
Adversarial Robustness for Tabular Data through
Cost and Utility Awareness

Anonymous Author(s)
Affiliation
Address
email

Abstract

Many machine learning applications (credit scoring, fraud detection, etc.) use1

data in the tabular domains. Adversarial examples can be especially damaging2

for these applications. Yet, existing works on adversarial robustness mainly focus3

on machine-learning models in the image and text domains. We argue that due to4

the differences between tabular data and images or text, existing threat models are5

inappropriate for tabular domains. These models do not capture that cost can be6

more important than imperceptibility, nor that the adversary could ascribe different7

value to the utility obtained from deploying different adversarial examples. We8

show that due to these differences the attack and defence methods used for images9

and text cannot be directly applied to the tabular setup. We address these issues10

by proposing new cost and utility-aware threat models tailored to capabilities and11

constraints of attackers targeting tabular domains. We show that our approach is12

effective on two tabular datasets corresponding to applications for which adversarial13

examples can have economic and social implications.14

1 Introduction15

Adversarial examples are inputs deliberately crafted by an adversary to cause a classification mistake.16

They pose a threat in applications for which such mistakes can have a negative impact in deployed17

models (e.g., a financial loss [1] or a security breach [2–4]). The literature on adversarial examples18

largely focuses on image [5–10] and text domains [11–16]. Yet, many of the applications where19

adversarial examples are most damaging or helpful are not images or text. Fraud and abuse detection20

systems [17], risk-scoring systems [1], operate on tabular data: A cocktail of categorical, ordinal, and21

numeric features. As opposed to images, each of these features has its own different semantics. The22

properties of the image domain have shaped the way adversarial examples and adversarial robustness23

are approached in the literature [8], and have greatly influenced adversarial robustness research in the24

text domain. In this paper, we argue that, in tabular domains, adversarial examples are of a different25

nature and adversarial robustness has a different meaning.26

We argue that two high-level differences need to be addressed: (a) “imperceptibility”, the main27

constraint in existing image and text adversarial examples, is ill-defined and can be irrelevant for28

tabular data; and (b) existing adversarial examples assume all adversarial inputs have the same value29

for the adversary, while in tabular domains different adversarial examples can bring different gain to30

the adversary. Authors in the literature commonly formalize the concept of “an example deliberately31

crafted to cause a misclassification” as a natural example, i.e., an example coming from the data32

distribution, that is imperceptibly modified by an adversary so that the classifier’s decision changes.33

Typically, they formalize imperceptibility as closeness according to a mathematical distance such as34

Lp [18, 19]. In tabular data, however, imperceptibility is not necessarily relevant. Let us consider the35

Submitted to the ML Safety Workshop at the 36th Conference on Neural Information Processing Systems
(NeurIPS 2022). Do not distribute

following fraud detection toy example: An adversary aims to create a fraudulent financial transaction36

(e.g., using stolen credit card credentials). in an app such as PayPal. Assume a fraud detector takes as37

input two features: (1) transaction amount, and (2) device from which the transaction was sent.38

In this example, imperceptibility is not well-defined. Is a modification to the amount feature from39

$200 to $201 imperceptible? What increase or decrease would we consider perceptible? The issue is40

even more apparent with categorical data, for which standard distances such as L2, L∞ cannot even41

capture imperceptibility: Is a change of the device feature from Android to an iPhone imperceptible?42

Even if imperceptibility was well-defined, imperceptibility might not be relevant. Should we only be43

concerned about adversaries making “imperceptible” changes, e.g., modifying amount from $20044

to $201? What about attack vectors in which the adversary evades detection while changing the45

transaction by a “perceptible” amount –from $200 to $2,000?46

We argue that in tabular data the primary constraint should be adversarial cost, rather than imper-47

ceptibility. Instead of looking at how visually or semantically similar feature vectors are, the focus48

should be on how costly it is for an adversary to enact a modification. Costs capture the effort49

of the adversary, e.g., financial or computational. “How much money does the adversary have to50

spend to evade the detector?” better captures the possibility that an adversary deploys an attack than51

establishing a threshold on the Lp distance the adversary would tolerate.52

Different tabular adversarial examples are of different value to the adversary. In the literature,53

except for Zhang and Evans [20], most formalizations of adversarial robustness implicitly consider54

that all adversarial examples are equal in their importance [6, 10, 21–23]. In tabular data domains,55

however, different adversarial examples can bring very different gain to the adversary. In the fraud56

detection example, if a fraudulent transaction with transaction amount of $2,000 successfully evades57

the detector, it could be significantly more profitable than a transaction with amount of $200.58

Using cost as the primary constraint for adversarial examples provides a natural way to incorporate59

the variability in adversarial gain. The adversary is expected to care about the profit that they would60

obtain from the attack, i.e., the difference between the cost associated with crafting an adversarial61

example, and the gain from successfully using it. We call this profit the utility of the attack. We show62

how utility can be incorporated into the design of attacks to ensure their economic profitability, and63

into the design of defences to ensure protection against adversaries that focus on profit.64

In this paper, we introduce a framework to build adversarial examples tailored to tabular data. Our65

contributions are:66

• We propose two adversarial objectives for tabular data that address the limitations of67

traditional adversary examples: a cost-bounded objective that substitutes standard impercep-68

tibility constraints with adversarial costs; and a novel utility-bounded objective in which the69

adversary adjusts their expenditure on different adversarial examples proportionally to the70

potential gains from deploying them.71

• We perform an empirical evaluation of attacks and defences with respect to proposed72

objectives in realistic conditions demonstrating their applicability to real-world security73

scenarios.74

2 Adversarial Objectives in Tabular Data75

Notations. The input domain’s feature space X is composed of m features: X ⊆ X1×X2×· · ·×Xn.76

For an example x ∈ X, we denote the value of its i-th feature as xi. Features xi can be categorical,77

ordinal, and numeric. Each example is associated to a binary label y ∈ {0, 1}. We assume the78

adversary’s target to be a binary classifier f(x) ∈ {0, 1} that aims to predict the class y to which an79

example x belongs. In terms of capabilities, we assume the adversary can only perform modifications80

that are within the domain constraints. E.g in the fraud-detection example, the adversary can change81

the transaction amount, but the value must be positive. For a given initial labelled example (x, y),82

we denote the set of feasible adversarial examples that can be reached within the capabilities of the83

adversary as F(x, y) ⊆ X.84

Cost-Bounded Objective. In the standard way to obtain an adversarial example [10], the adversary85

aims to construct an example that maximizes the loss `(·, ·) incurred by the target classifier, while86

2

keeping the Lp-distance from the initial example bounded:87

max
x′∈F(x,y)

`(η(x′), y) s.t. ‖x′ − x‖p ≤ ε (1)

This objective implicitly assumes that the adversary wants to keep the adversarial example as similar88

to the initial example as possible in terms of the examples’ feature values.89

Formally, we associate a cost to the modifications needed to generate any adversarial example90

x′ ∈ F(x, y) (from the original example (x, y)). We encode this cost as a function c : X× X→ R+.91

We assume the generation cost is zero if and only if no change is enacted: c(x, x) = 0.92

We assume that the cost-bounded adversary has a budget ε. The adversary aims to find any example93

that flips the classifier’s decision and that is within the cost budget:94

max
x′∈F(x)

1[f(x′) 6= y] s.t. c(x, x′) ≤ ε (2)

Alternatively, the adversary can optimize a standard surrogate objective which ensures that the95

optimization problem can be solved in practice:96

max
x∈F(x,y)

`(η(x), y) s.t. c(x, x′) ≤ ε, (3)

Utility-Bounded Objective. The cost-bounded adversarial objective solves the issue of impercep-97

tibility not being a suitable constraint for tabular data. It does not, however, tackle the problem of98

heterogeneity of examples: the adversary cannot assign different importance to different adversarial99

examples.100

We propose to solve it by introducing the gain of an attack. The gain, g(x∗) : X→ R+, represents101

the reward (e.g., the revenue) that the adversary receives if their attack using adversarial example x∗102

is successful. For example, in fraud detection gain would be a transaction amount, i.e. how much103

money a fraudster can steal.104

We also introduce the concept of utility of a successful attack as the net benefit of launching the105

attack. We define the utility ux,y(x∗) of an attack mounted with adversarial example x∗ as simply106

the gain minus the costs:107

ux,y(x∗) , g(x∗)− c(x, x∗), (4)
where (x, y) is the initial example.108

The adversary can learn whether an example x∗ evades the classifier or not (i.e., whether f(x∗) 6= y).109

Then, they can decide to deploy an attack with an adversarial example x∗ only if the utility of the110

attack exceeds a given margin τ ≥ 0. Otherwise, the adversary discards this adversarial example.111

Formally, we can model this process by using a utility constraint instead of a cost constraint:112

max
x∈F(x,y)

1[f(x) 6= y] s.t. ux,y(x) ≥ τ (5)

Related work on adversarial costs. Our generic cost-bounded objective is not the only possible113

approach to model attacks in tabular domains. For example, works on adversarial robustness114

in the context of decision tree-based classifiers often use per-feature constraints as adversarial115

constraints [24–26]. At the low level, these constraints are formalized either as bounds on L∞116

distance [25, 26], or using functions determining constraints for each specific feature value [24]. In117

these approaches feature constraints are independent. Such independence simplifies the problem, e.g.,118

the usage of L∞ independent constraints enables to split a multidimensional optimization problem119

into a combination of simple one-dimension tasks [25]; or to limit the set of points affected by the120

split change [24].121

Related work on utility-oriented adversaries. The literature on strategic classification also considers122

utility-oriented objectives [27–29] for their agents. In this body of work, however, agents are not123

considered adversaries, and the gain is typically limited to {+1,−1} reflecting the classifier decision.124

Our model supports arbitrary gain, which enables us to model broader interests of the adversary such125

as revenue. Only the work by Sundaram et al. [30] supports gains different from +1 or −1, but they126

focus on PAC-learning guarantees in the case of linear classifiers, whereas our goal is to provide127

practical attack and defence algorithms for a wider family of classifiers.128

3

1 3 10 30 ∞
Attack cost bound ε

0

100

200

V
al

ue

Metric = Adv. utility

1 3 10 30 ∞
Attack cost bound ε

0.0

0.5

1.0
Metric = Adv. success

0 10 50 100 500 1K
Attack margin τ

0

100

200

V
al

ue

Metric = Adv. utility

0 10 50 100 500 1K
Attack margin τ

0.0

0.5

1.0
Metric = Adv. success

Model

Clean (Acc: 0.77)

UB τ = 500 (Acc: 0.75)

UB τ = 200 (Acc: 0.73)

UB τ = 100 (Acc: 0.70)

UB τ = 50 (Acc: 0.69)

UB τ = 20 (Acc: 0.69)

UB τ = 10 (Acc: 0.66)

UB τ = 0 (Acc: 0.68)

(a) IEEECIS

1 10 100 1K 10K
Attack cost bound ε

250000

500000

V
al

ue

Metric = Adv. utility

1 10 100 1K 10K
Attack cost bound ε

0.5

1.0
Metric = Adv. success

30 40 50 60 80 100
Att. margin τ (105×)

0

200000

400000

V
al

ue

Metric = Adv. utility

30 40 50 60 80 100
Att. margin τ (105×)

0.0

0.5

Metric = Adv. success Model

Clean (Acc: 0.68)

UB τ = 1M (Acc: 0.68)

UB τ = 800K (Acc: 0.66)

UB τ = 600K (Acc: 0.61)

UB τ = 400K (Acc: 0.60)

UB τ = 300K (Acc: 0.57)

(b) HomeCredit

Figure 1: Utility-Bounded adversarial training for different adversarial utility margins τ . Evalua-
tion against cost-bounded (left) and utility-bounded (right) adversaries. We show the adversary’s
success and utility (y-axis) versus the adversary’s attack budget ε or desired margin τ (x-axis). On
HomeCredit, the UB training decreases the performance of both UB and CB attacks, being robust-
ness better against the former. Even when enabling a large profit margin (τ = 1M) the attack success
rate decreases by 40%, at the same time not affecting the accuracy.

3 Algorithms and Evaluation129

In the full version of this work, we introduce algorithms for attacks and defences within the proposed130

adversarial models. We briefly summarize them next, with details provided in the Appendix.131

Attack Strategies For the evaluation of our adversarial models, we implement attacks within both132

adversarial objectives using a greedy search algorithm. We describe the algorithm and its design133

choices in Appendix A. As a comparison baseline, we adapt the PGD algorithm [10], a common134

algorithm for generating adversarial examples, to our cost model, similarly to Ballet et al. [31]. In135

Appendix C.2 we show that the greedy algorithm is efficient and outperforms a PGD-based baseline.136

Defence With Adversarial Training To train adversarially robust models, we relax the constraint137

sets of the original problems, simplifying them to weighted L1 ball constraints. With such relaxed138

constraints, a PGD-based adversarial training [10] with projection onto the weighted L1 ball becomes139

feasible. We detail this method in Appendix B. For the evaluation of the method, we use two140

datasets: HomeCredit [32] and IEEECIS [33], for which we estimate realistic cost and gain models141

(see Appendix E. In Fig. 1, we show the results of the evaluation for models trained against the142

utility-bounded adversary. These models show decent performance against cost-bounded, close to143

“classical”, adversaries. In Appendix C.3, we detail the experimental setup, and show the comparisons144

of training against both adversarial objectives, and a detailed study of accuracy-robustness tradeoffs.145

4 Conclusions146

In this paper, we revisited the problem of adversarial robustness when the target machine-learning147

model operates on tabular data.We introduced a new framework to design attacks and defences that148

account for the constraints existing in tabular adversarial scenarios: adversaries are limited by a budget149

to modify features, and adversaries may assign different utilities to different examples. Evaluating150

these attacks and defences on three real datasets we showed that our novel utility-based defence151

mechanism, not only generates models robust against utility-aware adversaries, but also against152

adversaries with a limited budget. On the contrary, performing adversarial training considering a153

cost-bounded adversary—as traditionally done in the literature—is a poor defence against adversaries154

focused on utility in some scenarios.155

4

References156

[1] Salah Ghamizi, Maxime Cordy, Martin Gubri, Mike Papadakis, Andrey Boytsov, Yves Le157

Traon, and Anne Goujon. Search-based adversarial testing and improvement of constrained158

credit scoring systems. In ESEC/FSE, 2020.159

[2] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp, Konrad Rieck,160

Igino Corona, Giorgio Giacinto, and Fabio Roli. Yes, machine learning can be more secure! A161

case study on android malware detection. CoRR, 2017.162

[3] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick D. Mc-163

Daniel. On the (statistical) detection of adversarial examples. CoRR, 2017.164

[4] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giacinto, Claudia165

Eckert, and Fabio Roli. Adversarial malware binaries: Evading deep learning for malware166

detection in executables. CoRR, 2018.167

[5] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.168

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. CoRR, 2013.169

[6] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-170

sarial examples. CoRR, 2014.171

[7] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and172

Ananthram Swami. The limitations of deep learning in adversarial settings. In Euro S&P, 2016.173

[8] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple174

and accurate method to fool deep neural networks. In CVPR, 2016.175

[9] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks.176

In S&P, 2017.177

[10] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.178

Towards deep learning models resistant to adversarial attacks. CoRR, 2017.179

[11] Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I Jordan. Greedy180

attack and Gumbel attack: Generating adversarial examples for discrete data. JMLR, 2020.181

[12] Yutong Wang, Yufei Han, Hongyan Bao, Yun Shen, Fenglong Ma, Jin Li, and Xiangliang Zhang.182

Attackability characterization of adversarial evasion attack on discrete data. In KDD, 2020.183

[13] Boxin Wang, Hengzhi Pei, Han Liu, and Bo Li. AdvCodec: Towards a unified framework for184

adversarial text generation. CoRR.185

[14] Qi Lei, Lingfei Wu, Pin-Yu Chen, Alexandros G Dimakis, Inderjit S Dhillon, and Michael186

Witbrock. Discrete adversarial attacks and submodular optimization with applications to text187

classification. CoRR, 2018.188

[15] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial189

examples for text classification. In ACL, 2018.190

[16] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang Shi. Deep text191

classification can be fooled. In IJCAI, 2018.192

[17] Michele Carminati, Luca Santini, Mario Polino, and Stefano Zanero. Evasion attacks against193

banking fraud detection systems. In RAID, 2020.194

[18] Mahmood Sharif, Lujo Bauer, and Michael K. Reiter. On the suitability of lp-norms for creating195

and preventing adversarial examples. CoRR, 2018.196

[19] Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial attacks on197

deep learning models in natural language processing: A survey.198

[20] Xiao Zhang and David Evans. Cost-sensitive robustness against adversarial examples. CoRR,199

2018.200

5

[21] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I.201

Jordan. Theoretically principled trade-off between robustness and accuracy. In ICML, 2019.202

[22] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. Scaling provable adversarial203

defenses. CoRR, 2018.204

[23] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John P. Dickerson, Christoph Studer,205

Larry S. Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In NeurIPS,206

2019.207

[24] Yizheng Chen, Shiqi Wang, Weifan Jiang, Asaf Cidon, and Suman Jana. Cost-aware robust tree208

ensembles for security applications. In USENIX, 2021.209

[25] Maksym Andriushchenko and Matthias Hein. Provably robust boosted decision stumps and210

trees against adversarial attacks. 2019.211

[26] Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. Robust decision trees against212

adversarial examples. In ICML, 2019.213

[27] Moritz Hardt, Nimrod Megiddo, Christos H. Papadimitriou, and Mary Wootters. Strategic214

classification. In ITCS, 2016.215

[28] Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven Wu. Strategic216

classification from revealed preferences. In EC, 2018.217

[29] Smitha Milli, John Miller, Anca D Dragan, and Moritz Hardt. The social cost of strategic218

classification. In FAT*, 2019.219

[30] Ravi Sundaram, Anil Vullikanti, Haifeng Xu, and Fan Yao. Pac-learning for strategic classifica-220

tion. In Marina Meila and Tong Zhang, editors, ICML, 2021.221

[31] Vincent Ballet, Jonathan Aigrain, Thibault Laugel, Pascal Frossard, Marcin Detyniecki, et al.222

Imperceptible adversarial attacks on tabular data. In Robust AI in FS NeurIPS Workshop, 2019.223

[32] Kaggle. Home credit default risk, 2019. URL https://www.kaggle.com/c/224

home-credit-default-risk.225

[33] Kaggle. IEEE-CIS fraud detection, 2019. URL https://www.kaggle.com/c/226

ieee-fraud-detection.227

[34] Bogdan Kulynych, Jamie Hayes, Nikita Samarin, and Carmela Troncoso. Evading classifiers in228

discrete domains with provable optimality guarantees. arXiv preprint arXiv:1810.10939, 2018.229

[35] Roni Stern, Rami Puzis, and Ariel Felner. Potential search: A bounded-cost search algorithm.230

In ICAPS, 2011.231

[36] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determina-232

tion of minimum cost paths. IEEE Trans. Sys. Sci. and Cybernetics, 1968.233

[37] Roni Stern, Ariel Felner, Jur van den Berg, Rami Puzis, Rajat Shah, and Ken Goldberg.234

Potential-based bounded-cost search and anytime non-parametric A*. Artificial Intelligence,235

2014.236

[38] Richard E. Korf. Iterative-Deepening-A*: An optimal admissible tree search. In Joint Confer-237

ence on Artificial Intelligence, 1985.238

[39] Rina Dechter and Judea Pearl. Generalized best-first search strategies and the optimality of A*.239

J. ACM, 1985.240

[40] Samir Khuller, Anna Moss, and Joseph Naor. The budgeted maximum coverage problem. Inf.241

Process. Lett., 1999.242

[41] Laurence A. Wolsey. Maximising real-valued submodular functions: Primal and dual heuristics243

for location problems. Math. Oper. Res., 1982.244

6

https://www.kaggle.com/c/home-credit-default-risk
https://www.kaggle.com/c/home-credit-default-risk
https://www.kaggle.com/c/home-credit-default-risk
https://www.kaggle.com/c/ieee-fraud-detection
https://www.kaggle.com/c/ieee-fraud-detection
https://www.kaggle.com/c/ieee-fraud-detection

[42] Eden Levy, Yael Mathov, Ziv Katzir, Asaf Shabtai, and Yuval Elovici. Not all datasets are born245

equal: On heterogeneous data and adversarial examples. CoRR, 2020.246

[43] Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. Evasion and hardening of tree ensemble247

classifiers. In ICML, 2016.248

[44] Francesco Cartella, Orlando Anunciacao, Yuki Funabiki, Daisuke Yamaguchi, Toru Akishita,249

and Olivier Elshocht. Adversarial attacks for tabular data: Application to fraud detection and250

imbalanced data. SafeAI Workshop at AAAI, 2021.251

[45] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial252

training. In ICLR, 2020.253

[46] Konstantinos Slavakis, Yannis Kopsinis, and Sergios Theodoridis. Adaptive algorithm for sparse254

system identification using projections onto weighted l1 balls. In ICASSP, 2010.255

[47] Guillaume Perez, Sebastian Ament, Carla Gomes, and Michel Barlaud. Efficient projection256

algorithms onto the weighted l1 ball, 2020.257

[48] Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa Abebe, and Salvatore258

Orlando. Treant: training evasion-aware decision trees. Data Min. Knowl. Discov., 2020.259

[49] Daniël Vos and Sicco Verwer. Efficient training of robust decision trees against adversarial260

examples. In Marina Meila and Tong Zhang, editors, ICML, 2021.261

[50] Zafar Gilani, Ekaterina Kochmar, and Jon Crowcroft. Classification of twitter accounts into262

automated agents and human users. In ASONAM, 2017.263

[51] Experian. What is piggybacking credit, 2019. URL https://www.experian.com/blogs/264

ask-experian/what-is-piggybacking-credit/.265

[52] Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In AAAI,266

2021.267

[53] Ira Pohl. Heuristic search viewed as path finding in a graph. Artif. Intell., 1970.268

[54] Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial robustness against the union of269

multiple perturbation models. In International Conference on Machine Learning, 2020.270

A Finding adversarial examples in tabular domains271

In this section, we propose practical algorithms for finding adversarial examples suitable to achieve272

the adversarial objectives we introduce in Section 2.273

A.1 Graphical Framework274

The optimization problems in Section 2 can seem daunting due to the large cardinality of F(x, y)275

when the feature space is large. To make the problems tractable, we transform them into graph-276

search problems, following the approach by Kulynych et al. [34]. Consider a state-space graph277

G(x) = (V,E). Each node corresponds to a feasible example in the feature space, V = F(x, y)∪{x}.278

Edges between two nodes x and x′ exist if and only if they differ in value of one feature: there exists279

i ∈ [n] such that xi 6= x′i, and xj = x′j for all j 6= i. In other words, the immediate descendants of280

a node in the graph consist of all feasible feature vectors that differ from the parent in exactly one281

feature value.282

Using this state-space graph abstraction, the objectives in Section 2 can be modelled as graph search283

problems. Even though the graph size is exponential in the number of feature values, the search can284

be efficient, because the search does not need the graph to be complete. Thus, we can construct the285

graph on the fly.286

Building the state-space graph is straightforward when features take discrete values. To encode287

continuous features in the graph we discretize them by only considering changes to a continuous288

7

https://www.experian.com/blogs/ask-experian/what-is-piggybacking-credit/
https://www.experian.com/blogs/ask-experian/what-is-piggybacking-credit/
https://www.experian.com/blogs/ask-experian/what-is-piggybacking-credit/

feature i that lie within a finite subset of its domain Xi — in particular, on a discrete grid. The search289

efficiency depends on the size of the grid. As the grid gets coarser, finding adversarial examples290

becomes easier. This efficiency comes at the cost of potentially missing adversarial examples that are291

not represented on the grid but could fulfil the adversarial constraints with less cost or higher utility.292

A.2 Attacks as Graph Search293

In the remainder of the paper we make the following assumptions about the adversarial model:294

Assumption 1 (Modular costs). The adversary’s costs are modular: they decompose by features.295

Formally, changing the value of each feature i from xi to x′i has the associated cost ci(xi, x′i) > 0,296

and the total cost of modifying x into x′ is a sum of individual feature-modification costs:297

c(x, x′) =

n∑
i

ci(xi, x
′
i) (6)

The state-space graph can encode modular costs by assigning weights to the graph edges. An edge298

between x and x′ has an associated weight of ci(xi, x′i), where i is the index of the feature that differs299

between x and x′. For pairs of examples x(0) and x(t) that differ in more than one feature, the cost300

c(x(0), x(t)) is the sum of the edge costs along the shortest path from x(0) to x(t).301

Assumption 2 (Constant gain). For any initial example (x, y), the adversary cannot change the gain:302

303

∀x′ ∈ F(x, y) : g(x) = g(x′) (7)

This follows the approach in utility-oriented strategic classification (as detailed in Section 2). This304

assumption is not formally required for our attack algorithms, described next in this section, but we305

focus on this setting in our empirical evaluations in Appendix C.306

Strategies to find adversarial examples. Under the constant per-instance gain, and modular-cost307

assumptions, the cost-bounded and utility-bounded adversaries look for any adversarial example308

that is within a (per-example) cost bound. These adversarial goals can be seen as instances of309

bounded-cost search [35].310

We start with the best-first search (BFS) [36, 34], a flexible meta-algorithm that generalizes many311

common graph search algorithms. In its generic version (Algorithm 1) BFS keeps a bounded priority312

queue of open nodes. It iteratively pops the node v with the highest score value from the queue (best313

first), and adds its immediate descendants to the queue. This is repeated until the queue is empty. The314

algorithm returns the node with the highest score out of all popped nodes.315

The BFS algorithm is parameterized by the scoring function s : V × V = X × X and the size of316

the priority queue B. Different choices of the scoring function yield search algorithms suited for317

solving different graph-search problems, such as Potential Search for bounded-cost search [35, 37],318

and A∗ [38, 39] for finding the minimal-cost paths. When B =∞, the algorithm might traverse the319

full graph and is capable of returning the optimal solution. As the size of B decreases, the optimality320

guarantees are lost. When B = 1 BFS becomes a greedy algorithm that myopically optimizes the321

scoring function. When 1 < B <∞ we get a beam search algorithm that keeps B best candidates at322

each iteration.323

To achieve the adversarial objectives in Section 2, we propose to use a concrete instantiation of324

BFS, what we call the Universal Greedy (UG) algorithm. Inspired by heuristics for cost-bounded325

optimization of submodular functions [40, 41], we set the scoring function to balance the increase in326

the classifier’s score and the cost of the change:327

s(v, t) = −η(t)− η(v)

c(v, t)
(8)

The minus sign appears because BFS expands the lowest scores first, and we need to maximize the328

score. We set the beam size to B = 1 (greedy), which enables us to find high-quality solutions to both329

cost-bounded and utility-bounded problems at reasonable computational costs (see Appendix C).330

8

Algorithm 1 Best-First Search (BFS)

1: function BFSB,s,ε(x)
2: open← MINPRIORITYQUEUEB(x, 0)
3: closed← {}
4: while open is not empty do
5: v ← open.POP()
6: if v /∈ closed then
7: CLOSED ← CLOSED ∪ {v}
8: if η(v) ≥ δ then return v
9: S ← EXPAND(v)

10: for t ∈ S do
11: if t /∈ closed and c(x, t) ≤ ε then
12: open.ADD(t, s(v, t))

A.3 Related Work on Attack Strategies331

Tabular domains. Several works have proposed attacks on tabular data. Ballet et al. [31] propose to332

apply existing continuous attacks to tabular datasets. The authors focus on crafting imperceptible333

adversarial examples using standard methods from the image domain. They adapt these methods334

such that less “important” features (low correlation with the target variable) can be perturbed to a335

higher degree than other features. This corresponds to a special case within our framework, in which336

the feature-modification costs depend on the feature importance with the difference that Ballet et al.337

cannot guarantee that the proposed example will be feasible.338

Levy et al. [42] suggest constructing a surrogate model capable of mimicking the target classifier. Part339

of this surrogate model is a feature embedding function transforming tabular data to a homogeneous340

continuous domain which aims to keep adversarial perturbations in the feasible set. Then, they apply341

projected gradient descent to produce adversarial examples in the embedding space and map the342

resulting examples to the tabular domains. As opposed to our methods, Levy et al. cannot provide343

any guarantee that the produced adversarial example will lay in the feasible set.344

Finally, Kantchelian et al. [43] propose a MILP-based and a coordinate-descent attack within different345

Lp cost models against random-forest models.346

Our attack differs from these three methods since they use Lp or similar bounds that do not capture347

adversarial capabilities, whereas we use a cost bound that can capture realistic constraints.348

In a concurrent work, Cartella et al. [44] propose to use a “custom” norm also based on feature349

importance, similarly to Ballet et al. [31]. Cartella et al., however, use an adapted zero-order350

optimization algorithm to find adversarial examples. Although their motivation is similar to ours, our351

cost model is more general as we do not tie the costs to feature importance.352

Text domains. Our universal greedy attack algorithm is similar to the methods for attacking classifiers353

that operate on text [19, 11–16]. All these works, however, make use of adversarial constraints such354

as restrictions on the number of modified words or sentences. These constraints do not apply to355

tabular domains, as simply considering “number of changes” does not address the heterogeneity of356

features. Our algorithms also differ from these approaches in that we incorporate complex adversarial357

costs in the design of the algorithms. For example, the Greedy attack by Yang et al. [11], like us, uses358

the target classifier’s confidence for choosing the best modifications to create adversarial examples359

and allow to account for the number of modifications. Our framework not only considers the volume360

of modifications but also their cost, better reflecting the adversary’s constraints.361

B Defending from Adversarial Examples in Tabular Domains362

The conventional approach to mitigate the risks of adversarial examples is adversarial training [6, 10].363

In adversarial training, the training procedure includes adversarial examples along with natural ones.364

In a standard approach by Madry et al. [10], for instance, these adversarial examples are constructed365

by modifying natural examples x with perturbations constrained in a Lp-ball d(x, x′) < ε, where d is366

an Lp distance function.367

9

The distance function and ε encode the threat model that adversarial training aims to defend against.368

The choice of the distance function depends on the characteristics of the input domain. In most369

previous works, the distance function aims at capturing imperceptibility within the given the bound370

ε. It is commonly assumed that if d(x, x∗) < ε, x∗ is not substantially different from x, and the371

adversary would use x∗ to attack. Otherwise, turning x to x∗ results in a perceptible adversarial372

example that would be detected as malicious, and those examples are assumed to be outside of the373

threat model. As explained in Section 2, this approach does not apply to the tabular domains. In374

tabular domains, imperceptibility is not necessarily a relevant constraint. Instead, the adversary’s375

actions are constrained by feasibility and the cost of the transformation. Moreover, the tabular input376

domain is often a mix of discrete and continuous features, as opposed to continuous or quantized in,377

e.g., image domains, where adversarial examples are mostly studied.378

Another difference between the image and tabular domains is the efficiency of generating adversarial379

examples. In images, adversarial examples used for training are generated using efficient methods380

such as Projected Gradient Descent (PGD) [10] or the Fast Gradient Sign Method (FGSM) [6, 45].381

These approaches produce adversarial examples fast, and enable the efficient implementation of382

adversarial training. Fast generation, however, is not possible for tabular domains. The algorithms383

to produce tabular adversarial introduced in Appendix A require thousands of inference operations384

over the target model. Under this condition, generating one example, which is all the adversary385

needs to perform an attack, may not be fast, but it is clearly feasible. Generating multiple adversarial386

examples per natural sample, however, in the dataset that the defender needs for adversarial training387

quickly becomes computationally infeasible, especially if the defender is computationally constrained.388

This computational cost constrains our capability of evaluation (Appendix C), for which we need389

to repeatedly run the defences. To make the generation of adversarial examples feasible during390

adversarial training, we introduce approximate versions of the attacks that rely on a relaxation of391

initial attack constraints.392

B.1 Relaxing the Constraints393

Following the setting of the standard Projected Gradient Descent (PGD) method [10], adversarial394

training for the cost-bounded adversary could be defined as follows:395

min
θ

max
x′∈F(x,y)

`(ηθ(x
′), y) s.t. c(x, x′) ≤ ε, (9)

where ηθ is a parametric classifier and θ are its parameters.396

To keep the computational requirements low, we relax the problem to optimize over a convex set,397

which enables us to adapt the PGD method. Let us define Bε to be the constraint region of Eq. (9):398

Bε(x, y) , {(x′, y) ∈ F(x, y) | c(x, x′) ≤ ε}
We construct a relaxation of Bε in two steps:399

Bε −−→
(1)

B̄ε −−→
(2)

B̃ε

(1) Continuous relaxation. We map Bε into a continuous space using an encoding function400

φ : Xn → Rm, and a relaxed cost function c̄ : Rm × Rm → R+. Continuous relaxation is401

defined as:402

B̄ε , {(φ(x′), y) | c̄(φ(x), φ(x′)) ≤ ε}, (10)

where (x′, y) ∈ F(x, y). The pair (φ, c̄) is designed to satisfy the following condition:403

∀(x′, y) ∈ Bε(x, y) : c̄(φ(x), φ(x′)) ≤ c(x, x′), (11)

ensuring that every example (x′, y) ∈ Bε(x, y) is mapped to an element in the relaxed set,404

φ(x′) ∈ Bε(φ(x), y). We denote the encoded value φ(x) as x for convenience.405

(2) Convex cover. To enable adversarial training using PGD, we need that elements of the406

relaxed set can be projected onto the constraint region. For this purpose, we cover B̄ε407

with a convex superset B̃ε, e.g., a convex hull of B̄ε. The convex superset B̃ε needs to be408

constructed such that there exists an efficient algorithm for projection. For a given (x, y),409

and a point t ∈ Rm, we want to be able to efficiently solve mint′∈B̃ε(x,y) ‖t− t′‖2.410

10

Encoding and cost functions As we assume that the cost of modifications is modular (see Ap-
pendix A.2), we define the encoding (φ) and cost (c) functions to be modular too:

φ(x) = [φ1(x1), ..., φn(xn)]

c(φ(x), φ(x′)) =

n∑
i=1

ci(φi(xi), φi(xi
′))

With this formulation, the problem of constructing suitable φ and c functions is reduced to finding411

φi : Xi → Rmi and ci for each feature. If for all i both φi and ci fulfill (11), then the modular cost412

c(x, x′) fulfills (11) as well.413

In the following we introduce φ and c functions for categorical and numeric features.414

Categorical features. As encoding function φ(xi) for categorical features we use standard one-hot415

encoding.416

As the cost function for categorical features, we define ci:417

ci(xi, x
′
i) = min

t∈F(x,y)
ci(xi, t) ·

1

2
‖x̄i − x̄′i‖1,

where Fi(x, y) is the set of feasible values of the feature i. For example, let xi be a categorical feature418

with 4 possible values Xi = {a, b, c, d}, and let the minimal cost of change be 2. When xi = b and419

x′ = c (xi = (0, 1, 0, 0), x′i = (0, 0, 1, 0) after one-hot encoding). Then, ci(xi, x′i) = 1
2 · 2 · 2 = 2.420

This cost function enables us to perform the two-step relaxation described before. First, it satisfies421

(11), and therefore the constraint region B̄ε includes all mapped examples of Bε. Second, we can422

obtain the convex superset B̃ε as a continuous L1 ball around the mapped values x̄ ∈ B̄ε.423

Numeric features. A numeric feature is a feature with values belonging to an ordered subset of R (e.g.424

integer, real). In most cases, the identity function (φ(xi) = xi) is sufficient for numerical features.425

However, more complex encoding functions could also be desirable. For example, when one needs to426

reduce numerical errors, which can be achieved by normalizing the feature values to [−1, 1], or when427

the cost is non-linear.428

In general, projecting onto arbitrary sets can be challenging. Specifically, the bounded region Bε429

could be non-convex, e.g., hypothetically, if the cost is a pathological function such as the Dirichlet430

function. We therefore must limit the scope of possible adversarial cost functions that we can431

model during adversarial training to those that are compatible with efficient projection. For this, we432

introduce a cost model that covers a broad class of functions for which ci(xi, x′i) can be expressed as433

Ki · |ψ(xi)− ψ(x′i)|, where Ki is a constant and ψ(x) is an invertible function.434

For instance, this model covers the following exponential cost model: c(x, x′) = K · |ex − ex′ |. In435

this case, we can encode the features as φ(xi) = ψ−1(xi) , ln(xi). This transformation enables us436

to account for certain non-linear cost functions c with respect to the input space using linear cost437

functions c in the relaxed space B̄ε.438

We define the cost function for numerical features as a piecewise-linear function, with different439

coefficients for increasing or decreasing the feature value:440

cj(xj , x
′
j) = cj−(x) · [x̄j − x̄′j]+ + cj+(x) · [x̄′j − x̄j]+ (12)

where [t]+ returns t if t > 0, and 0 otherwise, and cj−(x) and cj+(x) encode the costs for decreasing441

and increasing the value of the feature j, respectively, and can vary from one initial example x to442

another.443

Note that in this model the final cost of a modification could depend on the way in which this444

modification is achieved. A direct modification from x to x′′ could have different cost than first445

modifying x to x′ and then x′ to x′′, i.e., ci(x̄, x̄′′) 6= ci(x̄, x̄
′) + ci(x̄

′, x̄′′).446

11

Total cost. Given the set of categorical feature indices, C, and the set of numeric feature indices, I,447

the total cost function is:448

c(x, x′) =
∑
i∈C

min
t∈Fi(x,y)

ci(xi, t) ·
1

2
‖x̄i − x̄′i‖1

+
∑
j∈I

cj−(x) · [x̄j − x̄′j]+ + cj+(x) · [x̄′j − x̄j]+
(13)

B.2 Adversarial Training with Projected Gradient Descent449

Using the cost model introduced before, we redefine the training optimization problem in Eq. (9) to450

generate adversarial examples over a specific instantiation of the convex set B̃, as follows:451

min
θ

max
x̃′∈B̃ε(x,y)

`(ηθ(x̃
′), y), (14)

where we specify B̃ε as:452

B̃ε(x, y) , {x̄+ δ | δ ∈ Rm ∧ c(x̄, x̄+ δ) ≤ ε}. (15)

Thus, we can rewrite Eq. (14):453

min
θ

max
δ∈Rm

`(ηθ(x+ δ), y)

s.t. c(x̄, x̄+ δ) ≤ ε
(16)

This objective can be optimized using standard PGD-based adversarial training [10]. Due to the454

construction of our cost function in Eq. (13), we can use existing algorithms for projecting onto a455

weighted L1-ball [46, 47] with an appropriate choice of weights. As these approaches are standard,456

we omit them in the main body, and provide the details in Appendix D.457

B.3 Adversarial Training against a Utility-Bounded Adversary458

For the utility-bounded adversary we propose to use an objective similar to (16), applying individual459

constraints to different samples:460

min
θ

max
δ∈Rm

`(ηθ(x+ δ), y)

s.t. c(x, x+ δ) ≤ ε(x) , [g(x+ δ)]+
(17)

In this formulation, we use our assumption of invariant gain (see Appendix A.2), as g(x+ δ) = g(x).461

This objective aims to decrease the adversary’s utility by focusing the protection on samples with462

high gain. The main difference with respect to the cost-constrained objective in (16) is that here we463

use a different cost bound for different examples ε(x). This formulation enables us to directly use the464

PGD-based adversarial training to defend against utility-bounded adversaries as well.465

B.4 Related Work on Adversarial Training466

To the best of our knowledge, there are no works on adversarial training for methods based on deep467

learning that tackle the tabular domains. We discuss existing methods and techniques with related468

goals.469

Adversarial robustness of decision trees. Classifiers based on decision trees are prominently used in470

tabular domains. The adversarial robustness of such classifiers has been studied extensively [26, 25,471

48, 24, 49]. These works assume independent per-feature adversarial constraints, e.g., based on the472

L∞ metric. Our adversarial models, and thus our attacks and defences, are capable of capturing a473

broader class of adversarial cost functions that depend on feature modifications and better model the474

adversary’s constraints as we explain in Section 2.475

C Experimental Evaluation476

In this section, we show that out graph-based attacks can be used by adversaries to obtain profit, and477

that our proposed defences are effective at mitigating these attack’s harms.478

12

C.1 Experimental setup479

C.1.1 Datasets480

We perform our experiments on three tabular datasets which represent real-world applications for481

which adversarial examples can have social or economic implications:482

• TwitterBot [50]. The dataset contains information about more than 3,400 Twitter accounts483

either belonging to humans or bots. The task is to detect bot accounts. We assume that484

the adversary is able to purchase bot accounts and interactions on darknet markets, thus485

modifying the features that correspond to the account age, number of likes, and retweets.486

• IEEECIS [33]. The dataset contains information about around 600K financial transactions.487

The task is to predict whether a transaction is fraudulent or benign. We model an adversary488

that can modify three features for which we can outline the hypothetical method of possible489

modification, and estimate its cost: payment-card type, email domain, and payment-device490

type.491

• HomeCredit [32]. The dataset contains financial information about 300K home-loan492

applicants. The main task is to predict whether an applicant will repay the loan or default. We493

use 33 features, selected based on the best solutions to the original Kaggle competition [32].494

Of these, we assume that 28 can be modified by the adversary, e.g., the loan appointment495

time. We also use a non-linear adversarial cost model for manipulating credit scores, inspired496

by the practice of credit piggybacking [51].497

C.1.2 Models498

We evaluate our attacks against three types of ML models commonly applied to tabular data. First, an499

L2-regularized logistic regression (LR) with a regularization parameter chosen using 5-fold cross-500

validation. Second, gradient-boosted decision trees (XGBT). Third, TabNet architecture [52], a deep501

learning model. TabNet is an attentive transformer neural network specifically designed for tabular502

data. We optimize the number of steps as well as the capacity of TabNet’s fully connected layers503

using grid search.504

C.1.3 Adversarial Features505

We assume that the feasible set consists of all positive values of numerical features and all possible506

values of categorical features. For simplicity, we avoid features with mutual dependencies and treat507

the adversarially modifiable features as independent. We detail the choice of the modifiable features508

and their costs in Appendix E.2.509

C.1.4 Metrics510

To evaluate the effectiveness of the attacks and defences, we use three main metrics:511

• Adversary’s success rate: The proportion of correctly classified examples from a test set512

Xtest for which adversarial examples successfully generated using the attack algorithm513

A(x, y) evade the classifier:514

Pr
(x,y)∼Xtest

[f(A(x, y)) 6= y ∧ f(x) = y] .

• Adversarial cost: Average cost of successful adversarial examples:515

E(x,y)∼Xtest
[c(x,A(x, y)) | f(A(x, y)) 6= y ∧ f(x) = y] .

• Adversarial utility: Average utility (see Eq. (4)) of successful adversarial examples:516

E(x,y)∼Xtest
[ux,y(A(x, y)) | f(A(x, y)) 6= y ∧ f(x) = y].

In all cases, we only consider correctly classified initial examples which enables us to distinguish517

these security metrics from the target model’s accuracy. We introduce additional metrics in the518

experiments when needed.519

13

C.2 Attacks Evaluation520

We evaluate the attack strategy proposed in Appendix A in terms of their effectiveness, and empirically521

justify its design.522

C.2.1 Design Choices of the Universal Greedy Algorithm523

When designing attack algorithms in the BFS framework (see Algorithm 1) there are two main design524

choices: the scoring function and the beam size. We explore different configurations and show that525

our parameter choices for the Universal Greedy attack produce high-quality adversarial examples.526

Beam size. We define the beam size of the Universal Greedy attack to be one. The other options that527

we evaluate are 10 and 100. We evaluate by running three types of attacks: cost-bounded for three528

cost bounds ε, and utility-bounded at the breakeven margin τ = 0. The margin τ = 0 is equivalent to529

a cost-bounded attack with a variable cost bound equal to the gain of each initial example (denoted as530

“Gain” in the tables).531

We compute two metrics: Attack success, and the success-to-runtime ratio. This ratio represents how532

much time is needed to achieve the same level of success rate using each choice of the beam size.533

This metric is more informative for our evaluation than runtime, as runtime is just proportional to the534

beam size.535

For feasibility reasons, we use two datasets: TwitterBot and IEEECIS. We aggregate the metrics536

across the three models (LR, XGBT, TabNet), and report the average. The results on TwitterBot537

are equivalent to the results on IEEECIS, thus for conciseness we only report IEEECIS results.538

We find that the success rates are equal up to the percentage point for all choices of the beam size.539

We show the detailed numeric results in Table 7 in the Appendix. As the smallest beam size of one is540

the fastest to run, it demonstrates the best success/time ratio, therefore, is the best choice.541

Scoring function. Recall from Eq. (8) that the scoring function is the cost-weighted increase in the542

target classifier’s confidence:543

s(v, t) = −η(t)− η(s)

c(s, t)
,

which aims to maximize the increase in classifier confidence at the lowest cost.544

Suitable choices for the scoring function s(v, t) could be:545

• A∗ algorithm [38, 39, 34]: s(v, t) = c(v, t) + λ · h(t), where h(t) is a heuristic function,546

which estimates the remaining cost to a solution, and λ > 0 is a greediness parameter [53].547

This scoring function balances the current known cost of a candidate and the estimated548

remaining cost. We choose the model’s confidence for the positive class, h(x) = η(x), as549

heuristic function. Intuitively, this works as a heuristic, because the lower the confidence for550

the positive class, the more likely we are close to a solution: an example classified as the551

target class.552

• Potential Search (PS) [35, 37]: s(v, t) = h(t)/ε−c(v,t) , which additionally takes into account553

the cost bound ε, thus becoming more greedy (i.e., optimizing s(v, t) = λ · h(t) with554

λ ≈ 1/ε) when the cost of the current candidate leaves a lot of room within the ε budget. We555

also choose h(x) = η(x) as heuristic function.556

• Basic Greedy: s(v, t) = −η(t)/c(s,t) , which aims to maximize the classifier’s confidence,557

yet balance it with the incurred cost. Unlike Eq. (8), this scoring function does not care558

about the relative increase of the confidence, only about its absolute value.559

We evaluate the choice of the scoring function on the TwitterBot and IEEECIS datasets, with the560

beam size fixed to one. We run the cost-bounded and utility-bounded attacks in the same configuration561

as before, and measure two metrics averaged over the models: Attack success, and attack success/time562

ratio.563

Table 1 shows the results. On IEEECIS, the Universal Greedy outperforms the other choices in564

terms of success rate and the success/time ratio. On the TwitterBot dataset, it outperforms the565

other choices in the utility-bounded and unbounded attacks. For cost-bounded attacks, the Universal566

Greedy offers very close performance to the best option, the Basic Greedy.567

14

Adv. success, %
Cost bound→ 10 30 Gain ∞
Scoring func. ↓
UG 45.32 56.57 56.22 68.20
A* 42.37 55.62 55.34 53.47
PS 45.32 55.14 56.18 N/A
Basic Greedy 42.37 55.46 55.38 53.82

Success/time ratio
Cost bound→ 10 30 Gain ∞
Scoring func. ↓
UG 3.78 4.80 2.53 2.06
A* 3.29 3.83 1.89 1.15
PS 3.78 4.01 2.26 N/A
Basic Greedy 3.21 3.86 2.01 1.16

(a) IEEECIS

Adv. success, %
Cost bound→ 1,000 10,000 Gain ∞
Scoring func. ↓
UG 80.24 85.35 21.63 87.00
A* 77.56 84.45 20.29 86.25
PS 79.95 85.19 21.48 N/A
Basic Greedy 80.40 85.04 21.63 86.85

Success/time ratio
Cost bound→ 1,000 10,000 Gain ∞
Scoring func. ↓
UG 208.95 205.76 64.99 205.31
A* 206.33 201.93 62.25 201.31
PS 205.85 203.18 63.76 N/A
Basic Greedy 210.20 206.20 64.32 204.96

(b) Twitter bot

Table 1: Effect of the scoring-function choice for graph-based attacks on IEEECIS. In all settings, our
Universal Greedy scoring function offers the best success rate and performance.

10 30 Gain
Attack cost bound ε

0.4

0.6

0.8

1.0

V
al

ue

Metric = Adv. success

10 30 Gain
Attack cost bound ε

0

5

10

Metric = Cost

UG

UCS

PGD (100 steps)

PGD (1,000 steps)

Figure 2: Universal Greedy attack vs Baselines. Left: Attack success rate (higher is better for the
adversary). Right: Attack cost (lower is better for the adversary). For all cost bounds, our graph-based
attack outperforms standard PGD and returns close to optimal-cost adversarial examples (obtained
with Uniform-Cost Search, UCS).

C.2.2 Graph-based Attacks vs. Baselines568

We compare the Universal Greedy (UG) algorithm against two baselines: previous work, and the569

minimal-cost adversarial examples.570

Previous Work: PGD. Since the introduced cost model differs from the existing approaches to571

attacks on tabular data, we fundamentally cannot perform a fully apples-to-apples comparison against572

existing attacks (see Appendix A). To compare against the high-level ideas from prior work, we573

follow the spirit of the attack by Ballet et al. [31], which modifies the standard optimization problem574

from Eq. (1) to use correlation-based weights. We adapt the standard L1-based PGD attack [10, 54]575

to (1) support categorical features through discretization, and (2) use weighted L1 norm following576

our derivations in Appendix B.1. We provide a detailed description of this adaptation in Algorithm 4577

in Appendix E.578

We run attacks using PGD with 100 and 1,000 steps, and compare it to UG (Appendix A) on the579

TwitterBot and IEEECIS datasets. As PGD can only operate on differentiable models, in this580

comparison we only evaluate the performance of the attacks against TabNet.581

We run the cost-bounded attacks using two bounds ε, that are specific to each dataset (see Appendix E582

for the exact attack parameters). As before, we also run a utility-bounded attack at the breakeven583

margin τ = 0. We measure the success rates of the attacks, as well as the average cost of the obtained584

adversarial examples. For conciseness, we do not report the results on TwitterBot, as they find they585

are equivalent to those on IEEECIS.586

Fig. 2 shows that the UG attack consistently outperforms the PGD-based baseline both in terms of587

the success rate, and the costs. Our attacks are superior even when the PGD-based baseline produces588

feasible adversarial examples.589

15

1 3 10 30 ∞
Attack cost bound ε

0

100

200

V
al

ue

Metric = Adv. utility

1 3 10 30 ∞
Attack cost bound ε

0.5

1.0
Metric = Adv. success

1 3 10 30 ∞
Attack cost bound ε

0

10

Metric = Cost

(a) IEEECIS. Model (test acc.): • LR (0.62) • XGBT (0.83)
• TabNet (0.77)

1 10 100 1K 10K
Attack cost bound ε

500000

600000

V
al

ue
Metric = Adv. utility

1 10 100 1K 10K
Attack cost bound ε

0.8

0.9

1.0
Metric = Adv. success

1 10 100 1K 10K
Attack cost bound ε

0

10

20

Metric = Cost

(b) HomeCredit. Model (test acc.): • XGBT (0.65) • TabNet (0.68)

Figure 3: Results of cost-bounded graph-based attacks against three types of models. Left pane:
Adversarial utility (higher is better for the adversary). Middle and right panes: See Fig. 2. On
IEEECIS, the attack can achieve utility from approximately $10 to $125 per attack depending on the
target model. On HomeCredit, the average utility ranges between $400, 000 and $600, 000.

Minimal-Cost Adversarial Examples. As UG is a greedy algorithm, we additionally evaluate how far590

are the obtained adversarial examples from the optimal ones in terms of cost. For this, we compare591

the results from UG to a standard Uniform-Cost Search (UCS) [34]. UCS is an instantiation of the592

BFS framework (see Appendix A) with unbounded beam size, and the scoring function equal to the593

cost: s(v, t) = c(v, t). In our setting, UCS is guaranteed to return optimal solutions to the following594

optimization problem:595

min
x′∈F(x,y)

c(x, x′) s.t. f(x′) 6= y

Fig. 2 shows that UG has almost no overhead over the minimal-cost adversarial examples on TabNet596

(1.03× overhead on average). In fact, the average and median cost overhead is 1.80× and 1× over597

all models, respectively. There exist some outlier examples, however, with over 100× cost overhead.598

We provide more information on the distribution of cost overhead in Appendix E.599

C.2.3 Performance against Undefended Models600

Having shown that the attacks outperform the baseline, and the design choices are sound, we601

demonstrate that the attacks bring some utility to the adversary. In this section, we evaluate the602

attacks in a non-strategic setting: the models are not deliberately defended against the attacks.603

For conciseness, we only evaluate cost-bounded attacks, as the next section provides an extensive604

demonstration of utility-bounded attacks.605

In all evaluated settings, the attacks have non-zero success rates and achieve non-zero adversarial606

utility. Fig. 3 show the results of cost-bounded attacks for IEEECIS and HomeCredit datasets. For607

utility-bounded attacks, we present the results in Fig. 7 in the Appendix due to the space constraints.608

We omit the results for LR on HomeCredit as it does not perform better than the random baseline.609

An average adversarial example obtained using the cost-bounded objective brings a profit of $125 to610

the adversary when attacking the IEEECIS TabNet model, and close to 100% of examples in the test611

data can be modified into successful adversarial examples.612

Although for all models we see non-zero success and utility, some models are less vulnerable than613

others—even without any protection. For example, the success rate of the adversary against LR on614

IEEECIS is much lower than against TabNet (at least 50p.p. lower). This model, however, is also615

comparatively inaccurate, with only 62% classification accuracy.616

C.3 Evaluation of Our Defence Methods617

We evaluate the defence mechanisms proposed in Appendix B in two scenarios. First, a scenario in618

which the adversary’s objective used by the defender for adversarial training—cost-bounded (CB) or619

16

Table 2: Baseline performance
Accuracy TwitterBot IEEECIS HomeCredit

Clean baseline 0.775 0.755 0.680
Robust baseline 0.773 0.685 0.556
Random baseline 0.566 0.500 0.501

1 3 10 30 ∞
Attack cost bound ε

0

100

200

V
al

ue

Metric = Adv. utility

1 3 10 30 ∞
Attack cost bound ε

0.0

0.5

1.0
Metric = Adv. success

0 10 50 100 500 1K
Attack margin τ

0

100

200

V
al

ue

Metric = Adv. utility

0 10 50 100 500 1K
Attack margin τ

0.0

0.5

1.0
Metric = Adv. success

Model

Clean (Acc: 0.77)

CB ε = 1 (Acc: 0.73)

CB ε = 3 (Acc: 0.72)

CB ε = 10 (Acc: 0.69)

CB ε = 30 (Acc: 0.66)

(a) IEEECIS

1 10 100 1K 10K
Attack cost bound ε

0

250000

500000

V
al

ue

Metric = Adv. utility

1 10 100 1K 10K
Attack cost bound ε

0.0

0.5

1.0
Metric = Adv. success

3 4 5 6 8 10
Att. margin τ (105×)

200000

400000

V
al

ue

Metric = Adv. utility

3 4 5 6 8 10
Att. margin τ (105×)

0.25

0.50

0.75
Metric = Adv. success Model

Clean (Acc: 0.68)

CB ε = 10 (Acc: 0.68)

CB ε = 100 (Acc: 0.67)

CB ε = 300 (Acc: 0.67)

CB ε = 1K (Acc: 0.67)

CB ε = 4K (Acc: 0.63)

(b) HomeCredit

Figure 4: Cost-bounded adversarial training for different adversarial budgets ε. Evaluation against
cost-bounded (left), and utility-bounded (right) attacks. We represent the adversary’s success and
utility (y-axis) versus the adversary’s attack budget ε or desired utility margin τ (x-axis). CB attacks
only have substantial success and profit when the adversary invests more than the budget assumed by
the defender. UB attacks are thwarted for IEEECIS, but CB training is not significantly effective on
HomeCredit, and for some models even enables higher adversary’s utility.

utility-bounded (UB)—matches the attack that will be deployed by the adversary. Second, a scenario620

in which the defender assumes the adversary’s objective incorrectly and uses a different attack than621

the adversary when performing adversarial training.622

Baselines. We set two comparison baselines which provide boundaries for which a defence can be623

considered effective.624

On the accuracy side, we consider the clean baseline: a model trained without any defence. It625

provides the best accuracy, but also the least robustness against attacks. Any defence that does not626

achieve at least the clean baseline’s robustness should not be considered, as the clean baseline would627

always provide better or equal accuracy, and hence a better robustness-accuracy trade-off.628

On the robustness side, we consider the robust baseline: a model for which all features that can629

be changed by the adversary are masked with zeroes for training and testing. As this removes any630

adversarial input, this model is invulnerable to attacks within the assumed adversarial models. Any631

practical defence must outperform the robust baseline in terms of accuracy. Otherwise, the robust632

baseline would provide a better robustness-accuracy trade-off.633

Table 2 shows the clean and robust baselines’ accuracy for the three datasets. On TwitterBot the634

robust baseline performs almost as well as the clean model. As there is no space for a better defence635

for TwitterBot, we only evaluate our defences for the IEEECIS and HomeCredit models.636

We train our attacks and defences using the parameters listed in Table 3 in Appendix E.637

C.3.1 Defender matches the adversary638

We first evaluate the case in which the adversarial training used to generate the defence is perfectly639

tailored to the adversary’s objective.640

Cost-bounded Defence vs. Cost-bounded Attack. We show in Fig. 4 the results when defender641

and adversary use CB objectives. For both IEEECIS and HomeCredit the CB trained defence642

17

0.700 0.725 0.750 0.775
Test acc.

0.0

0.5

1.0

Ad
v.

 su
cc

es
s

Cost bound = 3

0.700 0.725 0.750 0.775
Test acc.

Cost bound = 10

0.700 0.725 0.750 0.775
Test acc.

Cost bound = 30

0.700 0.725 0.750 0.775
Test acc.

Cost bound = ∞

0.700 0.725 0.750 0.775
Test acc.

0

100

200

Ad
v.

 u
til

ity

Margin = 50

0.700 0.725 0.750 0.775
Test acc.

Margin = 100

0.700 0.725 0.750 0.775
Test acc.

Margin = 500

0.700 0.725 0.750 0.775
Test acc.

Margin = 1000

(a) IEEECIS: • CB-trained models • UB-trained models × Clean model

0.60 0.65
Test acc.

0.0

0.5

1.0

Ad
v.

 su
cc

es
s

Cost bound = 10

0.60 0.65
Test acc.

Cost bound = 100

0.60 0.65
Test acc.

Cost bound = 1000

0.60 0.65
Test acc.

Cost bound = 10000

0.60 0.65
Test acc.

0

200000

Ad
v.

 u
til

ity

Margin = 500000

0.60 0.65
Test acc.

Margin = 600000

0.60 0.65
Test acc.

Margin = 800000

0.60 0.65
Test acc.

Margin = 1000000

(b) HomeCredit: • CB-trained models • UB-trained models × Clean model

Figure 5: Accuracy-robustness and utility-robustness trade-offs for Cost-bounded and Utility-bounded
adversarially trained models. The curves show accuracy (x-axis) and utility and success rate (x-axis)
for the utility- and cost-bounded models presented in Fig. 4 and Fig. 1. When one curve is strictly
below the other curve, it provides a better trade-off since it has better robustness for the same accuracy.
Utility-bounded models consistently show better trade-offs for all utility-aware attacks. For CB
attacks the situation is less consistent: for small cost-bounds CB defence outperforms utility-bounded
one, while for the largest budgets utility bounded shows better results.

is effective when the adversary uses CB attacks: the adversary only finds successful adversarial643

examples with positive utility if they invest more than the budget assumed by the defender. If the644

defender greatly underestimates the adversary’s budget of the adversary (e.g., training with ε = 10645

when the adversary’s budget is ε = 1000), the adversary obtains a high profit (close to 200K$).646

Therefore, an effective defence requires an adequate estimation of the adversary’s capabilities.647

Utility-bounded Defence vs. Utility-bounded Attack. Fig. 1 shows the results of our evaluation648

when the defender and the adversary use UB objectives. The defence is effective: it decreases both649

the success rate and the adversary’s utility on both datasets. On IEEECIS, the adversary can only650

succeed when their desired profit τ is smaller than the τ used to train the defence. On HomeCredit,651

we observe a similar behaviour, although when training for margins τ less than 500K model does not652

completely mitigate adversaries that wish to have larger profits. When the defender allows for large653

adversary’s profit margins (e.g., τ = 800K or τ = 1M), the models become significantly robust654

with little accuracy loss.655

C.3.2 Defender does not match the adversary656

In the previous section, we show that if the defender correctly models the attacker’s objective, our657

defences offer good robustness. Next, we evaluate the performance when the defender’s model does658

not match the adversary’s objective. This is likely in realistic deployments, as the defender might not659

have any a priori knowledge of the adversary’s objective.660

18

Utility-bounded Defence vs. Cost-bounded Attack. We show in Fig. 1 our evaluation results when661

a CB adversary attacks a defence trained assuming UB objectives. For both datasets, the robustness662

improves with respect to the clean baseline, even though robustness against CB adversaries is not663

the defence goal. The improvement is more pronounced as the defender tightens the profit margin664

(decrease in τ , being this effect much stronger on HomeCredit where even loose profit margins665

provide significant robustness. The adversary can increase their success by increasing their budget ε.666

Increasing the budget also increases the utility in HomeCredit. These experiments show that UB667

training improves robustness even when the adversary has a different objective.668

Cost-bounded Defence vs. Utility-bounded Attack. When we confront a UB adversary against669

a CB defence, we observe a different behaviour (see Fig. 4). On IEEECIS CB adversarial training670

increases the robustness of the model against utility-oriented adversaries—with greater effect as671

the cost bound increases. However, when protecting against high adversary’s budgets (ε = 30) the672

impact on accuracy is too large and the robust baseline becomes preferable.673

For HomeCredit the situation is worse. While performance is always above the robust baseline, we674

observe little improvement with respect to the clean model. Even worse, for certain parameters the675

utility of the adversary can even increase after the adversarial training (see the model trained with a676

bound of ε = 4000). We conclude that CB training might offer no guarantees if the adversary has a677

different objective.678

C.3.3 Robustness-Accuracy Trade-offs679

In the previous sections, we evaluated the effectiveness of the defences depending on the adversary’s680

and defender’s objectives. We now evaluate the trade-offs between defence effectiveness in reducing681

the adversary’s success and the utility of the attacks, and the accuracy of the model.682

As adversarial training penalizes changes in the model’s output caused by input feature perturbations,683

it results in certain features having less influence on the output. These features cannot be used for684

prediction to the same extent as features in the clean baseline, which leads to the degradation of the685

model’s accuracy. On the positive side, these features can neither be used by the adversary—the686

robust baseline being the extreme in which all features prone to manipulation are zeroed—reducing687

the attack’s success and utility.688

We show in Fig. 5 the trade-off between adversarial success and utility on the one side, and model689

accuracy on the other side for IEEECIS (top) and HomeCredit (bottom) for all combinations of690

the defender and adversarial objectives. For CB adversaries (top row for each dataset), it is not691

clear which defence type is superior. Which defence provides better robustness for a given accuracy692

depends on the adversary’s budget. On the contrary, for utility-bounded adversaries (bottom row693

for each datasets), we consistently observe better robustness (less adversarial utility for the same694

accuracy) for the utility-bounded defence compared to the cost-bounded. We conclude that in the695

absence of knowledge of the adversary’s objective, utility-bounded defences are preferable. They696

outperform CB adversarial training when the adversary is utility-oriented, and offer comparable697

performance against CB attacks.698

D Details on the Projection Algorithm and Adversarial Training699

In this appendix, we describe our modifications to the traditional adversarial training pipeline.700

D.1 Adversarial Training Procedure701

Our training procedure is a version of the well-known adversarial training algorithm based on the702

PGD method [10].703

For every sample in a batch (φ(x(i)), y(i))bi=1, we generate adversarial examples (lines 2–7) by finding704

the perturbation δ(i) (lines 4–7). The perturbations are normalized and multiplied by α = 2ε/n, to705

improve the stability of the algorithm (line 6); and then projected to fulfill our relaxed problem in706

Eq. (16) (line 7). We update the model weights (line 8), and return θ′.707

19

Algorithm 2 Cost-bounded Adversarial Training Algorithm (single iteration)

Input: Model weights θ, batch of training examples (φ(x(i)), y(i))bi=1, per-feature costs wi, cost
bound ε.
Output: Updated weights θ′

1: α := 2 εn
2: for i in 1..b do
3: δ(i) := 0
4: for t in 1..n do
5: ∇(i) := ∇δi`(fθ(φ(x(i)) + δ(i)), yi)

6: δ(i) := δ(i) + α ∇(i)

‖∇(i)‖1
7: δ(i) := Pw,ε(φ(x(i)) + δ(i))

8: θ′ := θ − η∇θ 1
b

∑b
i=1 `(fθ(φ(x(i)) + δ(i)), y(i))

Return θnew

D.2 Projection algorithm708

We design an adapted projection algorithm to solve Eq. (14), presented in Algorithm 3. This algorithm709

is an extension of an existing sort-based weighted L1 projection algorithm [46, 47]. It takes as input710

a sample x and a perturbed sample x′, and returns a valid perturbation vector δ such that x+ δ lies711

within the cost budget. With respect to the algorithm by Perez et al. [47], we introduce the capability712

to assign different weights based on a feature type and perturbation sign (line 2, in blue) to support713

our cost function in Eq. (13).714

We now prove the correctness of this algorithm.715

Statement 1. Algorithm 3 is a valid projection algorithm onto the set B̃ε, as defined in Eq. (15).716

Concretely, for a given x, x′, the algorithm returns δ∗ such that:717

δ∗ = PB̃ε(x,y)(x
′) , arg min

δ∈Rm
‖x′ − (x+ δ)‖2

s.t. c(x, x+ δ) ≤ ε

Proof of Statement 1. First, if we keep either cj+(x) or cj−(x), the constraint becomes a weighted718

L1 constraint, for which the complete proof is given by Perez et al. [47]. Then, we can recall the719

property that projection onto the weighted L1 ball is equivalent to projection onto the simplex, if720

c(x, x′) > ε, and prove the similar property here.721

Lemma 1. For any x, x′, ε,
δ∗ = arg min

δ: c(x,x+δ)≤ε
‖x′ − x− δ‖2

∀i ∈ [1..n] =⇒ sign(δi) = sign(x′i − xi) or 0

Proof. Proof by contradiction. Let us assume that the lemma does not hold and ∃i : sign(δi) =
−sign(x′i − xi) and sign(δi) 6= 0. Then, we can construct δ∗ : ∀j 6= i, δ∗j = δj and δ∗i = −δi.

‖x′ − x− δ‖22 = ‖x′ − x− δ∗‖22 − (x′i − xi − δi)2 + (x′i − xi − δ∗i)2

Since sign(δi) = −sign(x′i − xi) and sign(δi) 6= 0,

(x′i − xi − δi)2 > (x′i − xi − δ∗i)2

Therefore,
‖x′ − x− δ∗‖22 < ‖x′ − x− δ‖22

Which is a contradiction to the original statement.722

20

Algorithm 3 Cost-Ball Projection Algorithm
Input x, x′, c, ε, C, I
Output δ∗ = PB̃ε(x,y)(x

′)

1: δ = x′ − x

2: wi :=


mint∈Fi(x,y) ci(xi, t), if i ∈ C
cj−(x), if i ∈ I and δi < 0

cj+(x), if i ∈ I and δi ≥ 0

3: zi := δi
wi

4: πz() := Permutation ↑ (z)
5: zi := zπz(i)

6: J := max

{
j :
−ε+

∑m
i=j+1 wπz(i)δπz(i)∑m
i=j+1 w

2
πz(i)

> zj

}
7: λ :=

−ε+
∑m
j=J+1 wπz(j)δπz(j)∑m
j=J+1 w

2
πz(j)

8: δ∗i := sign(δi) max (δi − wiλ, 0)

Return δ∗i

The highlighted parts indicate the differences with respect to the sort-based weightedL1 projection algorithm [47].
The function πz(i) denotes an outcome of permutation. Permutation ↑ (z) is a sort permutation in an ascending
order.

Algorithm 4 PGD-Based Attack
Input: P , initial example x, label y, costs w, cost bound ε.
Output: Adversarial example x∗

1: α := 2 εn
2: δ := 0
3: for j in 1..n do
4: ∇ := ∇δ`(fθ(φ(x) + δ), y)
5: δ := δ + α ∇

‖∇‖1
6: δ := PBw,ε(δ)
x∗ = PF (δ)

Return x∗

Based on this lemma we can see that, to find the projection of x′, we can replace c(x, x′) with the723

following experssion:724

c∗(x, x′) =
∑
i∈C

1

2
‖x̄i − x̄′i‖1 min

t∈Fi(x,y)
ci(xi, x

′
i)

+
∑
j∈I

cj∗(x) · |x̄′j − x̄j |,

where cj∗ is defined as follows:725

cj∗(x) =

{
cj+(x), if sign(x′j − xj) ≥ 0

cj−(x), if sign(x′j − xj) < 0

We can do so as both of these functions attain the same minimum value.726

E Additional Experimental Details727

In this appendix we provide the details of our evaluation aiming to improve the reproducibility of our728

results.729

21

0 50 100
Overhead, ×

XGBT (Acc: 0.83)

Clean (Acc: 0.77)

LR (Acc: 0.62)

M
od

el

Figure 6: The distribution of cost overhead of adversarial examples obtained with UG over minimal-
cost adversarial examples obtained with UCS on IEEECIS. Most UG adversarial examples have cost
close to the minimal, although there exist outliers.

Table 3: IEEECIS and HomeCredit attack and defence parameters
Parameter Value range

Adversarial Training (IEEECIS)

Batch size 2048
Number of epochs 400
PGD iteration number 20
TabNet hyperparameters ND = 16, NA = 16, Nsteps = 4
ε (for CB models) [1, 3, 10, 30]
τ (for UB models) [0, 10, 20, 50, 100, 200, 500]

Attacks (IEEECIS)

Max. iterations 100K
ε (for CB attacks) [1, 3, 10, 30]
τ (for UB attacks) [0, 10, 50, 500, 1000]

Adversarial Training (HomeCredit)

Batch size 2048
Num. of epochs 100
TabNet hyperparameters ND = 16, NA = 16, Nsteps = 4
Num. of PGD iterations 20
ε (for CB models) [1, 10, 100, 1000, 10000]
τ (for UB models) [300K, 400K, 500K, 600K, 800K]

Attacks (HomeCredit)

Num. of iterations 100
ε (for CB attacks) [1, 10, 100, 1K, 10K]
τ (for UB attacks) [10K, 300K, 400K, 500K, 600K, 800K]

E.1 Hyperparameter selection730

We list our defence and attack parameters in Table 3. TabNet parameters are denoted according731

to the original paper [52]. We set the virtual batch size to 512. As training the clean baseline for732

HomeCredit was prone to overfitting, we reduced the training number of epochs to 100. Other733

hyperparameters were selected with a grid search.734

E.2 Dataset Processing and Cost Models735

E.2.1 TwitterBot736

We use 19 numeric features from this dataset. We dropped 3 features, for which we cannot compute737

the effect of a transformation as we do not have access to the original tweets. We use the number of738

followers as the adversary’s gain. We assign costs of features based on estimated costs to purchase739

Twitter accounts of different characteristics on darknet markets.740

22

E.2.2 IEEECIS741

We ascribe cost of changes, assuming that the adversary can change the device type and email address742

with a small cost. The device type can be changed with low effort using specific software on a mobile743

phone. Email domain can be changed with a registration of a new email address which typically744

cannot be automated. Although also low cost, it takes more time and effort than changing the device745

time. We reflect these assumptions ascribing the costs $0.1 and $0.2 to these changes. Changing746

the type of card requires obtaining a new card, which costs approximately $20 in US-based darknet747

marketplaces in 2022, according to our research. We consider the transaction amount as a gain748

obtained by an adversary.749

E.2.3 HomeCredit750

The main goal of the adversary in this task is receiving a credit approval, therefore, illustrative751

purposes, we set credit amount to be a gain of one sample. All features which can be used by an752

adversary are listed in Table 6 with the costs we ascribe to them. We assumed six groups of features753

and estimated the cost as follows:754

• Group 1: features that an adversary can change with negligible effort such as email address,755

weekday or hour of the application. We ascribe $0.1 cost to these transformations.756

• Group 2: features associated to income. We use these as a numerical features to illustrate757

the flexibility of our method. We assume that to increase income by 1$, the adversary needs758

to pay 1$.759

• Group 3: features associated to changing a phone number. Based on the US darknet760

marketplace prices we estimate that buying a phone number costs $10.761

• Group 4: features related documents which can be temporally changed in favor of an762

adversary. For example, a car can be transferred from one person to another for the763

application period and returned to the original owner after it. We ascribe a cost of $100 to764

obtain these documents.765

• Group 5: features that requires either document forging or permanent changes to a person’s766

status. For instance, buying a university diploma. These are expensive changes, and we767

estimate their cost in $1 000.768

• Group 6: features related to credit scores provided by unspecified external credit-scoring769

agencies. We estimate the cost of changes in this group with a manipulation model presented770

below.771

Credit-score manipulation. In our feature set we include the features that contain credit scores from772

unspecified external credit-scoring agencies. One reported way of manipulating such credit scores is773

using credit piggybacking [51]. During piggybacking, a rating buyer finds a “donor” willing to share774

a credit for a certain fee. We introduce a model that captures costs of manipulating a credit score775

through piggybacking.776

We assume that after one piggybacking manipulation the rating is averaged between “donor” and
recipient, and that “donors” have the maximum rating (1.0). Then, the cost associated to increasing
the rating from 0.5 to 0.75 is the same as that of increasing from 0.9 to 0.95. This cost cannot be
represented by a linear function. Let the initial score value be x. The updated credit score after
piggybacking is x′ = (x+1)/2. If we repeat the operation n times, the score becomes:

x′ =
x+ 2n − 1

2n

Thus, the number of required piggybacking operations can be computed from the desired final score
x′ as n = log2

1−x
1−x′ , and the total cost is c(x, x′) = nC, where C is the cost of one operation. We

estimate to be $10,000.

c(x, x′) = C log2

1− x
1− x′ = C(log2(1− x)− log2(1− x′))

To represent this cost function for adversarial training, we can use the encoding described in Ap-777

pendix B.1, setting φ(x) = log2(1−x). Then, the cost function becomes c(x, x′) = C|φ(x)−φ(x′)|,778

which is suitable for our defence algorithm. It is worth mentioning that this cost is a lower bound of779

23

Table 4: Costs of changing a feature in TwitterBot dataset
Feature Estimated cost, $

likes_per_tweet 0.025
retweets_per_tweet 0.025
user_tweeted 2
user_replied 2

Table 5: Costs of changing a feature in IEEECIS dataset
Feature Estimated cost, $

DeviceType 0.1
P_emaildomain 0.2
card_type 20

Table 6: Costs of changing a feature in HomeCredit
Feature Estimated cost, $

NAME_CONTRACT_TYPE 0.1
NAME_TYPE_SUITE 0.1
FLAG_EMAIL 0.1
WEEKDAY_APPR_PROCESS_START 0.1
HOUR_APPR_PROCESS_START 0.1
AMT_INCOME_TOTAL 1
FLAG_EMP_PHONE 10
FLAG_WORK_PHONE 10
FLAG_CONT_MOBILE 10
FLAG_MOBIL 10
FLAG_OWN_CAR 100
FLAG_OWN_REALTY 100
REG_REGION_NOT_LIVE_REGION 100
REG_REGION_NOT_WORK_REGION 100
LIVE_REGION_NOT_WORK_REGION 100
REG_CITY_NOT_LIVE_CITY 100
REG_CITY_NOT_WORK_CITY 100
LIVE_CITY_NOT_WORK_CITY 100
NAME_INCOME_TYPE 100
CLUSTER_DAYS_EMPLOYED 100
NAME_HOUSING_TYPE 100
OCCUPATION_TYPE 100
ORGANIZATION_TYPE 100
NAME_EDUCATION_TYPE 1000
NAME_FAMILY_STATUS 1000
HAS_CHILDREN 1000

the real cost, as the adversary can only do an integer number of operations. Nonetheless, it perfectly780

fits our framework as Eq. (11) encompasses this cost model. This is not a fully realistic model, as we781

cannot know how exactly credit score agencies compute the rating. However, it is reasonable, and782

enables us to demonstrate how our framework’s support of non-linear costs.783

24

Adv. success, %
Cost bound→ 10 30 Gain ∞

Beam size ↓
1 45.32 56.57 56.22 68.20

10 45.32 56.01 55.65 56.01
100 45.32 56.53 56.18 56.53

Success/time ratio
Cost bound→ 10 30 Gain ∞

Beam size ↓
1 3.78 4.80 2.53 2.06

10 2.14 2.25 1.31 1.15
100 0.66 0.65 0.65 0.66

Table 7: Effect of beam size B in the Universal Greedy algorithm on the IEEECIS dataset. The
success rates are close for all choices of the beam size, thus the beam size of one offers the best
performance in terms of runtime.

0 10 50 100 500 1K
Attack margin τ

0

200

V
al

ue

Metric = Adv. utility

0 10 50 100 500 1K
Attack margin τ

0

1
Metric = Adv. success

(a) IEEECIS. Model (test acc.):
• LR (0.62) • XGBT (0.83) • TabNet (0.77)

3 4 5 6 8 10
Att. margin τ (105×)

200000

400000

V
al

ue

Metric = Adv. utility

3 4 5 6 8 10
Att. margin τ (105×)

0.25

0.50

0.75
Metric = Adv. success

(b) HomeCredit. Model (test acc.):
• XGBT (0.65) • TabNet (0.68)

Figure 7: Results of utility-bounded graph-based attacks against three types of models. Left pane:
Adversarial utility (higher is better for the adversary). Right pane: See Fig. 2. On IEEECIS, the
attack can achieve utility from approximately up to approximately $200 per attack against TabNet
and XGBT. On HomeCredit, the average utility ranges between $400, 000 and $200, 000.

25

	Introduction
	Adversarial Objectives in Tabular Data
	Algorithms and Evaluation
	Conclusions
	Finding adversarial examples in tabular domains
	Graphical Framework
	Attacks as Graph Search
	Related Work on Attack Strategies

	Defending from Adversarial Examples in Tabular Domains
	Relaxing the Constraints
	Adversarial Training with Projected Gradient Descent
	Adversarial Training against a Utility-Bounded Adversary
	Related Work on Adversarial Training

	Experimental Evaluation
	Experimental setup
	Datasets
	Models
	Adversarial Features
	Metrics

	Attacks Evaluation
	Design Choices of the Universal Greedy Algorithm
	Graph-based Attacks vs. Baselines
	Performance against Undefended Models

	Evaluation of Our Defence Methods
	Defender matches the adversary
	Defender does not match the adversary
	Robustness-Accuracy Trade-offs

	Details on the Projection Algorithm and Adversarial Training
	Adversarial Training Procedure
	Projection algorithm

	Additional Experimental Details
	Hyperparameter selection
	Dataset Processing and Cost Models
	TwitterBot
	IEEECIS
	HomeCredit

