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ABSTRACT

Accurately forecasting chaotic systems, prevalent in domains including weather
prediction and fluid dynamics, remains a significant scientific challenge. The in-
herent sensitivity of these systems to initial conditions, coupled with a scarcity
of observational data, severely constrains traditional modeling approaches. Since
these models are typically trained for specific systems, they lack zero-shot or few-
shot capabilities on novel or data-limited scenarios. REVISEWhile emerging foundation
models address this via pretraining on multiple systems, existing architectures
typically operate at a single resolution, often failing to capture the intrinsic multi-
scale temporal structures where distinct dynamical patterns unfold. To overcome
this limitation, we introduce ChaosNexus, a universal forecasting model driven
by our ScaleFormer architecture. It explicitly captures the multi-scale structure of
chaotic dynamics with a U-Net-inspired design, enabling the simultaneous mod-
eling of fine-grained fluctuations and coarse-grained trends. Augmented with
Mixture-of-Experts layers and a wavelet-based frequency fingerprint, the model
can generalizes across heterogeneous dynamical regimes. On a large-scale testbed
comprising over 9,000 synthetic chaotic systems, it demonstrates notable improve-
ments in the fidelity of long-term attractor statistics while achieving competitive
point-wise forecasting accuracy compared to the leading baseline. This robust per-
formance extends to real-world applications with exceptional data efficiency. For
instance, in 5-day global weather forecasting, ChaosNexus achieves a competitive
zero-shot mean error below 1°C, a result that further improves with few-shot fine-
tuning. Moreover, experiments on the scaling behavior of ChaosNexus provide
a guiding principle for scientific foundation models: cross-system generalization
stems from the diversity of training systems, rather than sheer data volume.

1 INTRODUCTION

Chaotic systems, characterized by their deterministic nature yet high sensitivity to initial conditions,
are ubiquitous in the natural world and across diverse scientific and engineering disciplines, includ-
ing weather forecasting (Shukla, 1998; Rind, 1999), fluid dynamics (Yorke & Yorke, 2005; Najm,
2009), and neural processes (Jia et al., 2023; Vignesh et al., 2025). The intrinsic complexity of
such systems renders accurate forecasting both an essential and formidable task, particularly in real-
world contexts where data acquisition is resource-intensive and observational records are sparse.
While this sensitivity makes precise long-term point-wise prediction impossible, the system’s be-
havior is not entirely random; it is confined to a complex geometric structure known as a strange
attractor (Rössler, 1976; Grassberger & Procaccia, 1983), which possesses unique and invariant sta-
tistical properties. An effective forecasting model should not only predict the short-term evolution
but also reproduce the long-term geometry and statistics of the system’s attractor.

The intrinsic difficulty of forecasting chaotic systems is further compounded by the challenge of
data sparsity. Traditional system-specific models (Srinivasan et al., 2022; Brenner et al., 2022; Hess
et al., 2023) typically require extensive and high-quality observational data from a novel system to
accurately infer its underlying dynamics and attractor geometry, creating a significant bottleneck in
practical applications. REVISEThis has motivated a recent paradigm shift toward pretraining a single, univer-
sal model (Jiao et al., 2025; Hemmer & Durstewitz, 2025; Lai et al., 2025), based on the proposition
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that a model exposed to a vast and heterogeneous collection of observational data spanning diverse
dynamical systems and operating regimes can learn a rich repertoire of underlying patterns and prin-
ciples common to chaotic behavior. By leveraging large-scale data during pretraining, such a model
can then be applied to a target system with little or no in-distribution data. This strategy is designed
to exploit cross-system similarities to compensate for downstream data sparsity, thereby reducing
the burden of data acquisition and enhancing out-of-distribution forecasting performance.

REVISEExisting works, notably Panda (Lai et al., 2025) and DynaMix (Hemmer & Durstewitz, 2025), in-
stantiate this paradigm through distinct architectural designs. Panda demonstrates its feasibility by
pretraining Transformer blocks on a large-scale corpus of synthetic chaotic ODE systems, achieving
strong zero-shot forecasts on unseen dynamical systems. DynaMix explores this direction by using
a mixture of almost-linear RNN experts with delay- and sinusoidal-based embeddings to recon-
struct long-term statistics of novel low-dimensional dynamics. However, individual chaotic systems
exhibit multi-scale temporal structure: essential dynamical patterns unfold across a continuum of
time scales, and different systems may concentrate energy in widely separated frequency bands.
An architecture that operates at a single temporal resolution must either truncate long-range de-
pendencies, oversmooth fast oscillations, or conflate behaviors that live on distinct scales, thereby
obscuring system-specific attractor geometries and degrading long-horizon stability. Consequently,
although Panda and DynaMix achieve strong zero-shot performance on many benchmarks, their
lack of an explicit representation of this intrinsic multi-scale structure may limit out-of-distribution
generalization performance when applied to more heterogeneous chaotic dynamics.

To overcome these obstacles, we introduce ChaosNexus, a foundation model for universal chaotic
dynamics forecasting. At its core is our proposed ScaleFormer, a U-Net-inspired Transformer ar-
chitecture designed to master the multi-scale nature of chaotic systems. Its encoder progressively
models fine-grained to coarse temporal contexts through hierarchical patch merging, while the sym-
metric decoder, aided by skip connections, reconstructs fine-grained details via patch expansion. To
facilitate robust cross-system generalization, each Transformer block is equipped with a Mixture-of-
Experts (MoE) layer that allocates specialized parameters to different dynamical regimes on top of
a shared backbone. Furthermore, we condition the model on a frequency fingerprint derived from a
wavelet scattering transform, providing a stable spectral signature that captures the system’s intrinsic
oscillatory and modulatory behavior.

REVISEChaosNexus is pretrained on the chaotic-system corpus introduced by Panda (Lai et al., 2025),
consisting of approximately 20,000 synthetically generated ODE systems. Training is guided by a
composite objective that jointly enforces short-term predictive accuracy and the preservation of long-
term statistical properties. Through extensive experiments, we show that ChaosNexus sets a new
state-of-the-art in zero-shot forecasting on chaotic benchmarks. Its remarkable sample efficiency is
further highlighted on real-world weather forecasting: ChaosNexus achieves zero-shot temperature
MAE below 1◦C, outperforming competitive baselines even when they are fine-tuned on more than
470K samples from the target system. Finally, our scaling analysis reveals a key design principle
for future chaotic foundation models: generalization benefits more from increasing the diversity of
systems in the pretraining corpus than from increasing the number of trajectories per system. REVISEOur
primary contributions are summarized as follows:

• We propose ChaosNexus, a foundation model for chaotic system forecasting strengthened by ex-
plicitly considering the multi-scale structure of chaotic dynamics, enhancing its out-of-distribution
generalization performances on diverse systems.

• We design a multi-scale ScaleFormer architecture that couples hierarchical temporal represen-
tations with Mixture-of-Experts layers and a wavelet-based frequency fingerprint to capture the
multi-scale temporal and spectral structure of chaotic dynamics while allocating specialized pa-
rameters to individual systems and dynamical regimes.

• We show that ChaosNexus attains state-of-the-art zero-shot performance on thousands of synthetic
chaotic systems and strong zero-shot accuracy on 5-day global weather forecasting.

2 RELATED WORKS

Chaotic System Forecasting. Forecasting chaotic systems is a central challenge in science and en-
gineering. REVISEReservoir computing (RC)-based methods (Srinivasan et al., 2022; Gauthier et al., 2021;
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Li et al., 2024) represent a key advance: they employ fixed read-in weights to lift inputs into the
high-dimensional state space of a randomly initialized reservoir, while training only a linear readout.
Concurrently, deep learning models like recurrent neural networks (RNNs) have proven effective,
though they often require techniques such as teacher forcing to counteract training instabilities like
exploding gradients on chaotic trajectories (Brenner et al., 2022; Hess et al., 2023). More recent
works aim to preserve the geometric and statistical properties of system attractors within neural op-
erators. This is achieved through methods like evolution regularization with optimal transport and
Maximum Mean Discrepancy (MMD), or by imposing mathematical constraints such as unitarity
that leverage system ergodicity (Cheng et al., 2025; He et al., 2025). Despite their success, these
frameworks are specialized models, designed and trained for a single, specific system. This inherent
lack of generalization renders them impractical for real-world chaotic systems where data is often
sparse and systems are unseen, precluding their application in zero-shot or few-shot forecasting.

Out-of-distribution Generalization in Dynamical Systems. Out-of-distribution generalization in
dynamical systems is a rapidly growing area of research. Norton et al. (2025) demonstrated that
reservoir computers can generalize to unobserved basins of attraction in multistable systems when
trained on sufficiently rich transient dynamics, thereby learning a global representation from a sin-
gle basin. Another prominent strategy involves decomposing system dynamics into shared and spe-
cific components, where a base model captures common physical laws and low-dimensional vectors
encode system-specific characteristics, leveraging data from multiple regimes to learn fundamen-
tal representations of the underlying dynamics (Brenner et al., 2024; Wang et al., 2025; Huang
et al., 2023). REVISEA complementary paradigm focuses on pretraining foundation models on large syn-
thetic datasets encompassing diverse governing equations, parameter regimes, and initial condi-
tions (Nzoyem et al., 2025; Subramanian et al., 2023; Herde et al., 2024; McCabe et al., 2024;
Seifner et al., 2024), and most of these works target PDEs with rich spatiotemporal structure. Within
the domain of ODE-based chaotic systems, Panda (Lai et al., 2025) trains Transformer blocks on a
large-scale corpus of synthetic chaotic systems and demonstrates strong zero-shot forecasting per-
formance on many unseen systems. DynaMix (Hemmer & Durstewitz, 2025) instead employs a
mixture of almost-linear RNN experts with delay- and sinusoidal-based embeddings to reconstruct
long-term statistics of chaotic dynamics. Although these works clearly demonstrate the benefits of
pretraining for generalization, their architectural designs largely overlook the inherent multi-scale
temporal structure of chaotic dynamics. In contrast, we propose a U-Net–inspired multi-scale Trans-
former backbone, ScaleFormer, equipped with per-scale MoE layers and a wavelet-based frequency
fingerprint, which explicitly encodes multi-scale temporal and spectral structure and improves out-
of-distribution generalization across thousands of heterogeneous chaotic systems.

3 METHODOLOGY

Problem Statement and Model Overview. We address the problem of chaotic system forecasting:
given historical observations X1:T = (x1,x2, · · · ,xT ) ∈ RT×V spanning T times of a chaotic sys-
tem with V variables, we forecast its successive H steps, i.e., X̂T+1:T+H = fθ(X1:T ) ∈ RH×V ,
where fθ denotes the forecasting model. Here, we aim to design a foundation model fθ that can
directly produce faithful forecasting results based on historical observations, with little or no further
in-distribution data required for training. We demonstrate the overall architecture of ChaosNexus
in Figure 1, which comprises three key components: (i) input dynamics embedding, (ii) the Scale-
Former backbone, and (iii) frequency-enhanced joint scale readout. The details of our framework
are shown as follows.

3.1 INPUT DYNAMICS EMBEDDING

In chaotic systems, instantaneous observations are often noisy and insufficient to reveal the gov-
erning dynamics. We therefore segment the input trajectory X ∈ RT×V into S = ⌊ T

D ⌋ + 1

non-overlapped temporal patches of length D. Each patch P ∈ RD×V encapsulates a short-time
trajectory segment, thereby providing essential local dynamical context. Motivated by Koopman
theory (Koopman, 1931; Mauroy et al., 2020; Brunton et al., 2021), which posits that nonlinear dy-
namics can be linearized by lifting them to a suitable high-dimensional space of observables, we
first enrich each patch with random polynomial and Fourier features (Appendix C.1), an approach
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Figure 1: Overview of our ChaosNexus framework, with details of patch merging and expansion
operations, and the Transformer block architecture with mixture-of-experts layers.

adopted from recent work (Lai et al., 2025). The augmented patch is then mapped to an embedding
u with embedding dimension de via a linear layer.

3.2 SCALEFORMER ARCHITECTURE

The patch embeddings are then fed into the ScaleFormer, an encoder-decoder architecture composed
of stacked Transformer blocks. Instead of applying standard attention to patches flattened across all
dimensions with O(S2V 2) complexity, each Transformer block employs dual axial attention. This
mechanism factorizes the computation by performing attention sequentially along the variable and
temporal axes, reducing the overall complexity to O(S2 + V 2). Crucially, the variable attention
module can capture the strong coupling between variables—a fundamental property of chaotic dy-
namics often absent in standard time series. To better accommodate different sequence lengths and
enhance generalization, we employ rotary positional embeddings (RoPE) (Su et al., 2024) instead of
conventional absolute positional encodings. We also employ pre-normalization to enhance training
stability and FlashAttention (Dao et al., 2022) to improve efficiency. Given an input patch embed-
ding up, the computational flow of our modified Transformer block is:

hp = VA(RN(up)) + up, h̄p = TA(RN(hp)) + hp, h̃p = MoE(RN(h̄p)) + h̄p, (1)

where VA and TA are axial variable and temporal attention operations, respectively. RN denotes the
root mean square (RMS) layer normalization (Zhang & Sennrich, 2019). We replace the standard
feed-forward network (FFN) with a Mixture-of-Experts (MoE) layer (Dai et al., 2024), which allows
a single model to distinguish the dynamics of multiple chaotic systems by enabling different experts
to specialize in their unique characteristics. The MoE layer consists of M specialist experts and
one shared expert, which are all implemented with standard feed-forward layers. A gating network
activates a sparse combination of these experts for each input. Its output is a weighted sum of the
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shared expert and the top K specialist experts:

MoE(h̄p) = ϕM+1,pFFNM+1(h̄p) +

M∑
i=1

(ϕi,pFFNi(h̄p)), (2)

ϕi,p =

{
si,p, si,p ∈ TopK({sj,p}Mj=1,K),

0, otherwise,
(3)

ϕM+1,p = Sigmoid(WM+1h̄p), s:,p = Softmax(Wh̄p), (4)

where si,p is the score of the i-th specialist expert. W s are trainable parameters.

Encoding and Patch Merging. The encoder blocks progressively builds a hierarchy of represen-
tations at increasingly coarse resolutions. Following each Transformer block at level i, a patch
merging layer reduces the temporal resolution by a factor of two while doubling the feature di-
mension. This down-sampling is achieved by concatenating the features of adjacent temporal
patches and applying a learnable linear projection. Given the output of the i-th encoder block,
H

(i)
enc ∈ R

S

2i−1 ×V×2i−1de , the patch merging is formulated as:

H
′(i)
enc = Concat(H(i)

enc[0 :: 2, . . . ],H(i)
enc[1 :: 2, . . . ])W (i)

enc + b(i)enc, (5)

where the output H
′(i)
enc ∈ R

S

2i
×V×2ide serves as the input to the next encoder level. This allows

successive layers to capture features ranging from fine-grained details to coarse, global structures.
The hierarchical encoding process culminates in a bottleneck layer positioned at the deepest level
of the architecture, which consists of a linear layer that processes the feature representation at the
coarsest temporal scale, bridging the transition from the encoding path to the decoding path.

Decoding and Patch Expansion. The decoder blocks reconstructs the high-resolution represen-
tation from the low-dimensional features produced by the encoder and a final bottleneck layer.
Each decoder block is followed by a patch expansion layer that reverses the merging process.
It up-samples the features by doubling the temporal resolution and halving the channel dimen-
sion via a linear transformation and a reshape operation. For the i-th decoder level, the input
H

(i)
dec ∈ R

S

2i
×V×2ide is expanded, producing an output H

′(i)
dec ∈ R

S

2i−1 ×V×2i−1de as follows:

H
′(i)
dec = Reshape(W (i)

decH
(i)
dec + b

(i)
dec), (6)

Skip Connections. To mitigate the loss of fine-grained information during down-sampling, we
introduce skip connections linking encoder and decoder blocks at corresponding resolutions. The
output H(i)

enc from the i-th encoder layer is passed through a dedicated skip connection block im-
plemented with 1D convolutions and then fused with the up-sampled features H

′(i)
dec from the cor-

responding decoder layer. This fusion provides the decoder with direct access to high-resolution
encoder features, which is crucial for accurate reconstruction of the system’s dynamics. Further
details are provided in Appendix C.2.

3.3 FREQUENCY-ENHANCED JOINT SCALE READOUT

The decoder of ScaleFormer produces a set of representations {H(i)
dec}Li=1 capturing system dynamics

at L different temporal scales. To synthesize these into a single, comprehensive representation for
forecasting, we first apply temporal mean pooling to each decoder output to obtain system-level
features H̄(i) for each scale. These features are then concatenated and projected through a linear
fusion layer to produce a unified dynamics representation Huni ∈ Rde×V contains integrated multi-
scale information:

Huni = Concat(H̄(1), H̄(2), · · · , H̄(L))Wf + bf .

A robust foundation model must not only model temporal evolution but also identify the underlying
dynamical system or its current regime. To this end, we condition our model on frequency-domain
information, which serves as a fingerprint for the system’s dynamics. We employ the wavelet scat-
tering transform on the historical observations X to extract a stable, multi-scale summary of its
spectral content (Appendix C.3). The resulting scattering coefficients, Fw ∈ RC×T ′×V , are tempo-
rally pooled to yield a single frequency fingerprint, F̄w ∈ RC×V . It distills the system’s intrinsic
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oscillatory and modulatory behaviors into a fixed-size representation, enhancing the model’s ability
to distinguish between different dynamical systems. The final multi-step forecast is produced by a
linear prediction head that combines the unified dynamics Huni and the frequency fingerprint F̄w:

X̂T+1:T+H = Concat(Huni, F̄w)Wo + bo, (7)

where Wo and bo are learnable parameters. This allows the model to leverage both the learned multi-
scale temporal patterns and the intrinsic spectral properties of the system for accurate prediction.

3.4 TRAINING OBJECTIVE

The total objective function for ChaosNexus is composed of three distinct components: a primary
forecasting loss, an auxiliary load balancing loss for the MoE layers, and a distributional regulariza-
tion term to preserve the system’s statistical properties. The primary training objective is the Mean
Squared Error (MSE), which measures the point-wise accuracy, formulated as:

Lmse =
1

B

B∑
n=1

||X̂n
T+1:T+H −Xn

T+1:T+H ||22, (8)

where X̂n and Xn are the predicted and ground-truth of the n-th trajectory in a batch with size B.

As is standard for Mixture-of-Experts (MoE) models, relying solely on the prediction loss can lead
to expert load imbalance, where the gating network disproportionately favors a small subset of ex-
perts (Shazeer et al., 2017). This leaves other experts under-trained and limits the model’s overall
capacity. To mitigate this, we incorporate an auxiliary load balancing loss from Dai et al. (2024):

Lbalance =M

M∑
i=1

firi, (9)

where fi is the fraction of patches routed to expert i, and ri is the average routing probability
assigned to it. This encourages more uniform expert utilization.

Due to the sensitive dependence on initial conditions in chaotic systems, point-wise accuracy is often
insufficient for long-horizon forecasting. A robust forecast must also reproduce the geometric and
statistical properties of the system’s attractor. To enforce this, we introduce a regularization term
based on the Maximum Mean Discrepancy (MMD), which minimizes the divergence between the
state distribution of predicted trajectories and that of the ground-truth trajectories (Appendix C.4):

Lreg =
1

B2

∑
i,j

κ(X̂i, X̂j) +
1

B2

∑
i,j

κ(Xi,Xj)− 2

B2

∑
i,j

κ(X̂i,Xj), (10)

where {X̂n}Bn=1 and {Xn}Bn=1 represent batches of the full predicted and ground-truth trajectories.
Following prior work, we use a mixture of rational quadratic kernels for the kernel function κ (Schiff
et al., 2024; Seeger, 2004; Reiss et al., 2019). The final objective function is a weighted sum of these
three components: L = Lmse + λ1Lbalance + λ2Lreg, where λ1, λ2 are hyperparameters that control
the relative weights of the auxiliary loss terms.

4 EXPERIMENTS

In this section, we present comprehensive experiments to evaluate the forecasting capabilities of our
proposed model. Due to space constraints, we present the main findings here and provide further
in-depth analyses, including supplementary benchmark results, extensive ablation studies, model
sensitivity and internal mechanics, as well as visualizations of forecasting cases in Appendix A.

4.1 ZERO-SHOT FORECASTING

Setups. REVISEWe utilize the benchmark dataset consisting of synthetic chaotic systems from Panda (Lai
et al., 2025). Its training set contains 20K novel chaotic ODEs, generated synthetically by an evolu-
tionary algorithm that evolved from 129 known systems (Gilpin, 2021; 2023). The data was further
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diversified with dynamics-preserving augmentations like time-delay embedding (Takens, 2006). The
held-out test set, used for evaluation, comprises 9.3K systems derived from a disjoint seed popula-
tion (Appendix D.1). REVISEWe use symmetric mean absolute percentage error (sMAPE) (Lai et al., 2025)
of 128 and 512 timesteps to evaluate the point-wise forecasting accuracy. We also consider the cor-
relation dimension error (Dfrac), the Kullback–Leibler (KL) divergence between system attractors
(Dstsp), the largest Lyapunov exponent error (DLyap), and the weighted mean energy error (MELRw)
to evaluate the fidelity in key statistical properties of system attractors (Zhang & Gilpin, 2024).
These complementary metrics jointly assess both point-wise accuracy and long-term preservation
of attractor geometry, which are essential to whether the model has captured the underlying chaotic
dynamics. We compare our proposed method against several state-of-the-art time series foundation
models with different parameter sizes, including REVISEPanda (Lai et al., 2025), Time-MoE (Shi et al.,
2024), TimesFM (Das et al., 2024), Chronos (Ansari et al., 2024), Moirai-MoE (Liu et al., 2024a),
Timer-XL (Liu et al., 2024b), DynaMix (Hemmer & Durstewitz, 2025), Parrot (Zhang & Gilpin,
2025), where ’-S’, ’-B, ’-L’ refer to small, base, large in parameter size, respectively. To assess the
adaptability of general-purpose models to this specific domain, we also include Chronos-S-SFT, a
variant of the Chronos-S model that has been fine-tuned on our chaotic systems training corpus. For
all other baseline models, we load their officially released pre-trained weights for evaluation. REVISEWe
choose these baselines because they are all foundation models intended for generalization, aligning
with our zero-shot evaluation on previously unseen chaotic systems. Details of experimental setups
are demonstrated in Appendix D.

Results. We conduct a zero-shot evaluation on the held-out test set of chaotic systems. For a fair
comparison, all models use a context length of 512 to autoregressively forecast 512 steps into the
future. While ChaosNexus and the Panda baseline are pretrained on the chaotic systems corpus,
other baselines are general-purpose time-series foundation models, for which we employ the official
pretrained weights. REVISEAs shown in Figure 2, ChaosNexus demonstrates point-wise accuracy competi-
tive with the baseline, achieving an average sMAPE of 68.901 at 128 steps. Regarding the long-term
dynamics, ChaosNexus exhibits superior fidelity. It reduces the average correlation dimension er-
ror (Dfrac) to 0.203. Notably, it attains an average KL divergence of attractors (Dstsp) of 1.206.
Table 2 in Appendix A.4 further demonstrates the superior performance of ChaosNexus on DLyap
and MELRw. Given that the sensitive dependence on initial conditions renders any long-term point-
wise forecast of a chaotic system ultimately unreliable (Li et al., 2021; Jiang et al., 2023; Schiff
et al., 2024), the strong performance of ChaosNexus in REVISElong-term statistical metrics is therefore
compelling evidence that it can infer intrinsic dynamics of new systems from the contexts rather
than superficial pattern memorizing. Notably, leading general-purpose time-series foundation mod-
els, despite being pretrained on larger time-series datasets than ours (Appendix D.3), struggle on
chaotic system forecasting. We also observe that their generalization capabilities can be improved
(from Chronos-SFT-S) after further fine-tuned on chaotic systems corpus. This contrast provides
compelling evidence for our claim that chaotic dynamics possess unique differences from general
time series. It also validates the necessity of building domain-specific foundation models on chaotic
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Figure 2: Zero-shot forecasting performances of models on synthetic chaotic systems. Each box
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Figure 3: Few-shot forecasting performance for global temperature on the WEATHER-5K dataset.
The Mean Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple
prediction horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. The zero-shot per-
formance of ChaosNexus is shown as a dashed line for reference.

data and underscores the importance of the specialized architectural designs for multi-scale feature
extraction and system disentanglement in ChaosNexus.

4.2 FEW-SHOT FORECASTING

Setups. Weather is an inherently chaotic system (Lorenz, 1969; 1982; 2017). For a rigorous evalu-
ation on a real-world chaotic system, we utilize the WEATHER-5K dataset (Han et al., 2024). This
dataset comprises hourly meteorological data from 5,672 global weather stations over a 10-year
period from 2014 to 2023. It is then chronologically split, with data from 2014 to 2021 used for
training, 2022 for validation, and 2023 for testing. Each sample includes five variables: tempera-
ture, dew point, wind speed, wind direction, and sea-level pressure. Given the profound real-world
importance of forecasting absolute values, we primarily employ the Mean Absolute Error (MAE)
to directly measure the discrepancy between predicted and ground-truth observations. REVISEMAE is the
gold-standard metric in this application, as researchers value the absolute accuracy of these weather-
related variables. The forecasting task is to predict the subsequent 120 hours of all variables given
512 hours of historical context. To assess few-shot performance under data-scarce conditions, we
fine-tune models on two small subsets of the training data: 0.1% (85K samples) and 0.5% (473K
samples). REVISEIn all few-shot experiments, ChaosNexus is first pretrained on the synthetic chaotic sys-
tems corpus and then fine-tuned on exactly the same WEATHER-5K subsets as the baselines, which
are trained from scratch without pretraining.Besides foundation models included in Section 4.1, we
select several strong deep learning baselines in this benchmark, including FEDformer, CrossFormer,
PatchTST, and Koopa. They are widely adopted architectures for time-series forecasting, making
them appropriate references for this single-system, real-world benchmark. We also report the perfor-
mance of our model in a zero-shot setting, without any fine-tuning on the weather dataset. Further
details of setups are provided in Appendix F.

Results. Figure 3 presents the forecasting results for the temperature variable. Remarkably, Chaos-
Nexus in a zero-shot setting—without any fine-tuning—surpasses all baselines in their few-shot
configurations. It achieves a mean error strictly below 1°C for 5-day (120-hour) global tempera-
ture forecasts. In stark contrast, the baseline models exhibit an MAE of at least 3°C, even when
fine-tuned on the same data. The performance of ChaosNexus further improves with few-shot fine-
tuning, especially for longer prediction horizons. This suggests that while pre-training endows the
model with a robust, universal understanding of chaotic behavior, fine-tuning allows it to adapt these
principles to the specific physical constraints and periodicities (e.g., diurnal and seasonal cycles) in-
herent in meteorological systems. This process grounds the model’s abstract dynamical representa-
tions in real-world physics, enhancing its ability to generate accurate and stable long-term forecasts.

ADDDetailed results of all weather variables and performances of foundation models are shown in the
Appendix A.6. We find that foundation models designed for chaotic system forecasting and trained
on our corpus of synthetic chaotic dynamics, including ChaosNexus, Panda, and Chronos-S-SFT,
perform significantly better than those trained on general time series, even though they use a much
larger corpus (see Table 9). It demonstrates that pretraining specifically on chaotic systems provides
a more relevant inductive bias for weather forecasting. Moreover, ChaosNexus also outperforms
Panda on many variable forecasting tasks, highlighting the contribution of our multi-scale architec-
tural designs.
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Figure 4: Scaling behavior of ChaosNexus. We demonstrate zero-shot sMAPE on synthetic chaotic
systems varying: (a) the number of parameters; (b) the number of time points while holding the
system diversity constant; and (c) the number of systems while holding the trajectories per system
constant. Lines depict the average value, with shaded regions representing the 95% CI.

4.3 SCALING BEHAVIOR

An investigation into scaling behavior is crucial for the development of foundation models, since
understanding how model performance scales with key factors such as parameter count and data
volume is essential for guiding future research and resource allocation.

Parameter Scaling. We first explored the impact of model size on performance. We generated a
suite of models with varying parameter counts, ranging from 2.83M to 52.63M , by systematically
adjusting the number of encoder and decoder layers, as well as the dimension de of the embedding
space. The results demonstrated in Figure 4(a) reveal a consistent trend: increasing the model’s
parameter count yields steady improvements in performance. For instance, scaling the model from
2.83M to 52.63M parameters improved the sMAPE@128 by 49.83%, which demonstrates that
larger models possess a greater capacity to capture the complex dynamics inherent in the data.

Data Scaling. We further investigated the model’s performance as a function of the training data
size under two distinct settings. First, we fix the diversity, i.e., the total number, of training systems,
while varying the number of trajectories sampled from each system, leading to only different training
time points. Second, we increase the diversity of systems while holding the number of training
time points constant. From Figure 4(b), we find that merely increasing the number of time points
for a fixed set of systems did not lead to a significant enhancement in zero-shot performance. In
contrast, Figure 4(c) demonstrates that increasing the number of distinct systems in the training set
substantially improved the model’s ability to generalize. REVISEThese findings also support established
research (Norton et al., 2025; Lai et al., 2025)on data scaling. While prior work, such as (Lai
et al., 2025), establishes the scaling law for system diversity, which our Figure 4(c) corroborates,
our complementary analysis in Figure 4(b) provides a refinement. The negligible gain from scaling
per-system data volume suggests that effective generalization is driven by corpus-level diversity, i.e.,
the number of systems rather than by per-system trajectories.

4.4 MULTI-SCALE FEATURE ANALYSIS

To investigate the inner workings of our multi-scale architecture, we visualize the input signal’s
patch partitioning alongside the temporal attention maps from shallow and deep layers of both the
encoder and decoder. As illustrated in Figure 5 and 8, we select three systems from the test set with
progressively weaker regularity (left to right in Figure 5), thus increasing the forecasting difficulty.

Patch Partition Patterns. We find that the shallow layers, which operate on smaller patches, are
adept at capturing local, high-frequency fluctuations. In contrast, the deeper layers, processing
merged patches that represent longer time intervals, focus on capturing long-term trends and global
structures. This is particularly evident in 5(b), where a shallow-layer patch may encompass only a
peak or a trough, whereas a deep-layer patch spans an entire peak-valley cycle.
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Figure 5: Visualization of input patch partitioning and multi-scale temporal attention for three
chaotic systems. Each panel displays attention maps for the shallow (left) and deep (right) lay-
ers of the encoder (top) and decoder (bottom).

Temporal Attention Patterns of Encoder Layers. The encoder’s attention patterns distinctly re-
flect this multi-scale processing. The deep encoder layers (upper right of each subfigure) consistently
exhibit globalized attention distributions, indicating a focus on synthesizing long-range dependen-
cies. The shallow encoder layers (upper left), however, display system-specific patterns. For the
highly regular system in 5(a), the map forms a Toeplitz-like structure (Bajwa et al., 2007), analo-
gous to a convolutional operation, suggesting the model applies fixed-pattern filters to scan the time
series. For the more complex system in 5(c), the attention forms distinct blocks, indicating that
the model concentrates on specific temporal segments whose interplay is deemed critical for under-
standing the system’s state. The system in 5(b) presents a hybrid pattern, blending the features of
5(a) and 5(c) to capture its intermediate complexity.

Temporal Attention Patterns of Decoder Layers. The decoder’s attention mechanisms operate
differently, functioning primarily as a selector. This aligns with our architectural design, where the
decoder’s outputs are mean-pooled over the temporal dimension for the final forecast. The model
must therefore learn to select and combine specific patterns from the historical context to support
its predictions. The deep decoder layers show a pronounced focus on the final patch, capturing
the most recent temporal dependencies crucial for autoregressive prediction. The shallow decoder
layers, conversely, appear to anticipate future dynamics; for instance, in 5(b), after observing a
descending phase, the model intensifies its attention on historical ascending patterns, selectively
weighting the context that is most relevant for the anticipated future trajectory.

5 CONCLUSIONS

We introduce ChaosNexus, a foundation model that features a universal, pre-trained approach to
chaotic system forecasting, effectively overcoming data sparsity. Its novel multi-scale ScaleFormer
architecture, augmented with Mixture-of-Experts layers and a wavelet-based frequency fingerprint,
achieves state-of-the-art zero-shot performance by accurately predicting both point-wise evolution
and long-term attractor properties. Crucially, our scaling analysis reveals that generalization is
driven by the diversity of systems in the pre-training corpus, not the sheer volume of trajectories
per system. This key insight provides a clear roadmap for developing powerful, data-efficient mod-
els for complex scientific applications.
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ETHICS STATEMENT

The authors have read and adhered to the ICLR Code of Ethics. The research presented in this paper
is foundational and focuses on the modeling of chaotic systems, with primary applications in scien-
tific domains such as meteorology. All data used for training and evaluation is either synthetically
generated from mathematical principles or derived from publicly available, non-personal scientific
datasets, ensuring no privacy concerns. This work does not involve human subjects, and we do not
foresee any direct negative societal impacts or risks of perpetuating social biases. Our aim is to ad-
vance the scientific understanding and predictive capabilities for complex physical systems for the
benefit of the scientific community.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. The complete source code for
the ChaosNexus model, along with scripts for data processing, training, and evaluation, is pub-
licly available in an anonymous repository at https://anonymous.4open.science/r/
ChaosNexus-C809. REVISEWe acknowledge the authors of previous open-source projects (Lai et al.,
2025) whose codebases served as a foundation for our implementation. A detailed description of
our proposed ScaleFormer architecture, including the patch merging/expansion mechanisms and the
Mixture-of-Experts layers, is provided in Section 3. A comprehensive breakdown of implementa-
tion details for key components, such as input feature augmentation, skip connections, the wavelet
scattering transform, and the MMD regularization term, can be found in Appendix C. Detailed de-
scriptions of the datasets are provided in the appendices: the generation process and augmentations
for the synthetic chaotic systems are in Appendix D.1, and the specifics of the WEATHER-5K
benchmark are in Appendix F.1. All hyperparameters used for our model variants are explicitly
listed in Table 8 in Appendix B. The full experimental protocol, including training procedures and
the precise definitions of our evaluation metrics, is detailed in Appendix D.2 and E. All baseline
models used in our comparisons are described in Appendix D.3 and F.2.
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Otto E Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397–398, 1976.

Yair Schiff, Zhong Yi Wan, Jeffrey B Parker, Stephan Hoyer, Volodymyr Kuleshov, Fei Sha, and
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A SUPPLEMENTARY EXPERIMENTAL RESULTS

A.1 ABLATION STUDIES

To validate the effectiveness of our proposed architecture and training strategy, we conduct a series
of ablation studies. Specifically, we evaluate four variants of our model by removing designs of (i)
patch merging and expansion operations, (ii) MoE layers, (iii) MMD-based auxiliary regularization,
and (iv) frequency fingerprint. The results are shown in Table 1, showing that the full model strikes
an effective balance between short-term point-wise accuracy and the preservation of long-term sta-
tistical properties.

Patch Merging and Expansion. The removal of the patch merging and expansion modules resulted
in a severe degradation of performance. We observed a substantial decline in both short-term predic-
tive accuracy and long-term statistical fidelity, with sMAPE@128 and Dfrac increasing by 7.8% and
21.70%, respectively. This underscores the critical importance of capturing the multi-scale features
inherent in chaotic systems.

MoE Layers. Replacing MoE layers with normal feed-forward layers also leads to the performance
drop in both short-term and long-term predictive accuracy. MoE layers enables the model to allocate
specialized experts to capture distinct dynamical regimes present across different systems. Other-
wise, a single, monolithic network is forced to approximate all behaviors, reducing its capacity and
leading to worse performance. The results highlights the vital role of MoE layers in discriminating
between diverse dynamics.

MMD-based Auxiliary Regularization. The exclusion of MMD-based auxiliary regularization
during training has a particularly pronounced negative impact on long-term forecasting and the
preservation of statistical properties, with sMAPE@512 and Dfrac decreasing by 2.8% and 10.17%,
respectively. The auxiliary regularization aligns the state distribution of the learned attractor with
that of the ground truth system, which is an invariant measure (Cheng et al., 2025). Its removal
decouples the model from this fundamental physical constraint, impairing its ability to generate
realistic long-term trajectories.

Frequency Fingerprint. Removing the wavelet transform-based frequency fingerprint results in
a noticeable decrease in model performance. The fingerprint provides the model with frequency-
domain information of the underlying system, which complements the temporal data by offering a
holistic signature of its structural properties. The synergy between these two sources of information
allows the model to form a more complete and accurate representation of the dynamics, leading to
more robust forecasting.

A.2 EXPERT ACTIVATION VISUALIZATION

We visualize the expert activation patterns within the encoder and decoder for selected test systems
in Figure 6. We find that systems derived from the same foundation dynamics (Appendix D.1) trigger
analogous routing profiles across all layers and scales. This provides direct evidence that the MoE
framework has learned to partition the problem space, systematically assigning inputs to specialized
experts based on their dynamical properties to effectively process and differentiate between complex
systems. REVISEWe also provide quantitative results in Appendix A.9 to further support our findings.

Table 1: Model performances when removing each of our designs. Reported values represent the
mean ± 95% CI. (PME: Patch Merging and Expansion; MoE: Mix-of-Experts Layers; MMD: MMD-
based Auxiliary Regularization; FF: Frequency Fingerprint.)

Metrics
Model Full w/o PME w/o MoE w/o MMD w/o FF

sMAPE@128 68.901 ± 3.086 74.161 ± 3.082 69.076 ± 3.069 80.702 ± 3.217 67.699 ± 3.179
sMAPE@512 100.293 ± 2.767 106.542 ± 2.516 100.298 ± 2.694 110.228 ± 2.771 97.002 ± 2.930

Dfrac 0.203 ± 0.011 0.240 ± 0.010 0.220 ± 0.012 0.220 ± 0.010 0.209 ± 0.010
Dstsp 1.206 ± 0.392 1.820 ± 0.620 1.250 ± 0.310 1.460 ± 0.490 1.360 ± 0.440

MELRw 1.562 ± 0.115 2.218 ± 0.152 1.770 ± 0.122 2.571 ± 0.164 1.771 ± 0.132
DLyap 0.065 ± 0.025 0.075 ± 0.019 0.065 ± 0.011 0.103 ± 0.032 0.072 ± 0.013
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Figure 6: Expert activation visualization for six discovered chaotic systems by the evolutionary
framework from three common foundation chaotic systems.

A.3 PERFORMANCE SENSITIVITY TO CONTEXT AND PREDICTION LENGTH
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Figure 7: Performance Sensitivity of ChaosNexus and Panda to different (a) context length and (b)
forecasting length. Lines depict the average value, with shaded regions representing the 95% CI.

Performance with Different Context Length. We evaluate our model across a range of input
context lengths. As shown in Figure 7(a), our model’s performance consistently improves with a
longer context and consistently surpasses the baseline Panda model. It also shows less sensitivity
to the specific context length chosen. These advantages of our model stems from its multi-scale
architecture, which effectively leverages information across different temporal scales to build a more
stable representation of the system’s dynamics.

Performance with Different Prediction Length. Long-horizon forecasting serves as a crucial test
of a model’s capacity to learn the intrinsic dynamics of a chaotic system. Accordingly, our model’s
performance advantage over Panda becomes substantially larger at longer prediction horizons, as
shown in Figure 7(b). It validates our design philosophy, which prioritizes multi-scale feature ex-
traction and dynamics discrimination to build a more faithful representation of the underlying sys-
tem.

A.4 NUMERICAL RESULTS ON SYNTHETIC CHAOTIC SYSTEMS

We demonstrate detailed numerical results corresponding to Figure 2 in Table 2 for reference.

ADD
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Table 2: Detailed numerical results of model performance on synthetic chaotic systems. The best
performance of each metric is marked in bold, and the second-best performance is underlined. Re-
ported values represent the mean ± 95% CI.

Metric
Model ChaosNexus Panda Chronos-S-SFT Chronos-B-SFT Chronos-L-SFT Chronos-S Chronos-B Chronos-L

sMAPE@128 (↓) 68.901 ± 3.0857 69.567 ± 3.358 70.510 ± 11.356 70.124 ± 12.761 69.765 ± 11.514 86.323± 33.031 86.883± 33.122 82.730± 32.165
sMAPE@512 (↓) 100.293 ± 2.7669 102.333 ± 3.123 101.947 ± 10.226 101.215 ± 13.497 100.824 ± 11.058 104.826± 32.191 104.156± 31.964 102.967± 31.827

Dfrac (↓) 0.203 ± 0.011 0.227 ± 0.013 0.233 ± 0.165 0.224 ± 0.085 0.210 ± 0.053 0.233 ± 0.135 0.246 ± 0.143 0.219 ± 0.120
Dstsp (↓) 1.206 ± 0.392 2.369 ± 1.751 2.391 ± 10.651 2.837 ± 1.978 2.685 ± 1.652 11.498 ± 25.207 11.255 ± 24.561 11.731 ± 27.171
MELRw (↓) 1.562 ± 2.015 1.649 ± 0.413 1.580 ± 0.350 1.602 ± 0.260 1.571 ± 0.302 2.397 ± 2.698 2.3729 ± 2.8044 2.385 ± 2.871
DLyap (↓) 0.065 ± 0.025 0.067 ± 0.047 0.072 ± 0.023 0.068 ± 0.021 0.069 ± 0.024 0.082 ± 0.007 0.074 ± 0.008 0.072 ± 0.007

Metric
Model Moirai-MoE-S Moirai-MoE-L TimeMoE-L TimeMoE-S TimerXL TimesFM Parrot DynaMix

sMAPE@128 (↓) 92.223 ± 35.279 95.103 ± 53.000 87.426 ± 13.411 87.186 ± 13.790 105.379 ± 36.289 100.933 ± 15.372 92.084 ± 16.764 70.381 ± 12.148
sMAPE@512 (↓) 108.493 ± 30.777 109.446 ± 31.755 103.489 ± 12.238 103.143 ± 12.757 115.239 ± 34.773 108.211 ± 13.381 114.368 ± 14.724 102.966 ± 14.945

Dfrac (↓) 0.423 ± 0.204 0.372 ± 0.209 0.230 ± 0.164 0.256 ± 0.310 ∞± nan 0.364 ± 0.076 0.106 ± 0.157 0.145 ± 0.182
Dstsp (↓) 13.613 ± 27.323 13.581 ± 27.593 10.651 ± 25.348 11.542 ± 28.004 14.534 ± 30.619 9.655 ± 11.048 6.085 ± 17.528 6.904 ± 19.824
MELRw (↓) 3.181 ± 2.168 6.803 ± 4.842 8.700 ± 1.029 8.965 ± 1.013 3.925 ± 2.648 11.122 ± 0.606 0.654 ± 1.067 1.638 ± 2.372
DLyap (↓) 0.081 ± 0.012 0.075 ± 0.042 0.072 ± 0.014 0.068 ± 0.002 0.075 ± 0.009 0.069 ± 0.008 0.065 ± 0.012 0.067 ± 0.014

Table 3: ADDInference time comparison of foundation models when forecasting 512 time steps. Reported
values represent the mean ± standard deviation, which are computed based on 1000 runs.

Model Time (s)
ChaosNexus 0.119 ± 0.036

Panda 0.048 ± 0.004
Chronos-S 0.081 ± 0.022
Chronos-B 0.095 ± 0.012
Chronos-L 0.173 ± 0.022

Moirai-MoE-S 1.677 ± 0.377
Moirai-MoE-L 3.124 ± 0.201

TimeMoE-S 0.038 ± 0.019
TimeMoE-L 0.042 ± 0.020

TimesFM 0.143 ± 0.026
Timer-XL 0.005 ± 0.002

A.5 INFERENCE EFFICIENCY

Table 3 demonstrates the computational efficiency of various foundation models in a long-term
forecasting scenario. Specifically, we report the inference latency required to generate a prediction
horizon of 512 time steps with a context length of 512 time steps. To ensure the statistical reliability
of our results, the reported values are the mean and standard deviation derived from 1,000 indepen-
dent runs. As observed, ChaosNexus exhibits an inference latency approximately 0.017s higher than
Panda per forecast. This moderate increase is an expected trade-off adhering to the ”no free lunch”
principle, attributable to our hierarchical architecture of ScaleFormer, MoE routing, and frequency-
domain modeling. Given that the faithful reproduction of complex chaotic dynamics is paramount
and the observed latency remains well within practical limits for this task, we consider the computa-
tional cost well-justified by the substantial performance gains. Regarding general-purpose baselines,
their inference speeds are largely dictated by specific architectural configurations, such as patch
granularity and architectural complexity. For instance, Timer-XL achieves high efficiency through
large-patch processing (e.g., patch size of 96), whereas Moirai-MoE incurs significant overhead due
to its smaller patch size, intricate expert routing and gating clustering mechanisms. However, we
emphasize that lower latency cannot compensate for poor generalization. Since these baselines fail
to capture chaotic dynamics effectively, their speed advantage offers no practical utility.

A.6 ADDITIONAL RESULTS ON WEATHER BENCHMARK

A.6.1 DETAILED RESULTS

REVISEWe demonstrate the detailed forecasting results for all weather variables, including the tempera-
ture, dew point, sea level pressure, wind direction, and wind speed in Figure 19-23, respectively.
More clear results for ChaosNexus, Panda, Chronos-S-SFT, which are previously trained on the cor-
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pus of synthetic chaotic systems, are shown in Figure 24-28. This strong performance paradigm
is consistently replicated across the remaining meteorological variables. In the zero-shot setting,
ChaosNexus substantially outperforms all baseline models, even when they are fine-tuned on up to
473K samples from the target weather system. The model’s forecasting accuracy is further enhanced
with few-shot fine-tuning, demonstrating remarkable data efficiency. This advantage is particularly
pronounced at longer prediction horizons, highlighting the robustness of the representations learned
during pre-training. Collectively, these results validate our central hypothesis: pre-training on a
diverse corpus of chaotic systems endows the model with a universal understanding of complex dy-
namics. This allows ChaosNexus to achieve state-of-the-art performance on real-world forecasting
tasks with minimal, or even zero, in-domain fine-tuning, thereby overcoming the critical challenge
of data sparsity in scientific applications. ADDBesides comparison with system-specific models in Fig-
ure 3 of the main text, we also benchmark the forecasting performance of other foundation models
on this dataset. We find that foundation models designed for chaotic system forecasting or trained
on our corpus of synthetic chaotic dynamics, including ChaosNexus, Panda, and Chronos-S-SFT,
perform significantly better than those trained on general time series, even though they use a much
larger corpus (see Table 9). It demonstrates that pretraining specifically on chaotic systems provides
a more relevant inductive bias for weather forecasting. Moreover, ChaosNexus also outperforms
Panda on many variable forecasting tasks, highlighting the contribution of our multi-scale architec-
tural designs.

ADD

A.6.2 TEMPERATURE FORECASTING PERFORMANCE ACROSS LATITUDES

We conduct additional analysis and stratify weather stations into three latitude bands: low latitudes
(30°N–30°S), mid-latitudes (30°N–60°N, 30°S–60°S), and high latitudes (60°N–90°N, 60°S–90°S).
There are 1093, 4000, and 579 stations in low-latitude, mid-latitude, and high-latitude bands, respec-
tively. For each band, we report the MAE on the 5-day temperature forecasting of our model and all
baselines. The results are demonstrated in Figure 29-31.

From the results, we can draw the following conclusions:

• First, ChaosNexus maintains a zero-shot MAE strictly below 1°C across all latitude bands at the
5-day (120h) horizon. Furthermore, fine-tuning yields consistent performance gains across all
stations, for instance, in high-latitude regions, the 120h MAE decreases from 0.8124 to 0.6659
(an ∼ 18% improvement). This confirms that our foundation model serves as a robust universal
prior capable of rapid adaptation to local climatic conditions.

• Second, the error distribution accurately reflects the inherent complexity of atmospheric dynam-
ics. Zero-shot error is minimized in the tropics (MAE ≈ 0.59) due to lower variability, and in-
creases slightly in mid-to-high latitudes (MAE ≈ 0.74–0.81), regions characterized by chaotic
frontal systems and baroclinic instability. Despite these challenges, the error remains tightly
bounded.

• Third, ChaosNexus consistently outperforms all baselines across every latitude band. It surpasses
strong system-specific baselines (e.g., Crossformer, PatchTST) by a substantial margin, avoiding
catastrophic errors exceeding 3°C, and reliably outperforms the competing foundation model,
Panda, in zero-shot settings. These results establish ChaosNexus as the state-of-the-art solution
for chaotic forecasting.

A.7 ADDITIONAL RESULTS ON MULTI-SCALE FEATURE ANALYSIS

We demonstrate temporal attention map of each encoder and decoder levels of ScaleFormer in Fig-
ure 8.

A.8 FORECAST SHOWCASES

We demonstrate forecasting showcases of six representative systems in Figure 9.

ADD
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Figure 8: Visualization of input patch partitioning and multi-scale temporal attention for three
chaotic systems.
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Figure 9: Forecasting showcases of representative chaotic systems.

A.9 QUANTITATIVE ANALYSIS ON EXPERT ACTIVATION PATTERNS

A.9.1 EXPERT ACTIVATION CLUSTERING

To investigate the underlying specialization mechanisms within the Mixture of Experts (MoE) archi-
tecture, we analyze the gating activation patterns, i.e., expert selection probabilities, across different
depths of the network. Specifically, we aggregate the expert activation probabilities of context trajec-
tories from three canonical chaotic dynamical systems, including Lorenz63, Rossler, and Lorenz96
systems, to determine whether the router implicitly learns to distinguish systems based on their
governing physical laws.

We employ t-SNE to project the high-dimensional gating distributions from various Encoder and De-
coder MoE layers (Depths 1 through 4) into a low-dimensional manifold, demonstrated in Figure 10.
To quantify the degree of system-specific specialization in the routing mechanism, we calculate the
Adjusted Rand Index (ARI) for each projection, which measures the similarity between the obtained
clustering and the ground-truth labels. A score of 1.0 signifies perfect alignment where experts are
exclusively specialized for specific systems, whereas a score near 0.0 indicates random assignment.

The visualization reveals that the router’s gating decisions are highly structured and system-
dependent. In the vast majority of MoE layers, the expert activation patterns form distinct clusters
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that correspond precisely to the Lorenz63, Rossler, and Lorenz96 systems. This observation is sub-
stantiated by the quantitative metrics, where the ARI scores consistently remain high—exceeding
0.5 in most layers and peaking at 0.9933 in the encoder. These results statistically confirm that the
experts exhibit strong system-level specialization, implying that the router implicitly learns to dis-
tinguish and dispatch data based on the distinct underlying physical mechanisms of each dynamical
system.

Encoder Depth 1-Layer 1
ARI: 0.9867

Encoder Depth 1-Layer 2
ARI: 0.9933

Encoder Depth 2-Layer 1
ARI: 0.9933

Encoder Depth 2-Layer 2
ARI: 0.9604

Encoder Depth 3-Layer 1
ARI: 0.9284

Encoder Depth 3-Layer 2
ARI: 0.8912

Encoder Depth 4-Layer 1
ARI: 0.7769

Encoder Depth 4-Layer 2
ARI: 0.5987

Decoder Depth 4-Layer 1
ARI: 0.6184

Decoder Depth 4-Layer 2
ARI: 0.3624

Decoder Depth 3-Layer 1
ARI: 0.4570

Decoder Depth 3-Layer 2
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Decoder Depth 2-Layer 1
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Figure 10: ADDLayer-wise expert activation patterns clustered by system type.

A.9.2 ENTROPY OF GATING DISTRIBUTION

Figure 11 depicts the layer-wise evolution of the gating entropy of three canonical systems, including
Lorenz63, Rossler, and Lorenz96. Scatter points represent the entropy of the gating distribution from
a specific sample, and box plots encapsulate the aggregate statistical dispersion, i.e., the median and
interquartile range. The results are summarized as follows:

• Shallow Encoder. In the initial encoder layers (Enc-D1 to Enc-D3), the gating distribution ex-
hibits consistently high entropy. This indicates that the router utilizes a diverse mixture of experts
to process raw input patches.

• Bottleneck. A significant reduction in entropy is observed as the information propagates to the
network bottleneck (Enc-D4 and Dec-D4). Here, the entropy minimizes, signifying a regime of
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high specialization. The model abstracts the input into core dynamical representations, and the
router demonstrates high confidence, assigning specific expert modules to handle distinct underly-
ing patterns. This drop in entropy confirms that the model has successfully disentangled the latent
semantics, prioritizing specific experts for specific dynamical behaviors.

• Shallow Decoder. In the final decoding stages, entropy rises back to higher levels, which implies
collaborative synthesis. To reconstruct accurate continuous trajectories from abstract representa-
tions, the decoder must integrate the semantic guidance from both the bottleneck and the high-
frequency details retrieved via skip connections. The router therefore employs an ensembling
strategy, aggregating outputs from multiple experts to ensure robust, smooth, and precise signal
reconstruction.

• Discussion on Load Balancing Loss. The results demonstrate that the router establishes a dy-
namic equilibrium: it yields to the regularization pressure in the shallow layers to maintain gener-
alizability, but prioritizes semantic specialization in the deep layers where distinguishing physical
mechanisms is critical. Thus, the load balancing loss serves as a flexible regularizer, preventing
mode collapse without suppressing the necessary concentration of attention required to model
complex chaotic dynamics.
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Figure 11: ADDLayer-wise entropy of gating distribution in three canonical systems.

A.9.3 EXPERT PRUNING IMPACT

To validate the distinct functional specialization within our Mixture-of-Experts architecture, we con-
duct an expert pruning experiment on three canonical chaotic systems, including Lorenz63, Rossler,
and Lorenz96. Specifically, we identify the top-2 most frequently activated experts for each system
per layer and deactivate them during the inference phase. As evidenced by the results in Table 4,
this targeted pruning leads to a consistent degradation across both point-wise forecasting accuracy
(sMAPE) and long-term attractor fidelity metrics (Dfrac and Dstsp). This performance drop substan-
tiates that the model relies on specific, specialized experts to capture distinct dynamical regimes,
rather than utilizing a generalized ensemble for all inputs.

ADD
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Table 4: ADDExpert pruning impact on three canonical chaotic systems. Each reported value indicates
the mean ± 95% CI.

Experiment sMAPE@128 sMAPE@512 Dfrac Dstsp

Lorenz63 w/o Pruning 62.1053 ± 0.9641 115.5445 ± 0.6513 0.1316 ± 0.0033 0.2041 ± 0.0187
Lorenz63 w/ Pruning 79.6978 ± 1.0023 123.3420 ± 0.5920 0.1467 ± 0.0032 0.2474 ± 0.0188

Lorenz96 w/o Pruning 154.1404 ± 0.0912 157.5176 ± 0.0697 6.0222 ± 0.0139 20.5535 ± 0.0488
Lorenz96 w/ Pruning 154.1597 ± 0.0919 157.5768 ± 0.0697 6.1593 ± 0.0135 20.6266 ± 0.0491
Rossler w/o Pruning 30.4578 ± 0.5250 55.6769 ± 0.5904 0.1587 ± 0.0048 0.0744 ± 0.0032

Rossler w/Pruning 37.8179 ± 0.5786 64.8312 ± 0.6044 0.1598 ± 0.0046 0.1022 ± 0.0040

Table 5: ADDSensitivity analysis to the weighting coefficient λ2 of MMD regularization.

λ2 sMAPE@128 sMAPE@512 Dfrac Dstsp

0.01 80.093 ± 3.213 109.596 ± 2.809 0.231 ± 0.012 1.331 ± 0.381
0.05 80.139 ± 3.169 107.743 ± 2.744 0.216 ± 0.012 1.434 ± 0.435
0.10 79.107 ± 3.112 105.665 ± 2.731 0.210 ± 0.012 1.287 ± 0.400
0.50 68.901 ± 3.086 100.293 ± 2.767 0.203 ± 0.011 1.206 ± 0.392
1.00 78.474 ± 2.923 102.550 ± 2.412 0.208 ± 0.011 1.329 ± 0.395
5.00 80.928 ± 2.760 103.572 ± 2.320 0.210 ± 0.012 1.385 ± 0.309
10.00 81.280 ± 2.724 103.668 ± 2.319 0.209 ± 0.012 1.318 ± 0.333

A.10 IMPACT OF MMD REGULARIZATION

A.10.1 SENSITIVITY TO THE WEIGHTING COEFFICIENT

We set λ2 = 0.5 in our experiments. Here we demonstrate the sensitivity to the weighting coefficient
λ2. Specifically, we choose λ2 at different scales: {0.01, 0.05, 0.1, 0.5, 1, 5, 10}. The results are
demonstrated in Table 5. From the results, we draw the following conclusions:

• First, our observations indicate that λ2 = 0.5 represents a robust optimum, effectively balancing
the point-wise accuracy required for short-term forecasting with the distributional fidelity needed
for long-term stability.

• Second, when λ2 is small (0.01-0.1), we observe a marked degradation in both point-wise ac-
curacy and attractor fidelity. This confirms that explicitly enforcing attractor geometry aids the
model in learning the underlying dynamics. Pure MSE minimization is insufficient for chaotic
systems as it lacks the global constraints to prevent divergence.

• Third, excessively large weights (λ2 ≥ 5.0) lead to a performance drop on point-wise accuracy,
as the distributional constraint begins to dominate the loss landscape, impeding the model’s ability
to minimize local prediction errors.

A.10.2 SENSITIVITY TO KERNEL FUNCTION

We conduct additional experiments to compare our default mixture of rational quadratic kernels
against three alternatives: a Gaussian kernel, a linear kernel, and a polynomial kernel, which are
implemented as follows:

• Gaussian kernel. To ensure a fair comparison with the multi-scale nature of our default mixture
of rational quadratic kernel, we implemented the Gaussian kernel as a mixture over the same set
of length scales σ = {0.2, 0.5, 0.9, 1.3},

κ(u,v) =
∑
σ∈σ

exp−||u− v||22
2σ2

. (11)

• Linear kernel. The linear kernel captures similarity through a direct dot product in the input
space, implying a linear relationship between the governing features of the attractors:

κ(u,v) = uTv. (12)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: ADDSensitivity analysis of the kernel function selection of MMD regularization.
Kernel sMAPE@128 sMAPE@512 Dfrac Dstsp

Mixture of rational quadratic kernel 68.901 ± 3.086 100.293 ± 2.767 0.203 ± 0.011 1.206 ± 0.392
Gaussian kernel 80.329 ± 3.198 109.577 ± 2.780 0.227 ± 0.012 1.431 ± 0.515

Linear kernel 82.293 ± 3.145 109.282 ± 2.750 0.217 ± 0.012 1.276 ± 0.313
Polynomial kernel 83.126 ± 3.033 107.908 ± 2.533 0.215 ± 0.011 1.309 ± 0.366
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Figure 12: ADDVisualization of the impact of MMD regularization on long-term forecasting.

• Polynomial kernel. The polynomial kernel projects the inputs into a higher-dimensional feature
space determined by the degree d and a bias term c:

κ(u,v) = (uTv + c)d, (13)

where we set d = 2 and c = 1.

The experimental results are shown in Table 6. We find that the mixture of rational quadratic kernels
consistently yields superior performance across both short-term forecasting (sMAPE) and long-
term attractor reconstruction. It outperforms the Gaussian, linear, and polynomial kernels by a
wide margin in both point-wise accuracy and attractor reconstruction fidelity. This aligns with the
theoretical motivation in Appendix C.4, a rational quadratic kernel can be viewed as an infinite
mixture of Gaussian kernels with varying length scales (Seeger, 2004). This property is crucial
for capturing the multi-scale temporal and spectral structures inherent in chaotic systems, which
single-scale Gaussian kernels fail to represent adequately.

A.10.3 VISUALIZATION EXAMPLES

We further provide illustrative forecasting cases that isolate the contribution of the MMD-based aux-
iliary loss. The results are demonstrated in Figure 12. As observed, the removal of the distributional
constraint causes the predicted trajectories to drift significantly from the underlying manifold, fail-
ing to reproduce the complex geometry of the strange attractor. In contrast, the MMD-regularized
model effectively preserves the attractor structure, ensuring that the forecasted dynamics faithfully
align with the ground-truth.
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Table 7: Comparison between alternative spectral representations.
Experiment sMAPE@128 sMAPE@512 Dfrac Dstsp

WST (Ours) 68.9010 ± 3.0857 100.293 ± 2.7669 0.203 ± 0.011 1.2060 ± 0.3920
STFT 77.0957 ± 11.5019 102.2048 ± 11.2470 0.2010 ± 0.0560 1.3697 ± 1.2395

Learnable 83.5496 ± 11.1222 107.3003 ± 9.9495 0.2152 ± 0.0573 2.0323 ± 1.2871

A.11 DETAILED ANALYSIS ON FREQUENCY FINGERPRINT

We explore using the STFT and learnable fourier features as alternative designs for the system finger-
print. Specifically, to implementation STFT, we replace the WST module with an STFT encoding,
flattening the time-frequency features into the same dimension as our fingerprint. For learnable fin-
gerprint, we replace the fixed wavelet filters with learnable spectral filters (1D convolutional layer)
followed by the same pooling operations, allowing the model to adaptively learn frequency repre-
sentations. The results are shown in Table 7. From the results, we have the following conclusions:

• First, the WST achieves significantly lower point-wise errors and better attractor reconstruction
compared to STFT. We attribute this to the fact that chaotic systems exhibit dynamics across
a continuum of scales. WST naturally captures multi-scale interactions through its hierarchical
cascade, making it more robust for diverse chaotic dynamics. In contrast, STFT suffers from the
fixed window size limitation.

• Second, Learnable variant performs the worst. Given the vast diversity of our training corpus,
learning a single set of spectral filters that generalizes universally is highly difficult. The WST
provides a strong inductive bias with its mathematical properties of translation invariance and
stability to deformations, offering a stable fingerprint that requires no training, thus enhancing
zero-shot generalization.

ADD

A.12 FORECASTING PERFORMANCE ON PDE SYSTEMS

Simulation Setup. We consider the 2D Navier-Stokes equations modeled via the Lattice Boltzmann
Method (LBM) using a standard D2Q9 topology. The simulation is configured to generate Von
Kármán Vortex Street (VKVS) dynamics past a cylindrical obstacle. The simulation domain is
a rectangular channel with dimensions 420 × 180 lattice units. A cylindrical obstacle with radius
r = 20 is positioned at (x, y) = (105, 90) to induce flow separation. We impose a parabolic velocity
profile at the inlet with a maximum characteristic velocity uLB = 0.04, and a standard bounce-back
condition on the obstacle surface. The viscosity is adjusted to achieve a Reynolds number (Re) of
450, placing the system in a regime characterized by unsteady, periodic vortex shedding and chaotic
turbulence in the wake.

Data Collection. To ensure the flow reaches a statistically stationary state, we discard the initial
90, 000 simulation steps as a burn-in period. Subsequently, we collect a dataset of T = 4096
frames, sampled at a temporal interval of ∆t = 250 LBM steps.

Preprocessing. Instead of raw velocity fields, we focus on the vorticity dynamics (ω = ∂xvy −
∂yvx), computed via central differences, as it better highlights the coherent structures of the fluid.
The spatial domain is cropped to remove the laminar inlet region (removing the first 40 columns),
resulting in an effective resolution of 380 × 180. To enable efficient forecasting, we project the
high-dimensional vorticity fields into a low-dimensional latent space using Principal Component
Analysis (PCA), retaining the top d = 16 principal components.

Results. We compare the zero-shot forecasting performance of ChaosNexus with other founda-
tion models on ODE-based chaotic dynamics, including Panda, Parrot (Zhang & Gilpin, 2025), and
DynaMix (Hemmer & Durstewitz, 2025). While the forecasting processes operate within a low-
dimensional PCA latent space, we apply the inverse transformation to map predictions back to the
original observation space for metric evaluation. The context length is 512 steps, and we compute
sMAPE at forecasting horizons {64, 128, 192, 256, 320, 384, 448, 512}, and the results are shown in
Figure 13. We also demonstrate illustrative forecasting samples in Figure 14. We find that Chaos-
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Figure 13: ADDForecasting performance on Von Kármán Vortex Street (VKVS) dynamics. Lines depict
the average value, with shaded regions representing the 95% CI. DynaMix produces NaN values
from 320 forecasting steps; therefore, its performance after longer horizons cannot be reported.

Table 8: Hyperparameter configurations for ChaosNexus models.
Method T H D de Blocks Attention Heads Skip Depths M K C J Q λ1 λ2 Params

ChaosNexus-Mini 512 128 8 24 [1,1,1,1] [3,6,12,24] [2,2,2,0] 8 2 48 8 8 0.1 0.5 2.88M/7.60M
ChaosNexus-Small 512 128 8 48 [1,1,1,1] [3,6,12,24] [2,2,2,0] 8 2 48 8 8 0.1 0.5 10.88M/29.72M
ChaosNexus-Base 512 128 8 48 [2,2,2,2] [3,6,12,24] [2,2,2,0] 8 2 48 8 8 0.1 0.5 20.32M/58.01M

ChaosNexus-Large 512 128 8 64 [3,3,3,3] [4,8,16,32] [2,2,2,0] 8 2 48 8 8 0.1 0.5 52.68M/153.12M

Nexus achieves superior forecasting performance on this PDE system, despite being trained solely
on ODEs. PCA projects spatiotemporal dynamics onto a latent manifold that resembles our ODE
training corpus. Crucially, our ScaleFormer architecture excels at modeling the resulting multi-
scale temporal dynamics, effectively capturing both the dominant periodic vortex shedding and the
fine-grained chaotic fluctuations in the turbulent wake.

B HYPERPARAMETER SETTINGS

Table 8 delineates the hyperparameter configurations for the suite of ChaosNexus models, spanning
from Mini to Large scales. Please note that ”ChaosNexus” refers to the ”ChaosNexus-Base” variant
in all analyses, figures, and tables (except for parameter scaling in Section 4.3), if not explicitly
stated. For all model variants, we maintain a consistent input context length of T = 512 and a
prediction horizon of H = 128, with the input trajectory segmented into patches of length D = 8.
The scaling of model capacity is primarily achieved by adjusting the embedding dimension de, the
number of Transformer blocks at each hierarchical level (Blocks), the corresponding number of at-
tention heads (Heads), and the depth of the convolutional blocks within the skip connections (Skip
Depths). Key parameters for our specialized components are kept constant across all scales: each
Mixture-of-Experts (MoE) layer consists of M = 8 specialist experts, of which the top K = 2 are
activated for each token, and the wavelet scattering transform produces a frequency fingerprint of
dimension C = 48. This transform is configured with parameters J = 8 and Q = 8; as detailed
in Appendix C.3, J defines the scale of temporal averaging for the low-pass filter, while Q repre-
sents the number of wavelet filters per octave (quality factor). The composite training objective is
governed by the weights λ1 = 0.1 for the MoE load balancing loss and λ2 = 0.5 for the MMD-
based distributional regularization. The final column reports both the number of activated and total
parameters for each model configuration.
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Figure 14: ADDForecasting visualizations on Von Kármán Vortex Street (VKVS) dynamics.

C IMPLEMENTATION DETAILS

C.1 INPUT AUGMENTATION FEATURES

As stated in the main text, our approach to feature engineering is inspired by Koopman operator
theory (Koopman, 1931), which suggests that a complex nonlinear dynamical system can be rep-
resented as a linear system in an infinite-dimensional space of observable functions. While this
infinite-dimensional space is practically inaccessible, it can be effectively approximated by project-
ing the system’s state into a higher-dimensional feature space. This process of lifting the dynamics
is a cornerstone of methods like Extended Dynamic Mode Decomposition (eDMD) (Williams et al.,
2015).

Following this principle, and adopting a technique from recent work on pretrained forecast models,
we enrich the representation of each time series patch before it is processed by the main architecture.
Instead of using the raw patch data alone, we construct an augmented feature vector by concatenating
the original patch with two additional sets of randomly generated, nonlinear features.

• Random Polynomial Features. To capture nonlinear relationships within each patch, we generate
a set of monomial features. For a given polynomial degree, d, this is achieved by first sampling
a collection of d-tuples of indices. For each tuple, we compute a new feature by multiplying the
patch elements corresponding to those indices. This creates a basis of polynomial observables that
can approximate the underlying dynamics. For our model, we use polynomial features of degree
d ∈ {2, 3}.

• Random Fourier Features. To approximate a universal kernel and capture periodic patterns, we
employ random Fourier features, a widely-used technique for scaling up kernel methods. This is
implemented by projecting a patch onto a set of random vectors, whose components are sampled
from a normal distribution. The resulting scalar values are then transformed using both sine and
cosine functions, effectively creating a randomized spectral basis.
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The final embedding for each patch is formed by concatenating the original patch vector with the
generated polynomial and Fourier features. This lifted representation provides a much richer input
to the model, allowing it to more easily learn and represent the complex, nonlinear evolution of
the dynamical systems.

C.2 SKIP CONNECTION BLOCKS

To mitigate the loss of fine-grained information during the down-sampling operations within the
encoder, we employ a skip connection architecture that links encoder and decoder blocks at cor-
responding resolutions. This mechanism is crucial for providing the decoder with direct access to
high-resolution feature maps from the encoder, thereby enhancing the model’s ability to reconstruct
the system’s dynamics with high fidelity.

Our implementation for these skip connections is a specialized 1D residual convolutional block. Its
design is inspired by modern convolutional networks that have successfully integrated principles
from Transformer architectures, showing high efficiency and performance (Herde et al., 2024). The
block operates on different variables independently. The forward pass consists of the following key
operations:

• Depthwise Convolution. The core of the block is a 1D depthwise convolution with a large kernel
size, which is implemented as 7 in our experiments. This operation efficiently captures local
spatio-temporal patterns across the patch sequence.

• Normalization. Following the convolution, a LayerNorm layer is applied to the features. This
standardizes the activations across the feature dimension, ensuring stable training dynamics.

• Inverted Bottleneck. The architecture employs an inverted bottleneck design, a hallmark of mod-
ern efficient networks. The normalized features are first passed through a point-wise convolution
that expands the channel dimension by a factor of 4. This is followed by a GELU activation
function, which introduces non-linearity. A second point-wise convolution then projects the fea-
tures back to the original dimension. This expand-and-contract structure allows the model to learn
complex interactions between channels in a higher-dimensional space.

• Stability and Regularization. For improved training, two advanced techniques are integrated.
First, a learnable, per-channel scaling parameter is applied to the output of the inverted bottleneck.
This allows the model to dynamically modulate the contribution of each residual block, which is
particularly beneficial in deep architectures. Second, the output of the block is randomly sets
to zero during training, effectively bypassing it. This acts as a powerful regularizer, preventing
feature co-adaptation and improving model generalization.

• Residual Connection. Finally, the output of the processed branch is added to the original input
tensor, forming the block’s essential residual connection.

By integrating these blocks as skip connections, we ensure that the decoder has access to a rich,
multi-scale representation of the input, enabling it to accurately reconstruct detailed system dynam-
ics that might otherwise be lost in the encoder’s hierarchical processing.

C.3 WAVELET SCATTERING TRANSFORM

In our work, we employ the Wavelet Scattering Transform (WST) to extract a stable, multi-scale
frequency representation from the historical observations X . The WST (Mallat, 2012; Bruna &
Mallat, 2013; Andén & Mallat, 2014) generates signal representations that are stable to small time
shifts and deformations without sacrificing significant information. It achieves this by cascading
wavelet convolutions with complex modulus non-linearities, followed by local averaging. This hi-
erarchical structure is analogous to that of a Convolutional Neural Network (CNN), but with fixed,
pre-defined wavelet filters instead of learned kernels. The transform is constructed by iteratively
applying three fundamental operations: convolution with an analytic wavelet filter ψλ(t), complex
modulus non-linearity | · |, and averaging via convolution with a low-pass filter ϕJ(t).

For an input signal x(t), the scattering transform up to the second order, denoted as SJx, is a
collection of coefficients from different layers (or orders):

SJx = [S
(0)
J x, S

(1)
J x, S

(2)
J x], (14)
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where each order is defined as follows:

Zero-Order Coefficients. The zeroth-order coefficients capture the local mean of the signal. They
are computed by convolving the input signal x(t) with a wide low-pass filter ϕJ(t), where J defines
he scale of temporal averaging, formulated as follows:

S
(0)
J x(t) = x ⋆ ϕJ(t).

This provides the coarsest, most stable representation of the signal’s energy.

First-Order Coefficients. The first-order coefficients form the core of the wavelet analysis. The cal-
culation begins by convolving the signal x(t) with a family of first-order analytic wavelets, ψ(1)

λ (t),
to capture information around specific frequencies λ. The complex modulus of this result is then
taken—a crucial step that demodulates the signal and ensures invariance to local phase shifts. Fi-
nally, this resulting envelope is smoothed by convolving it with the low-pass filter ϕJ(t), which
achieves local time-shift invariance through averaging. The complete operation is summarized by
the formula:

S
(1)
J x(t, λ) = |x ⋆ ψ(1)

λ | ⋆ ϕJ(t).

Second-Order Coefficients. To recover transient information, such as rapid amplitude modulations
lost during first-order averaging, the transform recursively applies the wavelet decomposition. This
process begins with the modulus envelopes, |x ⋆ ψ(1)

λ |, generated by the first order. These envelopes
are then convolved with a second family of wavelets, ψ(2)

µ (t), to extract their spectral content, which
reveals interactions between the primary frequency bands. Following this, a second modulus opera-
tion is applied before the final averaging with the low-pass filter ϕJ(t) stabilizes the representation.
The entire cascade is encapsulated by the formula:

S
(2)
J x(t, λ, µ) = ||x ⋆ ψ(1)

λ | ⋆ ψ(2)
µ | ⋆ ϕJ(t).

In our methodology, the collection of all scattering coefficients, {S(0)
J , S

(1)
J , S

(2)
J }, forms the feature

set Fw ∈ RC×T ′×V . Here, C represents the total number of scattering paths (i.e., combinations of
λ and µ), T ′ is the reduced temporal dimension after averaging, and V is the number of variables.
To create a single, fixed-size fingerprint for the underlying dynamical system, we apply temporal
pooling across the T ′ dimension. This results in the final representation F̄w ∈ RC×V , which sum-
marizes the intrinsic oscillatory and modulatory characteristics of the system, serving as a robust
conditional input for our model.

C.4 MAXIMUM MEAN DISCREPANCY

Forecasting the long-term evolution of chaotic systems necessitates metrics that extend beyond
point-wise accuracy. To ensure our model reproduces not just a single trajectory but the system’s
intrinsic statistical and geometric structure, we employ a distributional loss based on the Maximum
Mean Discrepancy (MMD).

As established in prior literature (Schiff et al., 2024), a suitable metric for comparing state distribu-
tions of trajectories should exhibit several essential characteristics. Specifically, it must: (i) respect
the underlying geometry of the state space and be capable of comparing distributions with non-
overlapping supports; (ii) provide an unbiased estimator that can be computed from finite samples;
(iii) maintain low computational complexity with respect to both dimensionality and sample size;
(iv) act as a true metric on the space of probability measures, ensuring that a vanishing distance im-
plies convergence; and (v) feature parametric estimation rates, such that sample error is independent
of the system’s dimension.

The family of Integral Probability Metrics (IPMs) (Müller, 1997) provides a general framework that
satisfies these desiderata. For any two probability distributions p1 and p2, an IPM is defined as the
supremum of the difference between expectations over a class of functions K:

IPM(p1, p2) = sup
κ∈K

|Eu∼p1
[κ(u)]− Eu′∼p2

[κ(u′)]|. (15)

Within this class, we select the Maximum Mean Discrepancy (MMD), which distinguishes itself by
defining K as the unit ball in a Reproducing Kernel Hilbert Space (RKHS), denoted H. The formal
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definition of MMD is thus:

MMD(p1, p2) := sup
||f ||H≤1

|Eu∼p1
[f(u)]− Eu′∼p2

[f(u′)]|. (16)

By leveraging the reproducing property of the RKHS and the Riesz representation theorem, the
squared MMD can be expressed in a convenient analytical form using a kernel function κ(·, ·) that
defines H:

MMD2(p1, p2) = Eu,u′∼p1 [κ(u,u
′)] + Ev,v′∼p2 [κ(v,v

′)]− 2Eu∼p1,v∼p2 [κ(u,v)]. (17)

This expression leads directly to the unbiased empirical estimator used in our work as the regular-
ization loss Lreg.

For the kernel function κ, our implementation follows successful precedents (Seeger, 2004; Li et al.,
2015; Schiff et al., 2024), employing a mixture of rational quadratic kernels. This choice ensures
sensitivity to distributional discrepancies across multiple length scales. The composite kernel is
formulated as:

κ(u,v) =
∑
σ∈σ

σ2

σ2 + ||u− v||22
, (18)

where the set of scale parameters is chosen to be σ = {0.2, 0.5, 0.9, 1.3}, consistent with these prior
works.

D DETAILS OF EXPERIMENTAL SETTINGS FOR ZERO-SHOT EVALUATIONS

D.1 DETAILS OF SYNTHETIC CHAOTIC SYSTEM DATASET

The study utilizes the large-scale synthetic dataset of chaotic dynamics introduced by Lai et al.
(2025). This dataset is specifically designed to provide a vast and dynamically diverse corpus for
pretraining a universal forecasting model, moving beyond reliance on a limited set of well-known
systems. ADDFor completeness and the reader’s convenience, we briefly summarize the methodology
used by Lai et al. (2025) to create this dataset. Their generation pipeline is rooted in an evolutionary
algorithm that discovers and validates novel chaotic ordinary differential equations (ODEs).

Founding Population and Evolutionary Framework. The algorithm begins with a founding pop-
ulation of 129 well-documented, human-curated, low-dimensional chaotic systems (Gilpin, 2021;
2023). For these foundational systems, which include canonical examples like the Lorenz equations,
the parameters and initial conditions are meticulously tuned to ensure operation within their chaotic
regimes, and their integration timescales are standardized based on invariant mathematical properties
such as Lyapunov exponents. From this seed set, the evolutionary framework iteratively generates
new candidate systems through a cycle of mutation and recombination. The mutation step introduces
variation by randomly sampling pairs of parent systems ẋ = fa(x, t; θa) and ẏ = fb(y, t; θb) as well
as applying a parameter jitter, where random Gaussian noise is added to the default parameters of the
selected ODEs (θ̃′a ∼ N (θa, σ), θ̃′b ∼ N (θb, σ)). Subsequently, the recombination step combines
the mutated parent systems to form a novel child system using a skew product construction:{

ẋ = fa(x, t; θa)

ẏ = κbfb(y, t; θ̃
′
b) + κafa(x, t; θ̃

′
a)

This method is chosen for its propensity to preserve chaotic dynamics under sufficiently weak or
strong coupling. The scaling factors, κa and κb, are determined from the reciprocal of the root mean
square (RMS), i.e., κ = 1/

√
E||f(x, t)||2 of a representative trajectory of the parent system.

Selection for Chaoticity. A critical and computationally intensive stage of the pipeline involves a
rigorous, multi-step selection process that filters for genuine and sustained chaotic behavior, culling
all other candidates. First, systems exhibiting trivial dynamics are rejected; the numerical integra-
tion is automatically terminated for any candidate that converges to a fixed point (indicated by an
integration step size falling below 10−10), diverges to infinity (a coordinate value exceeding 104), or
fails to complete integration within a 5-minute time limit. Surviving candidates are then subjected to
the 0-1 test, a standard method for distinguishing between chaotic and periodic or quasiperiodic dy-
namics. Finally, a further sequence of attractor tests is applied to ensure dynamical complexity. This
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Figure 15: ADDDistributions of the largest Lyapunov exponent and the correlation dimension of synthetic
chaotic systems.

includes a test based on near-recurrences to reject simple limit cycles, a power spectrum analysis to
discard trajectories with only a few dominant frequencies, and an estimation of the largest Lyapunov
exponent with the Rosenstein estimator (Rosenstein et al., 1993). This comprehensive discovery and
validation process yields a final training corpus of 20K unique chaotic dynamical systems.

Data Augmentation and Trajectory Generation. To further expand the dataset’s volume, several
augmentations are applied to the generated trajectories. These transformations are selected because
they preserve the underlying property that the resulting time series originates from a valid nonlinear
dynamical system. The augmentations include random time-delay embedding, justified by Tak-
ens’ embedding theorem (Takens, 2006), convex combinations, and affine transforms. For the final
dataset, trajectories of 4096 timesteps are generated for each system using a high-precision numeri-
cal integrator with relative and absolute tolerances of 1× 10−9 and 1× 10−10, respectively. Initial
conditions are sampled from a preliminary, lower-tolerance integration run to approximate starting
on the system’s attractor.

Held-Out Test Set. For robust zero-shot evaluation, a distinct held-out test set of 9.3× 103 systems
is created. This set is generated from a reserved subset of 20 systems from the original 129 founding
population that are never used in the training set generation. A strict separation is enforced by
ensuring that none of these 20 systems, nor any of their mutations, appear as either a driver or a
response in the skew product constructions for the training data, thereby preventing any data leakage.

ADDStatistical Properties of Synthetic Systems. We conduct a comprehensive statistical analysis of
the generated systems. Specifically, we compute the largest Lyapunov exponent for each system
with the Rosenstein estimator (Rosenstein et al., 1993), and estimate the correlation dimension us-
ing the Grassberger-Procaccia (GP) algorithm (Grassberger & Procaccia, 1983). The histogram of
these two critical invariants across synthetic chaotic systems is visualized in Figure 15. The heavy-
tailed distribution of the largest Lyapunov exponent confirms that the dataset encompasses a broad
spectrum of dynamical behaviors, ranging from weakly to strongly chaotic regimes. The correlation
dimension displays a unimodal broad distribution, demonstrating the diversity of fractal geometries
characterizing the synthetic strange attractors.

ADDSymbolic Divergence between Training and Held-Out Founding Systems. To quantitatively clar-
ify that our evaluation regime tests for true zero-shot generalization rather than mere parameter-shift
adaptation, we analyze the structural distinctness of the held-out founding test systems relative to
those used for constructing the training dataset. Specifically, we represent the differential equations
of all systems as symbolic expression trees and utilize the Tree Edit Distance (TED) to quantify
symbolic structural similarity. It measures the minimum number of node operations (insertions,
deletions, or re-labeling) required to transform one symbolic tree into another. Crucially, a TED
of zero indicates that two systems share an identical functional topology and differ solely in their
numerical coefficients, while any non-zero value implies a difference in the equation’s functional
terms. We compute the minimum TED for each held-out system against the entire set of founding
systems used to construct the training dataset. The resulting distribution shown in Figure 16 is con-
centrated around a distance of 6. This substantial structural gap confirms that the held-out systems
belong to topologically distinct equation families, demonstrating that the model’s performance relies
on universal dynamical learning rather than parameter interpolation within known structures.
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Figure 16: ADDDistribution of minimum tree edit distance for each held-out founding system against the
entire set of founding systems used to construct the training dataset.

D.2 DETAILS OF EVALUATION METRICS

To provide a comprehensive assessment of model performance, we employ a suite of evaluation
metrics that quantify both short-term, point-wise prediction accuracy and the long-term fidelity of
the reconstructed system dynamics. These metrics are designed to evaluate a model’s ability to not
only forecast the immediate future state but also to reproduce the intrinsic geometric and statistical
properties of the chaotic attractor.

sMAPE. For evaluating short-term predictive quality, we utilize the Symmetric Mean Absolute
Percentage Error (sMAPE) calculated over a forecast horizon of length T . The sMAPE provides a
normalized, point-wise measure of the discrepancy between the predicted trajectory and the ground
truth. It is defined as:

sMAPE ≡ 200

T

T∑
t=1

∥xt − x̂t∥1
∥xt∥1 + ∥x̂t∥1

, (19)

where xt and x̂t are the true and forecasted state vectors at time step t, respectively. This metric
is particularly well-suited for this task as its percentage-based formulation is robust to the varying
scales of different dynamical systems, and it is less sensitive to outliers than the Mean Absolute
Error (MAE).

Correlation Dimension Error Dfrac. To assess a model’s ability to replicate the long-term geomet-
ric structure, we evaluate its reproduction of the system’s strange attractor. In a chaotic dynamical
system, long-term trajectories populate a fractal object known as a strange attractor, which possesses
a unique and invariant fractal dimension that characterizes its space-filling properties. We use the
correlation dimension as a non-parametric method to estimate this fractal dimension directly from
the time series data (Grassberger & Procaccia, 1983). This method quantifies how the number of
points on the attractor scales with distance by measuring, for each point, the density of neighbor-
ing points within a given radius r. The fractal dimension is revealed by the power-law relationship
between this point density and the radius r. We compute the correlation dimension for both the
ground-truth trajectory and the attractor generated from the model’s long-term forecast. The metric
Dfrac is then the root mean square error (RMSE) between these two estimated dimensions. A smaller
Dfrac value signifies that the model’s generated dynamics faithfully reproduce the intrinsic geometric
complexity of the true system’s attractor.

Kullback–Leibler Divergence between System Attractors (Dstsp). Beyond geometric structure, a
successful long-term forecast must also capture the statistical properties of the attractor. We quantify
this using the Kullback-Leibler (KL) divergence (Dstsp) between the probability distributions of the
true and reconstructed attractors (Hess et al., 2023; Göring et al., 2024). The long-term behavior of
a chaotic system can be described by an invariant probability measure over its phase space, which
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represents the likelihood of finding the system in a particular state. Operationally, we approximate
this invariant measure for both the true and forecasted trajectories by fitting Gaussian Mixture Mod-
els (GMMs) to points sampled from each attractor. The Dstsp is then the estimated KL divergence
between these two GMMs (Hershey & Olsen, 2007). A lower value indicates that the reconstructed
attractor more accurately captures the statistical and density profile of the true system’s dynamics.

ADDLargest Lyapunov Exponent Error (DLyap). While geometric and statistical metrics (Dfrac and
Dstsp) assess the static shape and density of the attractor, they do not explicitly measure the temporal
dynamics of system instability. To verify if the model captures the hallmark of chaos—sensitivity
to initial conditions—we evaluate the Largest Lyapunov Exponent (LLE). The LLE quantifies the
average exponential rate of divergence of infinitesimally close trajectories. We estimate the LLE
for both the ground-truth trajectory and the model’s long-term forecast using the Rosenstein esti-
mator (Rosenstein et al., 1993). The metric DLyap is defined as the absolute difference between
these two estimated exponents. A low DLyap value indicates that the model has successfully inter-
nalized the governing physical laws that drive the chaotic evolution, rather than merely memorizing
superficial patterns.

ADDWeighted Mean Energy Error (MELRw). To rigorously evaluate the spectral fidelity of the fore-
casted trajectories, we assess the model’s ability to reproduce the system’s energy distribution across
the frequency domain. While standard time-domain metrics may overlook spectral distortions hid-
den within smooth predictions, MELRw explicitly quantifies the deviation in the Power Spectral
Density (PSD). To prioritize these dynamically significant components over background noise, we
employ a weighted formulation defined as:

MELRw =
∑
i

wi| log(
Ppred(fi)

Ptrue(fi)
)|, (20)

where Ppred(fi) and Ptrue(fi) epresent the PSD values of the predicted and ground-truth trajectories
at frequency fi, respectively. The weighting coefficient wi is normalized by the total energy of the
ground truth signal:

wi =
Ptrue(fi)∑
j Ptrue(fj)

. (21)

This weighting mechanism ensures that the metric is sensitive to errors in high-energy frequency
bands while being robust to negligible fluctuations in low-energy regimes. A lower MELRw indicates
that the model has faithfully reconstructed the intrinsic oscillatory properties and energy profile of
the chaotic system.

D.3 DETAILS OF BASELINES

We compare our proposed method against several state-of-the-art time series foundation models,
including Panda (Lai et al., 2025), Time-MoE (Shi et al., 2024), TimesFM (Das et al., 2024),
Chronos (Ansari et al., 2024), Moirai-MoE (Liu et al., 2024a), and Timer-XL (Liu et al., 2024b). To
assess the adaptability of general-purpose models to this specific domain, we also include Chronos-
S-SFT, a variant of the Chronos-S model that has been fine-tuned on our chaotic systems training
corpus. The key characteristics of each baseline are detailed below.

• Panda is a pretrained, encoder-only Transformer model designed for forecasting chaotic dynam-
ics. Based on the PatchTST (Nie et al., 2022) architecture, it introduces interleaved channel and
temporal attention layers to capture variable coupling, alongside a dynamics embedding layer that
uses polynomial and Fourier features inspired by Koopman operator theory.

• Time-MoE is a family of billion-scale, decoder-only Transformer foundation models that utilize a
sparse Mixture-of-Experts (MoE) architecture to enhance scalability and computational efficiency.
The model tokenizes the input time series point-wise and employs multiple forecasting heads
to predict at different resolutions simultaneously through multi-task optimization. Time-MoE is
pre-trained on Time-300B, a large-scale collection of over 300 billion time points from diverse
domains, to achieve universal forecasting capabilities.

• TimesFM is a decoder-only Transformer-based foundation model for zero-shot time series fore-
casting. It processes time series data by breaking it into patches and is trained autoregressively
to predict the next patch based on the preceding context. A key design feature is using an out-
put patch length that is longer than the input patch length to reduce the number of autoregressive
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Table 9: The number of time points within the pretraining corpus of different methods.
Method ChaosNexus Panda Time-MoE TimesFM Moirai-MoE Timer-XL

# Time Points ∼0.35B ∼0.35B ∼300B ∼100B ∼231B ∼232B (LOSTA & UTSD)

steps required for long-horizon forecasting. The model is pretrained on a large corpus of approx-
imately 100 billion time points, combining real-world data from Google Trends and Wikipedia
with synthetic data.

• Chronos is a framework that adapts existing language model architectures, such as the T5 family,
for probabilistic time series forecasting. Its core innovation is the tokenization of continuous
time series values into a fixed vocabulary using a simple process of mean scaling and uniform
quantization. By treating time series as a sequence of discrete tokens, Chronos is trained from
scratch using the standard cross-entropy loss objective common to language models. The training
corpus consists of a large collection of public datasets, augmented by synthetic data generated via
Gaussian processes and a mixup strategy.

• Moirai-MoE is a decoder-only Transformer that improves upon its predecessor, Moirai (Woo
et al., 2024), by incorporating a sparse Mixture-of-Experts (MoE) architecture. It replaces
heuristic-driven, frequency-specific input/output layers with a single projection layer, delegating
the task of modeling diverse time series patterns to specialized experts within the MoE layers,
thereby enabling automatic token-level specialization. It also introduces a novel gating function
that uses cluster centroids from a pretrained model to guide expert assignments. Moirai-MoE is
trained on the LOTSA dataset using a decoder-only objective.

• Timer-XL is a causal, decoder-only Transformer designed for unified, long-context time series
forecasting. It generalizes the next token prediction paradigm to multivariate time series by flat-
tening 2D time series data into a unified context of patch tokens. Its central architectural inno-
vation is TimeAttention, a causal self-attention mechanism that uses a Kronecker product-based
mask and specialized position embeddings to effectively model both intra- and inter-series depen-
dencies. Timer-XL is pre-trained on large-scale datasets, such as UTSD and LOTSA, to achieve
state-of-the-art zero-shot performance.

• Chronos-SFT. To investigate the domain adaptability of general-purpose models, we create a spe-
cialized version of Chronos by fine-tuning the publicly available Chronos weights on our chaotic
systems training set. This process, referred to as Supervised Fine-Tuning (SFT), allows the model
to adapt its learned representations from general time-series data to the specific, complex patterns
inherent in chaotic dynamics. This baseline helps to disentangle the effects of model architecture
from the benefits of domain-specific training data.

• ADDDynaMix. It is a foundation architecture specifically engineered for zero-shot dynamical systems
reconstruction (DSR). It employs a Mixture-of-Experts (MoE) framework where the individual
experts are Almost-Linear RNNs (AL-RNNs), capable of learning parsimonious dynamical rep-
resentations. A context-aware gating network dynamically selects experts to generalize across
diverse attractors without fine-tuning. To ensure the preservation of long-term invariant statis-
tics, DynaMix is pretrained using sparse teacher forcing on a curated corpus of low-dimensional
chaotic and cyclic systems, utilizing delay embeddings to reconstruct the underlying state space
geometry.

• ADDParrot. It serves as a robust, non-parametric baseline designed to probe the efficacy of learned
representations in foundation models. It operates as an efficient in-context nearest-neighbor al-
gorithm: by scanning the provided history for motifs that minimize Euclidean distance to the
immediate context, it identifies the closest recurrence and directly copies the subsequent trajec-
tory as the forecast. This approach exploits the determinism and recurrence inherent in strange
attractors, demonstrating that simple pattern-matching strategies can often outperform complex
deep learning models on chaotic benchmarks.

We summarize the number of time points within the pretraining corpus in Table 9 for comparison.
We demonstrate the parameter count in Table 10.

REVISE
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Table 10: The number of parameters of baseline methods. For methods with mixture-of-experts
layers, we demonstrate activated parameter counts/total parameter counts.

Method ChaosNexus Panda Chronos-S Chronos-B Chronos-L Moirai-MoE-S Moirai-MoE-L TimeMoE-S TimeMoE-L TimerXL TimesFM

# Parameters 21M/58M 21M 21M 48M 205M 11M/117M 86M/935M 50M/113M 200M/453M 84M 500M

E DETAILS OF TRAINING SETUP AND COMPUTATIONAL INFRASTRUCTURE

Training Setup. We train all ChaosNexus model variants for 100K iterations using a global batch
size of 1024. The input context length is fixed at 512, and the model forecasts the subsequent 128
time steps. The initial patch size is set to 8. To enable efficient batching across heterogeneous
systems, following the existing work (Lai et al., 2025), we randomly sample three channels from
each multivariate trajectory to fix the training dimension at d = 3. This design aligns with the the-
oretical minimum of coupled variables required for continuous-time deterministic chaos (Strogatz,
2024). During inference, we process the full multivariate trajectories, since channel attention en-
ables multivariate generalization. The training objective is a weighted sum of MSE, load balancing
(λ1 = 0.1), and MMD regularization (λ2 = 0.5). To ensure convergence stability on chaotic data
distributions, we employ the AdamW optimizer. The learning rate is set to 10−3 and follows a cosine
decay schedule with 10% linear warmup. We also apply gradient norm clipping to 1.0 to mitigate
gradient explosion, a common challenge in chaotic system modeling. We provide a detailed hyper-
parameter setting and discussions in Appendix B. For the Panda baseline, we use the same training
setup as ChaosNexus for fair performance comparison. To construct the Chronos-S-SFT baseline,
we fine-tune the Chronos model for 300K iterations using the AdamW optimizer. The per-device
batch size is set to 512. The learning rate is initialized at 10−3 and follows a cosine decay schedule
with a 10% linear warmup to ensure stable convergence. We apply gradient norm clipping with a
threshold of 1.0 to mitigate gradient explosion. Weight decay is set to 0.0. To enhance the model’s
robustness, we incorporate a diverse set of augmentations during training, including Random Tak-
ens Embedding and Random Fourier Series. The implementation utilizes the Hugging Face Trainer
framework with 16 dataloader workers to optimize throughput. For system-specific models, we fol-
low the standard training and evaluation protocols provided in the Time-Series-Library 1 to ensure a
fair comparison.

Computational Resources. All training experiments are conducted on a node equipped with 8 ×
NVIDIA A100 GPUs, each with 80GB memory. The training process requires approximately 10
hours without multi-GPU parallelization. Inference is performed on a single NVIDIA A100 GPU.
Our implementation utilizes PyTorch with BF16 to optimize memory usage and throughput.

F DETAILS OF EXPERIMENTAL SETTINGS FOR FEW-SHOT EVALUATIONS

F.1 DETAILS OF WEATHER DATASET

WEATHER-5K is a large-scale, public benchmark dataset designed to advance research in Global
Station Weather Forecasting (GSWF) and broader time-series analysis. The dataset derives from
the Integrated Surface Database (ISD), a global repository of surface observations managed by the
National Centers for Environmental Information (NCEI). While the full ISD contains data from over
20,000 stations, many are unsuitable for machine learning applications due to being non-operational,
having inconsistent reporting intervals, or containing significant missing values for key variables.
The creation of WEATHER-5K involves a meticulous selection process to curate a high-quality
subset of stations that are currently operational and provide long-term, hourly reporting of essential
weather elements. After the preprocessing stages, the final dataset contains hourly meteorological
data from 5,672 stations worldwide over a 10-year period (2014–2023), providing a rich and ex-
tensive resource for developing and benchmarking sophisticated forecasting models. Each station’s
data includes five primary meteorological variables: Temperature, Dew Point, Wind Speed, Wind
Direction, and Sea-Level Pressure.

For reproducibility and standardized evaluation, the WEATHER-5K dataset is chronologically di-
vided into three subsets: a training set, a validation set, and a testing set. The training set consists

1https://github.com/thuml/Time-Series-Library
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of weather data from 2014 to 2021, the validation set includes data from the year 2022, and the
testing set comprises data from 2023. This division follows an 8:1:1 ratio, which allows models to
be trained on sufficient historical data, validated on a separate year, and tested on the most recent
data for an accurate evaluation. For our experiments under few-shot setting conditions, we use only
0.1% and 0.5% of the training data, respectively.

F.2 DETAILS OF BASELINES

We compare ChaosNexus against several strong deep learning baselines in this benchmark, including
FEDformer (Zhou et al., 2022), CrossFormer (Zhang & Yan, 2023), PatchTST (Nie et al., 2022), and
Koopa (Liu et al., 2023). The details are as follows:

• FEDformer is a Transformer architecture designed for long-term forecasting that addresses the
tendency of standard Transformers to neglect global series properties, such as overall trends. It
incorporates a seasonal-trend decomposition framework to disentangle the global profile of the
series, which is processed separately from the more detailed components. Its core innovation is the
replacement of the standard self-attention mechanism with frequency-domain operations. These
Frequency Enhanced Blocks (FEB) and Frequency Enhanced Attention (FEA) modules operate
on a randomly selected subset of Fourier or Wavelet basis functions, which not only captures the
series’ global properties more effectively but also achieves linear computational complexity.

• CrossFormer explicitly models the cross-dimension dependencies in multivariate time series, a
factor often overlooked by models that focus primarily on temporal relationships. Its architec-
ture is defined by three key components. First, a Dimension-Segment-Wise (DSW) embedding
partitions each time series variable into segments, creating a 2D vector array that preserves both
temporal and dimensional information. Second, a Two-Stage Attention (TSA) layer processes
this array by first applying attention across the time axis and subsequently across the dimension
axis. To handle a large number of variables efficiently, the cross-dimension stage uses a router
mechanism to achieve linear complexity. Finally, these modules are integrated into a Hierarchi-
cal Encoder-Decoder (HED) that processes information at multiple scales to generate the final
forecast.

• PatchTST introduces an efficient Transformer design centered on two principles: patching and
channel-independence. The model first segments each univariate time series into patches, which
serve as input tokens. This patching strategy retains local semantic information and quadratically
reduces the computational and memory complexity of the attention mechanism, which in turn
allows the model to process longer historical sequences. Subsequently, the model employs a
channel-independent architecture, where each univariate series (channel) is processed individually
by a shared vanilla Transformer encoder, thereby learning temporal patterns without explicit cross-
channel mixing in the attention layers.

• Koopa is a forecasting model built on Koopman theory, specifically designed to handle non-
stationary time series by linearizing their underlying dynamics. The model first employs a Fourier
Filter to disentangle the series into time-invariant and time-variant components based on their
frequency domain characteristics. It then applies distinct Koopman Predictors (KPs) to each com-
ponent: a globally learned, parametric operator for the time-invariant dynamics, and locally com-
puted, adaptive operators for the time-variant dynamics. These components are organized into
stackable Koopman Blocks within a residual architecture, enabling hierarchical learning and end-
to-end optimization of the forecasting objective without a reconstruction loss.

ADD

G RELATIONS TO CHAOTIC SYSTEM THEORIES

G.1 CROSS-SYSTEM GENERALIZATION

We provide the mathematical intuition for why these components enable generalization across het-
erogeneous systems:

• ScaleFormer architecture implements a multi-scale analysis. Chaotic systems often exhibit
multiple distinct timescales, for example, fast oscillations superposed on slow manifolds. the
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shallow layers (i.e., fine scales) of ScaleFormer can capture high-frequency dynamics driven by
the largest positive Lyapunov exponents, and the deep layers (i.e., coarse scales) capture the global
attractor geometry associated with negative exponents. This architecture forces the model to learn
the coupling mechanisms between timescales. Since diverse chaotic systems often share similar
structural couplings (e.g., relaxational oscillations or bursting patterns) despite differing parame-
ters and equations, explicitly disentangling these scales allows the model to transfer these learned
dynamical patterns to unseen systems.

• MoE layers serve as a basis expansion of local vector fields. The evolution of a chaotic system
can be described by ẋ = F (x). We hypothesize that while global attractors are varied across
systems, local vector fields F (x) can be decomposed into a set of local dynamical patterns (e.g.,
local saddle, spiral, or fold geometries). Mathematically, the MoE layer acts as a functional basis
expansion. We view the experts {Ek}Mk=1 as learned basis functions for local dynamics, MoE
approximates the unknown vector field Fnew(·) of an unseen system as:

Fnew(x) ≈
M∑
k=1

Gk(x) · Ek(x), (22)

where Gk(·) denotes the gating coefficient. Generalization occurs because the model learns a
reusable dictionary of experts Ek during training. When encountered a new system, the model
performs an online system identification by exploring the optimal combination weights Gk(x)
from the inputs, allowing it to reconstruct complex dynamics from these shared basis.

• Wavelet fingerprints have Lipschitz continuity to diffeomorphisms. If a novel target x′ is a
deformed version of a source trajectory x, modeled by a diffeomorphism operator, the distance in
our fingerprint Φ satisfies the bound:

||Φ(x)− Φ(x′)|| ≤ C||x′ − x||. (23)

This bound theoretically guarantees that the mapping from the space of dynamical systems to
our conditioning embedding space is stable and continuous. It ensures that structurally related
systems, even if never seen during training, are mapped to a compact neighborhood in the fea-
ture space. It allows ChaosNexus to treat cross-system generalization as a smooth interpolation
problem on a structured manifold.

G.2 RELATION TO OPERATOR THEORY

We discuss the relation of ChaosNexus to operator theory as follows:

• First, as detailed in Section 3.1 and Appendix C.1, we pre-process input patches P using random
polynomial and Fourier features. Mathematically, it corresponds to constructing a finite dictionary
of observables Ψ(P). This step explicitly mimics the lifting process in extended dynamic mode
decomposition (eDMD), projecting the highly nonlinear state evolution onto a higher-dimensional
manifold where the dynamics are more amenable to linear approximation.

• Second, in the lifted space, the time evolution is governed by the Koopman operator K, such that
Ψ(Pt+1) = KΨ(Pt). Our ScaleFormer backbone can be theoretically interpreted as a learnable,
finite-dimensional approximation of this operator. Unlike traditional eDMD which approximates
K with a static matrix, our ScaleFormer uses the attention mechanism to learn a state-dependent
spectral decomposition. The attention weights effectively perform a dynamic eigenvalue decom-
position, attending to the specific eigenmodes most relevant for the current phase space region,
thereby handling the continuous spectrum often present in chaotic systems.

G.3 RELATION TO INVARIANTS

We discuss the relation of ChaosNexus to invariants as follows:

• First, chaotic systems are characterized by a spectrum of Lyapunov exponents {λ1, λ2, ..., λd}.
Positive exponents (λi > 0) drive exponential divergence, while negative negative exponents
correspond to dissipative dynamics and attraction to the stable manifold. Our ScaleFormer archi-
tecture structurally aligns with this multi-scale dynamical structure. By processing input patches
at progressively coarser resolutions, ScaleFormer explicitly disentangles these coupled timescales,
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Figure 17: ADDComparison between chaotic systems and general time series

where fine-scale layers capture high-frequency fluctuations and local error growth, corresponding
to the dynamics driven by the largest positive Lyapunov exponents, and coarse-scale layers capture
long-range dependencies and the global attractor topology, governed by negative Lyapunov expo-
nents. This seperation prevents high-frequency chaotic mixing from obscuring the low-frequency
invariant structure.

• Second, from the ergodic theory perspective, the long-term behavior of a chaotic system is char-
acterized by an invariant physical measure. Our MMD loss minimizes the integral probability
metric (IPM, Appendix C.4) between the predicted and true measures. Crucially, we instantiate
the MMD with a mixture of rational quadratic (RQ) kernels. Since the RQ kernel is theoretically
equivalent to an infinite-scale mixture of Gaussian kernels, it allows the metric to capture dis-
tributional discrepancies across a continuum of length scales. This capability ensures the model
effectively learns the multi-scale geometry of the strange attractor, even when point-wise forecast-
ing inevitably diverges.

ADD

H COMPARISON BETWEEN CHAOTIC SYSTEMS AND GENERAL TIME SERIES

To elucidate the fundamental dynamical distinctions between chaotic systems and general real-world
time series, we conduct a comparative spectral analysis juxtaposing the Lorenz63 system and the
Lorenz96 system, against representative empirical time series of Electricity and Traffic that are con-
sidered by system-specific time-series forecasting models such as FEDFormer (Zhou et al., 2022).
To ensure rigorous comparability across these disparate physical scales, all time series were stan-
dardized and aligned to visualize approximately 25 characteristic cycles, with the chaotic system
time units calibrated against the daily periodicity of the empirical data. We then computed the
Power Spectral Density (PSD) via Fast Fourier Transform (FFT) to map these temporal evolutions
into a unified frequency domain (1/t versus 1/day), thereby isolating their underlying structural
frequencies.

We demonstrate the results in Figure 17. The analysis reveals a stark topological dichotomy between
the two system classes. Chaotic systems exhibit a continuous broadband spectrum, with energy
distributed across a continuum of low frequencies without distinct isolated peaks, a hallmark of
intrinsic aperiodicity. In contrast, the general time series exhibits a sparse line-spectrum structure,
dominated almost entirely by a few fundamental frequencies (the daily cycle), with negligible energy
in the intervening bands. This finding demonstrates that while real-world time series are typically
governed by sparse, discrete periodic forcing, chaotic systems are fundamentally characterized by
a continuous, multi-scale structure, in which dynamic complexity arises from a rich information
density distributed across a broad temporal continuum rather than isolated frequencies.

ADD
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Figure 18: ADDPerformance Collapse of FEDFormer in Zero-Shot Forecasting

I PERFORMANCE COLLAPSE OF SYSTEM-SPECIFIC MODELS IN ZERO-SHOT
FORECASTING

To demonstrate the necessity of designing and training a foundation model for zero-shot chaotic
system forecasting, we conduct a controlled experiment where a system-specific model, FED-
Former (Zhou et al., 2022), is trained on the exact training corpus as ChaosNexus. After the training
process, we test the model on the canonical Lorenz63 system and demonstrate the results in Fig-
ure 18. We find that FEDFormer fails to capture the underlying chaotic dynamics given the context.
The phenomenon indicates that without the specific design choices in ChaosNexus, system-specific
models suffer from severe underfitting when exposed to highly heterogeneous dynamical systems,
rendering them ineffective for zero-shot generalization.

J USAGE OF LARGE LANGUAGE MODEL DECLARATION

The authors hereby declare the use of the Large Language Model (LLM) during the preparation
of this paper. The role of the LLM is exclusively confined to language polishing and refinement
of the manuscript’s expression. All foundational and critical aspects of the research, including the
formulation of the core ideas, the design of the proposed scheme, the planning of experiments, and
the acquisition and analysis of all experimental data, are conducted without the assistance of any
AI-based tools and are the sole contribution of the authors.
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Figure 19: ADDForecasting performance for temperature on the WEATHER-5K dataset. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples.
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Figure 20: ADDForecasting performance for dew point on the WEATHER-5K dataset. The Mean Ab-
solute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples.
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Figure 21: ADDForecasting performance for sea level pressure on the WEATHER-5K dataset. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples.
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Figure 22: ADDForecasting performance for wind direction on the WEATHER-5K dataset. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples.
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Figure 23: ADDForecasting performance for wind speed on the WEATHER-5K dataset. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples.

Prediction Horizon: 24h
0.0

0.2

0.4

0.6

0.8

M
AE

Prediction Horizon: 48h Prediction Horizon: 72h Prediction Horizon: 96h Prediction Horizon: 120h

Temperature
ChaosNexus@Zero-Shot ChaosNexus@85K ChaosNexus@473K Panda@Zero-Shot Chronos-S-SFT@Zero-Shot

Figure 24: ADDForecasting performance for temperature on the WEATHER-5K dataset. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. Only models previously trained
with synthetic chaotic systems are reported.
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Figure 25: ADDForecasting performance for dew point on the WEATHER-5K dataset. The Mean Abso-
lute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction hori-
zons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. Only models previously trained
with synthetic chaotic systems are reported.
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Figure 26: ADDForecasting performance for sea level pressure on the WEATHER-5K dataset. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. Only models previously trained
with synthetic chaotic systems are reported.
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Figure 27: ADDForecasting performance for wind direction on the WEATHER-5K dataset. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. Only models previously trained
with synthetic chaotic systems are reported.
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Figure 28: ADDForecasting performance for wind speed on the WEATHER-5K dataset. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples. Only models previously trained
with synthetic chaotic systems are reported.
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Figure 29: ADDForecasting performance for temperature of low latitude weather stations. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples.
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Figure 30: ADDForecasting performance for temperature of mid-latitude weather stations. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples.
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Figure 31: ADDForecasting performance for temperature of high latitude weather stations. The Mean
Absolute Error (MAE) of ChaosNexus and baseline models is compared across multiple prediction
horizons after fine-tuning on 85K (0.1%) and 473K (0.5%) samples.
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