

Charging 

mode 

Idle 

mode 

𝑆𝑂𝐶
≤ 10% 

-Inf - - 

𝑆𝑂𝐶
≥ 90% 

 - -Inf   - 

Table 1: Human safety monitoring in grid-connected mode 

Human monitoring, as detailed in both Tables 1 and 2, plays 
a crucial role in the safe operation of the MG and CESS. It 
not only ensures that the CESS always operates within the 
allowed operational boundary but also enhances system re-
liability by reducing the amount of load shedding.   
 

Constraints 

Q values 

Discharging 

mode 

Charging 

mode 

Idle 

mode 

𝑆𝑂𝐶 ≤ 10% -Inf - - 

𝑆𝑂𝐶 ≥ 90%  - -Inf   - 

Shortage 

power 
- -Inf -Inf 

Surplus 

power 
-Inf - -Inf 

Table 2: Human safety monitoring in islanded mode  

3 Numerical Results 

This section evaluates the proposed optimization framework 
for the operation of a community MG and a CESS. The 
training and validation process of the CESS is presented in 
detail, and the operation of the MG is also scheduled con-
sidering the optimal output of the CESS.     
 
3.1 Input Data 

The test system includes a DG, wind turbines, PVs, a CESS, 
and loads. The system can be connected to or disconnected 
from the utility grid. The detailed parameters of the DG and 
CESS, including minimum and maximum operation points, 
capacity, operational costs, etc., are tabulated in Table 3. 

Figure 4 presents the output power of the RDGs, including 

both PVs and wind turbines, and the total amount of load 

demand in the MG system. Figure 5 depicts the market price 

signal, showing the buying/selling price at each interval. 

The generation cost of the DG is fixed at $0.50/kWh. This 

input data is used to train the CESS agent and is also taken 

as input information for the MILP-based optimization model 

for the community MG system.   

DG Values CESS Values 

Min. setpoint (kWh) 0 Min. SOC (%) 10 

Max. setpoint (kWh) 100 Max. SOC (%) 90 

Generation  
0.5 

Capacity (kWh) 100 

cost ($/kWh) Init. SOC (%) 50 

Table 3: Parameters of DG and CESS 

3.2 Optimal Operation of Test MG Systems 

The operation of the CESS is determined using an optimal 
policy Q-table. The Q-table is updated during the training 

 
Figure 4. Output power of RDG and load demand. 

 

 
Figure 5. Market price signal and generation cost of 

DG. 
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Figure 6. The value of epsilon during the training pro-

cess. 

 

 

 



 

 

process, integrating human monitoring feedback. The Q-
values of critical state-action pairs that cause safety viola-
tions are set directly to -Infinity. Table 4 shows a few exam-
ples of an optimal Q-table with human feedback. This helps 
to avoid any catastrophic actions during the real-time oper-
ation of the CESS.  

 

 
SOC 

(%) 

Q value 

Discharg-

ing mode 
Idle mode 

Charging 

mode 

50 39.541542 39.241182 38.940822 

60 42.845107 42.804465 42.542311 

60 42.847183 41.631251 41.413499 

60 42.752587 42.551671 42.632087 

70 45.656434 46.516087 42.136382 

... ... ... ... 

90 0 0 -999999 

10 -999999 0 1.008926 

10 5.493535 0 0 

10 -999999 0 2.322714 

10 -999999 0 3.176883 

Table 4: Q-table with human feedback (highlighted values)  

 
The training process of the CESS agent is visualized in Fig-
ures 6 and 7. Figure 6 shows the value of epsilon during the 
training process, which represents the probability of select-
ing a random action. It can be observed that the value of ep-
silon gradually decreases from 1 to 0. This means that in the 
early episodes, the agent has a high chance of selecting a 
random action to explore the environment. When the agent 
has sufficient knowledge about the environment, the value 
of epsilon approaches 0, and the agent will choose actions 
to maximize its cumulative reward. Figure 7 shows the epi-
sode reward of the CESS agent during the training process. 
During the first few episodes, the agent lacks environmental 
information and does not select optimal actions; therefore, 
the reward is very low. However, it improves significantly 

after the training process. The episode reward has converged 
and reached maximum value. This will also provide an op-
timal policy Q-table for the optimal operation of the CESS. 

The optimal operation of the CESS is presented in Figure 8, 
using the optimal Q-table after the training process. The 
CESS is charged to the maximum value during the low-price 
intervals and then is discharged to the minimum value dur-
ing high-price intervals to maximize its profit. The MG-
EMS receives the actual output power of the CESS and car-
ries out optimization to schedule the operation of the entire 
MG system, including the DG and trading with the grid. It 
can be seen from Figure 9 that the power balance is always 
maintained throughout the time-scheduling horizon.      
 
4 Conclusions 

This study has proposed a safe RL-based optimization 
model with a human-in-the-loop approach for the operation 
of a CESS. The model not only ensures that the CESS max-
imizes its profit but also guarantees safe operation. The ac-
tual output of the CESS is shared with the MG-EMS to de-
termine the optimal operation of the entire MG system. The 
numerical results show that the CESS plays a crucial role in 
the operation of the community MG system, especially in 
islanded mode. The CESS is controlled to minimize the pen-
alty of load shedding within the MG system. 
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Figure 7. The episode reward of CESS during the 

training process. 
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