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Abstract—Recently, private inference (PI) has addressed the
rising concern over data and model privacy in machine learning
inference as a service. However, existing PI frameworks suffer
from high computational and communication costs due to the
expensive multi-party computation (MPC) protocols. Existing
literature has developed lighter MPC protocols to yield more
efficient PI schemes. We, in contrast, propose to lighten them by
introducing an empirically-defined privacy evaluation. To that
end, we reformulate the threat model of PI and use inference
data privacy attacks (IDPAs) to evaluate data privacy. We then
present an enhanced IDPA, named distillation-based inverse-
network attack (DINA), for improved privacy evaluation. Finally,
we leverage the findings from DINA and propose C2PI, a two-
party PI framework presenting an efficient partitioning of the
neural network model and requiring only the initial few layers to
be performed with MPC protocols. Based on our experimental
evaluations, relaxing the formal data privacy guarantees C2PI
can speed up existing PI frameworks, including Delphi [1] and
Cheetah [2], up to 2.89× and 3.88× under LAN and WAN
settings, respectively, and save up to 2.75× communication costs.

I. INTRODUCTION

With the increasing complexity of deep neural network
(DNN) models and their incredible training cost, machine
learning inference as a service (MLaaS) has become an in-
evitable solution saving significant time, cost, and effort in de-
mocratizing ML services, even for non-experts [3]. However,
increasing privacy concerns challenge the inference procedure
when a client and a server hold the inference input and network
separately and do not want to reveal their private properties
to each other. The client could be a patient with sensitive
medical data or a homeowner with private images, and the
server could be a hospital system or a commercial company
holding proprietary trained DNN models.

Private inference (PI) has appeared to address the pri-
vacy issue in MLaaS. Existing PI frameworks [1], [2], [4]–
[13] leverage secret sharing (SS) and multiparty computation
(MPC) protocols to enable the participants to jointly perform
inference without revealing their input and model parameters
to each other. Different from prior PI frameworks [1], [2], [4]–
[13] where data privacy is formally preserved through cryp-
tographic guarantees, we adopt an empirically-defined client
data privacy model [14]–[16] to relax PI. In particular, the
client’s data privacy is defined based on the potential success
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of inference data privacy attacks (IDPAs) [14], [15]. Specif-
ically, if IDPAs cannot recover the client’s input data, the
client’s data privacy is deemed preserved. IDPAs are typically
evaluated through the structural similarity index (SSIM) [17]
that measures the human perceptual similarity of two images
by considering the luminance, contrast, and structure of two
images. Users can set an SSIM value (usually 0.3 [15]) as
IDPA’s failure threshold, namely, an SSIM below the threshold
indicating a failed recovery. The introduction of IDPA-based
privacy enables a finer-grained means of quantifying client’s
data privacy than the Boolean characterization associated with
cryptographic protocols.

The inability to recover the client’s input with accessible
layer outputs implies that the neural network unintentionally
preserves the client’s input privacy, intuitively due to the
irreversibility of the network. To investigate the potential for
revealing the input from only later layers’ activations, we first
propose an improved IDPA, i.e., a distillation-based inverse-
network attack (DINA) for an improved evaluation as opposed
to the baseline IDPAs [14], [15].

Our attack results indicate that the server indeed often
cannot disclose the client’s input even if it obtains later layers’
outputs. Based on this observation, we propose a novel two-
party PI framework, namely, crypto-clear private inference
(C2PI), and relax the computational burden of existing PI
methods from a new perspective. Specifically, C2PI searches
for a boundary layer in a model, after which the two parties
no longer need the cryptographic primitives to preserve the
client’s SSIM-based data privacy. This allows the server to
independently operate on the remaining layers with signifi-
cantly lower computation and latency. We name the layers
before and after the boundary layer as crypto layers and clear
layers, respectively, with the boundary layer as the last crypto
layer. Furthermore, we leverage a noise-adding mechanism to
further thwart the IDPAs and enhance clients’ data privacy.

The benefit of our C2PI is three-folded: (a) It helps to
reduce computational complexity of existing PI schemes. (b)
It protects the architecture of the clear layers while existing
PI frameworks leak the whole network architecture to the
client [1], [2], [5], [8]. It is worth mentioning that the
carefully designed network architectures are typically consid-
ered as intellectual property of network owners [18]. (c) The
introduced fine-grained privacy quantification enables users
to trade-off PI complexity with the guaranteed level of client’s
data privacy by tuning the IDPA’s failure threshold. Existing



PI frameworks can be considered a special case of C2PI

where the boundary is at the last layer. We summarize our
contributions as follows.

• We propose a distillation-based IDPA (DINA), forming
an enhanced evaluation of client’s data privacy. DINA
outperforms existing alternatives [14], [15] by achieving
∼0.1 − 0.23 more structural similarity (SSIM) in image
recovery tasks.

• We propose an efficient two-party PI framework, C2PI.
To the best of our knowledge, this is the first effort to
protect partial neural network architecture, and find the
portion of a network that is not necessarily performed
with heavy MPC protocols to maintain IDPA-based data
privacy. In C2PI, we leverage DINA to find a reliable
and conservative boundary between crypto layers and
clear layers. Moreover, C2PI is orthogonal to recent PI-
lightening techniques [2], [8], [19], [20]. Our extensive
experimental evaluations show that, C2PI can achieve
1.1×−1.82× speedup, and save ∼2.5× communication
costs for the state-of-the-art two-party PI framework
Cheetah [2].

II. PRELIMINARIES

Notations. Given a pre-trained neural network model M held
by the server and an inference input x held by the client, we
denote the output of the first l layers and the inference output
as Ml(x) and M(x), respectively. As the boundary layer can
be after either a linear operation or a ReLU operation, we use
decimal .5 to denote the ReLU operation. For example, layer 3
and layer 3.5 refer to the linear operation and ReLU operation
in layer 3, respectively.
Threat model. In this work, we follow the semi-honest threat
model, where both parties strictly follow the cryptographic
protocols, but try to reveal their collaborator’s private input by
inspecting the information they received. In C2PI, the server
is allowed to get the outputs of the boundary and clear layers,
from which server will try to recover client’s input using
IDPAs.
Inference data privacy attacks (IDPAs). The inference data
privacy was first systematically studied in [15] for collabo-
rative inference in split learning (SL), where a network M
is split into two parts: M1 containing the first consecutive
layers in M and M2 containing the remaining layers. Two
participants, edge and cloud, hold M1 and M2 respectively.
When performing the inference, the edge feeds its input x into
M1 and sends the result M1(x) to the cloud. The cloud then
processes M2(M1(x)) and shares the inference results with
the edge if necessary. In the edge-cloud scenario, the cloud
is curious-but-honest trying to recover edge’s input x from
M1(x) through two kinds of IDPA, i.e., the maximum likeli-
hood attack (MLA) and the inverse-network attack (INA) [15].
This threat model is suitable for our client-server scenario in
the way that M1 and M2 are composed of our crypto layers
and clear layers, respectively. Therefore, IDPAs can also be
used to evaluate the privacy of our client’s input. Assuming
that the boundary in C2PI is layer l, we have M1(x) = Ml(x).

Despite the similarities between our client-server scenario and
the edge-cloud scenario in SL, i.e., (1) we both partition a
network into two parts, (2) client and edge need to pass their
outputs to server and cloud, respectively, there is a distinction
between the two settings, i.e., M1 is held by the server in the
client-server scenario, whereas M1 is held by the edge in SL.
Therefore, C2PI and SL address the privacy issue in different
situations. In C2PI, the server trains the network and provides
service based on its property. In SL, the edge users hold both
inference input and a pretrained network but want to move
some inference processes to the server because of the limited
computation and storage capacities at the edge.

MLA recovers the input x by solving an optimization
problem x̂ = argminx̂∥Ml(x̂)−Ml(x)∥22 through gradient
decent at a target layer l. INA constructs an inversion model
M∗ with a single architecture, trains the model by taking
Ml(x

′)(x′ ∈ TraningSet) and x′ as the input and output, and
recovers the input x by querying M∗. Conceptually, this new
model M∗ approximates the inverse function of first l layers
in M. An enhanced INA (EINA) is proposed in [14] where
the inversion model M∗ consists of more powerful residual
blocks [21].

Private Inference schemes. A series of works have been
proposed for two-party PI in the past few years. CryptoNets [6]
proposes a Homomorphic encryption (HE)-only approach,
which requires changing the network structure and retraining
the network with HE-friendly activation functions, such as the
square function. MiniONN [4] first combines SS, Garbled Cir-
cuits (GCs) and linearly homomorphic encryption (LHE), to
perform activation functions like ReLU without changing the
network structure. Gazelle [5] optimizes the LHE techniques to
speed up the inference runtime. XONN [7] leverages only GCs
for binarized neural networks. Delphi [1] splits PI into offline
(preprocessing) and online phases and moves most heavy
cryptographic computations offline. CrypTFlow2 [8] proposes
more efficient protocols for non-linear layers and division,
yielding more than 20× faster PI than Delphi. Cheetah [2],
the state-of-the-art two-party PI strategy, presents an oblivious
transfer (OT)-based protocol for non-linear operations and
achieves 2×−5× speedup than CrypTFlow2. Recently, PI pro-
tocols have also been proposed over the malicious client [11],
[12], [22].

Privacy goals. In C2PI, the client can only learn server’s
network architecture of the crypto layers, and the output of
the inference. All parameters of server’s network should be
hidden. On the other hand, the server can learn only the outputs
of the boundary and clear layers, as well as the inference
output. Client’s private input should not be revealed during
operations of MPC protocols nor recovered by IDPAs. While
C2PI achieves cryptographically formal guarantee on server’s
model parameter privacy, it targets the empirical SSIM-based
protection on client’s input data. Physical attacks such as
side-channel attacks (SCAs) [18], [23] are out of the scope.
However, the defenses against SCAs are possibly to be layered
on top of our technique.



Fig. 1. MLA result on an image from CIFAR-10. When SSIM is below the
threshold (0.3), the recovered image is difficult to identify.
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in clear layers and shares the final result with the client.

III. C2PI: CRYPTO-CLEAR PRIVATE INFERENCE

We now show that the network naturally helps to hide the
original input when the inference procedure enters into deeper
layers.
Case study. We pretend to be the curious server and use
MLA at each layer of a VGG16 [24] model, denoted as
M, to reconstruct the client’s input x, which is one image
from CIFAR-10 [25]. When we target layer l∗, we assume
that we have the intermediate outputs at layers l ≥ l∗, i.e.,
Ml(x)(l ≥ l∗), and we do not have the outputs at layers
l < l∗, i.e., Ml(x)(l < l∗). The attack results are presented
in Figure 1 where SSIM becomes less than 0.3 after layer 10.
This experiment indicates that server cannot recover client’s
input from Ml(x)(l ≥ 10) through MLA. Therefore, server
could potentially be allowed to have layer outputs after layer
10 for a lighter PI procedure without violating the client’s data
privacy.

A. C2PI Framework

Figure 2 shows the C2PI framework. Firstly, the server
searches for the boundary between the crypto and the clear
layers following Algorithm 1. In the semi-honest threat model,
a curious server will not deviate from this algorithm, and
a third-party notary organization can be involved to ensure
honesty. Then, server and client jointly perform the operations
in crypto layers with a chosen two-party PI method, e.g.,

Algorithm 1 Crypto-Clear Boundary Searching
Input: A network model M, the number of layers n, accuracy
threshold δ, noise magnitude λ, ssim-threshold σ
Output: Boundary layer id l′

1: l′ = n− 1
2: avg ssim = IDPA(l′)
3: while avg ssim < σ do
4: l′ = l′ − 1
5: avg ssim = IDPA(l′)
6: end while
7: l′ = l′ + 1
8: n acc = accuracy(l′, λ)
9: while n acc < δ do

10: l′ = l′ + 1
11: n acc = accuracy(l′, λ)
12: end while
13: return l′

Delphi [1] or Cheetah [2]. At the end of PI, client and
server each hold an additive share of the boundary layer’s
output. Client then adds uniform-distributed noise to its share
and reveals the noised share to the server [26], [27]. Server
searches the maximum noise magnitude in Algorithm 1 that
yields an acceptable inference accuracy and deliver this to
client before performing PI. After summing up the two shares,
server performs the operations in clear layers on its own and
reveals the inference output to the client at the end of C2PI.

The boundary searching algorithm (Algorithm 1) contains
two phases. During the first phase (line 1 to line 6), the server
sweeps the layers from tail to the head of the model and applies
IDPA to recover the inference input. Phase 1 terminates at
layer l′ at which IDPA begins to succeed in recovery. The
potential boundary layer, i.e., the last crypto layer, is layer
l′+1. Then, in the second phase (line 7 - line 11), server checks
the accuracy by assuming the input of layer l′+2 becomes the
noised input. If the accuracy is above an agreed threshold δ,
l′ +1 is returned as the boundary layer. Otherwise, the server
checks the layers after l′ + 1 in sequence until obtaining a
satisfying accuracy.

As the operations in crypto layers are performed with
existing PI schemes, the data privacy of both parties at these
layers is formally proved. Recalling that client’s data privacy
at clear layers depends on the quality of the IDPA, we propose
a distillation-based inverse-network attack (DINA) to evaluate
client’s data privacy at clear layers and find the boundary layer.

B. Distillation-Based Inverse Network Attack (DINA)

Despite EINA [14] increasing the complexity of the in-
version model to enhance its inverse ability, it does not
take full advantage that server has access to the intermediate
layer outputs of its own model, which can be used to guide
the training of the inversion model. Therefore, we introduce
distillation points in DINA to help the inversion model better
approximate the target inverse function.
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Figure 3 presents the model architecture in DINA, which is
composed of a sequence of basic inverse blocks. Each basic
inverse block consists of a ResNet basic block [21] and a
dilated convolution layer. Since the ReLU layer significantly
affects the attack, we partition the tentative crypto layers
before l′ into sub-blocks that end with a ReLU layer, namely,
each sub-block only contains one ReLU layer. The proposed
attack then uses a basic inverse block to recover the input of
one sub-block, as shown in Figure 3, each basic inverse block
approximates the inverse function of the sub-block above it.

To better train each basic inverse block, DINA selects
middle points between sub-blocks as distillation points [28]
and applies a fine-grained distillation approach that optimizes
the distance between the output of each basic inverse block
and the feature map on the corresponding distillation point.
The distances are incorporated into a new loss function:

LDINA =

N∑
j=1

αj∥Dj − Ij∥22 + α0∥x− x̂∥22 (1)

where the first term is the weighted sum of distance terms at
distillation points, αj is the coefficient that controls the weight
of the distance at distillation point j, Dj denotes the feature
map at distillation point j in the target model, Ij is the input
of basic inverse block j in DINA model, and N represents the
total number of selected distillation points. The second term
is the distance between the inference input x and the output
x̂ from DINA model.

To assist a distillation point in providing effective guid-
ance on its nearest basic inverse block, the attack applies
monotonously increasing coefficients αj from the output to
input of DINA model: α0 < α1 < α2... < αN , this
ensures that each basic inverse block obtains the most guidance
from its nearest distillation point. In the example shown in
Figure 3, there are two distillation points, colored in red
and orange, respectively. Although the losses at the output
of the DINA model and both distillation points contribute to
optimizing parameters in the basic inverse block 3, the loss at
the orange distillation point has the largest impact due to the
monotonously increasing coefficients.

IV. EVALUATIONS

Our experiments are conducted on AlexNet [25] and vari-
ants of VGG16/19 [24] 1. We train these models on CIFAR-10
and CIFAR-100 [29] with an Nvidia A100 GPU.

1We use variant models with reduced channel size. The models are available
at https://anonymous.4open.science/r/c2pi-256C
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Fig. 4. Comparison of IDPAs including MLA, EINA, and DINA.

A. Comparison of IDPAs

We apply MLA [15], EINA [14], and DINA on each
layer of VGG16 to recover images in CIFAR-10 and CIFAR-
100 datasets. When targeting layer l, MLA solves x̂ =
argminx̂∥Ml(x̂) − Ml(x)∥22 through gradient descent with
10000 iterations and randomly initialized x̂. In EINA, we con-
struct an inversion network M∗ with residual basic blocks [21]
and train it using the loss function of LEINA = ∥x −
M∗(Ml(x))∥22 and stochastic gradient descent optimizer. In
DINA, we introduce distillation points and train M∗ with
the loss function in (1). The coefficients in our training are
monotonously increasing as α0 = 1, α1 = 3, αj = 2 ∗
αj−1(j ≥ 2). Both training processes are with a 0.001 learning
rate. After training the model M∗, we run the inference over
1000 images from each dataset and evaluate the recovery
ability. The noise magnitude and the IDPA failure threshold
for this experiment are 0.1 and 0.3, respectively.

Attack results are presented in Figure 4, where DINA
achieves 0.229 and 0.205 more average SSIM than MLA at
layer 7 on CIFAR-10 and CIFAR-100, respectively. DINA also
presents 0.108 and 0.145 more SSIM than EINA at layer 7 on
CIFAR-10 and CIFAR-100.

Recalling that Algorithm 1 first searches for a potential
boundary layer after which IDPA begins to fail. MLA, EINA,
and DINA return layers 7.5, 8.5, and 9 as the potential
boundary layer for CIFAR-10, respectively, and layers 7.5, 9.5,
and 10 for CIFAR-100, respectively. Therefore, DINA finds a
more conservative boundary than MLA and EINA.

B. Choice of DINA’s Loss Coefficients

In DINA, we use monotonously increasing coefficients
αj(j ≥ 0) in the loss function for more effective guidance
on the basic inverse blocks. In this section, we compare
DINA with increasing coefficients α0 = 1, α1 = 3, αj =
2∗αj−1(j ≥ 2), denoted as DINA-c1, and DINA with uniform
coefficients αj = 1(j ≥ 0), denoted as DINA-c2. Figure 5
presents the attack results where DINA-c1 achieves a higher
average SSIM. We use DINA-c1 in all of our experiments.

C. Effects of Adding Noise

Now we show that adding noise helps to thwart DINA. We
use DINA to attack VGG16 on CIFAR-10 and CIFAR-100
with noise magnitude changing from 0 to 0.5. The attack
results are presented in Figure 6 and we conclude that a
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Fig. 5. Attack results of DINA-c1 and DINA-c2 on VGG16. The improve-
ments are the increased average SSIM gained by DINA-c1.
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higher noise magnitude leads to a more vigorous defense
against DINA and potentially results in an earlier boundary
layer and more computational and communication savings.
However, the inference accuracy degrades with the increasing
noise magnitude as shown in Figure 7, where the accuracy at
layer l is tested after feeding noised input to this layer. To
balance the trade-off between the defense level and accuracy,
we choose the noise magnitude of 0.1 in our experiments.

D. Find the Crypto-Clear Boundary

We apply the proposed boundary searching algorithm (Al-
gorithm 1) to AlexNet and VGG16/19 on CIFAR-10 and
CIFAR-100. In the first phase of the searching process, we
find a potential boundary after which the server cannot recover
client’s input through DINA. We then check the accuracy with
noise being added at these layers and decide the boundary
as the earliest layer presenting less than 2.5% reduction in
accuracy, a target that is similar to prior works [20], [30]. This
searching procedure is presented in Figure 8. As users are free
to tune the DINA failure threshold (σ), we show boundaries
and accuracy corresponding to σ of 0.2 and 0.3 in Table I.

E. Computational Costs

Our implementations are built on top of Cheetah [2] and
Delphi [1]. All the experiments in Table II are performed on
Ubuntu 22.04 with 11GB of RAM. We run our benchmarks
on two network settings, i.e., LAN and WAN. The network
bandwidth and round-trip time are around 384MBps and 0.3ms
in LAN, and 44MBps and 40ms in WAN [2].
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TABLE I

C2PI BOUNDARY AND ACCURACY

Dataset Network Full PI C2PI (σ = 0.2) C2PI (σ = 0.3)

Baseline Acc. Boundary Acc. Boundary Acc.

CIFAR-10
AlexNet 81.56 5 81.97 4 79.32
VGG16 92.33 13.5 92.61 9 92.49
VGG19 92.38 11 92.66 9 92.42

CIFAR-100
AlexNet 45.66 5 45.36 5 45.36
VGG16 68.44 13.5 68.44 10 66.53
VGG19 69.54 11 67.3 9 67.06

In Table II, we compare the full PI costs with C2PI with
two SSIM thresholds (0.2 and 0.3) on VGG16 and VGG19.
When the crypto layers are performed with Delphi, C2PI

achieves up to 3.88× and 2.9× speedup for VGG16 and
VGG19, respectively. When the crypto layers were performed
with Cheetah, C2PI was about 1.1 × −1.82× faster than
full Cheetah, and requires ∼2.5× less communication. C2PI
(σ = 0.2) presents similar costs with full PI for VGG16 mainly
because the boundary is quite late here.

V. CONCLUSION

In this paper, we propose an efficient two-party PI frame-
work, C2PI, which leverages IDPA-based privacy evaluation
to relax existing PI methods. We also propose a powerful
distillation-based IDPA, DINA, that can recover higher-quality
images than its alternatives. In C2PI, DINA is used to find
a rigid boundary that guarantees the proposed IDPA-based
privacy. Users can set the privacy level by tuning the DINA’s
failure threshold. Moreover, C2PI can be applied to any
existing two-party PI scheme over semi-honest threat model,
and our experimental results indicate that C2PI helps to reduce
the computational costs of the state-of-the-art PI scheme.

Besides its significant role in C2PI, DINA also helps address
the privacy issue in split learning. We recognize that emerging
IDPAs may throw a shadow on current C2PI. However, we
are glad to replace DINA with a more aggressive IDPA in
C2PI. On the other hand, we believe that cheap but effective
countermeasures will appear accordingly and fortify C2PI. Our
future work includes exploring and applying more defenses
against IDPA to preserve client’s data privacy, and embedding
C2PI with PI methods that go beyond the semi-honest threat
model, e.g., the malicious-client threat model.
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Fig. 8. Find the boundary for multiple models using DINA with 0.3 of failure threshold. Step 1: find a potential boundary after which the average SSIM
begins to be below the threshold. Step 2: check the corresponding accuracy. Push the boundary at later layer until we obtain a satisfactory accuracy.

TABLE II
PERFORMANCE COMPARISON OF C2PI AND DELPHI/CHEETAH ON CIFAR-10.

Network Method
Full PI C2PI (σ = 0.2) C2PI (σ = 0.3)

Latency (s) Commu. (MB) Latency (s) Commu. (MB)
(Improv.)

Latency (s) Commu. (MB)
(Improv.)

LAN WAN LAN (Improv.) WAN (Improv.) LAN (Improv.) WAN (Improv.)

VGG16 Delphi [1] 6166.47 9966.48 5163 6109.47 (∼1x) 9869.12 (∼1x) 5163 (∼1x) 2351.5 (2.62x) 2568.45 (3.88x) 5143 (∼1x)
Cheetah [2] 13.72 25.27 179.64 14.38 (1.19x) 25.08 (1x) 163.8 (1.1x) 9.38 (1.46x) 14.76 (1.71x) 71.89 (2.5x)

VGG19 Delphi [1] 12780.36 13265.52 5184 5510.23 (2.3x) 6068.12 (2.19x) 5162 (∼1x) 4409.95 (2.9x) 5373.34 (2.47x) 5143 (∼1x)
Cheetah [2] 16.81 27.67 211.4 11.89 (1.51x) 18.23 (1.66x) 89.55 (2.39x) 11.51 (1.46x) 15.23 (1.82x) 76.83 (2.75x)

REFERENCES

[1] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi: A
cryptographic inference service for neural networks,” in 29th USENIX Security
Symposium (USENIX Security 20), Aug. 2020.

[2] Z. Huang, W. jie Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast secure two-
party deep neural network inference.” Cryptology ePrint Archive, Paper 2022/207,
2022.

[3] S. Kundu, Q. Sun, Y. Fu, M. Pedram, and P. Beerel, “Analyzing the confidentiality
of undistillable teachers in knowledge distillation,” Advances in Neural Information
Processing Systems, vol. 34, pp. 9181–9192, 2021.

[4] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network predictions via
minionn transformations,” in Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pp. 619–631, 2017.

[5] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}: A low
latency framework for secure neural network inference,” in 27th USENIX Security
Symposium (USENIX Security 18), pp. 1651–1669, 2018.

[6] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,
“Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy,” in International conference on machine learning, pp. 201–210, PMLR,
2016.

[7] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and F. Koushanfar,
“{XONN}:{XNOR-based} oblivious deep neural network inference,” in 28th
USENIX Security Symposium (USENIX Security 19), pp. 1501–1518, 2019.

[8] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow2: Practical 2-party secure inference,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security,
pp. 325–342, 2020.

[9] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu: Fast privacy-preserving machine
learning on the gpu,” in 2021 IEEE Symposium on Security and Privacy (SP),
pp. 1021–1038, IEEE, 2021.

[10] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and L. van der
Maaten, “Crypten: Secure multi-party computation meets machine learning,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 4961–4973, 2021.

[11] G. Xu, X. Han, T. Zhang, H. Li, and R. H. Deng, “Simc 2.0: Improved secure ml
inference against malicious clients,” arXiv preprint arXiv:2207.04637, 2022.

[12] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa, “Muse: Secure inference
resilient to malicious clients,” in 30th USENIX Security Symposium (USENIX
Security 21), pp. 2201–2218, 2021.

[13] L. Shen, Y. Dong, B. Fang, J. Shi, X. Wang, S. Pan, and R. Shi, “Abnn2: secure
two-party arbitrary-bitwidth quantized neural network predictions,” in Proceedings
of the 59th ACM/IEEE Design Automation Conference, pp. 361–366, 2022.

[14] J. Li, A. S. Rakin, X. Chen, Z. He, D. Fan, and C. Chakrabarti, “Ressfl: A resistance
transfer framework for defending model inversion attack in split federated learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10194–10202, 2022.

[15] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against collaborative
inference,” in Proceedings of the 35th Annual Computer Security Applications
Conference, pp. 148–162, 2019.

[16] Z. Liu, Z. Wu, C. Gan, L. Zhu, and S. Han, “Datamix: Efficient privacy-preserving
edge-cloud inference,” in European Conference on Computer Vision, pp. 578–595,
2020.

[17] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE transactions on
image processing, vol. 13, no. 4, pp. 600–612, 2004.

[18] Y. Zhang, R. Yasaei, H. Chen, Z. Li, and M. A. Al Faruque, “Stealing neural
network structure through remote fpga side-channel analysis,” IEEE Transactions
on Information Forensics and Security, vol. 16, pp. 4377–4388, 2021.

[19] Z. Ghodsi, N. K. Jha, B. Reagen, and S. Garg, “Circa: Stochastic relus for private
deep learning,” Advances in Neural Information Processing Systems, vol. 34,
pp. 2241–2252, 2021.

[20] M. Cho, A. Joshi, B. Reagen, S. Garg, and C. Hegde, “Selective network lin-
earization for efficient private inference,” in International Conference on Machine
Learning, pp. 3947–3961, PMLR, 2022.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[22] N. Chandran, D. Gupta, S. L. B. Obbattu, and A. Shah, “Simc: Ml inference secure
against malicious clients at semi-honest cost,” Cryptology ePrint Archive, 2021.

[23] S. Maji, U. Banerjee, and A. P. Chandrakasan, “Leaky nets: Recovering embed-
ded neural network models and inputs through simple power and timing side-
channels—attacks and defenses,” IEEE Internet of Things Journal, vol. 8, no. 15,
pp. 12079–12092, 2021.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, 2012.

[26] N. D. Pham, A. Abuadbba, Y. Gao, T. K. Phan, and N. Chilamkurti, “Binarizing
split learning for data privacy enhancement and computation reduction,” arXiv
preprint arXiv:2206.04864, 2022.

[27] T. Titcombe, A. J. Hall, P. Papadopoulos, and D. Romanini, “Practical de-
fences against model inversion attacks for split neural networks,” arXiv preprint
arXiv:2104.05743, 2021.

[28] S. Kundu and S. Sundaresan, “Attentionlite: Towards efficient self-attention models
for vision,” in ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2225–2229, IEEE, 2021.

[29] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[30] S. Kundu, S. Lu, Y. Zhang, J. Liu, and P. A. Beerel, “Learning to linearize deep
neural networks for secure and efficient private inference,” ICLR, 2023.


