
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AI2TALE: AN INNOVATIVE INFORMATION THEORY-
BASED APPROACH FOR LEARNING TO LOCALIZE
PHISHING ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Phishing attacks remain a significant challenge for detection, explanation, and
defense, despite over a decade of research on both technical and non-technical
solutions. AI-based phishing detection methods are among the most effective ap-
proaches for defeating phishing attacks, providing predictions on the vulnerability
label (i.e., phishing or benign) of data. However, they often lack intrinsic explain-
ability, failing to identify the specific information that triggers the classification.
To this end, we propose an innovative deep learning-based approach for email (the
most common phishing way) phishing attack localization. Our method aims to not
only predict the vulnerability label of the email data but also provide the capability
to automatically learn and figure out the most important and phishing-relevant in-
formation (i.e., sentences) in the phishing email data, offering useful and concise
explanations for the identified vulnerability.
The extensive experiments on seven diverse real-world email datasets demonstrate
the capability and effectiveness of our method in selecting crucial information,
enabling accurate detection and offering useful and concise explanations (via the
most important and phishing-relevant information triggering the classification) for
the vulnerability of phishing emails. Notably, our approach outperforms state-of-
the-art baselines by 1.5% to 3.5% on average in Label-Accuracy and Cognitive-
True-Positive metrics under a weakly supervised setting, where only vulnerability
labels are used without requiring ground truth phishing information.

1 INTRODUCTION

Phishing attacks (i.e., attempts to deceitfully get personal and financial information such as user-
names, passwords, and bank accounts through electronic communication with malicious intentions)
have become a serious issue. Nowadays, there are various ways to conduct phishing attacks, while
the most common method is through the use of emails. Email phishing is crafted to trigger psycho-
logical reactions in the users by using persuasion techniques via cognitive principles (Van Der Hei-
jden & Allodi, 2019) such as scarcity, consistency, and authority. According to recent reports (Fed-
eral Bureau of Investigation, 2022; Anti-Phishing Working Group, 2022), there has been a notable
rise in the occurrence of increasingly sophisticated phishing attacks, presenting more formidable
challenges for detection and defense.

The widespread adoption of AI (i.e., using machine learning and deep learning approaches) has
brought substantial influences and great success in various domain applications such as autonomous
driving (Chen et al., 2023a), data generation (Devlin et al., 2018; Radford et al., 2019; Raffel et al.,
2019), drug discovery (Paul et al., 2021), and software vulnerability and malware detection (Li et al.,
2018; Nguyen et al., 2021b; Bensaoud et al., 2024). By leveraging the power of machine learning
and deep learning, there have been many efforts proposed for solving phishing attack problems from
the investigation of the cognitive bias’s impact used in email phishing (Parsons et al., 2015; Van
Der Heijden & Allodi, 2019) to phishing attack detection (Ramanathan & Wechsler, 2013; Tyagi
et al., 2018; Rao & Pais, 2019; Yang et al., 2019; Xiao et al., 2020; Lin et al., 2021; Asiri et al.,
2024). Recent advancements in natural language processing (NLP) and the growing popularity of
large language models (LLMs), such as BERT (Devlin et al., 2018), T5 (Raffel et al., 2019), GPT-2
(Radford et al., 2019), and GPT-4 (OpenAI et al., 2024), have led to initial attempts to leverage these
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models for phishing attack mitigation. For instance, scam-baiting mail servers were developed to
autonomously engage in scam-baiting activities (Chen et al., 2023b). Additionally, approaches for
devising and detecting phishing emails using LLMs were introduced in (Heiding et al., 2024).

It has been proven that utilizing AI-based approaches (i.e., machine learning and deep learning-
based algorithms) to detect phishing attacks in the early stages is one of the effective solutions for
preventing and reducing the negative effects caused (Basit et al., 2020; Naqvi et al., 2023; Asiri
et al., 2024). Although AI-based phishing detection methods can predict the vulnerability label
of the data (i.e., phishing or benign) and have shown promising performances, they often lack the
intrinsic ability to provide explanations that offer concise and meaningful interpretations (i.e., which
information causing the data phishing) to the users. Motivated by this problem, in this paper, we
study the following topical research question:

In addition to predicting the vulnerability label (i.e., phishing or benign) of the data, how to
derive an effective deep learning-based method that also has the capability to automatically learn
and figure out the most important and phishing-relevant information (i.e., sentences) triggering
the classification for providing a useful and concise explanation about the vulnerability of the
phishing data to users? (in our paper, we name this problem as phishing attack localization)

To this end, in the scope of our paper, we study the phishing attack localization problem on emails
(i.e., the most common medium for phishing attacks) where we propose an innovative information
theory-based model to solve the problem. Our method not only can detect the vulnerability (i.e.,
phishing or benign) of the email data but also can automatically learn and identify the most important
and phishing-relevant information (e.g., sentences) in phishing emails. The selected information
helps provide useful and concise explanations about the vulnerability of the phishing data. It is worth
noting that the ability to figure out the important and phishing-relevant information that causes the
email data to be classified as phishing to provide a corresponding useful and concise interpretation
is the main difference between phishing attack localization and phishing attack detection.

In summary, our key contributions are as follows:
• We study an important problem of phishing attack localization aiming to tackle and improve

the explainability (transparency) of email phishing detection. Automated machine learning
and deep learning-based techniques for this problem have not yet been well studied.

• We propose a novel deep learning-based framework derived from an information-theoretic
perspective and information bottle-neck theory for phishing attack localization. Our pro-
posed approach can work effectively in a weakly supervised setting (details in Section 3.1),
hence providing an important practical solution for defeating phishing attacks.

• Besides proposing a deep learning-based approach for phishing attack localization, based
on the explainable machine learning and email phishing domain knowledge, we propose
to use some appropriate measures including Label-Accuracy and Cognitive-True-Positive
(please refer to Section 4.2 for details) for the problem.

• We comprehensively evaluate our method on seven real-world diverse email datasets. The
rigorous and extensive experiments demonstrate the effectiveness and superiority of our
method over the state-of-the-art baselines.

2 RELATED WORK

Phishing detection methods (Le et al., 2018; Sahingoz et al., 2019; Li et al., 2019; Das et al., 2019;
Abdelnabi et al., 2020; Zamir et al., 2020; Alam et al., 2020; Yang et al., 2021; Salahdine et al.,
2021; Lin et al., 2021; Chrysanthou et al., 2024; Asiri et al., 2024; Heiding et al., 2024) have been
widely applied to detect phishing attacks, helping to prevent and mitigate their negative effects.
While achieving promising performances, they often lack the intrinsic ability to provide concise and
meaningful explanations (i.e., the information causing the data phishing) to the users.

Automated deep learning-based techniques for the phishing attack localization problem (i.e., to
tackle and improve the explainability (transparency) of phishing detection) have not yet been well
studied. The interpretable machine-learning research appears to be an appropriate direction for
addressing the phishing attack localization problem. In short, interpreting approaches (e.g., (Caru-
ana et al., 2015; Rich, 2016; Marco T. Ribeiro, 2016; Chen et al., 2018; Bang et al., 2021; Yoon
et al., 2019; Nguyen et al., 2021a; Jethani et al., 2021; Vo et al., 2023a; Qian et al., 2024; Choi et al.,
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2024)) are used for explaining the behavior of deep learning-based systems or the ground truth label
of the data by automatically learning and figuring out the most important information (e.g., attribu-
tions or features) existing from the data that are responsible in causing the corresponding decision
of black-box models and the ground truth label. For example, in sentiment analysis, interpretable
machine-learning approaches (e.g., (Chen et al., 2018; Vo et al., 2023b)) help to give a comprehen-
sive explanation for the review (positive or negative) of a movie by figuring out and highlighting the
top important keywords or sentences.

In practice, explaining models can be divided into two categories including “post-hoc explainabil-
ity techniques” and “intrinsic explainability techniques”. Post-hoc explainability techniques (e.g.,
LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017)) aim to elucidate the decisions of
a black-box model (e.g., a deep learning model, where the internal workings are not easily under-
standable or interpretable) without modifying the model itself. The techniques are often applied
externally to the black-box model to generate explanations specific to its predictions but do not offer
a comprehensive understanding of the black-box model’s internal architecture. In contrast, intrinsic
explainability techniques, a.k.a. self-explanatory models, (e.g., deep neural network-based methods
with interpretable components such as L2X (Chen et al., 2018) and AIM (Vo et al., 2023b)) are inte-
grated directly into a model architecture, providing interpretability as inherent features, and offering
explainability as part of their design.

It is evident that intrinsic interpretable machine learning methods, a.k.a. self-explanatory models, are
strongly suitable for phishing attack localization because they are not only able to make predictions
themselves but also automatically learn and figure out the most important information of the data
obtained from the models to explain the model’s prediction decision. In our paper, we compared the
performance of our method with several recent, popular, and state-of-the-art interpretable machine
learning approaches falling into the category of intrinsic interpretable models including L2X (Chen
et al., 2018), INVASE (Yoon et al., 2019), ICVH (Nguyen et al., 2021a), VIBI (Bang et al., 2021),
and AIM (Vo et al., 2023b) (refer to the appendix, Section 6.5, for their brief descriptions).

3 THE PROPOSED APPROACH

3.1 THE PROBLEM STATEMENT

We denote an email data sample as X = [x1, ...xL] consisting of L sentences. In the scope of
our paper, we consider each email as a sequence of sentences. We assume that X ′s vulnerability
label Y ∈ {0, 1} (i.e., 1: phishing and 0: benign). In the context of phishing attack localization,
we aim to develop an automatic AI-based approach that can not only detect the vulnerability Y of
the email X but also provide the capability to automatically learn and figure out the important and
phishing-relevant information (i.e., sentences) denoted by X̃ (a subset of X) causing X phishing.

It is worth noting that for almost all publicly available phishing-relevant data (e.g., emails), there
are only labels related to the data’s vulnerability (phishing or benign) by domain experts with the
assistance of machine learning or deep learning tools. We almost do not have the ground truth of
phishing information (i.e., the information truly causes the data to be classified as phishing). In the
phishing attack localization problem, we name this context as a weakly supervised setting where
during the training process, we only use the vulnerability label Y of the data while not requiring the
ground truth of phishing information of the data.

3.2 METHODOLOGY

Here we present how our AI2TALE method (named from the initials of keywords in the title) works
and addresses the phishing attack localization problem to tackle and improve the explainability
(transparency) of phishing detection. An overall visualization of our method is depicted in Figure 1.

3.2.1 LEARNING TO SELECT THE IMPORTANT AND PHISHING-RELEVANT INFORMATION AND
THE TRAINING PRINCIPLE

Phishing-relevant information selection process As shown in Figure 1, the first part of our
method is the selection network ζ. It aims to learn and figure out the most important and label-
relevant information (i.e., sentences) in each email in an automatic and trainable manner. Note
that, in terms of the phishing email, the key selected information stands for the phishing-relevant
information causing the email phishing.

3
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Given an email X consisting of L sentences from x1 to xL (i.e., each sentence xi is represented as
a vector using a learnable embedding method, refer to the data processing and embedding in the
appendix, Section 6.3, for details), to figure out the important and label-relevant sentences X̃ in X ,
we introduce a selection process ζ (i.e., it is learnable and maps RL 7→ [0, 1]L) aiming to learn a set
of independent Bernoulli latent variables z ∈ {0, 1}L representing the importance of the sentences
to the email’s vulnerability Y . Specifically, each element zi in z = {zi}Li=1 indicates whether xi is
related to the vulnerability Y of X (i.e., if zi is equal to 1, the sentence xi plays an important role).

X
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Figure 1: Visualization of our AI2TALE method.

We model z ∼ MultiBernoulli(p) =∏L
i=1 Bernoulli(pi), indicating xi is re-

lated to the vulnerability Y with proba-
bility pi, where pi = ωi (X;α). Here,
ω is a neural network parameterized by
α (i.e., ω takes X as input and outputs
corresponding p = {pi}Li=1). With z,
we construct X̃ = ζ (X) (i.e., the subset
statements that lead to the vulnerability
Y ) by X̃ = X⊙z, where ⊙ represents the
element-wise product. To make this com-
putational process (involving sampling
from a Multi-Bernoulli distribution) con-
tinuous and differentiable during train-
ing, we apply the Gumbel-Softmax trick
(Jang et al., 2016; Maddison et al., 2016)
for relaxing each Bernoulli variable zi
(refer to the appendix, Section 6.1, for de-
tails). Note that we can view the selector model as a distribution qsel(z|X;α) over a selector variable
z, which indicates the important features for a given sample X .

Mutual information for guiding the selection process In information theory (Shannon, 1998;
Cover & Thomas, 2006), mutual information is used to measure the mutual dependence between
two random variables. In particular, it quantifies the information obtained about one random variable
by observing the other. To illustrate, consider a scenario where A denotes the outcome of rolling
a standard 6-sided die, and B represents whether the roll results in an even number (0 for even, 1
for odd). Evidently, the information conveyed by B provides insights into the value of A, and vice
versa. In other words, these random variables possess mutual information.

Leveraging this property of mutual information and inspired by (Chen et al., 2018; Nguyen et al.,
2021a), we maximize the mutual information between X̃ and Y as mentioned in Eq. (1) with the
intuition is that by using the information from Y , the selection process ζ will be learned and enforced
to obtain the most meaningful X̃ (i.e., X̃ can predict the vulnerability Y of X correctly). By viewing
X̃ and Y as random variables, the selection process (model) ζ is learned by maximizing the mutual
information between X̃ and Y as follows:

max
ζ

I(X̃, Y ) (1)

Following (Cover & Thomas, 2006), we expand Eq. (1) as the Kullback-Leibler divergence, measur-
ing the relative entropy or difference in information represented by two distributions, of the product
of marginal distributions of X̃ and Y from their joint distribution:

I(X̃, Y ) =

∫
p(X̃, Y ) log

p(X̃, Y )

p(X̃)p(Y )
dX̃dY ≥

∫
p(Y, X̃) log

q(Y | X̃)

p(Y )
dY dX̃

In practice, estimating mutual information is challenging as we typically only have access to samples
but not the underlying distributions. Therefore, in the above derivation, we apply to use a variational
distribution q(Y |X̃) to approximate the posterior p(Y |X̃), hence deriving a variational lower bound
of I(X̃, Y ) for which the equality holds if q(Y |X̃) = p(Y |X̃). This can be further expanded as:

4
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I(X̃, Y ) ≥
∫

p(Y, X̃,X) log
q(Y | X̃)

p(Y )
dY dX̃dX = EX,Y EX̃|X [log q(Y |X̃)] + const (2)

To model the conditional variational distribution q(Y |X̃), we introduce a classifier implemented
with a neural network f(X̃;β), which takes X̃ as input and outputs its corresponding label Y (i.e.,
we view the classifier model as a distribution qclass(Y |X̃;β)). Our objective is to learn the selection
process (model) as well as the classifier to maximize the following objective function:

max
α,β

{
EX,Y Ez∼qsel(z|X;α)[logqclass(Y |X ⊙ z;β)]

}
(3)

The mutual information facilitates a joint training process for the classifier and the selection process.
The classifier learns to identify a subset of features leading to a data’s label while the selection
process is designed to select the best subset of features according to the feedback of the classifier.

3.2.2 BENEFITS AS WELL AS POTENTIAL WEAKNESSES OF THE MUTUAL INFORMATION
TRAINING PRINCIPLE AND OUR INNOVATIVE SOLUTIONS

With the training principle mentioned in Eq. (1), we aim to maximize the mutual information be-
tween X̃ and Y for guiding the whole training process to figure out the sentences related to an
email’s vulnerability. Recall that during this training process, the classifier learns to identify a subset
of sentences leading to an email sample’s vulnerability label while the selection process is designed
to select the best subset according to the feedback of the classifier.

In short, this joint training process between the classifier f(., β) and the selection network ω(., α)
brings benefits for selecting the important and phishing-relevant sentences from phishing email;
However, we observe two potential limitations of this training principle as follows:

Obtaining a superset of phishing-relevant sentences The first limitation of the training principle
mentioned in Eq. (1) is that it does not theoretically guarantee to eliminate sentences unrelated to
the vulnerability of a specific email. Therefore, the set of selected sentences can be a superset of
the true phishing-relevant sentences. In the worst case, a selection process can always select all
the sentences in an email, which is still a valid solution for the above maximization mentioned in
Eq. (1). To deal with this problem to let the model be able to successfully select and highlight
true phishing-relevant information, inspired by (Tishby et al., 2000; Slonim & Tishby, 2000) about
using information bottleneck theory, we propose an additional term for training the selection process
(model) ζ, derived from the following principle:

max
ζ

(I(X̃, Y )− λI(X, X̃)) (4)

where λ is a hyper-parameter indicating the weight of the second mutual information.

By minimizing the mutual information between X and X̃ , we encourages X̃ to be as ”different” to
X as possible. In other words, the selection process prefers to select a smaller subset that excludes
the sentences unrelated to vulnerability Y of the corresponding data X . Accordingly, we can derive
an upper bound of the minimization between mutual information between X and X̃:

I(X̃,X) =

∫
p(X̃,X) log

p(X̃|X)

p(X̃)
dX̃dX ≤ EXEX̃|X [log

p(X̃|X)

r(X̃)
] (5)

for any distribution r(X̃).

We then further derive I(X̃,X) as the Kullback-Leibler divergence of the product of marginal dis-
tributions of X̃ and X from their joint distribution:

EXEX̃|X [log
p(X̃|X)

r(X̃)
] = EXEX̃|X [

L∑
i=1

log
p(x̃i|X)

r(x̃i)
] =

L∑
i=1

EX [DKL(p(x̃i|X)∥r(x̃i))] (6)

5
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Minimizing I(X̃,X) is now equivalent to minimizing the KL divergence between p(x̃i|X) and
r(x̃i) with i from 1 to L. Therefore, one can view r(x̃i) as the prior distribution, which is con-
structed by r(x̃i) = N (x̃i|0, σ2). Given that p(x̃i|X) is a Gaussian mixture distribution (i.e.,
between piN (x̃i|xi, σ

2) and (1− pi)N (x̃i|0, σ2) where σ > 0 is a small number), the intuition is
that the prior prefers the small values centered at 0. In this way, p(x̃i|X) is encouraged to select
fewer sentences. DKL(p(x̃i|X)∥r(x̃i)) can be computed by the following approximation (Gal &
Ghahramani, 2016):

ωi(X;α)

2σ2

∥∥x2
i

∥∥+ (log σ +
1

2
σ2) + const (7)

Combining I(X̃, Y ) and I(X, X̃) by max (I(X̃, Y )−λI(X, X̃)), we get a unified training objective:

max
α,β

{EX,Y Ez∼qsel(z|X;α)[logqclass(Y |X ⊙ z;β)]− λEX [

L∑
i=1

ωi (X;α)

2σ2

∥∥x2
i

∥∥} (8)

Encoding the vulnerability label via its selections instead of via truly meaningful information
The selected features obtained from the joint training process of the classifier f(., β) and the selec-
tion network ω(., α) cause the other potential limitation for the training principle mentioned in Eq.
(1). In particular, the predictions of the classifier f(., β) can be based more on the features selected
from the selection network ω(., α) than the underlying information contained in the features. In this
case, the selected information (i.e., sentences) can be any subsets of the entire sentences and can be
less likely to be meaningful ones from the data.

To deal with this problem and ensure the learnable selection process respecting the data distribution
to select the meaningful and label-relevant information (e.g., sentences) of the data, in addition to
learning the classifier jointly with the selection network as mentioned in Eq. (8), inspired by (Jethani
et al., 2021), we propose to learn the classifier model f(., β) disjointly to approximate the ground
truth conditional distribution of Y given XR where XR = X ⊙ r with r ∼ MultiBernoulli(0.5)
(denoted by r ∼ B(0.5) for short). This procedure helps adjust the classifier to let it not only be
affected by the information obtained from the selection network but also based on the information
from the data to update its parameters. That helps prevent the problem of encoding the vulnerability
label via its selections to improve the data representation learning process. We name this procedure
as a data-distribution mechanism. This procedure is expressed as learning qclass(.;β) to maximize:

EX,Y Er∼B(0.5){logqclass(Y |X ⊙ r;β)} (9)

To make this computational procedure (i.e., it consists of sampling operations from a Multi-
Bernoulli distribution) continuous and differentiable during the training process, we apply to use
the temperature-dependent Gumbel-Softmax trick (Jang et al., 2016; Maddison et al., 2016) for
relaxing each Bernoulli variable ri ∈ r using the RelaxedBernoulli distribution function from Ten-
sorFlowAPI (2023). Noting that in Eq.(9), by setting r ∼ B(0.5) to randomly select sentences from
each email instead of using the entire email content, we also aim to introduce randomness into the
training corpus, akin to data augmentation, which helps enhance the generalization capability of
the selection network that facilitates the performance of the classifier.

3.2.3 A SUMMARY OF OUR AI2TALE METHOD

Algorithm 1 shows the details of our proposed AI2TALE method in the training phase. It is worth
noting that during the training process, our model is trained to learn and figure out the most impor-
tant and phishing-relevant sentences in corresponding emails without using any information about
the ground truth of phishing-relevant sentences. This shows a great advantage of using our method
for phishing attack localization in real-world scenarios because in practice, to almost all publicly
available email datasets, there is only information about the vulnerability Y (i.e., phishing or be-
nign) of the data by domain experts with the help of machine learning and deep learning tools.

The inference (testing) phase After the training phase, the selection network ζ is capable of
selecting the most important and phishing-relevant sentences of a given email data X by offering
a high value for the corresponding coordinates ωi (X;α), meaning that ωi (X;α) represents the
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influence level of the sentence xi. We hence can pick out the most relevant sentences based on the
magnitude of ωi (X;α). Using the selected information, the trained classifier then can predict the
vulnerability of the associated email data. In our paper, with the aim of providing the most highly
qualified and concise explanation of the vulnerability of email data to users, we primarily assess the
model’s performance based on the most important (top-1) selected sentence from each email.

Algorithm 1: The algorithm of our proposed AI2TALE method for the phishing attack local-
ization problem.

Input: An email dataset S = {(X1, Y1) , . . . , (XNS
, YNS

)} where each email Xi = [x1, ...xL]
consisting of L sentences while its label Yi ∈ {0, 1} (i.e., 1: phishing and 0: benign).
We denote the number of training iterations nt; the mini-batch size m; the trade-off
hyper-parameter λ. We randomly partition S into three different sets including the
training set Strain (for training the model), the validation set Dval (for model selection
during training), and the testing set Dtest (for evaluating the model).

1 We initialize the parameters α and β of the selection model ζ (i.e., parameterized by ω(., α))
and the classifier model f(., β), respectively.

2 for t = 1 to nt do
3 Choose a mini-batch of embedded emails denoted by {(Xi, Yi)}mi=1.

4 Update the classifier’s parameter β via minimizing the following cross-entropy loss
EX,Y Er∼B(0.5)[Lce(Y, fβ(X ⊙ r)] using Adam optimizer (Kingma & Ba, 2014).
Minimizing this function is equivalent to maximizing the objective function in Eq. (9).

5 Update the classifier’s parameter β and the selection model parameter’s α via minimizing
the following objective function
EX,Y Ez∼qsel(z|X;α)[Lce(Y, fθ(X ⊙ z))] + λEX [

∑L
i=1

ωi(X;α)
2σ2

∥∥x2
i

∥∥] using Adam
optimizer. Minimizing this function is equivalent to maximizing the objective function in
Eq. (8).

6 end
Output: The trained model for phishing attack localization.

4 EXPERIMENTS

4.1 STUDIED DATASETS

We conducted experiments on seven diverse real-world email datasets including IWSPA-AP (i.e.,
the dataset was collected as part of a shared task to try and address phishing scam emails), Nazario
Phishing Corpus (i.e., the dataset was received by one user, comprising a diverse collection of
phishing emails), Miller Smiles Phishing Email (i.e., the dataset contains various examples of
phishing emails to trick recipients into engaging with malicious links or providing sensitive infor-
mation), Phish Bowl Cornell University (i.e., the dataset contains phishing emails that have been
spotted and reported by students and staff at Cornell University), Fraud emails (i.e., the dataset
contains fraudulent emails attempting Nigerian Letter where all the emails are in one text file and
contain a large amount of header data), Cambridge (i.e., the dataset contains a large number of
email headers (involving information such as sending and receiving addresses and email subjects)
and the body content of phishing emails), and Enron Emails (i.e., the dataset was released as part of
an investigation into Enron, consisting of emails from mostly senior management of Enron). Refer
to the appendix, Section 6.2, for details on the links, processing, and characteristics of these datasets.

4.2 MEASURES

To the best of our knowledge, our method is one of the very first approaches proposed for solving the
phishing attack localization problem aiming to tackle and improve the explainability (transparency)
of email phishing detection. Therefore, studying appropriate measures for phishing attack localiza-
tion is necessary and also is one of the contributions of our work.
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To evaluate the performance of our AI2TALE method and the baselines in phishing attack localiza-
tion, based on the explainable machine learning and email phishing domain knowledge, we introduce
and utilize two main metrics including Label-Accuracy and Cognitive-True-Positive.

Via the Label-Accuracy metric, we measure whether the selected sentences obtained from each
model are truly important and help accurately predict the true vulnerability label (i.e., phishing or
benign) of the associated email. The intuition is that the most important sentences contribute the
most to the email’s vulnerability, especially to phishing emails. In our experiments, we assess each
model’s top-1 selected sentence and measure if this sentence can effectively predict the email’s
vulnerability without considering all sentences in the email. The higher the value of the Label-
Accuracy measure, the better the model’s performance in figuring out and selecting crucial and
label-relevant information from the data. For the Cognitive-True-Positive metric, we investigate if
the top-1 selected sentences from each method also reflect the human cognitive principles, exploiting
psychological triggers to deceive recipients, used in phishing emails (i.e., Reciprocity, Consistency,
Social Proof, Authority, Liking, and Scarcity (Akbar, 2014; Butavicius et al., 2015; Ferreira et al.,
2015; Heijden & Allodi, 2019) based on the associated keywords, refer to the appendix, Section 6.4,
for the computation). In our experiments, we consider the most important (top-1) selected sentences
of phishing emails and calculate how many percent of these reflect and consist of cognitive triggers.

4.3 BASELINE METHODS

The baselines of our method are recent, popular, and state-of-the-art interpretable machine learning
approaches falling into the category of intrinsic interpretable models including L2X (Chen et al.,
2018), INVASE (Yoon et al., 2019), ICVH (Nguyen et al., 2021a), VIBI (Bang et al., 2021), and
AIM (Vo et al., 2023b) that we apply to solve the email phishing attack localization problem. As
mentioned in Section 2, intrinsic interpretable machine learning techniques, a.k.a. self-explanatory
models, are strongly suitable for phishing attack localization because they cannot only make pre-
dictions themselves but also figure out the most important features of the data obtained from the
model to explain the model’s predictive decision. See the appendix, Section 6.5, for the baselines’
descriptions. The source code and data for reproducing the experiments of our AI2TALE method
are published at https://anonymous.4open.science/r/AI2TALE/.

4.4 EXPERIMENTAL RESULTS

We compare the performance of our AI2TALE method with the baselines including L2X (Chen
et al., 2018), INVASE (Yoon et al., 2019), ICVH (Nguyen et al., 2021a), VIBI (Bang et al., 2021),
and AIM (Vo et al., 2023b) in the task of phishing attack localization (in terms of not only predicting
the vulnerability of the email data but also learning and figuring out the most important (top-1) and
phishing-relevant information existing in the data. The selected information helps provide useful
and concise explanations about the vulnerability of the phishing email data for the users) using the
Label-Accuracy and Cognitive-True-Positive measures.

Quantitative Results The experimental results in Table 1 show that our AI2TALE method ob-
tains the best performance on both Label-Accuracy and Cognitive-True-Positive compared to the
baselines. Importantly, our method achieves a significantly higher performance, with improvements
ranging from approximately 1.5% to 3.5% compared to state-of-the-art baselines, measured by
the combined average performance of two main metrics, i.e., Label-Accuracy and Cognitive-True-
Positive. The results demonstrate the effectiveness and advancement of our method for phishing
attack localization in learning and figuring out the most meaningful and crucial information leading
to the vulnerability of the email data, especially for phishing ones, compared to the baselines.

Table 1: The performance of our AI2TALE method and the baselines for the Label-Accuracy
(Label-Acc) and Cognitive-True-Positive (Cognitive-TP) measures, as well as their combined av-
erage results (denoted as Average), on the testing set (the best results in bold).

Methods Label-Acc Cognitive-TP Average
INVASE (Yoon et al., 2019) 98.30% 97.20% 97.75%
ICVH (Nguyen et al., 2021a) 96.72% 98.10% 97.41%

L2X (Chen et al., 2018) 98.25% 97.20% 97.73%
VIBI (Bang et al., 2021) 96.65% 94.99% 95.82%
AIM (Vo et al., 2023b) 98.40% 97.10% 97.75%

AI2TALE (Ours) 99.33% 98.95% 99.14% ↑ ∼ (1.5% →3.5%)
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In addition, the results on the Cognitive-True-Positive measure of our AI2TALE method and the
baselines shown in Table 1 also indicate that the most important (top-1) selected sentences from
our method and the baselines also reflect the cognitive triggers used in phishing emails. Com-
pared to the baselines, our proposed AI2TALE method achieves the highest performance on the
Cognitive-True-Positive measure. Under the weakly supervised setting, when dealing with com-
plex data (e.g., emails written from various writing styles, structures, and sources) and only the
most important (top-1) selected sentences from emails are utilized, the observed improvement of
our AI2TALE method from around 1.5% to 3.5% in the combined average performance of the
Label-Accuracy and Cognitive-True-Positive measures, especially within the range over 99% and
approaching 100%, signifies a substantial advancement.

Table 2: The ground truth and the predicted label based on the most important (top-1) selected
sentence (highlighted in yellow) of each email from our AI2TALE method. The top-1 selected
sentence provides concise and useful information. However, to further aid in label explanation, we
also show the second and third most relevant sentences. See the appendix, Section 6.8, for details.

Truth Model Emails
phishing phishing The email: “Please confirm your online banking records! Dear customer of natwest bank, we are running a

scheduled maintenance on our servers. We want to make sure your money and your personal details are safe
and secure. Due to new security policies all natwest bank customers must complete the natwest customer
form. To complete the form, please use the link below natwest customer form this should take you directly to
the natwest customer form. Sincerely, natwest customer service good.”
Note: The phishing email poses as a legitimate message from natwest bank, requesting confirmation of
banking records. Its goal is to trick individuals into providing personal information under the guise of security,
emphasizing the need to verify the authenticity of such communications. Our method successfully figures out
the sentence “Please confirm your online banking records!” representing the key message of the phishing
email. It serves to create urgency and prompt the recipient to take action, suggesting that there is a need to
verify their record information.

phishing phishing The email: “Temporarily suspended. Dear customer, customer advice, please address the following issues.
The details that you have entered have not been recognized. For your security, your online service has been
temporarily locked. No further attempts will be accepted. If you provide us with the following details, you
should be able to access the service in just a few minutes. Click here to get started legal info privacy security
2005 2010.”
Note: This phishing email tries to convey (i) the action taken is intended to protect the recipient’s well-being
and (ii) a sense of urgency, encouraging the recipient to address the issue promptly to regain access to their
online service. Our method successfully figures out the sentence “For your security, your online service has
been temporarily locked.” representing the key message of the phishing email.

phishing phishing The email: “Bulk attention! Your discover account will close soon! Dear member, we have faced some
problems with your account, so please update the account. If you do not update will be closed. To update your
account, just confirm your information. (it only takes a minute). It’s easy. 1. Click the link below to open a
secure browser window. 2. Confirm that you’re the owner of the account, and then follow the instructions.”
Note: The message from the selected sentence obtained from our method exhibits cognitive triggers com-
monly associated with phishing attempts used in the phishing email. In particular, it implies a sense of
urgency (concern) via problems with your account while “Dear member” aims to establish a connection with
the recipient and imply that the message comes from a trusted source. The phrase “please update the account”
creates a sense of familiarity and consistency.

benign phishing The email: “Lower your mortgage payment! Bad credit, no problem! Lower your mortgage payment! Bad
credit, no problem! Whether your credit is excellent or less than perfect, loanweb has a lender that can help
you! Lowest rates on the web! Bad credit? Refinance to get cash! Lower monthly payments! Bad credit?
Refinance to consolidate bills! Click here for lower mortgage payment! Win a free bread maker! Win free
bread makers, toaster ovens, cookware and more get a free subscription to cooking pleasures magazine get a
free multi purpose grater test and keep free cooking products get free recipes from world famous chefsplus
get a free 90 day membership in the cooking club of america. Home equity loans without perfect credit! Click
here for a home equity loan! Free application! Home equity loans up to 125 potential tax deductible interest!
Customized, competitive equity lines and loans. Apply now!”
Note: In the datasets we utilized, the ground truth label for this email is benign. However, our method
predicts it as phishing due to the detection of potential phishing indicators, such as the use of enticing offers of
“lowering mortgage payments” and the presence of “suspicious links” potentially prompting users to provide
personal information and bank account details via the phrase “Click here for lower mortgage payment!”.
Although the email’s ground truth classification was incorrect, we deem the predicted label and the highlighted
sentence from our model valuable in alerting users to potential phishing attempts.

Qualitative Results To further demonstrate the effectiveness of our AI2TALE method in solving
the phishing attack localization problem, in Table 2, we present various email samples alongside
the most important (top-1) selected sentences extracted by our method as well as the predicted
labels of the corresponding emails based on the selected sentences. Via these qualitative results, our
method showcases its effectiveness in learning and figuring out the most important and phishing-
relevant information (i.e., sentences) from phishing emails. That helps provide useful and concise
interpretations for the phishing prediction, offering valuable insights into the nature of the attacks.
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In addition, to investigate the characteristics of the selected information in false positive examples
(i.e., where our method incorrectly predicts emails as phishing when they are benign, resulting
in a false positive rate of 0.451% and a false negative rate of 0.899%), we present a representative
example in Table 2. Our analysis reveals that the model identified potential phishing elements within
the email, despite the misclassification. Notably, the predicted label and sentence still offer valuable
insights, enabling users to take proactive measures to enhance security.

Human evaluation We conduct a human evaluation to investigate the usefulness of our
AI2TALE method in figuring out the most important and phishing-related information (e.g., sen-
tences) in phishing emails to help provide useful and concise explanations about the phishing of the
corresponding email data. In particular, we evaluate whether the most important (top-1) selected
sentence in each phishing email by our proposed AI2TALE method is perceived as convincing in-
formation for email users. To do that, we asked participants to evaluate the selected sentences of 10
different phishing emails (randomly chosen from the testing set) in terms of whether the sentence
selected in each email is important to influence and persuade users to follow the instructions in the
emails (refer to the appendix, Section 6.12, for an example). Note that, in this human evaluation, we
implemented careful study design protocols to minimize potential priming. Particularly, to ensure
objectivity in the results, no information was provided about the source of the selected sentences.

81%

10%

9%

Agree and Strongly Agree

Disagree and Strongly Disagree

Neutral

Figure 2: Human evaluation on the importance of the
top-1 selected information (i.e., a sentence) from each
email (by our AI2TALE method) in affecting and per-
suading users to follow the instructions from the email.
We evaluate the selected sentences of 10 different phish-
ing emails (randomly chosen from the testing set).

There were 25 university students and
staff (i.e., lecturers, professors, engi-
neers, research scientists, and research
fellows, representing diverse professional
backgrounds, education levels, career
stages, and age groups) participating in
our survey. All participants reported us-
ing email for work and study, and have
both experienced and heard about phish-
ing attacks. Based on the responses, in
summary, as depicted in Figure 2, 81%
of participants selected either “Agree”
(55%) or “Strongly Agree” (26%) when
asked if they believe the selected sen-
tences affect users’ decision to follow the
instructions in the survey phishing emails
(note that in each phishing email, we use
the top-1 selected sentence obtain from
our method). In contrast, 10% of partic-
ipants chose “Neutral”, while 9% chose
“Disagree” and “Strongly Disagree”.

The human evaluations demonstrate the
effectiveness of our method in successfully figuring out the critical phishing information (reflecting
the way attackers use it to deceitfully persuade users). The selected information provides a useful
and concise explanation of the vulnerability prediction of the email, especially for the phishing one,
to users. In essence, our approach enhances the explainability (transparency) of phishing detection,
addressing and improving the overall clarity of the prediction process.

5 CONCLUSION

In this paper, we have successfully proposed an innovative deep learning-based method derived from
an information-theoretic perspective and information bottleneck theory for solving the phishing at-
tack localization problem where automated AI-based techniques have not yet been well studied. Our
AI2TALE method works effectively in a weakly supervised setting, providing a practical solution
that not only accurately predicts the vulnerability of the email data but also has the capability to
automatically identify the most important and phishing-relevant information in each phishing email.
The selected information provides useful and concise explanations about the vulnerability of the
associated phishing email data. In addition, we also introduce appropriate measures for phishing
attack localization. The rigorous and comprehensive experiments on seven real-world diverse email
datasets show the superiority of our proposed AI2TALE method over the state-of-the-art baselines.
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6 APPENDIX

6.1 REPARAMETERIZATION FOR CONTINUOUS OPTIMIZATION

Recall that the selected sentences X̃ are constructed by X̃ = z⊙X where z ∼ MultiBernoulli(p)
with p is the output of the selection process ζ parameterised by a neural network ω(., α).

To make this computational process (i.e., the process consists of sampling operations from a Multi-
Bernoulli distribution) continuous and differentiable during training, we apply the temperature-
dependent Gumbel-Softmax trick (Jang et al., 2016; Maddison et al., 2016) for relaxing each
Bernoulli variable zi. We sample zi (X;α) ∼ Concrete(ωi(X;α), 1− ωi(X;α)):

zi (X;α) =
exp{(logωi + ai)/τ}

exp{(logωi + ai)/τ}+ exp{(log (1− ωi) + bi)/τ}

where we denote ωi (X;α) as ωi while τ is a temperature parameter (i.e., that allows us to
control how closely a continuous representation from a Gumbel-Softmax distribution approxi-
mates this from the corresponding discrete representation from a discrete distribution (e.g., the
Bernoulli distribution)), random noises ai and bi independently drawn from Gumbel distribution
G = − log(− log u) with u ∼ Uniform(0, 1).

6.2 STUDIED DATASETS

We conducted experiments on seven diverse email datasets including IWSPA-AP1 (i.e., the dataset
was collected as part of a shared task to try and address phishing scam emails), Nazario Phishing
Corpus2 (i.e., the dataset was received by one user, comprising a diverse collection of phishing
emails), Miller Smiles Phishing Email3 (i.e., the dataset contains various examples of phishing
emails to trick recipients into engaging with malicious links or providing sensitive information),
Phish Bowl Cornell University4 (i.e., the dataset contains phishing emails that have been spotted
and reported by students and staff at Cornell University), Fraud emails5 (i.e., the dataset contains
fraudulent emails attempting Nigerian Letter where all the emails are in one text file and contain
a large amount of header data), Cambridge6 (i.e., the dataset contains a large number of email
headers (involving information such as sending and receiving addresses and email subjects) and the
body content of phishing emails), and Enron Emails7 (i.e., the dataset was released as part of an
investigation into Enron, consisting of emails from mostly senior management of Enron).

6.3 DATA PROCESSING AND EMBEDDING

We found that most of the email data from the studied datasets are stored in the form of webpages
on public websites. We preprocessed the datasets before using them for the training and testing
processes such as removing non-ASCII characters. We also removed duplicated emails in the used
datasets as well as similar emails (when they are in the same label category, i.e., phishing or benign).
In the end, we utilized around 40,000 email data samples, where half of them are phishing, from the
datasets to conduct our comprehensive and rigorous experiments. Note that the email data samples
used in our experiments cover a wide spectrum of writing styles, tones, and structures (e.g., subject,
content, html links, and signature) commonly encountered in email communications (e.g., formal
business correspondences, informal personal messages, transactional emails (e.g., order confirma-
tions or account notifications), marketing emails promoting products or services, and automated
responses to specific actions or events).

We further preprocessed the datasets before injecting them into deep neural networks of our
AI2TALE method and baselines. In the context of our paper, we view each email as a sequence of

1https://github.com/BarathiGanesh-HB/IWSPA-AP/tree/master/data/
2https://monkey.org/˜jose/phishing/
3http://www.millersmiles.co.uk/archives.php
4https://it.cornell.edu/phish-bowl
5https://www.kaggle.com/datasets/rtatman/fraudulent-email-corpus
6A private dataset
7https://www.cs.cmu.edu/˜enron/
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sentences and aim to learn and figure out the most important sentence in each email contributing to
the email’s vulnerability label (phishing or benign).

We embedded sentences of each email into vectors. For instance, consider the following sentence
“Your account has been suspended.”, to embed this sentence, we tokenized it to a sequence of tokens
including “your”, “account”, “has”, “been”, “suspended”, and “.” using the common Natural
Language Toolkit (NLTK). We then used a 150-dimensional token Embedding layer followed by
a Dropout layer with a dropped fixed probability p = 0.2, a 1D convolutional layer with the filter
size 150 and kernel size 3, and a 1D max pooling layer to encode each sentence. Finally, a mini-
batch of emails in which each email consisting of L encoded sentences was fed to our proposed
AI2TALE method and the baselines.

In our paper, the length of each email is padded or truncated with L = 100 sentences (i.e., we base
on the quantile values of the emails’ length of the used datasets to decide the length of each email).
We observe that almost all important information relevant to the phishing vulnerability lies in the
100 first sentences or even lies in some very first sentences.

6.4 MEASURES

For the Cognitive-True-Positive metric, to measure if the top-1 selected sentence obtained from
each method reflects the human cognitive principles (triggers) used in each phishing email, we are
particularly based on the keywords and phrases often used in each cognitive principle. To obtain
the keywords and phrases, for each cognitive principle, we first base on its definition (descriptions)
pioneered in the well-known work (Cialdini, 1984) (widely cited and used in phishing-related stud-
ies (Akbar, 2014; Butavicius et al., 2015; Ferreira et al., 2015; Heijden & Allodi, 2019)). We then
use ChatGPT (OpenAI et al., 2024) to obtain all the possible keywords and phrases related to each
cognitive principle’s definition (descriptions). For example, to the Scarcity principle, some of the
related keywords and phrases can be relevant to Time-sensitive language (e.g., “Act now” or “Ex-
pires soon”), Limited availability (e.g., “Only a few left”), and Threats of consequences (e.g., “Will
be deleted” or “Will lose access”). By relying on the definition (descriptions) of each cognitive
principle with the help of ChatGPT in finding all the possible and main keywords and phrases, re-
lated to the definition (descriptions) of each cognitive principle, used in the Cognitive-True-Positive
measure, we ensure this process is reliable and objective.

6.5 BASELINE METHODS

The baselines of our method are recent, popular, and state-of-the-art interpretable machine learning
approaches falling into the category of intrinsic interpretable models including L2X (Chen et al.,
2018), INVASE (Yoon et al., 2019), ICVH (Nguyen et al., 2021a), VIBI (Bang et al., 2021), and
AIM (Vo et al., 2023b) that we apply to solve the email phishing attack localization problem. As
mentioned in Section 2, intrinsic interpretable machine learning techniques, a.k.a. self-explanatory
models, are strongly suitable for phishing attack localization because they cannot only make predic-
tions themselves but also figure out the most important features of the data obtained from the model
to explain the model’s predictive decision.

Chai et al. (2022) proposed a multi-modal hierarchical attention model (MMHAM) for website
phishing detection. The attention mechanism (using some learnable variables) with long short-
term memory (LSTM) can help highlight the characters or words that the model focuses on when
making predictions. However, it does not theoretically guarantee truly meaningful (i.e., semantically
relevant) explanations for the model’s decisions, which can lead to highlighted features appearing
noisy or overly broad. In contrast, leveraging information theory, specifically mutual information
(i.e., it quantifies the relationship between variables by measuring how much information the input
features share with the output, helping identify which input features carry predictive information
about the output variable), a well-established technique in explainable AI, offers a more robust and
interpretable solution, as demonstrated by our baselines. Additionally, MMHAM is designed to
operate at the character and word levels with the use of LSTM. Applying this model to the sentence
level (as conducted in our experiment where we found that selecting information at the sentence
level provides a more complete message and clearer explanation than at the word or character level)
is not straightforward and will require further modifications, including appropriate embedding and
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computational operations. Furthermore, the paper does not mention the release of source code for
this method. Due to these limitations, we do not use this method as our baseline for solving the
email phishing attack localization problem.

We briefly summarize the baselines as follows:

• L2X (Chen et al., 2018). An efficient instance-wise feature selection method leverages
mutual information for model interpretation. L2X aims to extract a subset of features that
are most informative for each given example and the associated model prediction response.

• INVASE (Yoon et al., 2019). Another effective approach for instance-wise feature selec-
tion. INVASE consists of three neural networks including a selector network, a predictor
network, and a baseline network which are used to train the selector network using the
actor-critic methodology.

• ICVH (Nguyen et al., 2021a). One of the first interpretable deep learning-based meth-
ods applied for source code vulnerability localization. ICVH is based on mutual informa-
tion and a multi-Bernoulli distribution selection process for selecting vulnerability-relevant
source code statements.

• VIBI (Bang et al., 2021). VIBI is a system-agnostic method providing a brief and compre-
hensive explanation by adopting an information-theoretic principle, the information bottle-
neck principle, as a criterion for finding such explanations.

• AIM (Vo et al., 2023b). A recent innovative additive instance-wise framework for model in-
terpretation. AIM integrates both feature attribution (producing relative importance scores
to each feature) and feature selection (directly identifying the subset of features most rel-
evant to the model behavior being explained) into an effective framework for multi-class
model interpretation.

It is worth noting that our proposed AI2TALE method and the used baselines can work on the
weakly supervised setting where during the training process, we only utilize the vulnerability label
of the data, without requiring the ground truth of phishing information in the data for the task of
phishing attack localization.

6.6 MODEL’S CONFIGURATION

For the L2X (Chen et al., 2018), ICVH (Nguyen et al., 2021a), VIBI (Bang et al., 2021), and AIM
(Vo et al., 2023b) methods, they were proposed to explain the output of black-box learning models.
To use these methods for phishing attack localization, we keep their principles and train the models
to directly approximate p(Y |X) using p(Y |X̃) where X̃ consists of the selected sentences while Y
is ground truth label of the data X instead of the output from the black-box model.

Note that the L2X, ICVH, VIBI, and AIM methods were also proposed to work with sequential
text data. Therefore, to these methods, for the architecture of the selection network obtaining X̃
as well as the classifier working on X̃ to mimic p(Y |X), we follow the structures used in the
corresponding original papers with the same suggested value ranges for hyper-parameters. For the
INVASE method, because it was originally designed for working with tabular data, to let it be able
to be applicable for sequential text data, we keep its principle and use the selection network as in
our AI2TALE method.

We implemented our AI2TALE method in Python using Tensorflow (Abadi et al., 2016). The
trade-off parameter λ is in {10−1, 10−2, 10−3} while σ is in {10−1, 2 × 10−1, 3 × 10−1}. For the
networks ω (·;α) and f (·;β), we used deep feed-forward neural networks having three and two
hidden layers with the size of each hidden layer in {100, 300}, respectively. The dense hidden
layers are followed by a ReLU function as nonlinearity and Dropout (Srivastava et al., 2014) with
a retained fixed probability p = 0.8 as regularization. The last dense layer of the network ω (·;α)
for learning a discrete distribution is followed by a sigmoid function while the last dense layer of
the network f (·;β) is followed by a softmax function for predicting. The temperature τ for the
Gumbel softmax distribution is in {0.5, 1.0}. Note that we utilized the commonly used values for
these hyper-parameters.
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For our AI2TALE method and baselines, we employed the Adam optimizer (Kingma & Ba, 2014)
with an initial learning rate of 10−3, while the mini-batch size is 128. We split the data set into three
random partitions. The first partition contains 80% for training, the second partition contains 10%
for validation and the last partition contains 10% for testing. We used 10 epochs for the training
process. We additionally applied gradient clipping regularization to prevent over-fitting. For each
method, we ran the corresponding model several times and reported the averaged Label-Accuracy
and Cognitive-True-Positive measures.

We ran our experiments on a 13th Gen Intel(R) Core(TM) i9-13900KF having 24 CPU Cores at 3.00
GHz with 32GB RAM, integrated Gigabyte RTX 4090 Gaming OC 24GB.

6.7 ADDITIONAL QUANTITATIVE RESULTS

In our study, via the Label-Accuracy metric, we aim to measure whether the selected sentences
obtained from each model are truly important and help accurately predict the associated emails’ vul-
nerability label (i.e., phishing or benign). The underlying intuition is that the most pivotal sentences
significantly influence the vulnerability of emails, particularly phishing ones. Specifically, in the ex-
periments, for each email, we focus on evaluating the most important (top-1) selected sentence (i.e.,
aiming to provide the most highly qualified and concise explanation of the vulnerability of email
data to users) from each model to determine its efficacy in predicting the email’s vulnerability label,
without considering all of its sentences. The higher the value of the Label-Accuracy measure, the
better the performance in selecting the most crucial and label-relevant information from the data.

To examine our experiments further on this aspect, we calculated the F1-score for our
AI2TALE method and baselines. Specifically, we computed the F1-score in two scenarios: (i)
exclusively on the testing phishing emails, and (ii) on both the testing phishing and benign emails.
The results for our AI2TALE method and the baselines (i.e., AIM, VIBI, L2X, ICVH, and IN-
VASE) in scenarios (i) and (ii) are shown in Table 3. In this table, we also compared the false
positive rate and the false negative rate for our AI2TALE method and the baselines.

Table 3: The performance of our AI2TALE method and the baselines for the F1-score mea-
sure on the testing set in two scenarios (i) and (ii). We also present the performance of our
AI2TALE method and the baselines for the false positive rate (FPR) and false negative rate (FNR)
(the best results in bold).

Methods F1-score (i) ↑ F1-score (ii) ↑ FPR ↓ FNR ↓
INVASE (Yoon et al., 2019) 98.313% 98.299% 2.353% 1.048%
ICVH (Nguyen et al., 2021a) 96.732% 96.725% 3.355% 3.195%

L2X (Chen et al., 2018) 98.261% 98.249% 2.253% 1.248%
VIBI (Bang et al., 2021) 96.626% 96.649% 2.504% 4.194%
AIM (Vo et al., 2023b) 98.406% 98.399% 1.853% 1.348%

AI2TALE (Ours) 99.324% 99.325% 0.451% 0.899%

In summary, the F1-score results for our AI2TALE method and baselines closely align with those
obtained using the accuracy measure (i.e., Label-Accuracy). Notably, our AI2TALE method ex-
hibits consistent effectiveness and advancement, considerably surpassing the baselines in both sce-
narios (i) and (ii). Additionally, our AI2TALE method achieves the best performance in both false
positive and false negative rates, further highlighting its superiority over the baselines.

Training time The training time of our model is considerably short, costing approximately 36.47
seconds for each epoch (on a 13th Gen Intel(R) Core(TM) i9-13900KF having 24 CPU Cores at
3.00 GHz with 32GB RAM, integrated Gigabyte RTX 4090 Gaming OC 24GB).

6.8 ADDITIONAL QUALITATIVE RESULTS

In Table 4, we expand the qualitative results presented in Table 2. In particular, to further aid in label
explanation, along with the most important (top-1) selected sentence (which provides concise and
useful information), we also present the second and third most relevant sentences for each email.
It is evident that these selected sentences complement each other in elucidating the predicted label,
offering additional insights to help users better understand the phishing attacks.
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In Table 5, we further show qualitative experimental results of our AI2TALE method on some
additional phishing email samples. Via these qualitative results, our method again demonstrates
its effectiveness in learning and figuring out the most important and phishing-relevant information
(i.e., sentences) from phishing emails for providing useful and concise interpretations corresponding
to the predicted phishing labels. Analysis of these phishing email samples reveals that the most
important (top-1) selected sentences (as well as the second and the third selected sentences) from
the model primarily reflect commonly used cognitive triggers related to the principles of scarcity
(i.e., creates a sense of scarcity and urgency), authority (i.e., creates a sense of trust and legitimacy),
and consistency (i.e., creates a sense of familiarity and consistency). Additionally, we observe that
the most important sentence contributing to a specific phishing email tends to appear in the initial
positions of the email to capture the users’ attention.

6.9 MODEL SENSITIVITY TO HYPERPARAMETER CHANGES AND THE IMPACT OF
INFORMATION BOTTLENECK AND DATA-DISTRIBUTION MECHANISMS

In this section, we first examine the sensitivity of our AI2TALE method to the hyperparameters used
in the mutual information maximization (i.e., max(I(X̃, Y ) − λI(X, X̃))) described in Eq. (8). In
particular, we explore the impact of varying values for the trade-off λ ∈ {10−1, 10−2, 10−3} and σ ∈
{10−1, 2×10−1, 3×10−1}, which are commonly used in such experiments. The results demonstrate
that AI2TALE method exhibits stability with small variances in key performance metrics, including
Label-Accuracy (0.0124), Cognitive-True-Positive (0.0852), and F1-score (0.0123). Achieving high
performance, around 99.33% in both Label-Accuracy and F1-score, and 98.95% in Cognitive-True-
Positive, along with small variances, indicates the robustness of our AI2TALE method.

In our AI2TALE method, although the joint training process mentioned in the main paper via the
Eq. (3) guided by information theory (through mutual information) brings benefits for selecting the
important and phishing-relevant sentences from phishing emails, we observe two potential limita-
tions of this training principle, including obtaining a superset of phishing-relevant sentences, and
encoding the vulnerability label via its selections instead of via truly meaningful information. To
tackle these potential issues, we propose two innovative training solutions: (i) information bottle-
neck theory training term that ensures only important and label-relevant information (i.e., sentences)
will be kept and selected, and (ii) data-distribution mechanism that ensures the learnable selection
process respecting the data distribution to select the meaningful and label-relevant information. This
mechanism also aids in improving the generalization capability of the selection network.

We then examine the impact of the information bottleneck theory training term and data-distribution
mechanism on the model performance. Without these terms, our model’s performance matches
the second-highest baseline in Cognitive-True-Positive, which is ICVH. We observe improvements
of approximately 0.5% in Label-Accuracy and 0.8% in False Positive Rate (FPR) compared to
the second-highest baseline (AIM). However, there is a decline of about 0.4% in False Negative
Rate (FNR) compared to the second-highest baseline (INVASE). When these terms are applied,
our AI2TALE method consistently outperforms the baselines, achieving the best performance
across all metrics, including Label-Accuracy (99.33%), Cognitive-True-Positive (98.95%), F1-score
(99.33%), False Positive Rate (0.451%), and False Negative Rate (0.899%) by a wide margin. In
this case, our method shows an improvement of approximately 1.5% to 3.5% in the average of two
key metrics (Label-Accuracy and Cognitive-True-Positive) compared to the baselines.

6.10 THREATS TO VALIDITY

Construct validity Key construct validity threats are if the assessments of our AI2TALE method
and baselines demonstrate the ability for phishing attack localization. In our paper, we study an
important problem of phishing attack localization where we not only aim to automatically learn and
figure out the most important and phishing-relevant information (e.g., sentences) in each phishing
email but also can detect the vulnerability Y (i.e., phishing or benign) of the corresponding email
based on the crucial selected information. The selected phishing-relevant information (e.g., sen-
tences) helps provide useful and concise explanations about the vulnerability of the phishing email
data. To evaluate the performance of our method and baselines, we utilize two main measures
including Label-Accuracy and Cognitive-True-Positive, supported by additional measures such as
F1-score, False Positive Rate, and False Negative Rate.
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Internal validity Key internal validity threats are relevant to the choice of hyperparameter set-
tings, such as the optimizer, the learning rate, and the number of layers in deep neural networks.
It is worth noting that finding a set of optimal hyperparameter settings of deep neural networks is
expensive due to a large number of trainable parameters. To train our method, we chose to use the
common and default values of hyperparameters, e.g., using Adam optimizer and the learning rate of
10−3. We also report the hyperparameter settings in our released reproducible source code samples
to support future replication studies.

External validity Key external validity threats include whether our proposed AI2TALE method
can generalize well to different types of phishing email datasets. We mitigate this problem by con-
ducting our experiments on seven real-world diverse email datasets including IWSPA-AP, Nazario
Phishing Corpus, Miller Smiles Phishing Email, Phish Bowl Cornell University, Fraud emails, Cam-
bridge, and Enron Emails.

6.11 PRIVACY CONCERNS AND THE RISK OF MISCLASSIFICATION

Privacy is a important concern in AI and machine learning systems, especially when dealing with
sensitive personal data. Training AI models on large datasets carries the risk of inadvertently expos-
ing private information. This can occur through direct access to the training data or through model
inference, where the model may unintentionally memorize and reveal private details.

Regarding privacy concerns, the operations of our AI2TALE method and its approach to addressing
the phishing attack localization problem help minimize these risks. In particular, the explainable
component of our method allows users to understand the reasoning behind flagged phishing attempts
by highlighting the most important and label-relevant information directly from the data tested along
with the predicted label. Importantly, this process does not expose any sensitive data from the
training set, minimizing the risk of privacy breaches throughout.

In terms of misclassification issues, when the model produces an incorrect prediction about the
vulnerability label (phishing or benign) of the email, experiments on seven diverse real-world email
datasets show that our AI2TALE method achieves around 99.33% for both Label-Accuracy and
F1-score, with a low False Positive Rate of 0.451% and a low False Negative Rate of 0.899%. This
indicates that the rate of misclassifications is minimal. In the case of false positives, the highlighted
information from the data still provides users with useful insights, enabling them to take proactive
measures to enhance security. For false negatives, the highlighted information also allows users to
double-check the flagged content (if they wish), minimizing the likelihood that potential threats are
overlooked. In conclusion, the predictions and explanations work together to provide users with
interconnected, supportive information. Furthermore, by highlighting the most important and label-
relevant information, the model facilitates users in receiving clear, actionable insights.

6.12 EXAMPLE USED IN HUMAN EVALUATION

In the human evaluation, we evaluate whether the most important (top-1) selected sentence in each
phishing email by our proposed AI2TALE method is perceived as convincing information for email
users. To do that, we asked participants to evaluate the selected sentences of 10 different phishing
emails (randomly chosen from the testing set) in terms of whether the sentence selected in each
email is important to influence and persuade users to follow the instructions in the emails. Below,
we present an example question.

“Giving an email as follows. Do you think the selected sentence (in bold) affects and persuades
users’ decision to follow the instructions from the email?

Bulk attention! Your discover account will close soon! Dear member, we have faced some prob-
lems with your account, so please update the account. If you do not update will be closed. To
update your account, just confirm your information. (it only takes a minute). It’s easy. 1. Click the
link below to open a secure browser window. 2. Confirm that you’re the owner of the account, and
then follow the instructions.

The participant will then choose one option from the following: Strongly Agree, Agree, Neutral,
Disagree, or Strongly Disagree.”
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6.13 FUTURE WORK

In this study, our paper focuses primarily on addressing the phishing attack localization problem in
email phishing, the most common form of phishing. It is worth noting that phishing attacks can also
occur through webpages. Several methods have been proposed to detect and infer phishing intention
based on webpage appearances (e.g., (Abdelnabi et al., 2020; Liu et al., 2022)). We believe the
principles underlying our AI2TALE method can also be extended to detect and localize webpage
phishing attacks. The operational nature of our AI2TALE method within (i) a unified framework,
(ii) working directly with webpage data without requiring additional steps to gain extra information
(e.g., references to the ground truth of phishing information) beyond the data and its vulnerability
label (i.e., phishing or benign), as well as (iii) the way our AI2TALE model can be trained without
requiring the ground truth of phishing information in the data can be considered as some of the
advantages of our method compared to the relevant methods (e.g., (Abdelnabi et al., 2020; Liu et al.,
2022)). Investigating the application of our AI2TALE method to explain webpage phishing attacks
could be a focus of our future studies.

6.14 RELATED BACKGROUND

Following, we briefly present the main related background used in our proposed AI2TALE method.

6.14.1 MUTUAL INFORMATION

Mutual information (MI) is used to measure the dependence between two random variables (Shan-
non, 1998; Cover & Thomas, 2006). It captures how much the knowledge of one random variable
reduces the uncertainty of the other. In particular, MI quantifies the amount of information obtained
about one random variable by observing the other random variable. For instance, suppose variable
A signifies the outcome of rolling a standard 6-sided die, and variable B represents whether the roll
yields an even (0 for even, 1 for odd) result. It is evident that information from B offers insights into
the value of A, and vice versa. In essence, these random variables exhibit mutual information.

Assume that we have two random variables X and Y drawn from the joint distribution p(x, y) with
two corresponding marginal distributions p(x) and p(y). The mutual information between X and
Y denoted by I(X,Y ) is the relative entropy between the joint distribution p(x, y) and the product
distribution p(x)p(y), and is defined as follows:

I(X,Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy = DKL(p(x, y)||p(x)p(y))

where DKL(p(x, y)||p(x)p(y)) is the Kullback-Leibler divergence measuring the relative entropy
(i..e, the difference in information) represented by two distributions, i.e., the product of marginal
distributions p(x)p(y) of X and Y from their joint distribution p(x, y).

6.14.2 INFORMATION BOTTLENECK THEORY

Here, we consider the supervised learning context where we want to predict corresponding outputs
(e.g., labels) {yi}ni=1 of given inputs {xi}ni=1. A deep learning network (DNN) will learn latent
representations (i.e., latent features in the latent space that contain useful information to describe the
data) {x̃i}ni=1 of the corresponding input data samples {xi}ni=1 in terms of enabling good predictions
and generalizations.

Assume that the whole hidden layer in Figure 3 is denoted by a random variable X̃ while the input
and output layers are denoted by random variables X and Y respectively. We can describe this
hidden layer by two conditional distributions: the encoder p(x̃|x) and the decoder p(y|x̃). This
transformation process preserves the information of the input layer X without considering which
individual neurons within the hidden layer X̃ encode which features (i.e., neurons) of X . An optimal
encoder process of the mutual information between X and the desired output Y denoted by I(X,Y )

can create the most compact encoding (i.e., minimally sufficient statistic) X̃ of the input data X
while X̃ still has enough information (i.e., X̃ can capture the important features of X as well as
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Figure 3: An architecture of a simple deep neural network in a supervised learning context for the
classification problem.

remove the unnecessary parts of X that do not make any contributions to the prediction of Y ) to
predict Y as accurately as possible.

An information bottleneck (Tishby et al., 2000; Naftali Tishby, 2015) is proposed to be a computa-
tional framework that aims to find the most compact encoding X̃ of the input data X . In particular,
it is the optimal trade-off between the compression X̃ and the prediction of the desired output Y as
described in the following optimization problem:

min
p(x̃|x),p(y|x̃),p(x̃)

{
I(X, X̃)− βI(X̃, Y )

}
where β specifies the amount of relevant information captured by the encoding process (i.e., the
representations X̃ and I(X̃, Y )).
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Table 4: The ground truth and the predicted label based on the most important (top-1) selected sen-
tence (in yellow) of each email from our AI2TALE method. The top-1 selected sentence provides
concise and useful information. However, to further aid in label explanation, here, we also show the
second (in melon) and third (in pink) most relevant sentences.

Truth Model Emails
phishing phishing The email: “Please confirm your online banking records! Dear customer

of natwest bank, we are running a scheduled maintenance on our servers.
We want to make sure your money and your personal details are safe and secure. Due to new security

policies all natwest bank customers must complete the natwest customer form. To complete the form,
please use the link below natwest customer form this should take you directly to the natwest customer form.
Sincerely, natwest customer service good.”
Note: The phishing email poses as a legitimate message from natwest bank, requesting confirmation of
banking records. Its goal is to trick individuals into providing personal information under the guise of
security, emphasizing the need to verify the authenticity of such communications. Our method successfully
figures out the sentence “Please confirm your online banking records!” representing the key message of the
phishing email. It serves to create urgency and prompt the recipient to take action, suggesting that there is a
need to verify their record information.
In addition, the second and third selected sentences, ”Due to new security policies, all natwest bank customers
must complete the natwest customer form.” (in melon) and ”We want to make sure your money and your
personal details are safe and secure.” (in pink), respectively create a sense of urgency and authority, as well as
evoke feelings of warmth and security, subtly reassuring the recipient and lowering their guard.

phishing phishing The email: “Temporarily suspended. Dear customer, customer advice, please address the following issues.
The details that you have entered have not been recognized. For your security, your
online service has been temporarily locked. No further attempts will be accepted.
If you provide us with the following details, you should be able to access the service in just a few minutes.

Click here to get started legal info privacy security 2005 2010.”
Note: This phishing email tries to convey (i) the action taken is intended to protect the recipient’s well-being
and (ii) a sense of urgency, encouraging the recipient to address the issue promptly to regain access to their
online service. Our method successfully figures out the sentence “For your security, your online service has
been temporarily locked.” representing the key message of the phishing email.
In addition, the second and third selected sentences, “If you provide us with the following details, you should
be able to access the service in just a few minutes.” (in melon) creates a sense of urgency and promises a
quick resolution, prompting the recipient to act immediately without thinking critically. Meanwhile, “Dear
customer, customer advice, please address the following issues.” (in pink) aims to create an illusion of profes-
sionalism and authority, making the recipient feel reassured and more likely to trust the email.

phishing phishing The email: “Bulk attention! Your discover account will close soon! Dear member, we have faced
some problems with your account, so please update the account. If you do not update will be closed.
To update your account, just confirm your information. (it only takes a minute). It’s easy. 1. Click the link

below to open a secure browser window. 2. Confirm that you’re the owner of the account, and then follow the
instructions.”
Note: The message from the yellow selected sentence obtained from our method exhibits cognitive triggers
commonly associated with phishing attempts used in the phishing email. In particular, it implies a sense of
urgency (concern) via problems with your account while “Dear member” aims to establish a connection with
the recipient and imply that the message comes from a trusted source. The phrase “please update the account”
creates a sense of familiarity and consistency.
In addition, the instruction to “just confirm your information” and the statement “It’s easy” (via the second (in
melon) and third (in pink) selected sentences) aim to minimize perceived effort, making the recipient more
likely to comply without hesitation.

benign phishing The email: “ Lower your mortgage payment! Bad credit, no problem! Lower your mortgage payment! Bad
credit, no problem! Whether your credit is excellent or less than perfect, loanweb has a lender that can help
you! Lowest rates on the web! Bad credit? Refinance to get cash! Lower monthly payments! Bad credit?
Refinance to consolidate bills! Click here for lower mortgage payment! Win a free bread maker! Win free

bread makers, toaster ovens, cookware and more get a free subscription to cooking pleasures magazine get a
free multi purpose grater test and keep free cooking products get free recipes from world famous chefsplus
get a free 90 day membership in the cooking club of america. Home equity loans without perfect credit! Click
here for a home equity loan! Free application! Home equity loans up to 125 potential tax deductible interest!
Customized, competitive equity lines and loans. Apply now!”
Note: In the datasets we utilized, the ground truth label for this email is benign. However, our method
predicts it as phishing due to the detection of potential phishing indicators, such as the use of enticing offers of
“lowering mortgage payments” and the presence of “suspicious links” potentially prompting users to provide
personal information and bank account details via the phrase “Click here for lower mortgage payment!”.
Although the email’s ground truth classification was incorrect, we deem the predicted label and the highlighted
sentence from our model valuable in alerting users to potential phishing attempts.
In addition, the second and third selected sentences, “Refinance to consolidate bills!” (in melon) and “Lower
your mortgage payment!” (in pink), are designed to appeal to individuals struggling with debt or looking
for ways to manage their finances. These phrases create the impression of offering a legitimate and helpful
financial product, while also aiming to immediately grab the recipient’s attention.
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Table 5: The ground truth and the predicted label based on the most important (top-1) selected sen-
tence (in yellow) of each email from our AI2TALE method. The top-1 selected sentence provides
concise and useful information. However, to further aid in label explanation, here, we also show the
second (in melon) and third (in pink) most relevant sentences.

Truth Model Emails
phishing phishing The email: “Dear paypal customer. Dear paypal customer, this is an official notification from

paypal that the service listed below will be deactivated and deleted if not renewed immediately.
Previous notifications have been sent to billing contact assigned to this account. As the pri-
mary contact, you must renew the service listed below, or it will be deactivated and deleted.
Click to renew your paypal account now service paypal security department . Expiration may 14, 2010,

at paypal we are dedicated to providing you with exceptional service and to ensuring your trust. If
you have any questions regarding our services, please check the website or call our customer service.
Thank you, sincerely, paypal security department paypal’s services terms and conditions apply . The infor-

mation on this page is presented subject to our legal page and any other terms and conditions that paypal may
impose from time to time. It is subject to change without notification. Microsoft and the microsoft internet
explorer are registered trademarks or trade works of microsoft corporation in the united states and for other
countries.”
Note that: The yellow selected sentence employs urgent (fear and concern) language by stating that the ser-
vice will be “deactivated and deleted if not renewed immediately”. This urgency can create panic and pressure
the recipient to act quickly without considering the legitimacy of the message. Furthermore, it also attempts to
establish credibility and authority via “official notification from paypal” often used by attackers. The message
from the selected sentence starts with the generic address “Dear paypal customer” twice. While legitimate
communications would typically use the recipient’s actual name, phishing emails often lack personalization
and use general greetings. In general, the selected sentence consists of almost all key messages from the
email. That shows the effectiveness of our proposed AI2TALE method in figuring out the most important
phishing-relevant information (sentence) from the email.
In addition, the second and third selected sentences, “Click to renew your paypal account now, service paypal
security department” (melon) and “Thank you, sincerely, paypal security department paypal’s services terms
and conditions apply” (pink), both create urgency, mimic authority, and use vague or formal language to gain
trust. The melon sentence pressures the recipient to click a link, while the pink sentence attempts to establish
credibility with official-sounding language.

phishing phishing The email: “Your payment didn’t succeed, so your ads have been suspended. This message was sent
from a notification only email address that does not accept incoming email. please do not reply to
this message. If you have any questions, please visit the google ads help center. Hello advertiser,

our attempt to charge your credit card for your outstanding google ads account balance was declined . Your
account is still open. However, your ads have been suspended. Once we are able to
charge your card and receive payment for your account balance, we will re activate your ads.
Please update your billing information, even if you plan to use the same credit card . This will trigger our

billing system to try charging your card again. You do not need to contact us to reactivate your account.
To update your primary payment information, please follow these steps 1. Log in to your account at http ad
words google com select. 2. Enter your primary payment information. 3. Click “update” when you have fin-
ished. Thank you for advertising with google ads. We look forward to providing you with the most effective
advertising available. (c) google ads team 2008.”
Note: The yellow selected sentence “Your payment didn’t succeed, so your ads have been suspended.” ex-
emplifies key tactics in the phishing email by creating a sense of urgency and alarm, prompting recipients
to act quickly. It impersonates legitimate Google Ads communications to gain trust and includes a call to
action to update billing information, aiming to harvest personal and financial details. By conveying authority
and legitimacy, the message seeks to distract recipients from potential red flags, increasing the likelihood of
falling victim.
In addition, the second and third selected sentences, “Hello advertiser, our attempt to charge your credit card
for your outstanding google ads account balance was declined” (in melon) and “Please update your billing
information, even if you plan to use the same credit card” (in pink), use authoritative language to appear
legitimate and pressure the recipient into acting without careful consideration. The melon sentence exploits
the fear of an account issue, while the pink sentence suggests a specific action (“update billing information”),
a common phishing tactic to collect sensitive data.
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