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Abstract

While Distributed Machine Learning (DML) has been widely used to achieve
decent performance, it is still challenging to take full advantage of data and devices
distributed at multiple vantage points to adapt and learn; this is because the current
linear aggregation paradigm cannot solve inter-model divergence caused by (1)
heterogeneous learning data at different devices (i.e., non-IID data) and (2) in
the case of time-varying communication links, the limited ability for devices to
reconcile model divergence. In this paper, we present a non-linear class aggregation
framework HyperPrism that leverages Kolmogorov Means to conduct distributed
mirror descent with the averaging occuring within the mirror descent dual space;
HyperPrism selects the degree for a Weighted Power Mean (WPM), a subset of the
Kolmogorov Means, each round. Moreover, HyperPrism can adaptively choose
different mapping for different layers of the local model with a dedicated hyper-
network per device, achieving automatic optimization of DML in high divergence
settings. We perform rigorous analysis and experimental evaluations to demonstrate
the effectiveness of adaptive, mirror-mapping DML. In particular, we extend the
generalizability of existing related works and position them as special cases within
HyperPrism. For practitioners, the strength of HyperPrism is in making feasible the
possibility of distributed asynchronous training with minimal communication. Our
experimental results show HyperPrism can improve the convergence speed up to
98.63% and scale well to more devices compared with the state-of-the-art, all with
little additional computation overhead compared to traditional linear aggregation.

1 Introduction

The proliferation of edge devices, such as mobile phones, wearable devices and unmanned aerial
vehicles, has resulted in an exponential growth in diverse data types (e.g., images, sound and text).
Addressing this surge necessitates advanced techniques capable of accurately, quickly, and practically
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processing vast amounts of data through efficient and scalable algorithms. Distributed Machine
Learning (DML) has gained significant traction in recent years as a strategy to minimize data transfer
and computational costs by bringing computation closer to the data sources. It has become a natural
solution for scaling up machine learning while preserving data privacy in various domains (e.g.,
large language model training [39, 33], autonomous driving [60, 37], military applications [56], web
search [29, 30, 28] and recommendation [32, 27, 31]).

While existing DML attempts have made significant progress, two technical barriers remain in
realistic scenarios. First, data heterogeneity is one of the most critical concerns. Specifically, in
a DML system where mobile devices serve as computing nodes, the data generated is typically
non-independent and identically distributed (non-IID), which means the data distribution may be
unbalanced across different classes or categories. Consequently, the model may exhibit bias toward
the majority class or dominant data patterns, leading to suboptimal performance on the minority class
or rare patterns. Second, traditional DML methods usually deliver poorer performance under the
time-varying communication condition. Specifically, devices holding critical data may unexpectedly
go offline or become out of range during the training, causing changes in the communication
links. These interruptions can cause information loss in the aggregation, making local models no
longer interchangeable and drifting away from the global model. We can summarize these powers
of deviation and drift as “divergence forces”, which drastically slows down the convergence and
significantly impacts the efficiency and effectiveness of the training process in DML.

In order to tackle the above issues, we present a novel decentralized DML framework HyperPrism,
which utilizes mirror descent [3] and employs adaptive mapping functions to project models into
a mirror space, with both aggregation and gradient steps then carried out in the mapped space.
Moreover, HyperPrism leverages the concept of “weighted power means” (WPM) as the aggregation
function, raising the model parameters to the power of p, and uses HyperNetworks [12] to adaptively
adjust the power degree p. In summary, the main contributions are summarized as follows:

• We study the problem of divergence forces in decentralized DML, where we particularly
focus on two technical barriers due to data heterogeneity (i.e., non-IID data) and time-varying
communication links. To the best of our knowledge, it is the first work to simultaneously
address the challenges of non-IID data and time-varying communication links in realistic
DML scenarios.

• We propose a non-linear class aggregation DML framework HyperPrism based on Kol-
mogorov Means, which can also be seen as mapping models to mirror space for aggregation,
and we instantiate the means with an adaptive p power function to enhance the convergence
speed and scalability. HyperPrism achieves superior performance in its dependence on
the number of devices m and the power degree p, upgrading from m

√
m to m p

√
m. This

achievement also reduces the optimality gap [2] from
√
m to p

√
m.

• We conduct rigorous analysis and prove that the loss bound of HyperPrism is
O((m

P+2

T )
1

P+1 ). In cases where few communication epochs can occur (i.e., T ≤ m),
employing a larger value of p yields improvements over traditional linear aggregation. Our
theoretical results are consistent with state-of-the-art bounds in distributed gradient/mirror
descent and single-device mirror descent.

• We carry out comprehensive experiments to assess the performance of HyperPrism frame-
work. The experimental results demonstrate that HyperPrism achieves a remarkable acceler-
ation in convergence speed with improvements of up to 98.63%. Moreover, HyperPrism
also shows increased scalability in settings characterized by time-varying communication.

2 Related Work

Decentralized DML with Data Heterogeneous. Numerous studies have addressed non-IID data
using linear solutions, such as local fine-tuning of a global model [4, 9, 8, 10], personalization in
Federated Learning (FL) as a meta-learning objective [15], knowledge distillation[61], and prototype
aggregation [53]. Furthermore, Li et al. analytically demonstrate the limitations of FedAvg on
non-IID data [26]. Li et al. propose a variant of FedAvg by incorporating a penalty term in the
local objective function [25]. Liu et al. propose an algorithm that capture similarities between
clients to compute personalized aggregation weights for personalized FL [36]. Recently, Aketi et
al. [1] propose a tracking-based method to mitigate the impact of heterogeneous data distribution
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in DML without introducing communication overhead. However, these methods, less explored in
decentralized DML, are confined by the boundaries of linear aggregation.

DML with Time-varying Communication setting. Many DML models and their variants have been
proposed to process huge amounts of data locally over time-varying communication settings. Kovalev
et al. propose the ADOM and ADOM+ method for decentralized optimization over time-varying
networks with projected Nesterov gradient descent, respectively [18, 20]. Koloskova et al. introduce
a framework covering local SGD updates and synchronous and pairwise gossip updates on adaptive
network topology [17]. De Vos et al. [5] introduce Epidemic Learning in decentralized learning,
leading to faster convergence and improved performance by randomly changing topologies. Nedic
et al. [44, 42] tackle the DML with topology dynamicity from the consensus perspective. They
propose a model aggregation method for agents in a time-varying network topology to collaboratively
solve a convex objective function, with a convergence guarantee. Moreover, future generation DML
systems [20, 19, 7] also consider these time-varying communication settings as an important research
area, where the naturally time-varying connectivity among pairs of mobile devices or mobile devices
and edge servers will be dictated by their physical proximity.

In this work, we focus on solving two barriers due to data heterogeneity (i.e., non-IID data) and
time-varying communication links and conduct rigorous analysis to show that prior methods suffer
from lower accuracy, higher loss, and slower convergence speed over time-varying networks than
under a fixed topology. Additionally, their methods use linear averages for aggregation, which our
framework encompasses as a particular case.

3 Problem Formulation and Preliminaries

3.1 Problem Formulation

We consider decentralized DML with m devices over time-varying communication links represented
by a directed graph G(t) = (V, ε(A(t))), where V denote vertices and A(t) = [a

(t)
11 , a

(t)
12 , ..., a

(t)
mm] is

the weight matrix of the topology graph. Then the ε(A(t)) denotes the set of directed time-changing
edges between vertexes. In each time interval, we assume that the communication links between
devices are symmetrical and restricted, causing random disconnections and reconnections. Each
device i has its own private dataset, denoted by Di. Let w = (w1, w2, . . . , wm) denote the collection
of all local models, where wi is the model held at device i. Then, Device i constructs its local loss
function as fi(w) = Eζi∼Di

[F(wi; ζi, G(t))]. Then, devices aim to solve the following optimization
problem collaboratively:

min
w∈Rd

F (w) =

m∑
i=1

fi(w), (1)

without sharing local data (i.e., without revealing fi).

3.2 Motivation

In recent years, model merging has developed non-linear aggregation methods. One motivation for
non-linear aggregation is the decreased variance in the original parameter space. HyperPrism is
designed to combat stale gradients from diverged models with synchronization.

In existing work, synchronization is achieved with an aggregation mechanism, usually a mean or
median, with clipping. Inspired by similarities between Mirror Descent [46] and Quasi-Arithmetic
Means [16], also known as Kolmogorov Means, of the form f−1

(
1
n

∑n
k=1 f(xk)

)
, HyperPrism

maps models to the dual domain before averaging to better align with the geometry of the objective
function. In implementation, we focus on the special case of ϕ(w) = 1

p+1∥w∥
p+1, transforming

models as w → wp, where HyperPrism therefore replaces linear means with the following weighted
power mean:

w
(t)
i = (

m∑
j=1

a
(t)
ij (w

(t)
j )

p
)

1
p , (2)
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where a(t)ij is the aggregation weights of device j in device i at t round. The WPM is a special case of
the general strategy of averaging in a mirror descent dual space, but it is particularly useful due to its
ease of computation and convexity guarantees. In general, the aggregation step of HyperPrism is the
following Equation (3):

w
(t)
i = [∇ϕ]−1(

m∑
j=1

a
(t)
ij ∇ϕ(w

(t)
j )). (3)

But we choose to focus on ϕ(w) = 1
p+1∥w∥

p+1 which gives∇ϕ(w) = wp (termwise exponentiation).
This allows for simple run-time computation. For more intuition, in the p =∞ limit the distributed
averaging consensus problem [47] turns into an easier “distributed maximum problem," which is
what allows for HyperPrism’s tighter synchronization.

3.3 Distributed Mirror Descent

The phrase “distributed mirror descent” can have multiple interpretations. In the existing literature, it
typically refers to the process of taking local mirror descent steps and then linearly aggregating [23,
48, 6, 59] In the case of HyperPrism, mirror descent is transformed into the distributed algorithm
in a different manner. It still takes local mirror descent steps but also uses the aggregation function
in Equation (3). This approach proves to be more effective because, under the optimal model w∗,
distributed mirror descent with Equation (3) remains stable, while the linear aggregation functions do
not. In other papers’ analysis (e.g., [11], [58]), this inaccuracy is not obvious since the dominant terms
are often related to communication costs, but in the perfect communication case, using a generalized
mean is necessary for exact theoretical convergence.

3.4 HyperNetworks

Hypernetworks (HNs) are deep neural networks used to generate weights of other target networks [12].
HNs can learn the mapping relationship between the embedding vector and the target network, and
adaptively generate the target network based on the input. Shamsian et al. apply HNs in federated
learning to generate personalized model parameters [50]. Ma et al. present pFedLA [38] using HNs
to generate aggregation weights of each model layer in personalized federated learning. Previous
works [53, 55] found the different layer parameters of the local model have different impacts on
model aggregation. For example, the locally learned feature representations are prone to over-fitting
and thus cannot generalize well when each device only has insufficient data. In HyperPrism, the
mapping function chosen is a form of the Bregman divergence, specifically ∇ϕ(w) = wp, where p
represents the degree of WPM. Our experiments indicate that different functional layers of the model
respond differently to the degree of p. Increasing p has a more significant impact on accelerating
convergence in linear or fully-connected layers. This observation inspires us to select the appropriate
p for different functional layers adaptively. Through the chain rule [38], we demonstrate that HN
can effectively correlate the mirror mapping with the objective function, enabling it to discover the
optimal p for each device’s model parameters in each round.

4 The Design of HyperPrism Framework

4.1 Overview

With the above preliminaries and motivation presented, we now give the design of HyperPrism
framework. The framework assumes that each device i maintains its local model denoted by wi; for
simplicity of specification, we use a round-based specification, in which the model holds by device i
after t communication rounds is denoted as w(t)

i .

The framework first chooses the aggregation weights a. Each a(t)ij , defined by

a
(t)
ij = min{e(t)ij , e

(t)
ji }, (4)

a
(t)
ii = 1−

∑
j ̸=i

a
(t)
ij , (5)
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Figure 1: The Overview of HyperPrism Framework. ① Device i executes local update on its own dataset. ②
Device i adaptively generates degrees of pθ and pφ for the representation and decision parts by hypernetworks.
③ Device i maps the model to the mirror space by raising the parameters with the degree of power pθ and pφ,
respectively. ④ Device i communicates with its neighbors exchanging local models. ⑤ Device i aggregates
received models in mirror space with WPM. ⑥ Device i inverses the model to primal space by the degree of
power pθ and pφ, then finishes the round.

where e(t)ij = 1

N
(t)
i +1

when i, j are connected, otherwise e(t)ij = 0. N (t)
i is the number of neighboring

devices i at t-th round. a(t)ij generated in this way satisfy Assumption 5.1. Note that the connectivity

e
(t)
ij is determined by underlying communication systems, which consider both feasibility and security

requirements (e.g., low probability of detection). HyperPrism applies to generic DML, the parameter
server and all-reduce frameworks can be seen as special cases (where all a(t)ij values equal 1

m ).

In summary, the core of HyperPrism is that at every round t, device i computes its local model for
the next round t+ 1 as:

w
(t+1)
i = [∇ϕ]−1(

m∑
j=1

a
(t)
ij ∇ϕ(w

(t)
j )− η∇fi(w(t)

i )), (6)

where ∇ϕ is the mapping function with a selected degree of p for each round.

4.2 Adaptive Degree of Power p Mapping

To determine the p of various layers at each round, HyperPrism establishes a relationship between
the optimization problem and the degree of p by utilizing hypernetworks, which adaptively choose
the optimal p for different layers to achieve the best performance.

Without loss of generality, HyperPrism also decouples the local model into the representation and
decision parts. The representation part θ includes components like convolutional and embedding
layers. The decision part φ includes components like fully-connected layers. Thus, for device
i, we have wi = {wθ,i, wφ,i}. Each device i holds a local hypernetwork HNi and a randomly
generated embedding vector vi. Every hypernetwork consists of several fully-connected layers and
employs the softmax for the output layer. HNi takes vi and gradient of the local model as input, then
output pi = {pθ,i, pφ,i} for wθ,i and wφ,i parts, respectively. Then the mapping function evolves to
∇ϕ(wi) = {(wθ,i)pθ,i , (wφ,i)pφ,i}. The hypernetwork on device i can be defined as

pi = HNi(vi;ψi), (7)

where ψi denotes the parameters of HNi. Hence, a new objective function can be derived from the
original problem as

minF (w) =

m∑
i=1

fi((wi)
HNi(vi;ψi)). (8)

HyperPrism can transform the optimization problem for model parameters wi into the HN’s vi and
ψi. HNs adaptively output pθ,i and pφ,i based on the input, and simultaneously update both v and ψ
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Algorithm 1 HyperPrism Framework.

1: Input: datasets {D1, D2, . . . , Dm}, learning rate η, the number of Rounds T .
2: Output: the final model of all devices after T rounds. w(T ) = w

(T )
1 , . . . , w

(T )
i , . . . , w

(T )
m }.

3: Initialize all devices’ models w(0), hypernetworks ψ(0), and embedding vectors v(0).
4: for t = 0 to T do
5: for each device i in parallel do
6: Local Update: w(t)

i ← w
(t)
i − η∇f

(t)
i .

7: Compute p(t)θ,i and p(t)φ,i by HNi(v
(t)
i ;ψ

(t)
i ).

8: Compute∇ϕ(w(t)
i )← {(w(t)

θ,i)
p
(t)
θ,i , (w

(t)
φ,i)

p
(t)
φ,i}.

9: Send∇ϕ(w(t)
i ) and N (t)

i to i’s neighbors.
10: Receive∇ϕ(w(t)

j ) and N (t)
j from neighbors.

11: Compute weights a(t)ij as Equation (4), (5).

12: Aggregate received models using a(t)ij .

13: Update w(t+1)
i according to Equation (6).

14: Update v(t+1)
i , ψ(t+1)

i as Equation (11), (12).
15: end for
16: end for
17: return w

(T )
i .

by gradient descent at each round. Specifically, the gradient of vi and ψi can be computed based on
the chain rule [38] as

∇vifi = (∇viwi)T∇wifi, (9)

∇ψi
fi = (∇ψi

wi)
T∇wi

fi. (10)

Then, vi and ψi can be represented as

v
(t+1)
i = v

(t)
i − η∇

(t)
vi f

(t)
i , (11)

ψ
(t+1)
i = ψ

(t)
i − η∇

(t)
ψi
f
(t)
i . (12)

Algorithm 1 demonstrates the full procedure of HyperPrism. In our real deployment, we adopt the
asynchronous protocol.

5 Analytical Results

We rigorously analyze the properties of HyperPrism. We fully introduce all assumptions, analyze the
convergence behavior of HyperPrism, and finally compare HyperPrism to previous works.

5.1 Assumptions

Assumption 5.1 (Connectivity). The network graphG(t) = (V, ε(A(t))) and the connectivity weight
matrix A(t) satisfy the following:

• A(t) is doubly stochastic for all t ≥ 1; that is
∑m
j=1 a

(t)
ij = 1 and

∑m
i=1 a

(t)
ij = 1.

• There exists a scale ζ > 0, such that a(t)ij ≥ ζ for all i and t ≥ 1, if {i, j} ∈ Et.

• There exists an integer B ≥ 1 such that the graph (V,EkB+1 ∪ · · · ∪E(k+1)B) is strongly
connected for all k ≥ 0.

Definition 5.2 (Bregman Divergence). The Bregman Divergence of a function ϕ is defined as

Dϕ(x, y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩. (13)

Note that for ϕ(x) = ∥x∥2, Dϕ(x, y) = ∥x− y∥2.
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Definition 5.3 (Uniform Convexity). Consider a differentiable convex function ϕ : Rd → R, an
exponent r ≥ 2, and a constant σ > 0. Then, ϕ is (σ, r)-uniformly convex with respect to a ∥·∥ norm
if for any x, y ∈ Rd,

ϕ(x) ≥ ϕ(y) + ⟨∇ϕ(y), x− y⟩+ σ

r
∥x− y∥r. (14)

Note that for r = 2, this is known as strong convexity. This assumption also implies that Dϕ(x, y) ≥
σ
r ∥x− y∥

r.
Assumption 5.4 (Smooth Gradient). Assume that the functions fi are convex with its gradients
∇fi(·) satisfying L-Lipschitz continuity [59], namely:

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, (15)

for all x, y pairs.

This final assumption is used in nearly every mathematical analysis of DML, including [54, 3, 52, 59,
43, 51, 49]. In our analysis, it is used to bound the distance between local models.

5.2 Weighted Power Mean

In our experiments, we focused on the weighted power mean, generated by using ϕ(x) = 1
p+1∥x∥

p+1

which gives ∇ϕ(x) = xp. Such ϕ is uniformly convex as seen in Proposition 5.5, and the rest of the
analysis will be generalized to all uniformly convex ϕ.
Proposition 5.5 (Uniform Convexity of Power Functions). For p ≥ 1, the function φp(x) =
1
p+1∥x∥

p+1 is uniformly convex with degree p+ 1. This is because ∥∇φp(x)−∇φp(y)∥ = ∥xp −
yp∥ ≥ 1

2p−1 ∥x− y∥, and as a corollary we have

Dφp(x, y) ≥
1

2p−1
· 1

p+ 1
∥x− y∥p+1 =

1

2p−1
φp(x− y). (16)

Given the function ϕ, HyperPrism instructs local models to take a WPM of received models. Using
the Connectivity Assumption (Assumption 5.1), we can bound the distance between local models.
Lemma 5.6 (Consensus). Under Assumption 5.1, for each device i, after t rounds:

∥∇ϕ(w(t)
i )−∇ϕ(w(t))∥

≤ ϑ(κt−1
m∑
j=1

∥∇ϕ(w(0)
j )∥+ mηGl

1− κ
+ 2ηGl),

(17)

where ϑ =
(
1− ζ

4m2

)−2

, κ =
(
1− ζ

4m2

) 1
B

, Gl = 2L
(
max f(w

(t)
i )− f∗

)
and ζ is a constant

related to the graph connectivity.
Theorem 5.7 (Convergence Behavior). Consider a ( 1

2p−1 , p+1) uniformly convex ϕ and the sequence
w

(t)
i under Algorithm 1 with constant step size η. Then, under Assumptions 5.1, and 5.4, if x∗ is the

value that minimizes F (w) =
∑m
i=1 fi(w), then

min
t
[F (w(t))− F (x∗)]

≤ 4mGl
T

T−1∑
t=0

p

√√√√ϑ

2
(κt−1

m∑
j=1

∥∇ϕ(w(t)
j )∥+ mηGl

1− κ
+ 2ηGl)

+m · p

p+ 1
p

√
2r · η ·Gp+1

l +
m ·Dϕ(x

∗, w(0))

ηT
.

(18)

In this Theorem 5.7, the first term uses Lemma 5.6, and is caused by the differences between local
models held at different devices. This is the effect of the diverging forces mentioned in earlier
sections. Note that ϑ and κ are constants related to the graph connectivity, reflecting the influence
of time-varying communication links. The second term represents the error caused by a non-zero
learning rate in the Distributed Mirror Descent process, and the third term represents the lingering
effects of the initialization. For more proof details, please refer to the Appendix.
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Corollary 5.8. The bound on HyperPrism’s (Algorithm 1) loss is O(m p
√
ηm+ m

ηT ).

The first term becomes O(m · P
√
mη) because since κ < 1, the κt term goes to 0 as t gets large. The

second term is O(m P
√
η) is smaller than the first term, so we drop it. The final term is clearly O( mηT ).

Corollary 5.9. For η = O( p+1

√
Tp

m ), the upper bound becomes O(m p
√
ηm+ m

ηT ) = O( p+1

√
mp+2

T ).

5.3 Comparison to Previous Work

Table 1: Convergence Rates in terms of η, p, m, and T
Framework f error with optimal η Recovered

HyperPrism O(m P
√
ηm+ m

ηT
) O( P+1

√
mP+2

T
) NA

Bubeck [3] (m = 1, r = 2) O(η + 1
ηT

) O( 1√
T
) Yes

Srebro [52] (m = 1) O(η
1

r−1 + 1
ηT

) O( 1
r√
T
) Yes

Nedic [44] (GD → r = 2) O(ηm2 + m
ηT

) O(m
√

m√
T

) Yes

Yuan [59] (r = 2 MD) O(ηm2 + m
ηT

) O(m
√

m√
T

) Yes

Table 1 summarizes the big O notation convergence rates of f(w(t)) − f∗. Previous works also
assume bounded gradients. Our analysis recovers the same bounds as the state-of-the-art in DML and
single-device mirror descent with generic uniform convexity assumptions. Nedic [44] is standard
gradient descent, and thus has ϕ(x) = 1

2∥x∥
2, which is (1, 2)-uniformly convex, corresponding to

p = 1. Yuan [59] considers distributed mirror descent under strong convexity (r = 2) equivalent to
p = 1, and based on their analysis, the bound should be O(ηm2 + m

ηT ).

6 Evaluation

6.1 Experimental Setup

The experimental platform consists of 8 Nvidia Tesla T4 GPUs, 4 Intel XEON CPUs, and 256GB of
memory. All the models and training scripts are implemented in RAY [40] and PyTorch [24].

HyperNetworks Setup. We construct a hypernetwork model comprising three fully-connected layers
and two additional output layers activated using softmax. The outputs of the fully-connected layers
are fed into each of the two output layers to generate the degree of P for various parts.

Time-varying Communication Links Setup. We employ the NS3 platform [13] to simulate realistic
time-varying communication environments consisting of multiple distributed devices. Each device is
configured with the WiFi 802.11a protocol and communication among themselves in Ad-Hoc mode.
To quantify the degree of connectivity of the communication links, we define the topology density as
the ratio of available tunnels to the total tunnels.

Models and Dataset. We use MNIST [22] and CIFAR-10 [21] datasets distributed among devices in
non-IID settings. We construct two models based on layer functionalities. The Logistic Regression
(LR) [14] model consists solely of linear layers used for the MNIST dataset. On the other hand, the
CNN model consists of both convolutional and fully-connected layers used for CIFAR-10.

Non-IID Data Partitioning. To distribute datasets in a non-IID fashion, we employ Dirichlet
distribution [35] to allocate all samples among devices. The Dirichlet Degree α is used to control the
non-IID degree. The α = 0.1 represents the extreme scenario where each device possesses samples
from only one class, while α = 10 equals the IID scenario. These distributions reflect a challenging
and realistic training environment.

Metrics. We consider two metrics to measure the performance of HyperPrism.

• Average Accuracy. We evaluate the performance of the local model per device using a
global test set that contains samples with all categories. The average Top-1 accuracy of all
devices is calculated in each round to measure overall performance and convergence rate.

• Convergence Speed. We track the loss of each round and the number of rounds to investigate
the rounds needed to reach the convergence point for specific accuracy and loss.
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Baselines. We conduct a comparative analysis of HyperPrism with state-of-the-art methods for DML
in non-IID data and time-varying communication links, including p = 1 methods, which is one of
the most influential and widely applied works in DML studies. SwarmSGD [41], Mudag [57] and
ADOM [20]. To ensure a fair comparison, we made minor adjustments to each baseline method.

• p=1. We define it as a class of methods using a linear aggregation function, including
DPSGD [34], and its variants [43, 45]. These methods can be seen as special cases of
HyperPrism without the mirror mapping process.

• SwarmSGD. We set the number of local SGD updates equal to 1, where the selected pair of
devices performs only a single local SGD update before aggregation. It can also be viewed
as a special case of HyperPrism where the topology density is very low.

• ADOM and Mudag. We set the condition number k to 10, and the number of features
d equals the number of classes. The gossip matrix W (t) at round t is chosen to be the
Laplacian of time-varying communication links divided by its largest eigenvalue.

Hyperparameters. For all experiments, the learning rate and batch size are both fixed at 0.01 and
128. We generate time-varying communication graphs with different sizes and densities and evaluate
100 rounds total. The graph changes every round.

6.2 Experimental Results
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Figure 2: The impact of different p and time cost.

Impact of different degrees of p. We present the impact of varying degrees of p in HyperPrism on
model performance in Figure 2. In Figure 2(a), it is evident that the model converges more swiftly
and attains greater accuracy as p grows larger. Figure 2 (b) demonstrates that accuracy exhibits
a significant fluctuation with different p. This underscores the substantial impact of the p value
selection on the performance of HyperPrism. These findings highlight the importance of choosing an
appropriate value for p in HyperPrism to achieve optimal performance.

Comparison of time cost. In HyperPrism, each hypernetwork contains only 3 linear layers with 64
nodes per layer to ensure a minimal extra computational resource cost. We record the time cost in
Figure 2(c). Although HyperPrism does result in a higher time cost per iteration, it notably decreases
the total number of rounds required for convergence, thereby reducing the overall time needed to
achieve a specific accuracy.

Performance of HyperPrism. To showcase the practicality of HyperPrism, we consider the basic
configuration with Dirichlet = 0.1, density = 0.5, and m = 50 devices. The accuracy results for
all benchmarks and HyperPrism are presented in Figure 3. The convergence speed is summarized in
Table 2, 3, 4. Notably, HyperPrism outperforms all benchmarks across all models. It demonstrated
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Figure 3: The Impact of non-IID Degrees
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Table 2: Comparison on Different non-IID Degree

Method
LR + MNIST CNN + Cifar-10

Dirichlet = 0.1 Dirichlet = 1 Dirichlet = 10 Dirichlet = 0.1 Dirichlet = 1 Dirichlet = 10

Max Acc Conv. Rds Max Acc Conv. Rds Max Acc Conv. Rds Max Acc Conv. Rds Max Acc Conv. Rds Max Acc Conv. Rds

SwarmSGD 83.75 104 87.01 47 83.74 18 18.24 198 51.21 150 72.22 14

DPSGD 71.51 186 77.60 173 71.50 131 18.04 187 43.3 282 69.2 92

Mudag 86.4 44 88.51 14 86.41 7 20.16 83 44.76 259 70.79 18

ADOM 90.58 11 90.88 10 90.58 23 10.57 inf 11.46 inf 12.32 inf

Ours
90.61 6 90.30 7 90.60 8 20.45 86 53.26 169 75.74 13

(↑ 26.70%) (↓ 96.77%) (↑ 16.36%) (↓ 95.95%) (↑ 26.69%) (↓ 93.89%) (↑ 13.35%) (↓ 56.50%) (↑ 20.69%) (↓ 40.07%) (↑ 9.45%) (↓ 85.86%)

Table 3: Comparison on Different Connection Densities

Method
LR + MNIST CNN + Cifar-10

Density = 0.2 Density = 0.5 Density = 0.8 Density = 0.2 Density = 0.5 Density = 0.8

Max ACC Conv. Rds Max ACC Conv. Rds Max ACC Conv. Rds Max ACC Conv. Rds Max ACC Conv. Rds Max ACC Conv. Rds

SwarmSGD 82.58 102 83.75 104 82.79 114 17.57 212 18.24 198 17.5 201

DPSGD 71.37 239 71.51 246 71.65 252 16.22 364 18.04 187 19.66 110

Mudag 86.39 44 86.4 45 86.36 45 20.16 69 20.16 86 20.17 66

ADOM 90.1 15 90.58 11 90.87 55 10.11 inf 11.26 inf 11.71 inf

Ours
90.36 6 90.61 5 90.64 5 20.17 107 20.45 83 21.28 64

(↑ 26.60%) (↓ 97.48%) (↑ 26.76%) (↓ 97.96%) (↑ 26.52%) (↓ 98.01%) (↑ 24.35%) (↓ 70.60%) (↑ 13.36%) (↓ 50.08%) (↑ 21.6%) (↓ 68.15%)

Table 4: Comparison on Different Device Numbers

Method
LR + MNIST CNN + Cifar-10

World-Size = 20 World-Size = 50 World-Size = 100 World-Size = 20 World-Size = 50 World-Size = 100

Max ACC Conv. Rds Max ACC Conv. Rds Max ACC Conv. Rds Max ACC Conv. Rds Max ACC Conv. Rds Max ACC Conv. Rds

SwarmSGD 84.74 93 83.75 104 81.54 116 22.58 132 18.24 198 14.66 201
DPSGD 80.65 137 71.51 246 71.57 372 22.66 160 18.04 187 17.78 221
Mudag 88.68 10 86.4 44 84.13 81 30.68 31 20.16 86 11.46 inf

ADOM 89.01 20 90.58 11 90.73 42 11.26 inf 10.11 inf 9.17 inf

Ours
90.01 7 90.61 5 90.75 3 31.35 31 20.45 83 19.32 151

(↑ 11.16%) (↓ 105.10%) (↑ 26.70%) (↓ 97.90%) (↑ 26.79%) (↓ 99.19%) (↑ 38.83%) (↓ 80.62%) (↑ 13.35%) (↓ 58.08%) (↑ 31.78%) (↓ 31.67%)

a remarkable superior performance over state-of-the-art baselines with convergence accuracy and
convergence speed improvements of up to 4.87% and 98.63%, respectively.

Impact of non-IID. To investigate the impact of the non-IID Dirichlet degree on HyperPrism, we
experiment with various α = 0.1, 1, 10. The corresponding results are presented in Figure 3, and
Table 2. All methods exhibit poorer performance as the non-IID degree becomes more extreme,
which aligns with common intuition. However, HyperPrism demonstrates enhanced stability and
faster convergence speed, especially at highly non-IID degrees.

Scalability. We further evaluate the performance of HyperPrism with varying scales m ∈
{20, 50, 100}. The results are summarized in Table 4. It can be noticed that most of the base-
line methods exhibit deteriorating performance as the number of devices increases. The ADOM even
barely converges under 100 devices. In contrast, HyperPrism is minimally affected by the scale and
maintains superior acceleration and model performance.

Communication Graph Densities. To further analyze the impact of connected densities on
model performance, we present the performance and convergence speed of HyperPrism with various
density ∈ {0.2, 0.5, 0.8} in Table 3. In the extreme non-IID case, the performance of baselines
deteriorates as the communication becomes denser. Particularly, ADOM exhibits significant fluc-
tuations at a density of 0.8. However, HyperPrism maintains better performance across different
densities. This can be attributed to the fact that as the communication becomes denser, the informa-
tion exchanged between devices becomes more complex. Given HyperPrism’s resilience to non-IID
scenarios, it maintains good performance in such cases.

7 Conclusion

In this work, we studied the important problem of divergence forces in decentralized DML, due to data
heterogeneity (i.e., non-IID data) and time-varying communication links. We propose a non-linear
class aggregation DML framework with adaptive Kolmogorov Means for aggregation to enhance the
convergence speed and scalability. HyperPrism achieves superior performance in its dependence on
the number of devices m, improving from m

√
m to m p

√
m, and achieving optimality in the limit

p→∞. We also conduct rigorous analysis and demonstrate that the loss bound of HyperPrism is
O((m

P+2

T )
1

P+1 ). In cases with few communication epochs (i.e., T ≤ m), employing a larger value
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of p yields improvements over traditional linear aggregation. Our theoretical results are consistent
with state-of-the-art bounds in distributed gradient/mirror descent and single-device mirror descent,
all under a general uniform convexity assumption. To verify the effectiveness of HyperPrism, we
carry out extensive experiments that demonstrate that HyperPrism achieves a remarkable acceleration
in convergence speed with improvements of up to 98.63%. Moreover, HyperPrism shows increased
scalability.
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8 Appendix

8.1 Main Notations

We summarize the main notations in Table 5.

Table 5: Summary of Main Notations
Symbol Description

m The size of edge devices
T The total round
t The number of round
η The learning rate

G(t) The time-varying network topology graph consisting of V and ε
V The set of vertexes (i.e., edge devices)

ε(A(t)) The set of directed time-changing edges between vertexes
At The weight matrix of the topology
a
(t)
ij The aggregation weights of device j in device i at t round
Di The private dataset of device i
w The set of all local models
wi The model held at device i
fi(w) Device i’s local loss function
F (w) F (w) =

∑m
i=1 fi(w)

w
(t)
i The aggregation step of device i:w(t)

i = [∇ϕ]−1(
∑m
j=1 a

(t)
ij ∇ϕ(w

(t)
j ))

ϕ(w) Define the function ϕ(w) = 1
p+1∥w∥

p+1

∇ϕ(w) The mapping function∇ϕ(w) = wp

p The adaptive degree of the WPM
e
(t)
ij e

(t)
ij = 1

N
(t)
i +1

when i, j are connected, otherwise

N
(t)
i The number of devices neighboring device i at t-th round

θ, φ ∇ϕ(wi) = {(wθ,i)pθ,i , (wφ,i)pφ,i}
HNi(vi;ψi) The Hypernetwork on device i

ψi The parameter of HNi
ζ A scale related to connectivity
L Smoothness of gradient∇f
Gl Upper bound on gradient derived from L

Dϕ(x, y) The Bregman Divergence of a function ϕ
σ, r (σ, r)-uniformly convex
y(t)
i ∇ϕ(y(t)i ) =

∑m
j=1 a

(t)
i,j∇ϕ(w

(t)
j )

w(t) w(t) = [∇ϕ]−1( 1
m

∑m
i=1∇ϕ(w

(t)
i ))

ϑ, κ Constants related to graph connectivity, containing ζ
Φ(t, s) A transition matrix Φ(t, s) = A(t)A(t− 1) · · ·A(s+ 1)A(s)
τ, k round number

8.2 Impact of WPM to parameters

We illustrate how HyperPrism leverages weighted power mean (WPM) to facilitate more efficient
aggregation in Figure 4. By examining the distribution of model parameters, we observe that the
traditional linear averaging model (w/o WPM) has approximately 11.65% of parameters lying within
the range of [-0.01, 0.01] after 80 rounds. In contrast, when utilizing WPM with degrees of p = 9 and
p = 15, only 1.67% and 1.21% of parameters, respectively, fall within the same range. This indicates
that WPM enables the model to effectively preserve a broader range of features. Consequently,
HyperPrism can extract more information from the model parameters during aggregation, leading to
enhanced performance. These results underscore the effectiveness of WPM in enabling HyperPrism
to capture a wider range of features and facilitate a more informative aggregation.
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Figure 4: WPM’s impact on parameter distribution.

8.3 Proof under Uniform Convexity

To aid analysis, introduce the sequence y(t)i . Note that the w(t)
i and y(t)i sequences satisfy

∇ϕ(y(t)
i ) =

m∑
j=1

a
(t)
i,j∇ϕ(w

(t)
j ), (19)

∇ϕ(w(t+1)
i ) = ∇ϕ(y(t)

i )− η∇fi(w(t)
i ). (20)

Additionally, we can define

w(t) = [∇ϕ]−1(
1

m

m∑
i=1

∇ϕ(w(t)
i )) = [∇ϕ]−1(

1

m

m∑
i=1

∇ϕ(y(t)i )). (21)

8.4 Proof of Lemma 5.6

Proof. Define a transition matrix Φ(t, s) = A(t)A(t−1) · · ·A(s+1)A(s). Then, under Assumption
5.1, Corollary 1 in [43] states that

|[Φ(t, τ)]ij −
1

m
| ≤ ϑκt−τ , (22)

where ϑ and κ are defined in the lemma statement.

We are able to write out a general formula for∇ϕ(w(t+1)
i ):

∇ϕ(w(t+1)
i ) =

m∑
j=1

[Φ(t, k)]ij∇ϕ(w(k)
j )

− η
t∑

τ=k+1

m∑
j=1

[Φ(t, k)]ij · ∇fj(w(τ−1)
j )− η∇fi(w(t)

i ).

(23)

as well as∇ϕ(w(t)):

∇ϕ(w(t)) =
1

m

m∑
i=1

∇ϕ(w(t)
i ) =

m∑
j=1

1

m
∇ϕ(w(k)

j )

− η
t∑

τ=k+1

m∑
j=1

1

m
· ∇fj(w(τ−1)

j )− η

m

m∑
i=1

∇fi(w(t)
i ).

(24)

16



It is known that for a L-Lipschitz continuous function f , if x∗ is the optimum of f , then:

∥∇f(x)−∇f(x∗)∥ ≤ 2L(f(x)− f∗)

Then, ∇ϕ(w(t)
i )−∇ϕ(w(t)) can be bounded by applying the Triangle Inequality and Equation (22):

∥∇ϕ(w(t+1)
i )−∇ϕ(w(t+1))∥ ≤

m∑
j=1

ϑκ(t−k)∥∇ϕ(w(k)
j )∥

+

t∑
τ=k+1

m∑
j=1

ϑκ(t−τ)∥η∇fj(w(τ−1)
j )∥+ 2ηGl.

(25)

Then, plugging in k = 0 gives

≤ ϑ(κ(t)
m∑
j=1

∥∇ϕ(w(0)
j )∥+mηGl

t∑
τ=1

κ(t−τ) + 2ηGl)

≤ ϑ(κ(t)
m∑
j=1

∥∇ϕ(w(0)
j )∥+mηGl ·

1

1− κ
+ 2ηGl).

(26)

Finally, shifting t down by 1 gives the desired bound.

8.5 Proof of Theorem 5.7

Firstly, note that under Algorithm 1 and Assumption 5.4, Weighted AM-GM gives:

(r − 1) · r−1

√
1

σrr−1m
· (mηGl)r +m · σ

r
∥y(t) − y(t+1)∥r

≥ r ·

(
(

r−1

√
1

σrr−1m
· (mηGl)r)r−1 · (m · σ

r
∥y(t) − y(t+1)∥r)1

) 1
r

= r ·
(

1

rr
· (mηGl)r · ∥y(t) − y(t+1)∥r

) 1
r

= (mηGl) · ∥y(t) − y(t+1)∥.

We may follow the main line of reasoning that proves Theorem 5.7.

8.6 Main Line of Reasoning

Proof. We prove bounds for generic x. Note that w(t) = h−1( 1
m

∑m
i=1 h(w

(t)
i )). Then, we get:

η

m∑
i=1

[fi(w
(t)
i )− fi(x)] ≤

m∑
i=1

⟨η∇fi(w(t)
i ), w

(t)
i − x⟩

=

m∑
i=1

⟨η∇fi(w(t)
i ), w

(t)
i − w

(t)⟩

+

m∑
i=1

⟨η∇fi(w(t)
i ), w(t) − w(t+1)⟩+

m∑
i=1

⟨η∇fi(w(t)
i ), w(t+1) − x⟩.

(27)
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Cauchy’s inequality can bound the first term. The third term can be manipulated using Equation (20).
Then, combined with fi(w(t)) ≤ fi(w(t)

i ) +Gl∥w(t) − w(t)
i ∥, we get

η · (F (w(t))− F (x)) ≤ (2 ·
m∑
i=1

ηGl · ∥w(t)
i − w

(t)∥)

+mηGl · ∥w(t) − w(t+1)∥

+

m∑
i=1

⟨∇ϕ(y(t)i )−∇ϕ(w(t+1)
i ), w(t+1) − x⟩.

The factor of 2 comes from the 2nd term of Equation (27) added to the error from fi(w
(t)) ≤

fi(w
(t)
i )+Gl∥w(t)−w(t)

i ∥. Note that the last term is equal to m · ⟨w(t)−w(t+1), w(t+1)−x⟩. This
is also equal to m(Dϕ(x,w

(t))−Dϕ(x,w
(t+1))−Dϕ(w

(t+1), w(t))) by the Triangle Inequality for
Bregman Divergences. We also substitute Claim 1 to replace the second term, so the value is

≤ (2 ·
m∑
i=1

ηGl · ∥w(t)
i − w

(t)∥)

+
r − 1

r
r−1

√
1

σm
· (mηGl)r +mσ∥w(t) − w(t+1)∥r

+m(Dϕ(x,w
(t))−Dϕ(x,w

(t+1))−Dϕ(w
(t+1), w(t))).

(28)

But, by uniform convexity, Dϕ(w
(t+1), w(t)) ≥ σ∥w(t+1) − w(t)∥r, and thus this is also

≤ (2 ·
m∑
i=1

ηGl · ∥w(t)
i − w

(t)∥) + r − 1

r
r−1

√
1

σm
· (mηGl)r

+m(Dϕ(x,w
(t))−Dϕ(x,w

(t+1))).

(29)

Then, taking the sum over T gives

η

T−1∑
t=0

[F (w(t))− F (x)] ≤
T−1∑
t=0

2 · (
m∑
i=1

ηGl · ∥w(t)
i − w

(t)∥)

+ T · r − 1

r
r−1

√
1

σm
· (mηGl)r

+m(Dϕ(x,w
(0))−Dϕ(x,w

(t)))

≤ 2mηGl ·
T−1∑
t=0

r−1

√
1

σ
∥∇ϕ(w(t)

i )−∇ϕ(w(t))∥

+ Tm · r − 1

r
r−1

√
1

σ
· (ηGl)r +m ·Dϕ(x,w

(0)).

(30)

Dividing through by ηT , substituting σ = 1
2p−1 and r = p+ 1, and substituting x = x∗ and Lemma

5.6 gives the desired result.

8.7 Weighted Power Mean Skew Correction

Theorem 8.1. Consider positive xi and αi close to 1
m . Then,(

m∑
i=1

αixi

) 1
p

≈

(
m∑
i=1

1

m
xi

) 1
p

+O

(
max |αi − 1

m |
p

)
. (31)

This allows us to see the weighted power mean as a way to decrease skew; this theorem is relevant in
the setting of Lemma 5.6.
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Write αi = 1
m + ϵ · ei where all ei ≤ 1

m . Hold ei constant. Then, for αi ≈ m, it is true that ϵ ≈ 0.
The derivative of the average with respect to ϵ is∑

eix
p
i

p ·
(∑

1
mx

p
i + ϵ · (

∑
eix

p
i )
) p−1

p

and the derivative at ϵ = 0 is
∑
eix

p
i

p·(
∑

1
mxp

i )
p−1
p

. Thus, we have the following first-order approximation:

(
m∑
i=1

αixi

) 1
p

≈

(
m∑
i=1

1

m
xi

) 1
p

+ ϵ ·
∑
eix

p
i

p ·
(∑

1
mx

p
i

) p−1
p

(32)

But we have
∑
eix

p
i ≤

∑
1
mx

p
i , so(

m∑
i=1

αixi

) 1
p

≈

(
m∑
i=1

1

m
xi

) 1
p

+ ϵ · 1
p

(∑ 1

m
xpi

) 1
p

(33)

The 1
p

(∑
1
mx

p
i

) 1
p term is bounded, so the error is proportional to O( ϵp ).

8.8 Linear Bound on Power Mean

As a starter, we first prove a useful lemma on two real numbers with different signs. Note that all
variables used in this subsection are generic ones not tied to the HyperPrism-based mechanism.

Lemma 8.2 (Two Numbers with Different Signs). Given any two real numbers x > 0, y < 0, an odd
integer p ≥ 1, and 0 ≤ α ≤ 1, we have(

αxp + (1− α)yp)1/p ≥ α

2p
x+ (1− α

2p
)y. (34)

Proof. Denote C = 1
2p and rewrite the right-hand side (RHS) of Equation (34) as C(αx + (1 −

α)y) + (1−C)y. We first note that we can scale both x, y by 1
|y| such that y = −1. As such, we can

simplify our proof to only focus on the case of y = −1. We will use shorthand ∆, and rewrite as

(C · (αx+ (1− α)y) + (1− C) · y)p

=(Cα(x+ 1)− 1)p = − (1− Cα(x+ 1))p ∆p.
(35)

We then consider two cases.

Case 1: x ≤ 2p− 1. Since −Cα(x+ 1) ≥ −Cα(2p) = −α ≥ −1, by Bernoulli’s inequality, we
have

∆p ≤ − (1 + p(−Cα(x+ 1))) = −1 + pCα(x+ 1). (36)

Since x+1
2 ≤ x

p + 1, which can be verified by casework on x ≥ 1 or x ≤ 1, then

∆p ≤ −1 + α(xp + 1) = αxp + (1− α) · (−1)p. (37)

We then finish this case by taking the power of 1/p on both sides.

Case 2: x ≥ 2p − 1. We will denote the expression on the left-hand side and right-hand side
of Equation (34) with LHS and RHS, respectively. First note that both sides of the inequality in
Equation (34) are −1 when α = 0 and y = −1. Next, we will show that the derivative with respect
to α is always larger for the LHS of Equation (34) when x ≥ 2p− 1.

d

dα
LHS = xp + 1. (38)

d

dα
RHS = pC(x+ 1) · (Cα(x+ 1)− 1)p−1

=
1

2
(x+ 1) · (Cα(x+ 1)− 1)p−1.

(39)
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The LHS’s derivative w.r.t α is clearly constant. Also, the d
dαRHS clearly has local maxima at

α = 0, 1. At α = 0, we clearly have that since x ≥ 2p− 1, we have

d

dα
LHS|α=0 = xp + 1

≥ 1

2
(x+ 1) · (0− 1)p−1 =

d

dα
RHS|α=0.

(40)

For α = 1, since x ≥ 1
2p (x+ 1)− 1 ≥ 0, we have

d

dα
LHS|α=1 = xp + 1 ≥ x · (x)p−1

≥
(
1

2
(x+ 1)

)(
1

2p
(x+ 1)− 1

)p−1

=
d

dα
RHS|α=1.

(41)

Thus, for all 0 ≤ α ≤ 1, d
dαLHS ≥

d
dαRHS, and they are equal at α = 0, so we always have

LHS ≥ RHS for all 0 ≤ α ≤ 1 when x ≥ 2p− 1, and we are done.

Next, consider a list of real numbers xi, i = 1, . . . ,m. We let M = minxi and U = maxxi. We
then prove the following lemma.

Lemma 8.3. Assume a list of non-negative real numbers xi, i = 1, . . . ,m and p ≥ 1. Given αi,
i = 1, . . . ,m such that

∑m
k=1 αk = 1 and αi ≥ 0, we have

m∑
i=1

αixi ≤

(
m∑
i=1

αix
p
i

)1/p

≤ 1

p

m∑
i=1

αixi +
p− 1

p
U. (42)

Proof. The lower bound in Equation (42) is a direct result from the power mean inequality. As for
the upper bound, we have (

m∑
i=1

αix
p
i

)1/p

≤

(
m∑
i=1

αiU
p−1xi

)1/p

=

(
Up−1

m∑
i=1

αixi

)1/p

≤ 1

p

m∑
i=1

αixi +
p− 1

p
U,

(43)

where the last step uses the generalized AM-GM inequality.

We now tie these two Lemmas together to prove Theorem 8.4, which to the best of our knowledge is
a novel inequality on weighted power mean.

Theorem 8.4 (Linear Bound on Weighted Power Mean). Assume a list of real numbers xi, i =
1, . . . ,m and αi, i = 1, . . . ,m such that

∑m
k=1 αk = 1 and αi ≥ 0. For any odd integer p ≥ 1, we

have: (
m∑
i=1

αix
p
i

) 1
p

≥ 1

2p

m∑
i=1

αixi + (1− 1

2p
)M. (44)

Proof. First, note that if all xis are positive, Equation (44) holds from the lower bound of Lemma 8.2.
Second, if all xis are ≤ 0, Equation (44) holds from the upper bound of Lemma 8.3 after flipping all
the signs.

For the case where xis have mixed signs, let αpos, αneg be the sum of the corresponding αs for the
negative and positive elements in x, respectively. We have,
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(

n∑
i=1

αix
p
i )

1
p = (

∑
pos

αix
p
i +

∑
neg

αix
p
i )

1
p

≥(αpos(
∑
pos

αi

αpos
xi)

p + αneg(
1

p

∑
neg

αi

αneg
xi +

p− 1

p
M)p)

1
p

≥αpos

2p
(
∑
pos

αi

αpos
xi) + (1− αpos

2p
)(
1

p

∑
neg

αi

αneg
xi +

p− 1

p
M)

=
∑
pos

(
1

2p
)αixi +

∑
neg

(
1

2p2
+

2p− 1

2p2αneg
)αixi

+ (
p− 1

2p2
αneg +

(2p− 1)(p− 1)

2p2
)M,

(45)

where the first inequality comes from the n-variable same sign case in Lemma 8.3, and the second
inequality comes from the 2-variable case in Lemma 8.2. Here, each positive xi is weighted with
at least 1

2pαi and each negative xi is weighted with at least
(

1
2p2 + 2p−1

2p2

)
αi, which equals to

1
pαi ≥

1
2pαi, since αneg ≤ 1.

Since αi ≥M (M < 0 when xis have different signs), we can turn the extra αi terms into M :(
m∑
i=1

αix
p
i

) 1
p

≥ 1

2p

n∑
i=1

αixi +
2p− 1

2p
M, (46)

which completes our proof.

In addition to a new lower bound of HyperPrism, we can also prove an upper bound of the HyperPrism
at 1

2p

∑m
i=1 αixi +

2p−1
2p U following similar steps. Note that these bounds are generic and can be

applied outside of DML. These bounds are necessary for analyzing the benefits of using a HyperPrism
aggregation function in DML because they guarantee that the HyperPrism takes at least some
minimum consideration of each xi term. This consideration is crucial because each device’s local
objective function is unique, and they must all be considered to optimize the overall objective function.
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9 Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract provides a concise summary of the paper’s key findings and
contributions, allowing viewers to quickly grasp the main points.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the additional computational overhead that Hypernetworks may
introduce, and we provided some time consumption comparisons. However, further research
is needed to investigate whether the computational resource consumption will limit the
performance.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide comprehensive definitions of all theories and assumptions and
presented complete proofs in the appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed explanations of all experimental settings in the experimen-
tal section and uploaded the source code and data for reference.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We utilized an open-source dataset and provided the complete source code for
reference.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed description of the experimental setup in the evaluation
section.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide comprehensive experimental result and detailed explanations in
the evaluation section.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient experimental information to reproduce the experiments,
some detailed information are present in appendix due to space limitation.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research in this paper satisfies all of the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The research in this paper focuses on foundational research and does not have
potential negative societal impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no such risk with this paper.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing assets used in the paper are properly credited, and the licenses and
terms of use are explicitly mentioned and properly respected.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper are well documented and provided
alongside the assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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