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ABSTRACT

Deterministic policies are widely applied in generative adversarial imitation learn-
ing (GAIL). When adopting these policies, some GAIL variants modify the reward
function to avoid training instability. However, the mechanism behind this insta-
bility is still largely unknown. In this paper, we capture the instability through the
underlying exploding gradients theoretically in the updating process. Our novel-
ties lie in: 1) We establish and prove a probabilistic lower bound for exploding gra-
dients, which can describe the instability universally, while the stochastic policy
will never suffer from such pathology subsequently, by employing the multivari-
ate Gaussian policy with small covariance to approximate deterministic policy. 2)
We also prove that the modified reward function of adversarial inverse reinforce-
ment learning (AIRL) can relieve exploding gradients. Experiments support our
analysis.

1 INTRODUCTION

Imitation learning (IL) trains a policy directly from expert demonstrations without reward signals
(Ng et al., 2000; Syed & Schapire, 2007; Ho & Ermon, 2016). It has been broadly studied under the
twin umbrellas of behavioral cloning (BC) (Pomerleau, 1991) and inverse reinforcement learning
(IRL) (Ziebart et al., 2008). Generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016),
established by the trust region policy optimization (TRPO) (Schulman et al., 2015) policy training,
plugs the inspiration of generative adversarial networks (GANs) (Goodfellow et al., 2014) into the
maximum entropy IRL. The discriminator in GAIL aims to distinguish whether a state-action pair
comes from the expert demonstration or is generated by the agent. Meanwhile, the learned policy
generates interaction data for confusing the discriminator. GAIL is promising for many real-world
scenarios where designing reward functions to learn the optimal control policies requires significant
effort. It has made remarkable achievements in physical-world tasks, e.g., robot manipulation (Jabri,
2021), mobile robot navigating (Tai et al., 2018), commodities search (Shi et al., 2019), endovascular
catheterization (Chi et al., 2020), etc.

The learned policy in GAIL can be effectively accomplished by reinforcement learning (RL) meth-
ods (Sutton & Barto, 2018; Puterman, 2014), which are divided into stochastic policy algorithms and
deterministic policy algorithms, incorporating the two classes of algorithms into GAIL denoted as
ST-GAIL and DE-GAIL respectively in our paper. For ST-GAIL, one can refer to the proximal pol-
icy optimization (PPO)-GAIL (Chen et al., 2020), the natural policy gradient (NPG)-GAIL (Guan
et al., 2021) and the two-stage stochastic gradient (TSSG) (Zhou et al., 2022). These algorithms
have shown that GAIL can ensure global convergence in high-dimensional environments against
traditional IRL methods (Ng et al., 2000; Ziebart et al., 2008; Boularias et al., 2011). Unfortunately,
ST-GAIL methods have low sample efficiency and cost a long time to train the learned policy well
(Zuo et al., 2020).

In comparison, some related works (Kostrikov et al., 2019; Zuo et al., 2020) imply that deterministic
policies are capable of enhancing sample efficiency when training GAIL variants. Kostrikov et al.
(2019) proposed the discriminator-actor-critic (DAC) algorithm, which defines the reward function
with the GAIL discriminator for the policy trained by the twin delayed deep deterministic policy
gradient (TD3) (Fujimoto et al., 2018). It reduces policy-environment interaction sample complexity
by an average factor of 10. Deterministic generative adversarial imitation learning (DGAIL) (Zuo
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et al., 2020) utilizes the modified deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015)
to update the policy, and achieves a faster learning speed than ST-GAIL.

These DE-GAIL methods not only effectively improve sample efficiency, but also mitigate instabil-
ity caused by the reward function − log(1−D(s, a)), referred to as the positive logarithmic reward
function (PLR). This classical logarithmic reward function is one of the primary shapes and is fre-
quently used in GAIL. For PLR, Kostrikov et al. (2019) discussed the reward bias in a simple toy
demo; Zuo et al. (2020) exhibited its instability through contrast experiments, and improved the sta-
bility of DE-GAIL by introducing the idea of learning from demonstrations (LfD) into the generator.

Figure 1: Learning curves of DDPG-GAIL
and TD3-GAIL with different random seeds in
Walker2d-v2.

However, the instability caused by PLR is
largely unknown. We investigate the perfor-
mance of DDPG-GAIL and TD3-GAIL, i.e.,
replacing TRPO to RL algorithms DDPG and
TD3 with unchanged PLR, with 106 expert
demonstrations displayed in Fig. 1. It emerges
extreme instability under 11 random seeds. The
learning effects under some seeds are capable
of reaching expert levels (valid), while others
hardly learn anything (invalid). At some point,
the two corner cases cannot be well captured by
the bias analysis introduced through the toy demo in Kostrikov et al. (2019).

In this paper, we incorporate a different deterministic policy algorithm, i.e., the softmax deep double
deterministic policy gradients (SD3) (Pan et al., 2020) into GAIL with PLR. SD3-GAIL exhibits the
same instability as the experiment results in DDPG-GAIL and TD3-GAIL. This implies that instabil-
ity is not a special case in DE-GAIL. In addition, the instability of DE-GAIL is mainly down to the
invalid case that appeared in the experiment. Then, we prove that there exist exploding phenomena
in the absolute gradients of the policy loss, describing the invalidity theoretically and universally.
Further, we conclude that the discriminator will possibly degenerate to 0 or 1. Meanwhile, we give
the probabilistic lower bound for exploding gradients, with respect to the mismatching between the
learned policy and the expert demonstration, i.e., the significant state-action distribution discrepancy
between the learned state-action pair and that of the expert. Finally, we disclose that the outliers in-
terval under the modified reward function in adversarial inverse reinforcement learning (AIRL) (Fu
et al., 2018) is smaller than that under PLR in GAIL. Such a modified reward function shows its
superiority of stability. Our contributions can be summarized as follows:

• Establish and prove the probability of exploding gradients theorem to theoretically describe
the instability in DE-GAIL. In contrast, our analysis strikes that stochastic policy can avoid
exploding gradients.

• Compared with the consistent trend in ST-GAIL, we point out the instability is caused by
deterministic policies, rather than GANs.

• The reward function in AIRL is shown to reduce the probability of exploding gradients.

2 RELATED WORK

In large and high-dimensional environments, Ho & Ermon (2016) proposed GAIL, which is pro-
cessed on TRPO (Schulman et al., 2015). It gains significant performance in imitating complex
expert policies (Ghasemipour et al., 2019; Xu et al., 2020; Ke et al., 2020; Chen et al., 2021).

To accelerate the GAIL learning process, a natural idea is to use deterministic policy gradients.
Sample-efficient adversarial mimic (SAM) (Blondé & Kalousis, 2019) method integrates DDPG
(Lillicrap et al., 2015) into GAIL, and adds a penalty on the gradient of the discriminator mean-
while. Zuo et al. (2020) proposed deterministic generative adversarial imitation learning (DGAIL),
which combines the modified DDPG with LfD to train the generator under the guidance of the
discriminator. The reward function in DGAIL is set as D(s, a). TD3 (Fujimoto et al., 2018) and
off-policy training of the discriminator are performed in DAC (Kostrikov et al., 2019) to reduce
policy-environment interaction sample complexity by an average factor of 10. The revised reward
function in DAC is log(D(s, a))− log(1−D(s, a)).
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Notably, these works achieve gratifying results benefiting from modifications to reward functions.
When implementing GAIL with PLR directly, Kostrikov et al. (2019) pointed out the reward bias
via a special toy demo; DGAIL exhibited its instability merely from the perspective of experimental
results. Differently, we illustrate this phenomenon through a universal theory.

3 PRELIMINARY

In this section, we introduce the definition of a Markov decision process, reproducing kernel Hilbert
space and generative adversarial imitation learning setup.

3.1 MARKOV DECISION PROCESS

A discounted Markov decision process (MDP) is characterized by a 5-tuple (S,A, r, pM , γ) in the
standard RL setting. S and A denote the finite state space and action space, respectively. r(s, a) :
S × A → R is the reward function for performing action a ∈ A in state s ∈ S . pM (s′|s, a) :
S ×A× S → [0, 1] denotes the transition distribution and γ is the discount factor. A policy π(a|s)
specifies an action distribution conditioned on state s. The objective of RL is to maximize the
expected reward-to-go η(π) = Eπ [

∑∞
t=0 γ

tr (st, at) |s0, a0].
Induced by a policy π, we define the discounted stationary state distribution as

dπ(s) = (1− γ)

∞∑
t=0

γtPr(st = s;π).

Here Pr(st = s;π) denotes the probability of reaching state s at time t, which is given by∫ t−1∏
u=0

pM (su+1 | su, au)π (au | su) Pr (s0) dsda,

where ds = ds0 . . . dst−1 and da = da0 . . . dat−1 imply integration over the previous states and
actions. Similarly, the discounted stationary state-action distribution is defined as

ρπ(s, a) = (1− γ)

∞∑
t=0

γtPr(st = s, at = a;π),

which measures the overall “frequency” of visiting a state-action pair under the policy π. The
relationship between ρπ(s, a) and dπ(s) can be described as

ρπ(s, a) = π(a|s)dπ(s). (1)

3.2 REPRODUCING KERNEL HILBERT SPACE

Given a set S, for any c ∈ Rp and x ∈ S , if the linear functional mapping h ∈ H to (c, h(x)) is
continuous, then a vector-valued reproducing kernel Hilbert space (RKHS) H is a Hilbert space of
functions h : S → Rp (Micchelli & Pontil, 2005). For all y ∈ S , κx(y) is a symmetric function
that is a positive definite matrix, thereby (κxc) (y) = κ(x, y)c ∈ H. It has the reproducing property
⟨h, κxc⟩H = h(x)⊤c. Here (·, ·) and ⟨·, ·⟩H denote the inner product in Rp and in H, respectively.
We denote H = Hκ.

3.3 GENERATIVE ADVERSARIAL IMITATION LEARNING

GAIL combines IRL with GANs, treating RL methods as the generator. GAIL takes the advantage
of the discriminator D(s, a) to calculate the difference between the distribution of the state-action
pair induced by the learned policy π and the expert policy πE, thereby providing the reward for the
agent. Moreover, the policy and discriminator can be approximated by RKHS (Ormoneit & Sen,
2002). The optimization problem in GAIL is

min
π

max
D∈(0,1)S×A

E(s,a)∼ρπE [log(D(s, a))] + E(s,a)∼ρπ [log(1−D(s, a))], (2)
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where the policy π mimics the expert policy via the reward function r(s, a) = − log(1−D(s, a)).
When the discriminator reaches its optimal

D∗(s, a) = ρπE(s, a)/(ρπE(s, a) + ρπ(s, a)), (3)

the optimization objective of the learned policy is formalized as minimizing the state-action distri-
bution discrepancy between the imitated policy and the expert policy with the Jensen-Shannon (JS)
divergence:

min
π

DJS(ρ
π(s, a), ρπE(s, a)) :=

1

2
DKL

(
ρπ,

ρπ + ρπE

2

)
+

1

2
DKL

(
ρπE ,

ρπ + ρπE

2

)
. (4)

4 THE PRINCIPLE OF INSTABILITY IN GAIL WITH DETERMINISTIC
POLICIES

Inspired by the instability of DE-GAIL in MuJoCo environments (Subsect. 4.1), we theoretically
impute the invalidity to exploding phenomenon in the absolute gradients of the policy loss in Sub-
sect. 4.2. Additionally, the probabilistic lower bound for exploding gradient is provided. In contrast,
ST-GAIL will not suffer from such pathology. Finally, we present that the reward function in AIRL
relieves the exploding gradients in Subsect. 4.3. Fig. 2 shows the architecture for our analysis.

Figure 2: An illustration of our proposed theorem of exploding gradients in DE-GAIL. Due to
exploding gradients, the invalid case in experiments corresponds to diverging from the optimal dis-
criminator or degenerating to 0 or 1.

4.1 ILLNESS REWARD EMPIRICAL EVALUATIONS IN MUJOCO ENVIRONMENTS

We replicate the experimental setup of Zhou et al. (2022). Expert trajectories are created by the SAC
agent in Hopper-v2, HalfCheetah-v2 and Walker2d-v2 respectively. The size of expert demonstra-
tion data is 106 obtained with a 0.01 standard deviation. The mean return of the demonstration data
in each environment is 3433, 9890 and 3509 respectively.

When training GAIL, we use two-layer networks to approximate the kernel function (see Arora
et al. (2019)). The reward function is set as r(s, a) = − log(1 − D(s, a)) (PLR). First, a well-
performed TSSG is revisited as the baseline for subsequent comparison. Then we explore DDPG
and TD3, which also cause GAIL to fail as Kostrikov et al. (2019). A brief description of the
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Figure 3: Comparison of SD3-GAIL, TD3-GAIL, DDPG-GAIL and TSSG in three different envi-
ronments. Solid lines and dashed lines correspond to the average performance of the four algorithms
and expert demonstrations, respectively.

training procedure is laid out in Appendix A.1 (Alg. 1). The best evaluation results of DDPG-GAIL
and TD3-GAIL are shown in Fig. 3. Compared to TSSG, we can observe that DDPG-GAIL and
TD3-GAIL not only obtain a lower mean return but also suffer from obviously higher variance. We
suspect this is owing to the inaccurate Q-value estimations of DDPG and TD3 (Pan et al., 2020).

(a) (b) (c) (d)

Figure 4: The performances of the four algorithms under different 11 seeds in Walker2d-v2.

We next experimentally examine whether better value estimation will improve GAIL. SD3 (Pan
et al., 2020), a deterministic policy algorithm that enables a smaller absolute bias of true values and
value estimates than TD3, is conducted into the framework of GAIL, as shown in Alg. 1. Its best
performances are presented in Fig. 3. We conclude the results in two aspects:

• SD3-GAIL improves the average return compared to DDPG-GAIL and TD3-GAIL, and
even achieves a higher upper limit than TSSG. This phenomenon is possibly attributed to
the accuracy of Q-value estimation in SD3.

• Although the enhancement of average return in SD3-GAIL compared to DDPG-GAIL and
TD3-GAIL, the variance of SD3-GAIL remains high. In order to thoroughly observe the
phenomenon of high variance of SD3-GAIL, DDPG-GAIL and TD3-GAIL, we specify the
performance of the four algorithms under 11 random seeds in Walker2d-v2 as exhibited
in Fig. 4. The three deterministic policy algorithms reveal extreme instability under 11
random seeds. Specifically,

– The performances under some seeds are capable of reaching expert levels, such as
SD3-GAIL, TD3-GAIL and DDPG-GAIL with seed 0.

– Some seeds almost learn nothing, such as SD3-GAIL, TD3-GAIL and DDPG-GAIL
with seed 7.

– SD3-GAIL with seed 2 and seed 9 learn only part of the expert policy.

While TSSG maintains a similar trend under different random seeds, the instability is not
caused by GANs itself depicted by Arjovsky & Bottou (2017).

These empirical evaluations manifest that DE-GAIL algorithms suffer from pathological training
dynamics. We attempt to explain this phenomenon by employing the statement of reward bias
introduced by Kostrikov et al. (2019). In their specific toy demo, repeated trajectories may be
trained with the stochastic learned policy, which brings about a higher return than expert under PLR
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r(s, a) = − log(1−D(s, a)), the strictly positive reward function. This is known as the reward bias.
Conversely, if the learned policy is deterministic, the trajectories will be trained with no repetition.
Furthermore, the expert return will not be exceeded by the return of the deterministic learned policy
technically, in other words, the reward bias vanishes. This can not interpret DE-GAIL as inferior to
ST-GAIL which appeared in our experiment. An illustrative example of the invalid case is shown in
Appendix A.2. In the sequel, we will explain such instability from the perspective of invalidity in
DE-GAIL.

4.2 EXPLODING GRADIENTS IN DE-GAIL

Inspired by Lever & Stafford (2015) and Paternain et al. (2020) who employ multivariate Gaussian
policy to approximate deterministic policy, we define the learned policy πh as

πh(a|s) =
1√

det(2πΣ)
exp

−(a− h(s))⊤Σ−1(a− h(s))

2
,

parameterized by deterministic functions h ∈ H, h : S → A and covariance matrix Σ. The function
h(·) is an element of an RKHS Hκ, h(·) =

∑
i κ(si, ·)ai ∈ Hκ, where si ∈ S and ai ∈ A.

Note that πh(a|s) can be regarded as an approximation to the Dirac’s impulse via covariance matrix
approaching zero, i.e.,

lim
Σ→0

πh(a|s) = δ(a− h(s)). (5)

Eq. (5) means that when the covariance Σ → 0, the stochastic policy πh(a|s) approaches the de-
terministic policy h(s). Replacing π with πh in Eq. (2), Eq. (3) and Eq. (4) respectively, the
optimization problem of GAIL under πh is

min
πh

max
D

E(s,a)∼ρπE [log(D(s, a))] + E(s,a)∼ρπh [log(1−D(s, a))],

the optimum discriminator is

D∗(s, a) = ρπE(s, a)/(ρπE(s, a) + ρπh(s, a)), (6)

and the policy optimization objective is

min
πh

DJS(ρ
πh(s, a), ρπE(s, a)).

Before proceeding with our main result, we need a crucial definition.

Definition 1 (Mismatched and Matched State-action Pair) The state-action pair (st, h(st)) in-
duced by the learned policy mismatches the expert demonstration (st, at), if ∥h(st)−at∥2 ≥ C∥Σ∥2
for any C > 0. Otherwise, (st, h(st)) matches the expert.

We utilize an event

Ξ = {(st, h(st)) : ∥h(st)− at∥2 ≥ C∥Σ∥2 for any C > 0}

to characterize the mismatching. A descriptive example of mismatching and matching is shown in
Appendix A.3.

Now we present the following theorems on the probability of exploding gradients in DE-GAIL.

Theorem 1 Let πh(·|s) be the Gaussian stochastic policy with mean h(s) and covariance Σ. When
the discriminator is set to be optimal D(s, a) in Eq. (6), the gradient estimator of the policy loss
with respect to the policy’s parameter h satisfies

∥∇̂hDJS(ρ
πh , ρπE)∥2 → ∞

with a probability of Pr(∥Σ−1(at − h(st))∥2 ≥ C for any C > 0) as Σ → 0 where

∇̂hDJS(ρ
πh , ρπE) =

dπh(st)∇hπh(at|st)
2dπE(st)πE(at|st)

log
2dπh(st)πh(at|st)

dπh(st)πh(at|st) + dπE(st)πE(at|st)
,

and ∇hπh(a|s) = πh(a|s)κ(s, ·)Σ−1(a− h(s)).
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Proof. See Appendix A.4. □

Remark 1 When Σ → 0, in other words, the policy is deterministic, we have

Pr(∥Σ−1(at − h(st))∥2 ≥ C for any C > 0) ≥ Pr(∥at − h(st)∥2 ≥ C∥Σ∥2 for any C > 0)

= Pr(Ξ).

The probability of mismatching Pr(Ξ) is nontrivial since Σ → 0. Theorem 1 implies that when the
discriminator is set to be optimal, DE-GAIL will suffer from exploding gradients with the proba-
bilistic lower bound Pr(Ξ).

In contrast, for a Gaussian stochastic policy (fixed Σ), we have that ∥∇̂hDJS(ρ
πh , ρπE)∥2 is

bounded referring to the proof strategy of Theorem 1. Thus, when the discriminator is set to be
optimal, the Gaussian stochastic policy in GAIL will not suffer from exploding gradients. Analo-
gous conclusions can be drawn for non-Gaussian stochastic policies.

Theorem 1 reveals that the policy loss possibly suffers from exploding gradients when the discrim-
inator is set to be optimal, subsequently, we will present a more universal result on the regular
discriminator, which is defined as

D̃(st, at) =
(1 + ϵ)ρπE (st, at)

(1 + ϵ)ρπE (st, at) + (1− ϵ)ρπ(st, at)
, (7)

where ϵ ∈ (−1, 1). Note that

• D̃(st, at) is monotonically increasing from 0 to 1 as ϵ ∈ (−1, 1).

• “Regular” suggests that D̃(st, at) ranges in (0, 1) stemmed from Eq. (2).

• D̃(st, at) reaches its optimal when ϵ = 0.

We next state the exploding gradients on D̃(st, at).

Theorem 2 (Main Result) Let πh(·|s) be the Gaussian stochastic policy with mean h(s) and co-
variance Σ. When the discriminator is set to be regular D̃(s, a) in Eq. (7), i.e., D̃(s, a) ∈ (0, 1),
the gradient estimator of the policy loss with respect to the policy’s parameter h satisfies∥∥∥∇̂h

(
E(s,a)∼DE

[log(D̃(s, a))] + E(s,a)∼DI
[log(1− D̃(s, a))]

)∥∥∥
2
→ ∞

with a probability of Pr(∥Σ−1(at − h(st))∥2 ≥ C for any C > 0) as Σ → 0, where DE and DI

denote the expert demonstration and the replay buffer of πh respectively,

∇̂h

(
E(s,a)∼DE

[log(D̃(s, a))] + E(s,a)∼DI
[log(1− D̃(s, a))]

)
=

dπh(st)∇hπh(at|st)
dπE(st)πE(at|st)

log
(1− ϵ)dπh(st)πh(at|st)

(1 + ϵ)dπE(st)πE(at|st) + (1− ϵ)dπh(st)πh(at|st)

+
2ϵdπh(st)∇hπh(at|st)

ρπE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)
,

and ∇hπh(a|s) = πh(a|s)κ(s, ·)Σ−1(a− h(s)).

Proof. See Appendix A.5. □

Analogous to Theorem 1, Theorem 2 implies

• When the discriminator ranges in (0, 1), DE-GAIL will also be at risk of exploding gradi-
ents.

• When the policy loss suffers from exploding gradients during many runs, the discriminator
in DE-GAIL degenerates to 0 or 1.

Differently, ST-GAIL will not suffer from exploding gradients when the discriminator ranges in
(0, 1).
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Figure 5: The discriminators of SD3-GAIL and TSSG in Walker2d-v2 under 11 seeds.

Figure 6: The absolute gradients of SD3-GAIL and TSSG policy
networks in Walker2d-v2.

Experimental results in Fig.
5 and Fig. 6 support our the-
oretical analysis. Seeds 5,
7, 10 exhibit exploding gradi-
ent performances (left figure
in Fig. 6) and degenerating
discriminator behaviors (first
row in Fig. 5), which are con-
sistent with the invalid cases
(r → 0) in Fig. 4(a). Note
that the gradients of TSSG
and the valid cases in SD3-
GAIL are in the same order
of magnitude, far less than the invalid cases in SD3-GAIL.

4.3 RELIEVING EXPLODING GRADIENTS WITH REWARD MODIFICATION

Kostrikov et al. (2019) introduced the reward function r2(st, at) = log(D(st, at)) − log(1 −
D(st, at)) of AIRL into GAIL, and illustrated a reduction in instability through comparative ex-
periments against GAIL with PLR r1(st, at) = − log(1−D(st, at)). The reward function of AIRL
is defined as the combination reward function (CR) in Wang & Li (2021). For written convenience,
DE-GAIL with PLR and CR are called PLR-DE-GAIL and CR-DE-GAIL respectively.

Further, in this section, we proceed with this reduction of instability from a theoretical explanation,
in other words, whether CR-DE-GAIL permits a relief in exploding gradient probability over PLR-
DE-GAIL.

Theorem 1 points out that the mismatched state-action pair results in exploding gradients. Further,
what truly pertains to our discussion in the sequel is the behavior of the discriminator. This is due to
its unified characteristic that lies in the interval [0, 1]. Now we present the following Lemma on the
mismatching in the view of the discriminator.

Proposition 1 When the discriminator is set to be optimal D∗(s, a) in Eq. (6), we have

D∗(st, at) ≈ 1 ⇔ h(st) mismatches at.
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Proof. See Appendix A.6. □

Lemma 1 indicates that exploding gradients depend on the distance between the discriminator’s
value and 1, or they depend on the degree of ri(st, at) for i = 1, 2 when r approaches infinity. This
is due to the monotonicity of both r1(st, at) and r2(st, at). we thus obtain

r1(st, at) ≈ ∞ and r2(st, at) ≈ ∞ (8)

as D(st, at) ≈ 1.

Naturally, to prevent exploding gradients, we make the constraints that ri(st, at) ≤ C, i = 1, 2, for
some appropriate constant C. In contrast, the outlier of the discriminator can be characterized as
ri(st, at) > C for i = 1, 2, which is referred to as the following.

Definition 2 When the discriminator is set to be optimal D∗(s, a) in Eq. (6), the outliers of the
discriminator are defined in [α, 1] such that r1(st, at) ≥ C. Similarly, under the same upper bound
C, the outliers of the discriminator are defined in [β, 1] for r2(st, at).

We note that the training process will suffer from exploding gradients when the discriminator comes
to rest in [α, 1]. The remission of exploding gradients in CR-DE-GAIL is presented in the following
proposition.

Proposition 2 When the discriminator is set to be optimal D∗(s, a) in Eq. (6), we have β ≥ α.

Proof. See Appendix A.7. □

Proposition 2 reveals that the discriminator in CR-DE-GAIL exhibits a smaller interval of outliers
than that in PLR-DE-GAIL, decreasing the probability of gradient explosion. Our conclusion is
consistent with the claim in Kostrikov et al. (2019) (Fig. 5).

5 CONCLUSION

In this paper, we have explored the principle of instability in DE-GAIL. We first experimentally show
the extreme instability performance of DE-GAIL algorithms compared to ST-GAIL. Subsequently,
our proof manifests that the gradient of the deterministic policy loss with respect to the policy will
suffer from exploding with some probability, thereby leading to training failure. In comparison, we
present the compatibility between stochastic policy and GAIL. Finally, the modified reward function
is shown to remedy the exploding gradients.

Reducing the probability of exploding gradients is under consideration. By introducing the idea
of clipping the reward into SD3-GAIL, we have discovered some interesting phenomena. For a
preliminary verification of our algorithm, please refer to Appendix A.8. Specifically, the fact that
clipping the reward that leads to the outlier of the discriminator shows its superiority in the stability
of DE-GAIL. Further analysis that improves the sample efficiency while keeping low exploding
gradient probability is left for future works.
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Lionel Blondé and Alexandros Kalousis. Sample-efficient imitation learning via generative adver-
sarial nets. In International Conference on Artificial Intelligence and Statistics, pp. 3138–3148,
2019.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pp. 182–189, 2011.

9



Under review as a conference paper at ICLR 2023

Minshuo Chen, Yizhou Wang, Tianyi Liu, Zhuoran Yang Yang, Xingguo Li, Zhaoran Wang, and
Tuo Zhao. On computation and generalization of generative adversarial imitation learning. In
International Conference on Learning Representations, 2020.

Xiaocong Chen, Lina Yao, Aixin Sun, Xianzhi Wang, Xiwei Xu, and Liming Zhu. Generative in-
verse deep reinforcement learning for online recommendation. In ACM International Conference
on Information & Knowledge Management, pp. 201–210, 2021.

Wenqiang Chi, Giulio Dagnino, Trevor MY Kwok, Anh Nguyen, Dennis Kundrat, Mohamed EMK
Abdelaziz, Celia Riga, Colin Bicknell, and Guang-Zhong Yang. Collaborative robot-assisted
endovascular catheterization with generative adversarial imitation learning. In IEEE International
Conference on Robotics and Automation, pp. 2414–2420, 2020.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse rein-
forcement learning. In International Conference on Learning Representations, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596, 2018.

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence minimization
perspective on imitation learning methods. In Conference on Robot Learning, pp. 1259–1277,
2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, volume 27, pp. 2672—-2680, 2014.

Ziwei Guan, Tengyu Xu, and Yingbin Liang. When will generative adversarial imitation learning
algorithms attain global convergence? In International Conference on Artificial Intelligence and
Statistics, pp. 1117–1125, 2021.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, volume 29, pp. 4565–4573, 2016.

Mohamed Khalil Jabri. Robot manipulation learning using generative adversarial imitation learning.
In International Joint Conference on Artificial Intelligence, pp. 4893–4894, 2021.

Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha Srinivasa.
Imitation learning as f-divergence minimization. In International Workshop on the Algorithmic
Foundations of Robotics, pp. 313–329, 2020.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. In International Conference on Learning Representations, 2019.

Guy Lever and Ronnie Stafford. Modelling policies in MDPs in reproducing kernel hilbert space.
In Artificial Intelligence and Statistics, pp. 590–598, 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Charles A Micchelli and Massimiliano Pontil. On learning vector-valued functions. Neural Compu-
tation, 17(1):177–204, 2005.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, pp. 663–670, 2000.
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A APPENDIX

A.1 DE-GAIL ALGORITHM

Algorithm 1 GAIL with deterministic policy algorithms
1: Input: Expert demonstrations, initialize the learned policy πθ and discriminator network D,

some RL deterministic policy algorithms, such as SD3, TD3 and DDPG.
2: for iteration 0, 1, 2, · · · do
3: Update D by maximizing E(s,a)∼ρπE [log(D(s, a))] + E(s,a)∼ρπ [log(1−D(s, a))].
4: Calculate PLR r(s, a) = − log(1−D(s, a)).
5: Update θ by a deterministic policy algorithm.
6: end for

11
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A.2 THE INVALIDITY IN DE-GAIL

The instability of DE-GAIL is mainly imputed to the invalid case, i.e., the reward function ap-
proaches zero. To illustrate this invalidity, consider a specific MDP M: S contains (g + 1) states
s0, s1, ..., sg , where sg is the terminal state. The action ai→j in A is such that sj ∼ p(·|si, ai→j)
satisfies that |i− j| ≤ g/4 for i ̸= j. The expert demonstration is shown in Fig. 7.

Figure 7: Expert demonstration. Each state transfers to the neighboring g/4 states and back to itself
from left to right. Left: The schematic of the expert demonstration, where the red arrow is the last
action taken in each state. Right: The pseudocode of the expert demonstration.

For the state st (0 ≤ t < 3g/4), the action at→t+1 occurs 3 times while others occur at most twice
in the expert demonstration. Note that

D∗(s, a) =
ρπE(s, a)

ρπE(s, a) + ρπ(s, a)
=

1

1 + ρπ(s,a)
ρπE (s,a)

,

D∗(s, a) is monotonically increasing with respect to ρπE(s, a). Thus, the more frequent expert
state-action pair tends to attain a higher value of the discriminator, thereby resulting in higher PLR.
Meanwhile, policy training in RL aims to maximize the expected reward-to-go. Therefore, the most
frequent action at→t+1 is the best choice for a deterministic learned policy under each st. The
detailed trajectory is shown in Fig. 8.

Figure 8: The trajectory of the deterministic learned policy. From s0 to the terminal state sg sequen-
tially.

We now show the behavior of rewards for state-action pairs in the deterministic policy.

Proposition 3 In the MDP M, when the discriminator is set to be optimal, PLR of (st, at→t+1)
satisfies

r(st, at→t+1) = − log(1−D(st, at→t+1)) → 0 as |S| → ∞,

where

D(st, at→t+1) =


48g

11g2+72g−16 , 0 ≤ t < 3g
4 ,

16g
11g2+40g−16 , t = 3g

4 ,

0, otherwise.
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Proof. The length of the expert trajectory is

N = 2
(g
4
+ (

g

4
+ 1) + · · ·+ (

g

4
+

g

4
− 1)

)
+ 2(

g

2
+ 1)

g

2
− 1 +

3g

4

=
11g2 + 24g − 16

16
.

Note that the first term 2(g/4 + (g/4 + 1) + · · ·+ (g/4 + g/4− 1)) comes from executing actions
ai→j , aj→i in states s0, s1, · · · , sg/4−1, the second term 2(g/2+ 1)g/2− 1 is derived by executing
actions ai→j , aj→i in states sg/4, sg/4+1, · · · , s3g/4, and the last term 3g/4 is obtained by executing
the action ai→i+1.

Denote the expert policy and the deterministic policy as πE and h, respectively. For the (st, at→t+1),
0 ≤ t < 3g/4 in the trajectory of the deterministic policy, the optimal discriminator is (Kostrikov
et al., 2019):

D(st, at→t+1) =
ρπE(st, at→t+1)

ρπE(st, at→t+1) + ρh(st, at→t+1)

=
3
N

3
N + 1

g

=
48g

11g2 + 72g − 16
.

For t = 3g/4, we have

D(s3g/4, a3g/4→3g/4+1) =
16g

11g2 + 40g − 16
.

While for any t > 3g/4, the value D(st, at→t+1) is zero since it never appears in the expert demon-
strations. To sum up, when the discriminator achieves its optimal,

r(st, at→t+1) = − log(1−D((st, at→t+1))) → 0 as |S| → ∞.

□

Remark 2 Note that under the deterministic policy, PLR of the best action approaches 0. As a
result, we have r → 0 for all state-action pairs.

In contrast, for a stochastic policy reaching the expert level, the length of the expert trajectory and
the stochastic policy have the same order O(|S|2). Here |S| denotes the size of S. Referring to the
proof strategy, PLR will not decline to zero.

Proposition 3 illustrates the invalid case, implying the instability in DE-GAIL.
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A.3 AN DESCRIPTIVE EXAMPLE OF MISMATCHING AND MATCHING

The probability density contour map of the expert action demonstration in state st is shown in Fig.
9.

Figure 9: The process of the mismatched case and the matched case on a descriptive example of a
two-dimensional action space (x-axis and y-axis). Left: The mismatched case. Right: The matched
case. Without loss of generality, the threshold of matching is set as 0.035. The trajectories used to
train the learned policies are shown in red curves. The matching is that h(st) lies in the neighborhood
of at, which has a high probabilistic density in the expert demonstration.

A.4 PROOF OF THEOREM 1

Theorem 1 Let πh(·|s) be the Gaussian stochastic policy with mean h(s) and covariance Σ. When
the discriminator is set to be optimal D(s, a) in Eq. (6), the gradient estimator of the policy loss
with respect to the policy’s parameter h satisfies

∥∇̂hDJS(ρ
πh , ρπE)∥2 → ∞

with a probability of Pr(∥Σ−1(at − h(st))∥2 ≥ C for any C > 0) as Σ → 0 where

∇̂hDJS(ρ
πh , ρπE) =

dπh(st)∇hπh(at|st)
2dπE(st)πE(at|st)

log
2dπh(st)πh(at|st)

dπh(st)πh(at|st) + dπE(st)πE(at|st)
,

and ∇hπh(a|s) = πh(a|s)κ(s, ·)Σ−1(a− h(s)).

Proof. Through importance sampling which transfers the learned state-action distribution to the
expert demonstration distribution, the JS divergence can be rewritten from the definition in Eq. (4)
as

DJS(ρ
πh , ρπE)

=
1

2
DKL(ρ

πh ,
ρπh + ρπE

2
) +

1

2
DKL(ρ

πE ,
ρπh + ρπE

2
)

=
1

2
E(s,a)∼DI

[
log

2ρπh(s, a)

ρπh(s, a) + ρπE(s, a)

]
+

1

2
E(s,a)∼DE

[
log

2ρπE(s, a)

ρπh(s, a) + ρπE(s, a)

]
=

1

2
E(s,a)∼DE

[
ρπh(s, a)

ρπE(s, a)
log

2ρπh(s, a)

ρπh(s, a) + ρπE(s, a)
+ log

2ρπE(s, a)

ρπh(s, a) + ρπE(s, a)

]
, (9)
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where DE and DI denote the expert demonstration and the replay buffer of πh respectively. Then
we can approximate the gradient of Eq. (9) with respect to h with

∇̂hDJS(ρ
πh , ρπE)

(i)
=

1

2
∇h

(
ρπh(st, at)

ρπE(st, at)
log

2ρπh(st, at)

ρπh(st, at) + ρπE(st, at)
+ log

2ρπE(st, at)

ρπh(st, at) + ρπE(st, at)

)
(ii)
=

1

2

(
dπh(st)∇hπh(at|st)
dπE(st)πE(at|st)

log
2dπh(st)πh(at|st)

dπh(st)πh(at|st) + dπE(st)πE(at|st)

+
ρπh(st, at)

ρπE(st, at)
· ρ

πh(st, at) + ρπE(st, at)

2ρπh(st, at)

·
2dπh(st)∇hπh(at|st)

(
ρπh(st, at) + ρπE(st, at)

)
− 2ρπh(st, at)d

πh(st)∇hπh(at|st)(
ρπh(st, at) + ρπE(st, at)

)2
− ρπh(st, at) + ρπE(st, at)

2ρπE(st, at)
· 2ρ

πE(st, at)d
πh(st)∇hπh(at|st)(

ρπh(st, at) + ρπE(st, at)
)2 )

(iii)
=

1

2

(
dπh(st)∇hπh(at|st)
dπE(st)πE(at|st)

log
2dπh(st)πh(at|st)

dπh(st)πh(at|st) + dπE(st)πE(at|st)

+
dπh(st)∇hπh(at|st)

ρπh(st, at) + ρπE(st, at)
− dπh(st)∇hπh(at|st)

ρπh(st, at) + ρπE(st, at)

)
(iv)
=

dπh(st)∇hπh(at|st)
2dπE(st)πE(at|st)

log
2dπh(st)πh(at|st)

dπh(st)πh(at|st) + dπE(st)πE(at|st)
, (10)

where (ii) comes from Eq. (1). By the fact that

∇hπh(a|s) = πh(a|s)∇h log πh(a|s) = πh(a|s)κ(s, ·)Σ−1(a− h(s)), (11)

Eq. (10) can be shown that

∥∇̂hDJS(ρ
πh , ρπE)∥2

=

∥∥∥∥dπh(st)πh(at|st)κ(st, ·)Σ−1(at − h(st))

2dπE(st)πE(at|st)
log

2dπh(st)πh(at|st)
dπh(st)πh(at|st) + dπE(st)πE(at|st)

∥∥∥∥
2

.

Then it follows that ∥∇̂hDJS(ρ
πh , ρπE)∥2 → ∞ with a probability of Pr(∥Σ−1(at − h(st))∥2 ≥

C for any C > 0) as Σ → 0. □

A.5 PROOF OF THEOREM 2

Theorem 2 (Main Result) Let πh(·|s) be the Gaussian stochastic policy with mean h(s) and co-
variance Σ. When the discriminator is set to be regular D̃(s, a) in Eq. (7), i.e., D̃(s, a) ∈ (0, 1),
the gradient estimator of the policy loss with respect to the policy’s parameter h satisfies∥∥∥∇̂h

(
E(s,a)∼DE

[log(D̃(s, a))] + E(s,a)∼DI
[log(1− D̃(s, a))]

)∥∥∥
2
→ ∞

with a probability of Pr(∥Σ−1(at − h(st))∥2 ≥ C for any C > 0) as Σ → 0, where DE and DI

denote the expert demonstration and the replay buffer of πh respectively,

∇̂h

(
E(s,a)∼DE

[log(D̃(s, a))] + E(s,a)∼DI
[log(1− D̃(s, a))]

)
=

dπh(st)∇hπh(at|st)
dπE(st)πE(at|st)

log
(1− ϵ)dπh(st)πh(at|st)

(1 + ϵ)dπE(st)πE(at|st) + (1− ϵ)dπh(st)πh(at|st)

+
2ϵdπh(st)∇hπh(at|st)

ρπE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)
,

and ∇hπh(a|s) = πh(a|s)κ(s, ·)Σ−1(a− h(s)).

Proof. Referring to the proof strategy of Theorem 1, the learned state-action distribution can be
transferred to the expert demonstration distribution by importance sampling. Thus when the dis-
criminator is set to be regular D̃(s, a), we can write the policy objective from the optimization

15



Under review as a conference paper at ICLR 2023

problem in Eq. (2) as

E(s,a)∼DE
[log(D̃(s, a))] + EDI [log(1− D̃(s, a))]

= E(s,a)∼DE

[
log

ρπE(s, a)(1 + ϵ)

ρπE(s, a)(1 + ϵ) + ρπh(s, a)(1− ϵ)

]
+ E(s,a)∼DI

[
log

ρπh(s, a)(1− ϵ)

ρπE(s, a)(1 + ϵ) + ρπh(s, a)(1− ϵ)

]
= E(s,a)∼DE

[
log

ρπE(s, a)(1 + ϵ)

ρπE(s, a)(1 + ϵ) + ρπh(s, a)(1− ϵ)

+
ρπh(s, a)

ρπE(s, a)
log

ρπh(s, a)(1− ϵ)

ρπE(s, a)(1 + ϵ) + ρπh(s, a)(1− ϵ)

]
. (12)

Then the gradient of Eq. (12) can be approximated with

∇̂h

(
E(s,a)∼DE

[log(D̃(s, a))] + EDI
[log(1− D̃(s, a))]

)
= ∇h

(
log

ρπE(st, at)(1 + ϵ)

ρπE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)

+
ρπh(st, at)

ρπE(st, at)
log

ρπh(st, at)(1− ϵ)

ρπE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)

)
= −ρπE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)

ρπE(st, at)(1 + ϵ)
· ρ

πE(st, at)d
πh(st)∇hπh(at|st)(1 + ϵ)(1− ϵ)(

ρπE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)
)2

+
dπh(st)∇hπh(at|st)
dπE(st)πE(at|st)

log
(1− ϵ)dπh(st)πh(at|st)

(1 + ϵ)dπE(st)πE(at|st) + (1− ϵ)dπh(st)πh(at|st)

+
ρπh(st, at)

ρπE(st, at)
· ρ

πE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)

ρπh(st, at)(1− ϵ)

· (1− ϵ)(1 + ϵ)ρπE(st, at)d
πh(st)∇hπh(at|st)(

ρπE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)
)2

=
dπh(st)∇hπh(at|st)
dπE(st)πE(at|st)

log
(1− ϵ)dπh(st)πh(at|st)

(1 + ϵ)dπE(st)πE(at|st) + (1− ϵ)dπh(st)πh(at|st)

− (1− ϵ)dπh(st)∇hπh(at|st)
ρπE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)

+
(1 + ϵ)dπh(st)∇hπh(at|st)

ρπE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)

=
dπh(st)∇hπh(at|st)
dπE(st)πE(at|st)

log
(1− ϵ)dπh(st)πh(at|st)

(1 + ϵ)dπE(st)πE(at|st) + (1− ϵ)dπh(st)πh(at|st)

+
2ϵdπh(st)∇hπh(at|st)

ρπE(st, at)(1 + ϵ) + ρπh(st, at)(1− ϵ)
. (13)

Plugging Eq. (11) into Eq. (13), when ∥Σ−1(at − h(st))∥2 ≥ C for any C > 0, we have∥∥∥∇̂h

(
E(s,a)∼DE

[log(D̃(s, a))] + EDI
[log(1− D̃(s, a))]

)∥∥∥
2
→ ∞.

□

A.6 PROOF OF PROPOSITION 1

Proposition 1 When the discriminator is set to be optimal D∗(s, a) in Eq. (6), we have

D∗(st, at) ≈ 1 ⇔ h(st) mismatches at.

Proof. The optimal discriminator of (st, at) can be denoted by

D∗(st, at) =
ρπE(st, at)

ρπE(st, at) + ρπh(st, at)
.

We can derive that the necessary and sufficient condition of D∗(st, at) ≈ 1 is that ρπh(st, at) ≈ 0,
i.e., (st, h(st)) mismatches (st, at). □
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A.7 PROOF OF PROPOSITION 2

Proposition 2 When the discriminator is set to be optimal D∗(s, a) in Eq. (6), we have β ≥ α.

Proof. When ri(st, at) = C, i = 1, 2, we obtain log β − log(1 − β) = − log(1 − α), which is
followed by

β − α =
α2 − 2α+ 1

2− α
≥ 0.

□

A.8 SD3-GAIL WITH CLIPPED REWARD

Clipping reward shows its superiority in the stability of DE-GAIL but at the expense of lower sample
efficiency.

Figure 10: Comparison of SD3-GAIL and SD3-GAIL with clipped reward in three different envi-
ronments.
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