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ABSTRACT

Accurately forecasting chaotic systems, prevalent in domains such as weather pre-
diction and fluid dynamics, remains a significant scientific challenge. The inher-
ent sensitivity of these systems to initial conditions, coupled with a scarcity of
observational data, severely constrains traditional modeling approaches. Since
these models are typically trained for a specific system, they lack the generaliza-
tion capacity necessary for real-world applications, which demand robust zero-
shot or few-shot forecasting on novel or data-limited scenarios. To overcome this
generalization barrier, we propose ChaosNexus, a foundation model pre-trained
on a diverse corpus of chaotic dynamics. ChaosNexus employs a novel multi-
scale architecture named ScaleFormer augmented with Mixture-of-Experts lay-
ers, to capture both universal patterns and system-specific behaviors. The model
demonstrates state-of-the-art zero-shot generalization across both synthetic and
real-world benchmarks. On a large-scale testbed comprising over 9,000 synthetic
chaotic systems, it improves the fidelity of long-term attractor statistics by more
than 40% compared to the leading baseline. This robust performance extends to
real-world applications with exceptional data efficiency. For instance, in 5-day
global weather forecasting, ChaosNexus achieves a competitive zero-shot mean
error below 1°C—a result that further improves with few-shot fine-tuning. More-
over, experiments on the scaling behavior of ChaosNexus provide a guiding prin-
ciple for scientific foundation models: cross-system generalization stems from the
diversity of training systems, rather than sheer data volume.

1 INTRODUCTION

Chaotic systems, characterized by their deterministic nature yet high sensitivity to initial conditions,
are ubiquitous in the natural world and across diverse scientific and engineering disciplines, includ-
ing weather forecasting (Shukla, 1998; Rind, 1999), fluid dynamics (Yorke & Yorke, 2005; Najm,
2009), and neural processes (Jia et al., 2023; Vignesh et al., 2025). The intrinsic complexity of
such systems renders accurate forecasting both an essential and formidable task, particularly in real-
world contexts where data acquisition is resource-intensive and observational records are sparse.
While this sensitivity makes precise long-term point-wise prediction impossible, the system’s be-
havior is not entirely random; it is confined to a complex geometric structure known as a strange
attractor (Rössler, 1976; Grassberger & Procaccia, 1983), which possesses unique and invariant sta-
tistical properties. An effective forecasting model should not only predict the short-term evolution
but also reproduce the long-term geometry and statistics of the system’s attractor.

The intrinsic difficulty of forecasting chaotic systems is further compounded by the challenge of
data sparsity. Traditional system-specific models (Srinivasan et al., 2022; Brenner et al., 2022; Hess
et al., 2023) typically require extensive and high-quality observational data from a novel system to
accurately infer its underlying dynamics and attractor geometry, creating a significant bottleneck
in practical applications. Here, we propose a paradigm shift from system-specific modeling to the
pretraining of a single foundation model for universal chaotic system forecasting. This approach is
motivated by the proposition that a model exposed to a vast and heterogeneous collection of observa-
tional data spanning diverse dynamical systems and operating regimes can learn a rich repertoire of
underlying patterns and principles common to chaotic behavior (Liu et al., 2024c; Woo et al., 2024;
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Shi et al., 2024; Ansari et al., 2024). By leveraging the large-scale data during pretraining, the model
can then be applied to a target system with little or no in-distribution data. This strategy is designed
to exploit cross-system similarities to compensate for downstream data sparsity, thereby reducing
the burden of data acquisition and enhancing the out-of-distribution forecasting performance.

However, realizing such a foundation model for chaotic system forecasting is non-trivial, as training
a single parameterization on a heterogeneous ensemble of chaotic systems introduces formidable
challenges that preclude the straightforward application of standard time-series methods. First, the
inherent multi-scale nature of chaotic systems poses a fundamental representation challenge. These
systems exhibit broadband spectra where essential dynamical structures unfold across a continuum
of time scales. A mono-scale representation fails to capture the full picture, either truncating long-
range dependencies or aliasing distinct behaviors across scales, thereby obscuring the unique attrac-
tor geometries of each system. Second, beyond their differences, the attractors of these systems
may share underlying geometric and statistical properties that enable generalization. Credible long-
horizon forecasting demands that the model’s architecture is explicitly designed to capture these
transferable principles, effectively learning a shared parametric structure for common behaviors
while identifying system-specific regimes to ensure stable and accurate extended rollouts.

To overcome these obstacles, we introduce ChaosNexus, a foundation model engineered for uni-
versal chaotic dynamics forecasting. At its core is our proposed ScaleFormer, a U-Net-inspired
Transformer architecture designed to master the multi-scale nature of chaotic systems. Its encoder
progressively models fine-grained to coarse temporal contexts through hierarchical patch merging,
while the symmetric decoder, aided by skip connections, reconstructs fine-grained details via patch
expansion. To facilitate robust cross-system generalization, each Transformer block is augmented
with a Mixture-of-Experts (MoE) layer, enabling the model to disentangle diverse dynamics by al-
locating specialized parameters for distinct system regimes. Furthermore, we condition the model
with a frequency fingerprint derived from a wavelet scattering transform, providing a stable spectral
signature that captures the system’s intrinsic oscillatory and modulatory behaviors.

ChaosNexus is pretrained on a vast and diverse corpus of approximately 20K simulated chaotic
systems (Lai et al., 2025). The training is guided by a composite objective function designed to
ensure both predictive accuracy and the preservation of long-term statistical properties. Through
extensive experiments, we demonstrate that ChaosNexus establishes a new state-of-the-art in zero-
shot forecasting, improving the fidelity of long-term attractor statistics by 40.55%. Its remarkable
sample efficiency is further highlighted in real-world weather forecasting, achieving zero-shot MAE
below 1°C on temperature, surpassing strong baselines even when they are fine-tuned on over 470K
samples from the target system. Moreover, our scaling analysis reveals a key insight for future work:
generalization is driven more by the diversity of systems in the pretraining corpus than by the sheer
volume of trajectories per system. Our primary contributions are summarized as follows:

• We explore a new paradigm for chaotic system forecasting: pre-training a single foundation model
on diverse chaotic systems to overcome data sparsity in downstream forecasting tasks.

• We propose ChaosNexus, a unified framework that effectively captures diverse chaotic dynamics
and disentangles system-specific behaviors by integrating a novel multi-scale ScaleFormer back-
bone with two key augmentations: Mixture-of-Experts (MoE) layers for adaptive specialization
and a wavelet-based frequency fingerprint to provide a distinct spectral signature.

• We conduct extensive experiments to provide empirical evidence of the generalization capabilities
of ChaosNexus, confirming that large-scale pre-training is a highly effective strategy for building
powerful, data-efficient models in complex scientific domains.

2 RELATED WORKS

Chaotic System Forecasting. Forecasting chaotic systems is a central challenge in science and
engineering. Reservoir computing (RC)-based methods (Srinivasan et al., 2022; Gauthier et al.,
2021; Li et al., 2024) represent a key advance: they employ a fixed, randomly initialized reservoir
to lift inputs into high-dimensional state spaces while training only a linear readout. Concurrently,
deep learning models like recurrent neural networks (RNNs) have proven effective, though they
often require techniques such as teacher forcing to counteract training instabilities like exploding
gradients on chaotic trajectories (Brenner et al., 2022; Hess et al., 2023). More recent works aim to
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Figure 1: Overview of our ChaosNexus framework, with details of patch merging and expansion
operations, and the Transformer block architecture with mixture-of-experts layers.

preserve the geometric and statistical properties of system attractors within neural operators. This
is achieved through methods like evolution regularization with optimal transport and Maximum
Mean Discrepancy (MMD), or by imposing mathematical constraints such as unitarity that leverage
system ergodicity (Cheng et al., 2025; He et al., 2025). Despite their success, these frameworks
are specialized models, designed and trained for a single, specific system. This inherent lack of
generalization renders them impractical for real-world chaotic systems where data is often sparse
and systems are unseen, precluding their application in zero-shot or few-shot forecasting.

Out-of-distribution Generalization in Dynamical Systems. Out-of-distribution generalization in
dynamical systems is a rapidly growing area of research. Norton et al. (2025) demonstrated that
reservoir computers can generalize to unobserved basins of attraction in multistable systems when
trained on sufficiently rich transient dynamics, thereby learning a global representation from a single
basin. Another prominent strategy involves decomposing system dynamics into shared and specific
components, where a base model captures common physical laws and low-dimensional vectors en-
code system-specific characteristics, leveraging data from multiple regimes to learn fundamental
representation of the underlying dynamics (Brenner et al., 2024; Wang et al., 2025; Huang et al.,
2023). A complementary paradigm focuses on pre-training foundation models on vast synthetic
datasets encompassing diverse governing equations, parameters, and initial conditions (Nzoyem
et al., 2025; Subramanian et al., 2023; Herde et al., 2024; Lai et al., 2025; McCabe et al., 2024;
Seifner et al., 2024). This approach significantly improves sample efficiency, enabling rapid fine-
tuning on unseen downstream tasks, even those governed by different physics. Despite these ad-
vances, current generalization strategies often excel at transferring knowledge across parameter
regimes of a single dynamical system but struggle to bridge the gap between fundamentally dif-
ferent systems. Conversely, the above foundation models are mainly designed for PDEs, leveraging
their inherent spatiotemporal structure, which makes them less readily applicable to many chaotic
systems described by ODEs—a domain for which foundational models remain underexplored.

3 METHODOLOGY

Problem Statement and Model Overview. We address the problem of chaotic system forecasting:
given historical observations X1:T = (x1,x2, · · · ,xT ) ∈ RT×V spanning T times of a chaotic sys-
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tem with V variables, we forecast its successive H steps, i.e., X̂T+1:T+H = fθ(X1:T ) ∈ RH×V ,
where fθ denotes the forecasting model. Here, we aim to design a foundation model fθ that can
directly produce faithful forecasting results based on historical observations, with little or no further
in-distribution data required for training. We demonstrate the overall architecture of ChaosNexus
in Figure 1, which comprises three key components: (i) input dynamics embedding, (ii) the Scale-
Former backbone, and (iii) frequency-enhanced joint scale readout. The details of our framework
are shown as follows.

3.1 INPUT DYNAMICS EMBEDDING

In chaotic systems, instantaneous observations are often noisy and insufficient to reveal the gov-
erning dynamics. We therefore segment the input trajectory X ∈ RT×V into S = ⌊ T

D ⌋ + 1

non-overlapped temporal patches of length D. Each patch P ∈ RD×V encapsulates a short-time
trajectory segment, thereby providing essential local dynamical context. Motivated by Koopman
theory (Koopman, 1931; Mauroy et al., 2020; Brunton et al., 2021), which posits that nonlinear
dynamics can be linearized by lifting them to a suitable space of observables, we first enrich each
patch with random polynomial and Fourier features (Appendix C.1), an approach adopted from re-
cent work (Lai et al., 2025). The augmented patch, P ′ ∈ Rdp , is then mapped to a high-dimensional
embedding u ∈ Rde via a linear layer.

3.2 SCALEFORMER ARCHITECTURE

The patch embeddings are then fed into the ScaleFormer, an encoder-decoder architecture composed
of stacked Transformer blocks. Instead of applying standard attention to patches flattened across all
dimensions with O(S2V 2) complexity, each Transformer block employs dual axial attention. This
mechanism factorizes the computation by performing attention sequentially along the variable and
temporal axes, reducing the overall complexity to O(S2 + V 2). Crucially, the variable attention
module can capture the strong coupling between variables—a fundamental property of chaotic dy-
namics often absent in standard time series. To better accommodate different sequence lengths and
enhance generalization, we employ rotary positional embeddings (RoPE) (Su et al., 2024) instead of
conventional absolute positional encodings. We also employ pre-normalization to enhance training
stability and FlashAttention (Dao et al., 2022) to improve efficiency. Given an input patch embed-
ding up, the computational flow of our modified Transformer block is:

hp = VA(RN(up)) + up, h̄p = TA(RN(hp)) + hp, h̃p = MoE(RN(h̄p)) + h̄p, (1)

where VA and TA are axial variable and temporal attention operations, respectively. RN denotes the
root mean square (RMS) layer normalization (Zhang & Sennrich, 2019). We replace the standard
feed-forward network (FFN) with a Mixture-of-Experts (MoE) layer (Dai et al., 2024), which allows
a single model to distinguish the dynamics of multiple chaotic systems by enabling different experts
to specialize in their unique characteristics. The MoE layer consists of M specialist experts and
one shared expert, which are all implemented with standard feed-forward layers. A gating network
activates a sparse combination of these experts for each input. Its output is a weighted sum of the
shared expert and the top K specialist experts:

MoE(h̄p) = ϕM+1,pFFNM+1(h̄p) +

M∑
i=1

(ϕi,pFFNi(h̄p)), (2)

ϕi,p =

{
si,p, si,p ∈ TopK({sj,p}Mj=1,K),

0, otherwise,
(3)

ϕM+1,p = Sigmoid(WM+1h̄p), s:,p = Softmax(Wh̄p), (4)

where si,p is the score of the i-th specialist expert. W s are trainable parameters.

Encoding and Patch Merging. The encoder blocks progressively builds a hierarchy of represen-
tations at increasingly coarse resolutions. Following each Transformer block at level i, a patch
merging layer reduces the temporal resolution by a factor of two while doubling the feature di-
mension. This down-sampling is achieved by concatenating the features of adjacent temporal
patches and applying a learnable linear projection. Given the output of the i-th encoder block,
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H
(i)
enc ∈ R

S

2i−1 ×V×2i−1de , the patch merging is formulated as:

H
′(i)
enc = Concat(H(i)

enc[0 :: 2, . . . ],H(i)
enc[1 :: 2, . . . ])W (i)

enc + b(i)enc, (5)

where the output H
′(i)
enc ∈ R

S

2i
×V×2ide serves as the input to the next encoder level. This allows

successive layers to capture features ranging from fine-grained details to coarse, global structures.
The hierarchical encoding process culminates in a bottleneck layer positioned at the deepest level
of the architecture, which consists of a linear layer that processes the feature representation at the
coarsest temporal scale, bridging the transition from the encoding path to the decoding path.

Decoding and Patch Expansion. The decoder blocks reconstructs the high-resolution represen-
tation from the low-dimensional features produced by the encoder and a final bottleneck layer.
Each decoder block is followed by a patch expansion layer that reverses the merging process.
It up-samples the features by doubling the temporal resolution and halving the channel dimen-
sion via a linear transformation and a reshape operation. For the i-th decoder level, the input
H

(i)
dec ∈ R

S

2i
×V×2ide is expanded, producing an output H

′(i)
dec ∈ R

S

2i−1 ×V×2i−1de as follows:

H
′(i)
dec = Reshape(W (i)

decH
(i)
dec + b

(i)
dec), (6)

Skip Connections. To mitigate the loss of fine-grained information during down-sampling, we
introduce skip connections linking encoder and decoder blocks at corresponding resolutions. The
output H(i)

enc from the i-th encoder layer is passed through a dedicated skip connection block im-
plemented with 1D convolutions and then fused with the up-sampled features H

′(i)
dec from the cor-

responding decoder layer. This fusion provides the decoder with direct access to high-resolution
encoder features, which is crucial for accurate reconstruction of the system’s dynamics. Further
details are provided in Appendix C.2.

3.3 FREQUENCY-ENHANCED JOINT SCALE READOUT

The decoder of ScaleFormer produces a set of representations {H(i)
dec}Li=1 capturing system dynamics

at L different temporal scales. To synthesize these into a single, comprehensive representation for
forecasting, we first apply temporal mean pooling to each decoder output to obtain system-level
features H̄(i) for each scale. These features are then concatenated and projected through a linear
fusion layer to produce a unified dynamics representation Huni ∈ Rde×V contains integrated multi-
scale information:

Huni = Concat(H̄(1), H̄(2), · · · , H̄(L))Wf + bf .

A robust foundation model must not only model temporal evolution but also identify the underlying
dynamical system or its current regime. To this end, we condition our model on frequency-domain
information, which serves as a fingerprint for the system’s dynamics. We employ the wavelet scat-
tering transform on the historical observations X to extract a stable, multi-scale summary of its
spectral content (Appendix C.3). The resulting scattering coefficients, Fw ∈ RC×T ′×V , are tempo-
rally pooled to yield a single frequency fingerprint, F̄w ∈ RC×V . It distills the system’s intrinsic
oscillatory and modulatory behaviors into a fixed-size representation, enhancing the model’s ability
to distinguish between different dynamical systems. The final multi-step forecast is produced by a
linear prediction head that combines the unified dynamics Huni and the frequency fingerprint F̄w:

X̂T+1:T+H = Concat(Huni, F̄w)Wo + bo, (7)
where Wo and bo are learnable parameters. This allows the model to leverage both the learned multi-
scale temporal patterns and the intrinsic spectral properties of the system for accurate prediction.

3.4 TRAINING OBJECTIVE

The total objective function for ChaosNexus is composed of three distinct components: a primary
forecasting loss, an auxiliary load balancing loss for the MoE layers, and a distributional regulariza-
tion term to preserve the system’s statistical properties. The primary training objective is the Mean
Squared Error (MSE), which measures the point-wise accuracy, formulated as:

Lmse =
1

B

B∑
n=1

||X̂n
T+1:T+H −Xn

T+1:T+H ||22, (8)
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where X̂n and Xn are the predicted and ground-truth of the n-th trajectory in a batch with size B.

As is standard for Mixture-of-Experts (MoE) models, relying solely on the prediction loss can lead
to expert load imbalance, where the gating network disproportionately favors a small subset of ex-
perts (Shazeer et al., 2017). This leaves other experts under-trained and limits the model’s overall
capacity. To mitigate this, we incorporate an auxiliary load balancing loss from Dai et al. (2024):

Lbalance =M

M∑
i=1

firi, (9)

where fi is the fraction of patches routed to expert i, and ri is the average routing probability
assigned to it. This encourages more uniform expert utilization.

Due to the sensitive dependence on initial conditions in chaotic systems, point-wise accuracy is often
insufficient for long-horizon forecasting. A robust forecast must also reproduce the geometric and
statistical properties of the system’s attractor. To enforce this, we introduce a regularization term
based on the Maximum Mean Discrepancy (MMD), which minimizes the divergence between the
state distribution of predicted trajectories and that of the ground-truth trajectories (Appendix C.4):

Lreg =
1

B2

∑
i,j

κ(X̂i, X̂j) +
1

B2

∑
i,j

κ(Xi,Xj)− 2

B2

∑
i,j

κ(X̂i,Xj), (10)

where {X̂n}Bn=1 and {Xn}Bn=1 represent batches of the full predicted and ground-truth trajectories.
Following prior work, we use a mixture of rational quadratic kernels for the kernel function κ (Schiff
et al., 2024; Seeger, 2004; Reiss et al., 2019). The final objective function is a weighted sum of these
three components: L = Lmse + λ1Lbalance + λ2Lreg, where λ1, λ2 are hyperparameters that control
the relative weights of the auxiliary loss terms.

4 EXPERIMENTS

In this section, we present comprehensive experiments to evaluate the forecasting capabilities of our
proposed model. Due to space constraints, we present the main findings here and provide further
in-depth analyses, including supplementary benchmark results, extensive ablation studies, model
sensitivity and internal mechanics, as well as visualizations of forecasting cases in Appendix A.

4.1 ZERO-SHOT FORECASTING

Setups. We utilize the dataset from He et al. (2025). Its training set contains 20K novel chaotic
ODEs, generated synthetically by an evolutionary algorithm that evolved from 135 known systems
(Gilpin, 2021; 2023). The data was further diversified with dynamics-preserving augmentations like
time-delay embedding (Takens, 2006). The held-out test set, used for evaluation, comprises 9.3K
systems derived from a disjoint seed population (Appendix D.1). We use symmetric mean absolute
percentage error (sMAPE) of 128 and 512 timesteps to evaluate the point-wise forecasting accuracy.
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Figure 2: Zero-shot forecasting performances of models on synthetic chaotic systems. Each box
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We also consider the correlation dimension error (Dfrac) and the Kullback–Leibler (KL) divergence
between system attractors (Dstsp) to evaluate the fidelity in key statistical properties of system at-
tractors. We compare our proposed method against several state-of-the-art time series foundation
models with different parameter sizes, including Panda (Lai et al., 2025), Time-MoE (Shi et al.,
2024), TimesFM (Das et al., 2024), Chronos (Ansari et al., 2024), Moirai-MoE (Liu et al., 2024a),
and Timer-XL (Liu et al., 2024b), where ’-S’, ’-B, ’-L’ refer to small, base, large in parameter size,
respectively. To assess the adaptability of general-purpose models to this specific domain, we also
include Chronos-S-SFT, a variant of the Chronos-S model that has been fine-tuned on our chaotic
systems training corpus. For all other baseline models, we load their officially released pre-trained
weights for evaluation. Details of experimental setups are demonstrated in Appendix D.

Results. We conduct a zero-shot evaluation on the held-out test set of chaotic systems. For a fair
comparison, all models use a context length of 512 to autoregressively forecast 512 steps into the
future. While ChaosNexus and the Panda baseline are pretrained on the chaotic systems corpus,
other baselines are general-purpose time-series foundation models, for which we employ the official
pretrained weights. As shown in Figure 2 and Appendix A.4, ChaosNexus demonstrates a consis-
tent advantage in both short-term and long-term point-wise forecasting accuracy. The performance
advantage is particularly pronounced in the preservation of long-term statistical properties. Chaos-
Nexus improves upon the best baseline by 12.91% in the correlation dimension error (Dfrac) and
40.55% in KL divergence between system attractors (Dstsp). Given that the sensitive dependence on
initial conditions renders any long-term point forecast of a chaotic system ultimately unreliable (Li
et al., 2021; Jiang et al., 2023; Schiff et al., 2024), the strong performance of ChaosNexus in these
statistical metrics is therefore compelling evidence that it can infer intrinsic dynamics of new sys-
tems from the contexts rather than superficial pattern memorizing. Notably, leading general-purpose
time-series foundation models, despite being pretrained on larger time-series datasets than ours (Ap-
pendix D.3), struggle on chaotic system forecasting. We also observe that their generalization capa-
bilities can be improved (from Chronos-SFT-S) after further fine-tuned on chaotic systems corpus.
This contrast provides compelling evidence for our claim that chaotic dynamics possess unique dif-
ferences with general time series. It also validates the necessity of building domain-specific founda-
tion models on chaotic data and underscores the importance of the specialized architectural designs
for multi-scale feature extraction and system disentanglement in ChaosNexus.

4.2 FEW-SHOT FORECASTING

Setups. Weather is an inherently chaotic system (Lorenz, 1969; 1982; 2017). For a rigorous eval-
uation on a real-world chaotic system, we utilize the WEATHER-5K dataset (Han et al., 2024).
This dataset comprises hourly meteorological data from 5,672 global weather stations over a 10-
year period from 2014 to 2023. It is then chronologically split, with data from 2014 to 2021 used for
training, 2022 for validation, and 2023 for testing. Each sample includes five variables: temperature,
dew point, wind speed, wind direction, and sea-level pressure. Given the profound real-world impor-
tance of forecasting absolute values, we employ the Mean Absolute Error (MAE) to directly measure
the discrepancy between predicted and ground-truth observations. The forecasting task is to predict
the subsequent 120 hours of all variables given 512 hours of historical context. To assess few-shot
performance under data-scarce conditions, we fine-tune models on two small subsets of the training
data: 0.1% (85K samples) and 0.5% (473K samples). We compare ChaosNexus against several
strong deep learning baselines in this benchmark, including FEDformer, CrossFormer, PatchTST,
and Koopa. We also report the performance of our model in a zero-shot setting, without any fine-
tuning on the weather dataset. Further details of setups are provided in Appendix E.

Results. Figure 3 presents the forecasting results for the temperature variable (results for other
variables are shown in the Appendix A.5 due to the limited space). Remarkably, ChaosNexus in
a zero-shot setting—without any fine-tuning—surpasses all baselines in their few-shot configura-
tions. It achieves a mean error strictly below 1°C for 5-day (120-hour) global temperature forecasts.
In stark contrast, the baseline models exhibit an MAE of at least 3°C, even when fine-tuned on
the same data. The performance of ChaosNexus further improves with few-shot fine-tuning, espe-
cially for longer prediction horizons. This suggests that while pre-training endows the model with
a robust, universal understanding of chaotic behavior, fine-tuning allows it to adapt these principles
to the specific physical constraints and periodicities (e.g., diurnal and seasonal cycles) inherent in
meteorological systems. This process grounds the model’s abstract dynamical representations in
real-world physics, enhancing its ability to generate accurate and stable long-term forecasts.
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Figure 3: Few-shot forecasting performance for global temperature on the WEATHER-5K dataset.
The Mean Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple
prediction horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. The zero-shot per-
formance of ChaosNexus is shown as a dashed line for reference.

4.3 SCALING BEHAVIOR
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Figure 4: Scaling behavior of ChaosNexus. We demonstrate zero-shot sMAPE on synthetic chaotic
systems varying: (a) the number of parameters; (b) the number of time points while holding the
system diversity constant; and (c) the number of systems while holding the trajectories per system
constant. Lines depict the average value, with shaded regions representing the 95% CI.

An investigation into scaling behavior is crucial for the development of foundation models, since
understanding how model performance scales with key factors such as parameter count and data
volume is essential for guiding future research and resource allocation.

Parameter Scaling. We first explored the impact of model size on performance. We generated a
suite of models with varying parameter counts, ranging from 2.83M to 52.63M , by systematically
adjusting the number of encoder and decoder layers, as well as the dimension de of the embedding
space. The results demonstrated in Figure 4(a) reveal a consistent trend: increasing the model’s
parameter count yields steady improvements in performance. For instance, scaling the model from
2.83M to 52.63M parameters improved the sMAPE@128 by 49.83%, which demonstrates that
larger models possess a greater capacity to capture the complex dynamics inherent in the data.

Data Scaling. We further investigated the model’s performance as a function of the training data
size under two distinct settings. First, we fix the diversity, i.e., the total number, of training systems,
while varying the number of trajectories sampled from each system, leading to only different training
time points. Second, we increase the diversity of systems while holding the number of training
time points constant. From Figure 4(b), we find that merely increasing the number of time points
for a fixed set of systems did not lead to a significant enhancement in zero-shot performance. In
contrast, Figure 4(c) demonstrates that increasing the number of distinct systems in the training
set substantially improved the model’s ability to generalize. Our finding aligns with established
research (Norton et al., 2025), which identifies data diversity as the decisive factor for effective
generalization. This suggests that the key to improving foundation models for chaotic systems is
collecting data from a broader range of sources.
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Figure 5: Visualization of input patch partitioning and multi-scale temporal attention for three
chaotic systems. Each panel displays attention maps for the shallow (left) and deep (right) lay-
ers of the encoder (top) and decoder (bottom).

4.4 MULTI-SCALE FEATURE ANALYSIS

To investigate the inner workings of our multi-scale architecture, we visualize the input signal’s
patch partitioning alongside the temporal attention maps from shallow and deep layers of both the
encoder and decoder. As illustrated in Figure 5 and 12, we select three systems from the test set with
progressively weaker regularity (left to right in Figure 5), thus increasing the forecasting difficulty.

Patch Partition Patterns. We find that the shallow layers, which operate on smaller patches, are
adept at capturing local, high-frequency fluctuations. In contrast, the deeper layers, processing
merged patches that represent longer time intervals, focus on capturing long-term trends and global
structures. This is particularly evident in 5(b), where a shallow-layer patch may encompass only a
peak or a trough, whereas a deep-layer patch spans an entire peak-valley cycle.

Temporal Attention Patterns of Encoder Layers. The encoder’s attention patterns distinctly re-
flect this multi-scale processing. The deep encoder layers (upper right of each subfigure) consistently
exhibit globalized attention distributions, indicating a focus on synthesizing long-range dependen-
cies. The shallow encoder layers (upper left), however, display system-specific patterns. For the
highly regular system in 5(a), the map forms a Toeplitz-like structure (Bajwa et al., 2007), analo-
gous to a convolutional operation, suggesting the model applies fixed-pattern filters to scan the time
series. For the more complex system in 5(c), the attention forms distinct blocks, indicating that
the model concentrates on specific temporal segments whose interplay is deemed critical for under-
standing the system’s state. The system in 5(b) presents a hybrid pattern, blending the features of
5(a) and 5(c) to capture its intermediate complexity.

Temporal Attention Patterns of Decoder Layers. The decoder’s attention mechanisms operate
differently, functioning primarily as a selector. This aligns with our architectural design, where the
decoder’s outputs are mean-pooled over the temporal dimension for the final forecast. The model
must therefore learn to select and combine specific patterns from the historical context to support
its predictions. The deep decoder layers show a pronounced focus on the final patch, capturing
the most recent temporal dependencies crucial for autoregressive prediction. The shallow decoder
layers, conversely, appear to anticipate future dynamics; for instance, in 5(b), after observing a
descending phase, the model intensifies its attention on historical ascending patterns, selectively
weighting the context that is most relevant for the anticipated future trajectory.

5 CONCLUSIONS

We introduce ChaosNexus, a foundation model that features a universal, pre-trained approach to
chaotic system forecasting, effectively overcoming data sparsity. Its novel multi-scale ScaleFormer
architecture, augmented with Mixture-of-Experts layers and a wavelet-based frequency fingerprint,
achieves state-of-the-art zero-shot performance by accurately predicting both short-term evolution
and long-term attractor properties. Crucially, our scaling analysis reveals that generalization is
driven by the diversity of systems in the pre-training corpus, not the sheer volume of trajectories
per system. This key insight provides a clear roadmap for developing powerful, data-efficient mod-
els for complex scientific applications.
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is foundational and focuses on the modeling of chaotic systems, with primary applications in scien-
tific domains such as meteorology. All data used for training and evaluation is either synthetically
generated from mathematical principles or derived from publicly available, non-personal scientific
datasets, ensuring no privacy concerns. This work does not involve human subjects, and we do not
foresee any direct negative societal impacts or risks of perpetuating social biases. Our aim is to ad-
vance the scientific understanding and predictive capabilities for complex physical systems for the
benefit of the scientific community.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. The complete source code for
the ChaosNexus model, along with scripts for data processing, training, and evaluation, is pub-
licly available in an anonymous repository at https://anonymous.4open.science/r/
ChaosNexus-C809. A detailed description of our proposed ScaleFormer architecture, includ-
ing the patch merging/expansion mechanisms and the Mixture-of-Experts layers, is provided in
Section 3. A comprehensive breakdown of implementation details for key components, such as
input feature augmentation, skip connections, the wavelet scattering transform, and the MMD reg-
ularization term, can be found in Appendix C. Detailed descriptions of the datasets are provided in
the appendices: the generation process and augmentations for the synthetic chaotic systems are in
Appendix D.1, and the specifics of the WEATHER-5K benchmark are in Appendix E.1. All hy-
perparameters used for our model variants are explicitly listed in Table 3 in Appendix B. The full
experimental protocol, including training procedures and the precise definitions of our evaluation
metrics, is detailed in Appendix D.2 and D.4. All baseline models used in our comparisons are
described in Appendix D.3 and E.2.
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A SUPPLEMENTARY EXPERIMENTAL RESULTS

A.1 ABLATION STUDIES

To validate the effectiveness of our proposed architecture and training strategy, we conduct a series
of ablation studies. Specifically, we evaluate four variants of our model by removing designs of (i)
patch merging and expansion operations, (ii) MoE layers, (iii) MMD-based auxiliary regularization,
and (iv) frequency fingerprint. The results are shown in Table 1, showing that the full model strikes
an effective balance between short-term point-wise accuracy and the preservation of long-term sta-
tistical properties.

Patch Merging and Expansion. The removal of the patch merging and expansion modules resulted
in a severe degradation of performance. We observed a substantial decline in both short-term predic-
tive accuracy and long-term statistical fidelity, with sMAPE@128 and Dfrac increasing by 7.8% and
21.70%, respectively. This underscores the critical importance of capturing the multi-scale features
inherent in chaotic systems.

MoE Layers. Replacing MoE layers with normal feed-forward layers also leads to the performance
drop in both short-term and long-term predictive accuracy. MoE layers enables the model to allocate
specialized experts to capture distinct dynamical regimes present across different systems. Other-
wise, a single, monolithic network is forced to approximate all behaviors, reducing its capacity and
leading to worse performance. The results highlights the vital role of MoE layers in discriminating
between diverse dynamics.

MMD-based Auxiliary Regularization. The exclusion of MMD-based auxiliary regularization
during training has a particularly pronounced negative impact on long-term forecasting and the
preservation of statistical properties, with sMAPE@512 and Dfrac decreasing by 2.8% and 10.17%,
respectively. The auxiliary regularization aligns the state distribution of the learned attractor with
that of the ground truth system, which is an invariant measure (Cheng et al., 2025). Its removal
decouples the model from this fundamental physical constraint, impairing its ability to generate
realistic long-term trajectories.

Frequency Fingerprint. Removing the wavelet transform-based frequency fingerprint results in
a noticeable decrease in model performance. The fingerprint provides the model with frequency-
domain information of the underlying system, which complements the temporal data by offering a
holistic signature of its structural properties. The synergy between these two sources of information
allows the model to form a more complete and accurate representation of the dynamics, leading to
more robust forecasting.

A.2 EXPERT ACTIVATION VISUALIZATION

We visualize the expert activation patterns within the encoder and decoder for selected test systems
in Figure 6. We find that systems derived from the same foundation dynamics (Appendix D.1) trigger
analogous routing profiles across all layers and scales. This provides direct evidence that the MoE
framework has learned to partition the problem space, systematically assigning inputs to specialized
experts based on their dynamical properties to effectively process and differentiate between complex
systems.

Table 1: Model performances when removing each of our designs. (PME: Patch Merging and
Expansion; MoE: Mix-of-Experts Layers; MMD: MMD-based Auxiliary Regularization; FF: Fre-
quency Fingerprint.)

Metrics
Model Full w/o PME w/o MoE w/o MMD w/o FF

sMAPE@128 34.40 ± 1.55 37.09 ± 1.53 34.68 ± 1.55 34.77 ± 1.60 34.50 ± 1.56
sMAPE@512 49.72 ± 1.40 52.94 ± 1.27 50.06 ± 1.35 51.14 ± 1.43 48.87 ± 1.47

Dfrac 0.20 ± 0.01 0.24 ± 0.01 0.22 ± 0.01 0.22 ± 0.01 0.20 ± 0.01
Dstsp 1.41 ± 0.62 1.82 ± 0.62 1.25 ± 0.31 1.46 ± 0.49 1.36 ± 0.44
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Figure 6: Expert activation visualization for six discovered chaotic systems by the evolutionary
framework from three common foundation chaotic systems.

A.3 PERFORMANCE SENSITIVITY TO CONTEXT AND PREDICTION LENGTH
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Figure 7: Performance Sensitivity of ChaosNexus and Panda to different (a) context length and (b)
forecasting length.

Performance with Different Context Length. We evaluate our model across a range of input
context lengths. As shown in Figure 7(a), our model’s performance consistently improves with a
longer context and consistently surpasses the baseline Panda model. It also shows less sensitivity
to the specific context length chosen. These advantages of our model stems from its multi-scale
architecture, which effectively leverages information across different temporal scales to build a more
stable representation of the system’s dynamics.

Performance with Different Prediction Length. Long-horizon forecasting serves as a crucial test
of a model’s capacity to learn the intrinsic dynamics of a chaotic system. Accordingly, our model’s
performance advantage over Panda becomes substantially larger at longer prediction horizons, as
shown in Figure 7(b). It validates our design philosophy, which prioritizes multi-scale feature ex-
traction and dynamics discrimination to build a more faithful representation of the underlying sys-
tem.

A.4 ADDITIONAL RESULTS ON SYNTHETIC CHAOTIC SYSTEMS

We demonstrate detailed numerical results corresponding to Figure 2 in Table 2 for reference.
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Table 2: Detailed numerical results of model performance on synthetic chaotic systems. The best
performance of each metric is marked in bold, and the second-best performance is underlined.

Metric
Model ChaosNexus Panda Chronos-S-SFT Chronos-L Chronos-S Chronos-B

sMAPE@128 (↓) 34.401± 16.975 34.783± 18.357 38.081± 15.638 82.730± 32.165 86.323± 33.031 86.883± 33.122
sMAPE@512 (↓) 49.720± 15.313 51.167± 17.067 55.994± 12.147 102.967± 31.827 104.826± 32.191 104.156± 31.964

Dfrac (↓) 0.198± 0.125 0.227± 0.138 0.233± 0.165 0.219± 0.120 0.233± 0.135 0.246± 0.143
Dstsp (↓) 1.409± 6.790 2.369± 19.101 2.391± 10.651 11.731± 27.171 11.498± 25.207 11.255± 24.561

Metric
Model Moirai-MoE-S Moirai-MoE-L TimeMoE-L TimeMoE-S TimerXL TimesFM

sMAPE@128 (↓) 92.223± 35.279 89.651± 35.414 69.692± 30.727 72.695± 30.794 105.379± 36.289 66.989± 32.392
sMAPE@512 (↓) 108.493± 30.777 106.849± 32.112 92.604± 32.012 95.497± 31.833 115.239± 34.773 86.602± 33.612

Dfrac (↓) 0.423± 0.204 0.372± 0.209 0.230± 0.164 0.256± 0.310 ∞± nan 0.210± 0.126
Dstsp (↓) 13.613± 27.323 13.581± 27.593 10.651± 25.348 11.542± 28.004 14.534± 30.619 10.560± 23.296

A.5 ADDITIONAL RESULTS ON WEATHER BENCHMARK

We demonstrate the forecasting results for the dew point, sea level pressure, wind direction, and
wind speed in Figure 8-Figure 11, respectively. This strong performance paradigm is consistently
replicated across the remaining meteorological variables. In the zero-shot setting, ChaosNexus sub-
stantially outperforms all baseline models, even when they are fine-tuned on up to 473K samples
from the target weather system. The model’s forecasting accuracy is further enhanced with few-shot
fine-tuning, demonstrating remarkable data efficiency. This advantage is particularly pronounced
at longer prediction horizons, highlighting the robustness of the representations learned during pre-
training.

Collectively, these results validate our central hypothesis: pre-training on a diverse corpus of chaotic
systems endows the model with a universal understanding of complex dynamics. This allows Chaos-
Nexus to achieve state-of-the-art performance on real-world forecasting tasks with minimal, or even
zero, in-domain fine-tuning, thereby overcoming the critical challenge of data sparsity in scientific
applications.
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Figure 8: Few-shot forecasting performance for dew point on the WEATHER-5K dataset. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. The zero-shot performance of
ChaosNexus is shown as a dashed line for reference.
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Figure 9: Few-shot forecasting performance for sea level pressure on the WEATHER-5K dataset.
The Mean Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple
prediction horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. The zero-shot per-
formance of ChaosNexus is shown as a dashed line for reference.
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Figure 10: Few-shot forecasting performance for wind direction on the WEATHER-5K dataset.
The Mean Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple
prediction horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. The zero-shot per-
formance of ChaosNexus is shown as a dashed line for reference.
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Figure 11: Few-shot forecasting performance for wind speed on the WEATHER-5K dataset. The
Mean Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple pre-
diction horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. The zero-shot perfor-
mance of ChaosNexus is shown as a dashed line for reference.

A.6 ADDITIONAL RESULTS ON MULTI-SCALE FEATURE ANALYSIS

We demonstrate temporal attention map of each encoder and decoder levels of ScaleFormer in Fig-
ure 12.

A.7 FORECAST SHOWCASES

We demonstrate forecasting showcases of six representative systems in Figure 13.

B HYPERPARAMETER SETTINGS

Table 3 delineates the hyperparameter configurations for the suite of ChaosNexus models, spanning
from Mini to Large scales. For all model variants, we maintain a consistent input context length of
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Figure 12: Visualization of input patch partitioning and multi-scale temporal attention for three
chaotic systems.
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Figure 13: Forecasting showcases of representative chaotic systems.

T = 512 and a prediction horizon of H = 128, with the input trajectory segmented into patches of
length D = 8. The scaling of model capacity is primarily achieved by adjusting the embedding di-
mension de, the number of Transformer blocks at each hierarchical level (Blocks), the corresponding
number of attention heads (Heads), and the depth of the convolutional blocks within the skip con-
nections (Skip Depths). Key parameters for our specialized components are kept constant across
all scales: each Mixture-of-Experts (MoE) layer consists of M = 8 specialist experts, of which the
top K = 2 are activated for each token, and the wavelet scattering transform produces a frequency
fingerprint of dimension C = 48. This transform is configured with parameters J = 8 and Q = 8;
as detailed in Appendix C.3, J defines the scale of temporal averaging for the low-pass filter, while
Q represents the number of wavelet filters per octave (quality factor). The composite training ob-
jective is governed by the weights λ1 = 0.1 for the MoE load balancing loss and λ2 = 0.5 for the
MMD-based distributional regularization. The final column reports both the number of activated
and total parameters for each model configuration.

Table 3: Hyperparameter configurations for ChaosNexus models.
Method T H D de Blocks Attention Heads Skip Depths M K C J Q λ1 λ2 Params

ChaosNexus-Mini 512 128 8 24 [1,1,1,1] [3,6,12,24] [2,2,2,0] 8 2 48 8 8 0.1 0.5 2.88M/7.60M
ChaosNexus-Small 512 128 8 48 [1,1,1,1] [3,6,12,24] [2,2,2,0] 8 2 48 8 8 0.1 0.5 10.88M/29.72M
ChaosNexus-Base 512 128 8 48 [2,2,2,2] [3,6,12,24] [2,2,2,0] 8 2 48 8 8 0.1 0.5 20.32M/58.01M

ChaosNexus-Large 512 128 8 64 [3,3,3,3] [4,8,16,32] [2,2,2,0] 8 2 48 8 8 0.1 0.5 52.68M/153.12M

C IMPLEMENTATION DETAILS

C.1 INPUT AUGMENTATION FEATURES

As stated in the main text, our approach to feature engineering is inspired by Koopman operator
theory (Koopman, 1931), which suggests that a complex nonlinear dynamical system can be rep-
resented as a linear system in an infinite-dimensional space of observable functions. While this
infinite-dimensional space is practically inaccessible, it can be effectively approximated by project-
ing the system’s state into a higher-dimensional feature space. This process of lifting the dynamics
is a cornerstone of methods like Extended Dynamic Mode Decomposition (eDMD) (Williams et al.,
2015).
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Following this principle, and adopting a technique from recent work on pretrained forecast models,
we enrich the representation of each time series patch before it is processed by the main architecture.
Instead of using the raw patch data alone, we construct an augmented feature vector by concatenating
the original patch with two additional sets of randomly generated, nonlinear features.

• Random Polynomial Features. To capture nonlinear relationships within each patch, we generate
a set of monomial features. For a given polynomial degree, d, this is achieved by first sampling
a collection of d-tuples of indices. For each tuple, we compute a new feature by multiplying the
patch elements corresponding to those indices. This creates a basis of polynomial observables that
can approximate the underlying dynamics. For our model, we use polynomial features of degree
d ∈ {2, 3}.

• Random Fourier Features. To approximate a universal kernel and capture periodic patterns, we
employ random Fourier features, a widely-used technique for scaling up kernel methods. This is
implemented by projecting a patch onto a set of random vectors, whose components are sampled
from a normal distribution. The resulting scalar values are then transformed using both sine and
cosine functions, effectively creating a randomized spectral basis.
The final embedding for each patch is formed by concatenating the original patch vector with the
generated polynomial and Fourier features. This lifted representation provides a much richer input
to the model, allowing it to more easily learn and represent the complex, nonlinear evolution of
the dynamical systems.

C.2 SKIP CONNECTION BLOCKS

To mitigate the loss of fine-grained information during the down-sampling operations within the
encoder, we employ a skip connection architecture that links encoder and decoder blocks at cor-
responding resolutions. This mechanism is crucial for providing the decoder with direct access to
high-resolution feature maps from the encoder, thereby enhancing the model’s ability to reconstruct
the system’s dynamics with high fidelity.

Our implementation for these skip connections is a specialized 1D residual convolutional block. Its
design is inspired by modern convolutional networks that have successfully integrated principles
from Transformer architectures, showing high efficiency and performance (Herde et al., 2024). The
block operates on different variables independently. The forward pass consists of the following key
operations:

• Depthwise Convolution. The core of the block is a 1D depthwise convolution with a large kernel
size, which is implemented as 7 in our experiments. This operation efficiently captures local
spatio-temporal patterns across the patch sequence.

• Normalization. Following the convolution, a LayerNorm layer is applied to the features. This
standardizes the activations across the feature dimension, ensuring stable training dynamics.

• Inverted Bottleneck. The architecture employs an inverted bottleneck design, a hallmark of mod-
ern efficient networks. The normalized features are first passed through a point-wise convolution
that expands the channel dimension by a factor of 4. This is followed by a GELU activation
function, which introduces non-linearity. A second point-wise convolution then projects the fea-
tures back to the original dimension. This expand-and-contract structure allows the model to learn
complex interactions between channels in a higher-dimensional space.

• Stability and Regularization. For improved training, two advanced techniques are integrated.
First, a learnable, per-channel scaling parameter is applied to the output of the inverted bottleneck.
This allows the model to dynamically modulate the contribution of each residual block, which is
particularly beneficial in deep architectures. Second, the output of the block is randomly sets
to zero during training, effectively bypassing it. This acts as a powerful regularizer, preventing
feature co-adaptation and improving model generalization.

• Residual Connection. Finally, the output of the processed branch is added to the original input
tensor, forming the block’s essential residual connection.

By integrating these blocks as skip connections, we ensure that the decoder has access to a rich,
multi-scale representation of the input, enabling it to accurately reconstruct detailed system dynam-
ics that might otherwise be lost in the encoder’s hierarchical processing.
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C.3 WAVELET SCATTERING TRANSFORM

In our work, we employ the Wavelet Scattering Transform (WST) to extract a stable, multi-scale
frequency representation from the historical observations X . The WST (Mallat, 2012; Bruna &
Mallat, 2013; Andén & Mallat, 2014) generates signal representations that are stable to small time
shifts and deformations without sacrificing significant information. It achieves this by cascading
wavelet convolutions with complex modulus non-linearities, followed by local averaging. This hi-
erarchical structure is analogous to that of a Convolutional Neural Network (CNN), but with fixed,
pre-defined wavelet filters instead of learned kernels. The transform is constructed by iteratively
applying three fundamental operations: convolution with an analytic wavelet filter ψλ(t), complex
modulus non-linearity | · |, and averaging via convolution with a low-pass filter ϕJ(t).

For an input signal x(t), the scattering transform up to the second order, denoted as SJx, is a
collection of coefficients from different layers (or orders):

SJx = [S
(0)
J x, S

(1)
J x, S

(2)
J x], (11)

where each order is defined as follows:

Zero-Order Coefficients. The zeroth-order coefficients capture the local mean of the signal. They
are computed by convolving the input signal x(t) with a wide low-pass filter ϕJ(t), where J defines
he scale of temporal averaging, formulated as follows:

S
(0)
J x(t) = x ⋆ ϕJ(t).

This provides the coarsest, most stable representation of the signal’s energy.

First-Order Coefficients. The first-order coefficients form the core of the wavelet analysis. The cal-
culation begins by convolving the signal x(t) with a family of first-order analytic wavelets, ψ(1)

λ (t),
to capture information around specific frequencies λ. The complex modulus of this result is then
taken—a crucial step that demodulates the signal and ensures invariance to local phase shifts. Fi-
nally, this resulting envelope is smoothed by convolving it with the low-pass filter ϕJ(t), which
achieves local time-shift invariance through averaging. The complete operation is summarized by
the formula:

S
(1)
J x(t, λ) = |x ⋆ ψ(1)

λ | ⋆ ϕJ(t).

Second-Order Coefficients. To recover transient information, such as rapid amplitude modulations
lost during first-order averaging, the transform recursively applies the wavelet decomposition. This
process begins with the modulus envelopes, |x ⋆ ψ(1)

λ |, generated by the first order. These envelopes
are then convolved with a second family of wavelets, ψ(2)

µ (t), to extract their spectral content, which
reveals interactions between the primary frequency bands. Following this, a second modulus opera-
tion is applied before the final averaging with the low-pass filter ϕJ(t) stabilizes the representation.
The entire cascade is encapsulated by the formula:

S
(2)
J x(t, λ, µ) = ||x ⋆ ψ(1)

λ | ⋆ ψ(2)
µ | ⋆ ϕJ(t).

In our methodology, the collection of all scattering coefficients, {S(0)
J , S

(1)
J , S

(2)
J }, forms the feature

set Fw ∈ RC×T ′×V . Here, C represents the total number of scattering paths (i.e., combinations of
λ and µ), T ′ is the reduced temporal dimension after averaging, and V is the number of variables.
To create a single, fixed-size fingerprint for the underlying dynamical system, we apply temporal
pooling across the T ′ dimension. This results in the final representation F̄w ∈ RC×V , which sum-
marizes the intrinsic oscillatory and modulatory characteristics of the system, serving as a robust
conditional input for our model.

C.4 MAXIMUM MEAN DISCREPANCY

Forecasting the long-term evolution of chaotic systems necessitates metrics that extend beyond
point-wise accuracy. To ensure our model reproduces not just a single trajectory but the system’s
intrinsic statistical and geometric structure, we employ a distributional loss based on the Maximum
Mean Discrepancy (MMD).
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As established in prior literature (Schiff et al., 2024), a suitable metric for comparing state distribu-
tions of trajectories should exhibit several essential characteristics. Specifically, it must: (i) respect
the underlying geometry of the state space and be capable of comparing distributions with non-
overlapping supports; (ii) provide an unbiased estimator that can be computed from finite samples;
(iii) maintain low computational complexity with respect to both dimensionality and sample size;
(iv) act as a true metric on the space of probability measures, ensuring that a vanishing distance im-
plies convergence; and (v) feature parametric estimation rates, such that sample error is independent
of the system’s dimension.

The family of Integral Probability Metrics (IPMs) (Müller, 1997) provides a general framework that
satisfies these desiderata. For any two probability distributions p1 and p2, an IPM is defined as the
supremum of the difference between expectations over a class of functions K:

IPM(p1, p2) = sup
κ∈K

|Eu∼p1
[κ(u)]− Eu′∼p2

[κ(u′)]|. (12)

Within this class, we select the Maximum Mean Discrepancy (MMD), which distinguishes itself by
defining K as the unit ball in a Reproducing Kernel Hilbert Space (RKHS), denoted H. The formal
definition of MMD is thus:

MMD(p1, p2) := sup
||f ||H≤1

|Eu∼p1
[f(u)]− Eu′∼p2

[f(u′)]|. (13)

By leveraging the reproducing property of the RKHS and the Riesz representation theorem, the
squared MMD can be expressed in a convenient analytical form using a kernel function κ(·, ·) that
defines H:

MMD2(p1, p2) = Eu,u′∼p1
[κ(u,u′)] + Ev,v′∼p2

[κ(v,v′)]− 2Eu∼p1,v∼p2
[κ(u,v)]. (14)

This expression leads directly to the unbiased empirical estimator used in our work as the regular-
ization loss Lreg.

For the kernel function κ, our implementation follows successful precedents (Seeger, 2004; Li et al.,
2015; Schiff et al., 2024), employing a mixture of rational quadratic kernels. This choice ensures
sensitivity to distributional discrepancies across multiple length scales. The composite kernel is
formulated as:

κ(u,v) =
∑
σ∈σ

σ2

σ2 + ||u− v||22
, (15)

where the set of scale parameters is chosen to be σ = {0.2, 0.5, 0.9, 1.3}, consistent with these prior
works.

D DETAILS OF EXPERIMENTAL SETTINGS FOR ZERO-SHOT EVALUATIONS

D.1 DETAILS OF SYNTHETIC CHAOTIC SYSTEM DATASET

The study utilizes the large-scale synthetic dataset of chaotic dynamics introduced by Lai et al.
(2025). This dataset is specifically designed to provide a vast and dynamically diverse corpus for
pretraining a universal forecasting model, moving beyond reliance on a limited set of well-known
systems. The generation pipeline is rooted in an evolutionary algorithm that discovers and validates
novel chaotic ordinary differential equations (ODEs).

Founding Population and Evolutionary Framework. The algorithm begins with a founding pop-
ulation of 135 well-documented, human-curated, low-dimensional chaotic systems. For these foun-
dational systems, which include canonical examples like the Lorenz equations, the parameters and
initial conditions are meticulously tuned to ensure operation within their chaotic regimes, and their
integration timescales are standardized based on invariant mathematical properties such as Lyapunov
exponents. From this seed set, the evolutionary framework iteratively generates new candidate sys-
tems through a cycle of mutation and recombination. The mutation step introduces variation by
randomly sampling pairs of parent systems and applying a parameter jitter, where random Gaussian
noise is added to the default parameters of the selected ODEs (θ̃′a ∼ N (θa, σ)). Subsequently, the
recombination step combines the mutated parent systems to form a novel child system using a skew
product construction: ẋ(t) = κafa(x) + κbẋb. This method is chosen for its propensity to preserve
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chaotic dynamics under sufficiently weak or strong coupling. The scaling factors, κa and κb, are
determined from the reciprocal of the root-mean-square (RMS) of the parent systems’ flow fields.

Selection for Chaoticity. A critical and computationally intensive stage of the pipeline involves a
rigorous, multi-step selection process that filters for genuine and sustained chaotic behavior, culling
all other candidates. First, systems exhibiting trivial dynamics are rejected; the numerical integra-
tion is automatically terminated for any candidate that converges to a fixed point (indicated by an
integration step size falling below 10−10), diverges to infinity (a coordinate value exceeding 104), or
fails to complete integration within a 5-minute time limit. Surviving candidates are then subjected
to the 0-1 test, a standard method for distinguishing between chaotic and periodic or quasiperiodic
dynamics. Finally, a further sequence of attractor tests is applied to ensure dynamical complexity.
This includes a test based on near-recurrences to reject simple limit cycles, a power spectrum anal-
ysis to discard trajectories with only a few dominant frequencies, and a data-driven estimation of
the largest Lyapunov exponent. This comprehensive discovery and validation process yields a final
training corpus of 20K unique chaotic dynamical systems.

Data Augmentation and Trajectory Generation. To further expand the dataset’s volume, several
augmentations are applied to the generated trajectories. These transformations are selected because
they preserve the underlying property that the resulting time series originates from a valid nonlinear
dynamical system. The augmentations include random time-delay embedding, justified by Tak-
ens’ embedding theorem (Takens, 2006), convex combinations, and affine transforms. For the final
dataset, trajectories of 4096 timesteps are generated for each system using a high-precision numeri-
cal integrator with relative and absolute tolerances of 1× 10−9 and 1× 10−10, respectively. Initial
conditions are sampled from a preliminary, lower-tolerance integration run to approximate starting
on the system’s attractor.

Held-Out Test Set. For robust zero-shot evaluation, a distinct held-out test set of 9.3× 103 systems
is created. This set is generated from a reserved subset of 20 systems from the original founding
population that are never used in the training set generation. A strict separation is enforced by
ensuring that none of these 20 systems, nor any of their mutations, appear as either a driver or a
response in the skew product constructions for the training data, thereby preventing any data leakage.

D.2 DETAILS OF EVALUATION METRICS

To provide a comprehensive assessment of model performance, we employ a suite of evaluation
metrics that quantify both short-term, point-wise prediction accuracy and the long-term fidelity of
the reconstructed system dynamics. These metrics are designed to evaluate a model’s ability to not
only forecast the immediate future state but also to reproduce the intrinsic geometric and statistical
properties of the chaotic attractor.

sMAPE. For evaluating short-term predictive quality, we utilize the Symmetric Mean Absolute
Percentage Error (sMAPE) calculated over a forecast horizon of length T . The sMAPE provides a
normalized, point-wise measure of the discrepancy between the predicted trajectory and the ground
truth. It is defined as:

sMAPE ≡ 200

T

T∑
t=1

∥xt − x̂t∥1
∥xt∥1 + ∥x̂t∥1

, (16)

where xt and x̂t are the true and forecasted state vectors at time step t, respectively. This metric
is particularly well-suited for this task as its percentage-based formulation is robust to the varying
scales of different dynamical systems, and it is less sensitive to outliers than the Mean Absolute
Error (MAE).

Correlation Dimension Error Dfrac. To assess a model’s ability to replicate the long-term geomet-
ric structure, we evaluate its reproduction of the system’s strange attractor. In a chaotic dynamical
system, long-term trajectories populate a fractal object known as a strange attractor, which possesses
a unique and invariant fractal dimension that characterizes its space-filling properties. We use the
correlation dimension as a non-parametric method to estimate this fractal dimension directly from
the time series data (Grassberger & Procaccia, 1983). This method quantifies how the number of
points on the attractor scales with distance by measuring, for each point, the density of neighbor-
ing points within a given radius r. The fractal dimension is revealed by the power-law relationship
between this point density and the radius r. We compute the correlation dimension for both the
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ground-truth trajectory and the attractor generated from the model’s long-term forecast. The metric
Dfrac is then the root mean square error (RMSE) between these two estimated dimensions. A smaller
Dfrac value signifies that the model’s generated dynamics faithfully reproduce the intrinsic geometric
complexity of the true system’s attractor.

Kullback–Leibler Divergence between System Attractors (Dstsp). Beyond geometric structure, a
successful long-term forecast must also capture the statistical properties of the attractor. We quantify
this using the Kullback-Leibler (KL) divergence (Dstsp) between the probability distributions of the
true and reconstructed attractors (Hess et al., 2023; Göring et al., 2024). The long-term behavior of
a chaotic system can be described by an invariant probability measure over its phase space, which
represents the likelihood of finding the system in a particular state. Operationally, we approximate
this invariant measure for both the true and forecasted trajectories by fitting Gaussian Mixture Mod-
els (GMMs) to points sampled from each attractor. The Dstsp is then the estimated KL divergence
between these two GMMs (Hershey & Olsen, 2007). A lower value indicates that the reconstructed
attractor more accurately captures the statistical and density profile of the true system’s dynamics.

D.3 DETAILS OF BASELINES

We compare our proposed method against several state-of-the-art time series foundation models,
including Panda (Lai et al., 2025), Time-MoE (Shi et al., 2024), TimesFM (Das et al., 2024),
Chronos (Ansari et al., 2024), Moirai-MoE (Liu et al., 2024a), and Timer-XL (Liu et al., 2024b). To
assess the adaptability of general-purpose models to this specific domain, we also include Chronos-
S-SFT, a variant of the Chronos-S model that has been fine-tuned on our chaotic systems training
corpus. The key characteristics of each baseline are detailed below.

• Panda is a pretrained, encoder-only Transformer model designed for forecasting chaotic dynam-
ics. Based on the PatchTST (Nie et al., 2022) architecture, it introduces interleaved channel and
temporal attention layers to capture variable coupling, alongside a dynamics embedding layer that
uses polynomial and Fourier features inspired by Koopman operator theory.

• Time-MoE is a family of billion-scale, decoder-only Transformer foundation models that utilize a
sparse Mixture-of-Experts (MoE) architecture to enhance scalability and computational efficiency.
The model tokenizes the input time series point-wise and employs multiple forecasting heads
to predict at different resolutions simultaneously through multi-task optimization. Time-MoE is
pre-trained on Time-300B, a large-scale collection of over 300 billion time points from diverse
domains, to achieve universal forecasting capabilities.

• TimesFM is a decoder-only Transformer-based foundation model for zero-shot time series fore-
casting. It processes time series data by breaking it into patches and is trained autoregressively
to predict the next patch based on the preceding context. A key design feature is using an out-
put patch length that is longer than the input patch length to reduce the number of autoregressive
steps required for long-horizon forecasting. The model is pretrained on a large corpus of approx-
imately 100 billion time points, combining real-world data from Google Trends and Wikipedia
with synthetic data.

• Chronos is a framework that adapts existing language model architectures, such as the T5 family,
for probabilistic time series forecasting. Its core innovation is the tokenization of continuous
time series values into a fixed vocabulary using a simple process of mean scaling and uniform
quantization. By treating time series as a sequence of discrete tokens, Chronos is trained from
scratch using the standard cross-entropy loss objective common to language models. The training
corpus consists of a large collection of public datasets, augmented by synthetic data generated via
Gaussian processes and a mixup strategy.

• Moirai-MoE is a decoder-only Transformer that improves upon its predecessor, Moirai (Woo
et al., 2024), by incorporating a sparse Mixture-of-Experts (MoE) architecture. It replaces
heuristic-driven, frequency-specific input/output layers with a single projection layer, delegating
the task of modeling diverse time series patterns to specialized experts within the MoE layers,
thereby enabling automatic token-level specialization. It also introduces a novel gating function
that uses cluster centroids from a pretrained model to guide expert assignments. Moirai-MoE is
trained on the LOTSA dataset using a decoder-only objective.

• Timer-XL is a causal, decoder-only Transformer designed for unified, long-context time series
forecasting. It generalizes the next token prediction paradigm to multivariate time series by flat-
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tening 2D time series data into a unified context of patch tokens. Its central architectural inno-
vation is TimeAttention, a causal self-attention mechanism that uses a Kronecker product-based
mask and specialized position embeddings to effectively model both intra- and inter-series depen-
dencies. Timer-XL is pre-trained on large-scale datasets, such as UTSD and LOTSA, to achieve
state-of-the-art zero-shot performance.

• Chronos-S-SFT. To investigate the domain adaptability of general-purpose models, we create
a specialized version of Chronos by fine-tuning the publicly available Chronos-S weights on our
chaotic systems training set. This process, referred to as Supervised Fine-Tuning (SFT), allows the
model to adapt its learned representations from general time-series data to the specific, complex
patterns inherent in chaotic dynamics. This baseline helps to disentangle the effects of model
architecture from the benefits of domain-specific training data.

We summarize the number of time points within the pretraining corpus in Table 4 for comparison.
We demonstrate the parameter count in Table 5.

Table 4: The number of time points within the pretraining corpus of different methods.
Method ChaosNexus Panda Time-MoE TimesFM Moirai-MoE Timer-XL

# Time Points ∼0.35B ∼0.35B ∼300B ∼100B ∼231B ∼232B (LOSTA & UTSD)

Table 5: The number of parameters of baseline methods. For methods with mixture-of-experts
layers, we demonstrate activated parameter counts/total parameter counts.

Method ChaosNexus Panda Chronos-S Chronos-B Chronos-L Moirai-MoE-S Moirai-MoE-L TimeMoE-S TimeMoE-L TimerXL TimesFM

# Parameters 21M/58M 21M 21M 48M 205M 11M/117M 86M/935M 50M/113M 200M/453M 84M 500M

D.4 DETAILS OF TRAINING PROTOCOL

We employ a context length of 512 time steps for training our model and the panda baseline, as well
as for fine-tuning Chronos. The prediction head is tasked with forecasting the subsequent 128 time
steps based on this context. We use an initial patch size of 8. During the main training phase on
the simulated chaotic system dataset, the models are trained for 100K iterations with a batch size of
1024. For the Chronos model specifically, we conduct a fine-tuning stage for 300K iterations using
a batch size of 128.

E DETAILS OF EXPERIMENTAL SETTINGS FOR FEW-SHOT EVALUATIONS

E.1 DETAILS OF WEATHER DATASET

WEATHER-5K is a large-scale, public benchmark dataset designed to advance research in Global
Station Weather Forecasting (GSWF) and broader time-series analysis. The dataset derives from
the Integrated Surface Database (ISD), a global repository of surface observations managed by the
National Centers for Environmental Information (NCEI). While the full ISD contains data from over
20,000 stations, many are unsuitable for machine learning applications due to being non-operational,
having inconsistent reporting intervals, or containing significant missing values for key variables.
The creation of WEATHER-5K involves a meticulous selection process to curate a high-quality
subset of stations that are currently operational and provide long-term, hourly reporting of essential
weather elements. After the preprocessing stages, the final dataset contains hourly meteorological
data from 5,672 stations worldwide over a 10-year period (2014–2023), providing a rich and ex-
tensive resource for developing and benchmarking sophisticated forecasting models. Each station’s
data includes five primary meteorological variables: Temperature, Dew Point, Wind Speed, Wind
Direction, and Sea-Level Pressure.

For reproducibility and standardized evaluation, the WEATHER-5K dataset is chronologically di-
vided into three subsets: a training set, a validation set, and a testing set. The training set consists
of weather data from 2014 to 2021, the validation set includes data from the year 2022, and the
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testing set comprises data from 2023. This division follows an 8:1:1 ratio, which allows models to
be trained on sufficient historical data, validated on a separate year, and tested on the most recent
data for an accurate evaluation. For our experiments under few-shot setting conditions, we use only
0.1% and 0.5% of the training data, respectively.

E.2 DETAILS OF BASELINES

We compare ChaosNexus against several strong deep learning baselines in this benchmark, including
FEDformer (Zhou et al., 2022), CrossFormer (Zhang & Yan, 2023), PatchTST (Nie et al., 2022), and
Koopa (Liu et al., 2023). The details are as follows:

• FEDformer is a Transformer architecture designed for long-term forecasting that addresses the
tendency of standard Transformers to neglect global series properties, such as overall trends. It
incorporates a seasonal-trend decomposition framework to disentangle the global profile of the
series, which is processed separately from the more detailed components. Its core innovation is the
replacement of the standard self-attention mechanism with frequency-domain operations. These
Frequency Enhanced Blocks (FEB) and Frequency Enhanced Attention (FEA) modules operate
on a randomly selected subset of Fourier or Wavelet basis functions, which not only captures the
series’ global properties more effectively but also achieves linear computational complexity.

• CrossFormer explicitly models the cross-dimension dependencies in multivariate time series, a
factor often overlooked by models that focus primarily on temporal relationships. Its architec-
ture is defined by three key components. First, a Dimension-Segment-Wise (DSW) embedding
partitions each time series variable into segments, creating a 2D vector array that preserves both
temporal and dimensional information. Second, a Two-Stage Attention (TSA) layer processes
this array by first applying attention across the time axis and subsequently across the dimension
axis. To handle a large number of variables efficiently, the cross-dimension stage uses a router
mechanism to achieve linear complexity. Finally, these modules are integrated into a Hierarchi-
cal Encoder-Decoder (HED) that processes information at multiple scales to generate the final
forecast.

• PatchTST introduces an efficient Transformer design centered on two principles: patching and
channel-independence. The model first segments each univariate time series into patches, which
serve as input tokens. This patching strategy retains local semantic information and quadratically
reduces the computational and memory complexity of the attention mechanism, which in turn
allows the model to process longer historical sequences. Subsequently, the model employs a
channel-independent architecture, where each univariate series (channel) is processed individually
by a shared vanilla Transformer encoder, thereby learning temporal patterns without explicit cross-
channel mixing in the attention layers.

• Koopa is a forecasting model built on Koopman theory, specifically designed to handle non-
stationary time series by linearizing their underlying dynamics. The model first employs a Fourier
Filter to disentangle the series into time-invariant and time-variant components based on their
frequency domain characteristics. It then applies distinct Koopman Predictors (KPs) to each com-
ponent: a globally learned, parametric operator for the time-invariant dynamics, and locally com-
puted, adaptive operators for the time-variant dynamics. These components are organized into
stackable Koopman Blocks within a residual architecture, enabling hierarchical learning and end-
to-end optimization of the forecasting objective without a reconstruction loss.

F USAGE OF LARGE LANGUAGE MODEL DECLARATION

The authors hereby declare the use of the Large Language Model (LLM) during the preparation
of this paper. The role of the LLM is exclusively confined to language polishing and refinement
of the manuscript’s expression. All foundational and critical aspects of the research, including the
formulation of the core ideas, the design of the proposed scheme, the planning of experiments, and
the acquisition and analysis of all experimental data, are conducted without the assistance of any
AI-based tools and are the sole contribution of the authors.
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