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ABSTRACT

Data poisoning and backdoor attacks manipulate training data to induce security
breaches in a victim model. These attacks can be provably deflected using differ-
entially private (DP) training methods, although this comes with a sharp decrease
in model performance. The InstaHide method has recently been proposed as an
alternative to DP training that leverages supposed privacy properties of the mixup
augmentation, although without rigorous guarantees. In this paper, we rigorously
show that k-way mixup provably yields at least k times stronger DP guarantees
than a naive DP mechanism, and we observe that this enhanced privacy guarantee
is a strong foundation for building defenses against poisoning.

1 INTRODUCTION

As the capabilities of machine learning systems expand, so do their training data demands. To satisfy
this massive data requirement, developers create automated web scrapers that download data without
human supervision. The lack of human control over the machine learning pipeline may expose
systems to poisoned training data that induces pathologies in models trained on it. Data poisoning and
backdoor attacks may degrade accuracy or elicit incorrect predictions in the presence of a triggering
visual feature (Shafahi et al.,[2018; |Chen et al.,[2017).

To combat this threat model, a number of defenses against data poisoning have emerged. Certified
defenses based on differential privacy (DP) provably desensitize models to small changes in their
training data by adding noise to either the data or the gradients used by their optimizer (Ma et al.,
2019). When a model is trained using sufficiently strong DP, it is not possible to infer whether a
small collection of data points were present in the training set by observing model behaviors, and
it is therefore not possible to significantly alter model behaviors by introducing a small number of
poisoned samples. DP methods generally require adding large amounts of noise to data samples (or
gradients), which can significantly degrade model performance.

As an alternative to DP, the InstaHide algorithm (Huang et al.,[2020b) aims to create dataset privacy
by averaging random image pairs and then multiplying the results by a random mask. Random
averaging of images before training is known as mixup regularization (Zhang et al., 2017), and can
improve model performance. By leaning on mixup rather than noise to create randomness, InstaHide
seeks to avoid the drastic performance trade offs of differential privacy. Unfortunately, the privacy
claims of InstaHide were not well founded, and the method was quickly broken (Carlini et al., 2020).

In this paper, we formally prove that mixup augmentation enhances the guarantees of classical DP
methods, and the privacy benefits are highly advantageous for defending against dataset manipulation.
Our proposed method, DP-InstaHide, applies k-way mixup before adding Laplacian noise, resulting
in a factor of k£ improvement in e-differential privacy bounds (i.e., a k-fold reduction in €) over the
traditional Laplacian mechanism. When used to defend against poisoning and backdoor attacks, we
find that mixup-based privacy yields a favorable robustness accuracy trade-off compared to other
strong defenses. We benchmark the empirical performance of DP-InstaHide, in addition to several
extensions based on other related augmentations (Yun et al.,[2019; Zhang et al.| 2017;|Gong et al.,
2020).
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This paper is the full version of a preliminary short (4-page) paper in which we only consider data
augmentations as an empirical defense without any formal guarantees [citation omitted]. We go
beyond that preliminary work to characterize the privacy benefits of DP-InstaHide theoretically, and
we greatly extend the empirical analysis of data augmentation defenses against data poisoning attacks.

1.1 RELATED WORK

Broadly speaking, data poisoning attacks aim to compromise the performance of a network by
maliciously modifying the data on which the network is trained. Data poisoning attacks vary in
their goals, methods, and settings. In general, the goals of a data poisoning attack can be divided
into indiscriminate attacks, which seek to degrade general test-time performance of a network, and
targeted attacks, which aim to cause a specific example, or set of examples, to be misclassified
(Barreno et al., 2010).

Early work on data poisoning often focused on indiscriminate attacks in simple settings, such as
support vector machines, logistic regression models, principle component analysis, or clustering
algorithms (Mufioz-Gonzalez et al., 2017} [Xiao et al., 2015; Biggio et al.l 2012} Koh et al.|[2018).

However, these early methods do not scale well to modern deep networks (Huang et al., 2020al).
Many recent works instead focus on targeted attacks and backdoor attacks, which are easier to scale
and can be more insidious since they do not lead to any noticeable degradation in validation accuracy,
making them harder to detect (Geiping et al.,2020). Accordingly, in this work, we focus on defending
against targeted and backdoor attacks. Within these attacks, however, there still exists a wide range
of methods and settings. Below, we detail a few categories of attacks. A comprehensive enumeration
of backdoor attacks, data poisoning attacks, and defense can be found in|Goldblum et al.| (2020).

A feature collision attack occurs when the attacker modifies training samples so they collide with, or
surround, a target test-time image. Poison Frogs (Shafahi et al.,[2018]) optimizes poisons to minimize
the /5 distance in feature space between the poisoned and target features, while also including a
regularization term on the size of the perturbations. Newer methods like convex polytope (Zhu et al.,
2019) and bullseye polytope (Aghakhani et al.,|2020) surround the target image in feature space to
improve the stability of poisoning. All these methods work primarily in the transfer learning setting,
where a known feature extractor is fixed and a classification layer is fine-tuned on the perturbed data.

From-scratch attacks modify training data to cause targeted misclassification of preselected test
time images. Crucially, these attacks work in situations where a deep network is a priori trained on
modified data, rather than being pretrained and subsequently fine-tuned on poisoned data. MetaPoison
(Huang et al.| |2020a) optimizes poisons by unrolling training iterations to solve a bi-level optimization
problem. Witches’ Brew (Geiping et al.,2020) approximately solve the bi-level optimization problem
using a gradient alignment objective.

Backdoor attacks involve inserting a “trigger,” often a fixed patch, into training data. Attackers
can then add the same patch to data at test time to fool the network into misclassifying modified
images as the target class. Some forms of backdoor attacks will patch a number of training images
with a small pattern or even modify just a single pixel (Gu et al.,[2017; [Tran et al.,|2018b)). More
complex attacks, like hidden-trigger backdoors (Saha et al., [2020), adaptively modify the training
data to increase the success of the additive patch at test time.

Conversely, a variety of defenses against poisoning attacks have also been proposed. Many defenses
to targeted poisoning attacks can broadly be classified as filtering defenses, which either remove or
relabel poisoned data. These methods rely on the tendency of poisoned data to differ sufficiently from
clean data in feature space. Intuitively, one could use a pretrained network as a feature extractor to
sort out poison from the clean data. Once the poisoned data is found and isolated in feature space, it is
removed from the dataset and the model is retrained from scratch. Conveniently, filtering defenses do
not require any external source of trusted clean data and work even if the feature extractor is trained
on poisoned data.

Among filtering defenses, Spectral Signatures (Tran et al.,|2018b; |Paudice et al., |2018) filter data
based on which points have the highest correlation with the top right singular vector of the feature
covariance matrix. Activation Clustering (Chen et al., 2018) instead uses k-means clustering to
separate feature space, relying on the heuristic that poisons tend to cluster in feature space. DeepKNN
(Peri et al.l 2019) relabels outlier data in feature space according to a k-nearest neighbors algorithm,
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hoping to diminish the effects of poison using the same heuristic that poisoned data are outliers in
feature space.

Unfortunately, filtering defenses have proven weak against more advanced attacks, especially in the
from-scratch setting (Geiping et al.| 2020), and may be nullified by adaptive attacks that carefully
circumvent detection (Koh et al., 2018]).

Certified defenses avoid the possibility of breaking under adaptive attacks using robust mechanisms
such as randomized smoothing or by partitioning the training data and individually training classifiers
on each partition (Weber et al.,|2020; |[Levine & Feizi, 2020).

Another class of principled defenses use differentially private SGD, where training gradients are
clipped and noised thus diminishing the effects of poisoned gradient updates. However, these defenses
have been shown to fail against advanced attacks, as they often lead to significant drops in clean
validation accuracy (Geiping et al.| |2020).

Outside of data poisoning, a Rényi differential privacy bound for mixtures of data points exists in (Lee
et al., 2019)), but this bound is very loose in the low privacy regime, where neural networks achieve
appreciable test accuracy, and the guarantee is numerically challenging to compute in practice.

2 DP-INSTAHIDE: A MIXUP DEFENSE WITH PROVABLE DIFFERENTIAL
PRIVACY ADVANTAGES

The original InstaHide method (Huang et al., | 2020b) attempted to privatize data by first applying
mixup, and then multiplying the results by random binary masks. While the idea that mixup enhances
the privacy of a dataset is well founded, the original InstaHide scheme lies outside of the classical
differential privacy framework, and is now known to be insecure (Carlini et al.| |2020). We propose a
variant of the method, DP-InstaHide, which replaces the multiplicative random mask with additive
Laplacian noise. The resulting method comes with a differential privacy guarantee that enables us to
quantify and analyze the privacy benefits of mixup augmentation.

Differential privacy, developed by [Dwork et al.| (2014)), aims to prevent the leakage of potentially
compromising information about individuals present in released data sets. By utilizing noise and
randomness, differentially private data release mechanisms are provably robust to any auxiliary
information available to an adversary.

Formally, let M : D — R be a random mechanism, mapping from the space of datasets to a
co-domain containing potential outputs of the mechanism. We consider a special case where R is
another space of datasets, so that M outputs a synthetic dataset. We say two datasets D, D’ € D are
adjacent if they differ by at most one element, that is D’ has one fewer, one more, or one element
different from D.

Then, M is (¢, 0)-differentially private if it satisfies the following inequality for any U C R:
P[M(D) € U] < eP[M(D') € U] + 6. )

Intuitively, the inequality and symmetry in the definition of dataset adjacency tells us that the
probability of getting any outcome from M does not strongly depend on the inclusion of any
individual in the dataset. In other words, given any outcome of the mechanism, a strong privacy
guarantee implies one cannot distinguish whether D or D’ was used to produce it. This sort of
indistinguishability condition is what grants protection from linkage attacks such as those explored
by [Narayanan & Shmatikov|(2006)). The quantity e describes the extent to which the probabilities
differ for most outcomes, and d represents the probability of observing an outcome which breaks the
€ guarantee.

In the case where differentially private datasets are used to train neural networks, such indistinguisha-
bility also assures poisoned data will not have a large effect on the trained model. Ma et al.|(2019)
formalize this intuition by proving a lower bound for the defensive capabilities of differentially private
learners against poisoning attacks.

We define the threat model as taken from |[Ma et al.|(2019): The attacker aims to direct the trained
model M (D’) to reach some attack target by modifying at most [ elements of the clean dataset D to
produce the poisoned dataset D’. We measure the distance of M (D’) from the attack target using



Under review as a conference paper at ICLR 2023

mixup Laplacian Noise Defense

Poisoned Image

Figure 1: Illustration of the DP-InstaHide defense on two CIFAR-10 images, the first of which has
been poisoned with ¢ = 16. Mixup is used to average two images, and then Laplacian noise is added,

a cost function C, which takes trained models as an input and outputs an element of R. The attack
problem is then to minimize the expectation of the cost of M (D").

min J(D') := E[C(M(D"))] 2)

Theorem 1. For an (e, d)-differentially private mechanism M and bounded cost function |C| < B,
it follows that the attack cost J(D') satisfies

J(D') > max{e (J(D) + 663_51> - 663_5 00} 3)
J(D') > max{e™"* (J (D) + 653_51> + eeB_é T —B} )

where the former bound holds for non-negative cost functions and the latter holds for non-positive
cost functions.

Because DP is defined with worst-case scenarios, which do not always occur in practice, empirical
studies show the defense offered by differential privacy mechanisms tends to be more effective than
the theoretical limit.

We find that differential privacy achieved through DP-InstaHide, the combination of k-way mixup
and additive Laplacian noise, is an example of such a defense, practically visualized in Fig[T] Because
mixup augmentation concentrates training data near the center of the unit hypercube, less noise must
be added to the mixed up data to render the noisy data indistinguishable from other points nearby
in comparison to solely adding noise to the data points (Zhang et all 2017). Additionally, mixup
benefits from improved generalization due to its enforcement of linear interpolation between classes
and has recently been shown to be robust to a variety of adversarial attacks, such as FGSM
[2020). We use a combinatorial approach to achieve a formal differential privacy guarantee for
mixup with Laplacian noise, which in tandem with the result from Ma et al | gives us a direct
theoretical protection from data poisoning.

2.1 A THEORETICAL GUARANTEE FOR DP-INSTAHIDE

Above, we discussed how strong data augmentations, such as mixup and random noise, provide
an empirically strong defense against poisoning. We can explain the strength of this defense, and
provide a rigorous guarantee, by analyzing the privacy benefits of mixup within a differential privacy
framework.

Let D be a dataset of size n and D’ denote the same dataset with the point 2 removed. Let d be the
dimension of data points and assume the data lies in a set V' of diameter one, i.e., sup{||D — D’||; :
D,D' € V} < 1. We sample a point of the form z = (21 + 2 + -+ + @) + 1, where the
x; are drawn at random from the relevant dataset P without replacement, and n ~ Lap(0,c1)
is the independent d-dimensional isotropic Laplacian additive noise vector with density function

¢0(77) = (2(1,)01 elmlh /e
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The random variable representing the outcome of the sampling is therefore a sum of random variables:

w\H

k
Z 5)

We use p and g to denote the probability density functions of M p, and M p/ respectively.

Theorem 2. Assume the data set D has {1-norm radius less than 1, and that mixup groups of mixture
width k are sampled without replacement. The mixup plus Laplacian noise mechanism producing a
data set of size N satisfies (¢, 0)-differential privacy with

N
=N A Bl < —
€ max { A, }_ka
where
A:log(l—k—keklﬂk),B:lognl.
n n n—k+ ke %

Proof. To prove differential privacy, we must bound the ratio of P[Mp € U] to P[Mp, € U] from
above and below, where U C V is arbitrary and measurable. For a fixed sampling combination x =

(x1,...,7) € DF, the density for observing z = £ S &, + H is given by ¢, (z — Ly xz)

Since there are ( ) possible values that « can take on, each of equal probability, we have

k
= MO S g (oo 3.

z€DF

Let’s now write a similar expression for ¢(z). We have

k
q(z):k'("— _1 Z%( %Z ) ©)

zeD’k

Now, we write the decomposition p(z) = po(z) + pi1(z), where po(z) is the probability of the
ensemble not containing z( times the conditional density for observing z given this scenario, and
p1(z) is the probability of having x¢ in the ensemble times the conditional density for observing z
given this scenario.

Then, we have

k—
pe) = (1-2) ate) and pr(s) = BE=DH B2 Z%(—fj %Z ) )

zeD’k-1

In the equation above, % represents the probability of drawing an ensemble x that contains xg, and
the remainder of the expression is the probability of forming z — x( using the remaining & — 1 data
points in the ensemble.

We can simplify p; in equation [7]using a combinatorial trick. Rather than computing the sum over all
tuples of size k — 1, we compute the sum over all tuples of length &, but we discard the last entry of
each tuple. We get

' o k—
pi(2) = ik” 1) Zm( 2- 22— %Z ) ®

zeD’k

Now, from the definition of the Laplace density, we have that if |ju — v||; < € for any u, v then

e Ivmvl/o g, (v) < go(u) < el I/7 g, (v).
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Let’s apply this identity to equationwith u=z—% LSl ando =2~ 20 a; We get
_ 1 k 1 k
e *7—q(z) < pi(z) < eFr —q(2),

where we have used the fact that the dataset D has unit diameter to obtain ||u — v[|; < , and we
used the definition equation [6]to simplify our expression.

Now, we add py to this equation. We get

k 1 k
1—— Tk — < <(1-
(1- L4 e E)ar <pta <
From this, we arrive at the conclusion
p(z)§(1k+eklvk)§eklv and Q(z)g n T Seﬁ.
q(2) n n p(2) T n—k+ ke %o

The left-most upper bound in the above equation is achieved by replacing k with n wherever k
appears outside of an exponent. We get the final result by taking the log of these bounds and using
the composability property of differential privacy to account for the number NV of points sampled.

O

Remark: A classical Laplacian mechanism for differentially private dataset release works by adding
noise to each dataset vector separately and achieves privacy with € = % Theorem [2| recovers this
bound in the case k = 1, however it also shows that k-way mixup enhances the privacy guarantee
over the classical mechanism by a factor of at least k.

We investigate the practical implications of Theorem 2]in Figure [2] where we show the predicted
theoretical privacy guarantees in Figure [2aland the direct practical application for defenses against
data poisoning in Figure 2b] Figure @%QWS the average poison success for a strong, adaptive
gradient matching attack against a ResNet-18 trained on CIFAR-10 (the setting considered in|Geiping
et al.|(2020) with an improved adaptive attack). We find that the theoretical results predict the success
of a defense by mixup with Laplacian noise surprisingly well. More details about the empirical
experiments can be found in[A.2]

5=0/255

bhise
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®
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Mixing Width Mixing Width

(a) Theoretical privacy guarantees (b) Empirical defense against poisoning attacks

Figure 2: Theoretical and empirical mixup. Left: Privacy guarantee € as a function of mixture width
k, computed for each implemented Laplacian noise level s. We use values n = N = 5 x 104,
corresponding to the CIFAR-10 dataset. Right: Poisoning success for a strong adaptive gradient
matching attack for several mixture widths and noise levels.

3 DATA AUGMENTATION AS AN EMPIRICAL DEFENSE AGAINST DATASET
MANIPULATION

Now that we have established the provable benefits of mixup, we study the empirical effectiveness of
data augmentations to prevent poisoning. We are mainly interested in data augmentations that mix
data points; we consider the hypothesis that data poisoning attacks rely on the deleterious effects of a
subset of modified samples, which can in turn be diluted and deactivated by mixing them with other,
likely unmodified, samples.
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Table 1: Validation accuracy and poison success for a baseline model, models trained with mixup
and CutMix augmentations compared with Spectral Signature (Tran et al.,|2018a) and Activation
Clustering (Chen et al., 2018)) defenses. The first two columns have 10% of one class poisoned, and
the latter two have all poisoned (filter defenses are inapplicable here). The results are averaged across
20 runs.

Acc. (10%) POISON SUCCESS (10%) Acc. (100%) PoOI1SON SUCCESS (100%)

BASELINE 94.3% 45.6% 85.0% 98.3%
CuTMIX 95.1% 7.0% 94.2% 14.1%
MIXUP 94.4% 23.9% 85.3% 99.8%
SS 92.3% 48.3%
AC 89.4% 44.0%

In addition to mixup, which we analyzed in the previous section, we now consider several other
augmentations. CutOut (DeVries & Taylor, 2017)), which blacks out a randomly generated patch from
an image, can be combined with mixup to form CutMix (Yun et al.l2019), another type of mixing
augmentation. Specifically, the idea is to paste a randomly selected patch from one image onto a
second image, with labels computed by taking a weighted average of the original labels. The weights
of the labels correspond to the relative area of each image in the final augmented data point. MaxUp
(Gong et al., [2020) can also be considered as a mixing data augmentation, which first generates
augmented samples using various techniques and then selects the sample with the lowest associated
loss value to train on. CutMix and mixup will be the central mixing augmentations that we consider
in this work, which we contrast with MaxUp in select scenarios.

3.1 BACKDOOR ATTACKS

In contrast to recent targeted data poisoning attacks, backdoor attacks often involve inserting a simple
preset trigger into training data to cause base images to be misclassified into the target class. For our
experiments, we use small 4 x 4 randomly generated patches as triggers to poison the target class. To
evaluate the baseline effectiveness of backdoor attacks, we poison a target class, train a ResNet-18
model on this poisoned data and use it to classify patched images from a victim test class. Only if
a patched image from a victim class is labeled with the target class do we treat it as a successfully
poisoned example. Our results show that backdoor attacks achieve 98.3% poison success when 100%
of images from the target class are poisoned and 45.6% poison success when only 10% of target
images are patched (see Table . In addition, when 100% of training images from the target class are
patched, clean test accuracy of the model drops by almost 10% since the model is unable to learn
meaningful features of the target class.

We then compare the baseline model to models  Table 2: Poison success rates (lower is better for
trained with the mixup and CutMix augmenta- the defender) for various data augmentations tested
tions. We find that although mixup helps when against the gradient matching attack of [Geiping
only part of the target class is poisoned, it is not et al|(2020). All results are averaged over 20 trials.
efficient as a defense against backdoor attacks We report the success of both a non-adaptive and
when all images in the target class are patched. an adaptive attacker.

In contrast, CutMix is an extremely effective
defense against backdoor attacks in both scenar-

ios and it reduces poison success from 98.3%  AUGMENTATION | NON-ADAPTIVE ~ ADAPTIVE

to 14.1% in the most aggressive setting. Finally,  7_way mrxup 45.00% 72.73%
models trained on poisoned data with CutMix CUTOUT 60.00% 81.25%
data augmentation have a clean test accuracy = CUTMIX 75.00% 60.00%
similar to the accuracy of models trained on = 4-WAY MIXUP 5.00% 55.00%
clean data. Intuitively, CutMix often produces =~ MAXUP-CUTOUT 5.26% 20.00%

patch-free mixtures of the target class with other
classes, hence the model does not solely rely on the patch to categorize images of this class.

We extend this analysis to two more complex attacks, clean-label backdoor attacks (Turner et al.
2018), and hidden-Trigger backdoor attacks in Table 3]
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3.2 TARGETED DATA POISONING

We further evaluate data augmentations as a defense against targeted data poisoning attacks. We
analyze the effectiveness of CutMix and mixup as a defense against feature collision attacks in
Table[5] Applying these data augmentations as a defense against Poison Frogs (Shafahi et al., 2018)
(FC) is exceedingly successful, as the poisoned data is crafted independently there, making it simple
to disturb by data augmentations. The poisons crafted via Convex Polytope (CP) (Zhu et al.,2019)
however, are more robust to data augmentations, due to the polytope of poisoned data created around
the target. Nonetheless, the effectiveness of CP is diminished more by data augmentations than by
other defenses.

We then evaluate the success of data augmenta- Taple 3: Poison success rates (lower is better for
tions against Witches’ Brew, the gradient match- the defender) for competing defenses when tested
ing attack of [Geiping et al| (2020) in Table[2] against the gradient matching attack compared to
Against this attack, we evaluate a wide range mixup. For DP-SGD, we consider a noise level of

of data augmentations, as the attack is rela-  — (.01. All results are averaged over 20 trials.
tively robust to basic mixup data augmentations

which mix only two images. However, using a
stronger augmentation that mixes four images
still leads to a strong defense in the non-adaptive
setting (where the attacker is unaware of the =~ SPECTRAL SIGNATURES 95.00%

DEFENSE | POISON SUCCESS

defense). As this attack can be adapted to spe- DEEPKNN 90.00%
cific defenses, we also consider such a scenario. ACTIVATION CLUSTERING 30.00%
Against the adaptive attack, we found MaxUp DP-SGD | 86.25%
to be most effective, evaluating the worst-case 4-WAY MIXUP | 5.00%

loss for every image in a minibatch over four
samples of data augmentation drawn from cutout. To control for the effects of the CIFAR-10 dataset
that we consider for most experiments, we also evaluate defenses against an attack on the ImageNet
dataset in Table[d] finding that the described effects transfer to other datasets.

3.3 COMPARISON TO OTHER DEFENSES

We compare our method to previous defenses Table 4: Success rate for selected data augmen-
referenced in Section [LII We show that our tation when tested against the gradient matching
method outperforms filter defenses when eval- attack on the ImageNet dataset. All results are
uating backdoor attacks, such as in Table E] and averaged over 10 trials.

Table [5 as well as when evaluating targeted

data poisoning attacks, as we show for Poison

Frogs and Convex Polytope in Table [5]and for AUGMENTATION | POISON SUCCESS
Witches’ Brew in Table Mland Bl We note that

data augmentations do not require additional NONE 90%
o . 2-WAY MIXUP 50.00%
training compared to filter defenses in some set-
4-WAY MIXUP 30.00%

tings and are consequently more computation-
ally efficient.

In Figure[??] we plot the average poison success against the validation error for adaptive gradient
matching attacks. We find that data augmentations exhibit a stronger security performance trade-off
compared to other defenses.

Table 5: On the left: poison success rate for Poison Frogs (Shafahi et al.,2018) and Convex Polytope
(Zhu et al., [2019) attacks when tested with baseline settings and when tested with mixup and CutMix.
On the right: success rate against backdoor attacks when tested with baseline settings and when tested
with the mixup and CutMix. All results are averaged over 20 trials.

ATTACK BASELINE SS AC MIXUP CUTMIX  ATTACK BASELINE SS AC Mixup CUTMIX
FC 80%  10% 45% 5% 5% HTBD 60%  65% 55% 20% 10%
CP 95%  90% 75% T70%  50% CLBD 65%  60% 45% 25% 15%
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3.4 DEFENSES WITH DP AUGMENTATIONS IN PRACTICE

As a result of Theorem [2] we investigate the data augmentations previously considered in Section
with additional Laplacian noise, also in the setting of a gradient matching attack. Figure[??]shows
that the benefits of Laplacian noise which we only prove for mixup also apply empirically to
variants of mixing data augmentations. While we only prove formal guarantees for the mixup-based
mechanism due to its mathematical simplicity, our intuitions also extend to other augmentations,
specifically CutMix and MaxUp, which mix together the features of two or more samples. For
example, combining MaxUp with Laplacian noise of sufficient strength (s = 16/255) completely
shuts down the data poisoning attack via adaptive gradient matching, significantly improving upon
numbers reached by MaxUp alone.

4 DISCUSSION, LIMITATIONS, AND IMPACT

Strong data augmentations have previously been used to improve generalization in neural networks.
In this work, we analyse these data augmentations theoretically through the lens of differential privacy,
due to its connections to poisoning robustness. We prove that mixup augmentation enhances the
defensive guarantees obtained by adding noise to inputs, improving standard guarantees at least
linearly in mixture width. We then apply these findings practically, evaluating the effects of mixup
data augmentations combined with Laplacian input noise. Finally, we show that such augmentations
also yield a strong empirical defense against a range of data poisoning and backdoor attacks.

There are, however, notable limitations to our findings. In our experiments, we limit analysis
to a subset of existing poisoning attacks. It is important to recognize that though our empirical
results likely extend to other attacks or new attacks to an extent, there is no strict guarantee of
their effectiveness (with the exception of the lower bound provided by DP-InstaHide) and thus,
practitioners should avoid harboring a false sense of security when applying our proposed defenses.
Moreover, all experiments we conduct are on image datasets and data augmentations designed for
computer vision. Real-world practitioners encounter a diverse array of learning problems and should
be cautious in their expectations that our method will be highly effective in their own settings. Finally,
we note that there is still a trade off between robustness and validation accuracy of differentially
private defenses, which most effectively nullify poisoning attacks. Noiseless data augmentations can
be very effective in some settings, but our theoretical guarantees are only applicable with the addition
of Laplacian noise.

L ]
416

Figure 3: On the left: Enhancing various data augmentations with Laplacian noise. We visualize the
security-performance trade-off when enhancing the data augmentations considered in Sec. 3] with
Laplacian noise as predicted by Thm. 2| We visualize the development of these data augmentations
when adding Laplacian noise with scales (2/255, 4/255, 8/255, 16/255, 32/255). On the right:
Trade-off between average poison success and validation accuracy for various defenses against
gradient matching (adaptive).
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A APPENDIX

A.1 BACKDOOR ATTACKS

For the patch attack, we insert patches of size 4 x 4 into CIFAR (Krizhevsky et al.,|2009) train images
from target class and test images from victim class. The patches are generated using a Bernoulli
distribution and are normalized using the mean and standard deviation of CIFAR training data. The
patch location for each image is chosen at random. To evaluate the effectiveness of the backdoor
attack and our proposed defenses, we train a ResNet-18 model on poisoned data with cross-entropy
loss. The model is trained for 80 epochs using SGD optimizer with a momentum of 0.9, a weight
decay of 5e-4 and learning rate of 0.1 which we reduce by a factor of 10 at epochs 30, 50 and 70. A
batch size of 128 is used during training.

We run our experiments for HTBD and CLBD in Table [5|by implementing mixup and CutMix in the
publically available framework of [Schwarzschild et al.|(2020), and using this re-implementation for
our comparison with the hyperparameters proposed there.

Standard error for our twenty trial experiments presented in [3|can be computed using the standard
formula for binomial distributions

-1
sp—/2P—1
n
where p is the success probability and n = 20 is the number of trials. The error bars were omitted
from the body of our work in the interest of space and readability, but we present the same tables

below with the full statistical information.

Acc. (10%)  PoOISON SUCCESS (10%) Acc. (100%) POISON SUCCESS (100%)

BASELINE  94.3 £5.2% 45.6 +11.13% 85.0 + 7.98% 98.3 + 2.89%
CuTMIX 95.1 + 4.82% 7.0 +5.70% 94.2 + 5.22% 14.1 + 7.78%
MIXUP 94.4 + 5.14% 23.9 + 9.53% 85.3 £ 7.92% 99.8 + 1.00%
SS 92.3 £+ 5.96% 48.3+11.17%
AC 89.4 4+ 6.88% 44.0 +11.10%

ATTACK BASELINE SS AC MIXUP CuTMIX

HTBD 60+ 10.95% 65 £ 10.67% 55 £ 11.12% 20 £ 8.94% 10 + 6.71%
CLBD 654 10.67% 60 & 10.95% 45 £+ 11.12% 25 £ 9.68% 15% =+ 7.98%

A.2 TARGETED DATA POISONING

We run our experiments for feature collision attacks in Table [5] by likewise using the framework
of |Schwarzschild et al.| (2020), running the defense with the same settings as proposed there and
following the constraints considered in this benchmark. For gradient matching we likewise implement
a number of data augmentations as well as input noise into the framework of |Geiping et al.[ (2020).
We run all gradient matching attacks within their proposed constraints, using a subset of 1% of the
training data to be poisoned for gradient matching and an ¢°° bound of 16/255. For all experiments
concerning gradient matching we thus consider the same setup of a ResNet-18 trained on normalized
CIFAR-10 with horizontal flips and random crops of size 4, trained by Nesterov SGD with 0.9
momentum and 5e-4 weight decay for 40 epochs for a batch size of 128. We drop the initial learning
rate of 0.1 at epochs 14, 24 and 35 by a factor of 10. For the ImageNet (Deng et al., 2009) experiments
we consider the same hyperparameters for an ImageNet-sized ResNet-18, albeit for a smaller budget
of 0.01% as in the original work.

Comparing to poison detection algorithms, we re-implement spectral signatures (Iran et al., 2018b),
deep K-NN (Peri et al.,|2019) and Activation Clustering (Chen et al.l 2018) with hyperparameters as
proposed in their original implementations. For differentially private SGD, we implement Gaussian
gradient noise and gradient clipping to a factor of 1 on the mini-batch level (otherwise the ResNet-18
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architecture we consider would be inapplicable due to batch normalizations), and vary the amount of
gradient noise with values (0.0001, 0.001, 0.01) to produce the curve in Fig. 2.

To implement data augmentation defenses we generally these data augmentations straightforward as
proposed in their original implementations, also keeping components such as the late start of Maxup
after 5 epochs described in|Gong et al.| (2020) and the randomized activation of CutMix described in
Zhang et al.| (2017)).

Standard error is computed in the same way as above, which produces the following tables:

ATTACK BASELINE SS AC MIXUP CUTMIX
FC 80 +8.94% 70 £10.25% 45+ 11.12% 5+ 4.87% 5+4.87%
CP 95+4.87% 90+6.71% 75+9.68% 70+ 10.25% 50 +11.18%

AUGMENTATION | NON-ADAPTIVE ADAPTIVE

2-WAY MIXUP 45.00 £ 11.12%  72.73 £ 9.96%
CuTouT 60.00 £ 10.95% 81.25 £ 8.73%
CuTMIx 75.00 £+ 9.68% 60.00 £ 10.95%
4-WAY MIXUP 5.00 £ 4.87% 55.00 +11.12%

MAXUP-CUTOUT 5.26 & 4.99% 20.00 £ 8.94%

DEFENSE |POISON SUCCESS
AUGMENTATION \ POISON SUCCESS SPECTRAL SIGNATURES 95.00 &= 4.87%
DEEPKNN 90.00 = 6.71%
NONE 90+ 6.71%
D-WAY MIXUP 50.00 + 11.18% ACTIVATION CLUSTERING| 30.00 & 10.25%
4-WAY MIXUP 30.00 £+ 10.25% DP-SGD | 86.25+7.70%
4-WAY MIXUP | 5.00+4.87%

A.3 COMPUTE RESOURCES

All experiments were performed on Nvidia GeForce RTX 2080Ti GPUs. For CIFAR-10 experiments,
the maximum total compute time utilized was 45 minutes per trial. ImageNet experiments required a
maximum total compute time of 70 hours per trial. Summing over the 43 CIFAR-10 experiments and
3 ImageNet experiments each with 20 and 10 trials respectively, we arrive at approximately 2745
GPU hours or 16.3 GPU weeks used for the entire project.
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