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Abstract
We introduce Equivariant Neural Diffusion
(END), a novel diffusion model for molecule gen-
eration in 3D that is equivariant to Euclidean
transformations. Compared to current state-of-
the-art equivariant diffusion models, the key inno-
vation in END lies in its learnable forward process
for enhanced generative modelling. Rather than
pre-specified, the forward process is parameter-
ized through a time- and data-dependent trans-
formation that is equivariant to rigid transforma-
tions. Through a series of experiments on stan-
dard molecule generation benchmarks, we demon-
strate that END improves on several strong base-
lines for both unconditional and conditional gen-
eration.

1. Introduction
The discovery of novel chemical compounds with relevant
properties is critical to a number of scientific fields, such as
drug discovery and materials design (Merchant et al., 2023).
However, due to the large size and complex structure of the
chemical space (Ruddigkeit et al., 2012), which combines
continuous and discrete features, it is notably difficult to
search. Additionally, ab-initio quantum mechanics methods
for computing target properties are often computationally ex-
pensive, preventing brute-force enumeration. While some of
these heavy computations can be amortized through learned
surrogates, the need for innovative search methods remains,
and generative models have recently emerged as a promis-
ing avenue (Anstine & Isayev, 2023). Generative models
can learn complex data distributions, that, in turn, can be
sampled from to obtain novel samples similar to the original
data. Compared to other data modalities such as images or
text, molecules have to adhere to strict chemical rules, and
obey the symmetries of the 3D space.
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Currently, the most promising directions for molecule gen-
eration in 3D are either auto-regressive models (Gebauer
et al., 2019; 2022; Luo & Ji, 2022; Daigavane et al., 2024),
building molecules one atom at a time, or Diffusion Models
(DM) (Hoogeboom et al., 2022; Vignac et al., 2023; Le
et al., 2024) that learn to revert a corruption mechanism
that transforms the data distribution into noise. As both ap-
proaches directly operate in 3D space, they can leverage the
numerous architectures designed for machine learned force
fields (Unke et al., 2021), which were carefully developed
to encode the symmetries inherent to the data (Schütt et al.,
2017; 2021; Batzner et al., 2022; Batatia et al., 2022).

DM have not only been successful at molecule generation,
but also on a variety of other data modalities (Yang et al.,
2023). Nevertheless, most existing DM pre-specify the for-
ward process, forcing the reverse process to comply with it.
A recent line of work has sought to overcome that limita-
tion and improve generation by replacing the fixed forward
process with a learnable one (Bartosh et al., 2023; Nielsen
et al., 2024; Bartosh et al., 2024).

Contributions In this paper, we present Equivariant Neu-
ral Diffusion (END), a novel diffusion model for molecule
generation in 3D that (1) is equivariant to Euclidean trans-
formations, and (2) features a learnable forward process.
We demonstrate competitive performance in unconditional
molecule generation on the QM9 and GEOM-Drugs bench-
marks. For conditional generation driven by composition
and substructure constraints, our approach exhibits a sub-
stantial performance gain compared to existing equivariant
diffusion models, underscoring the utility of a learned for-
ward model for effective conditional molecule generation.

2. Background
We begin by establishing the necessary background for gen-
erative modeling of geometric graphs. We first introduce
the data representation and its inherent symmetries. We
then discuss Diffusion Models (DM), and more specifically
Equivariant Diffusion Model (EDM) (Hoogeboom et al.,
2022). Finally, we present the Neural Flow Diffusion Mod-
els (NFDM) framework (Bartosh et al., 2024).
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2.1. Equivariance

Molecules as geometric graphs in E(3) We consider
geometric graphs embedded in 3-dimensional Euclidean
space that represent molecules. Formally, each atomistic
system can be described by a tuple x = (r,h), where
r = (r1, ..., rM ) ∈ RM×3 form a collection of vectors
in 3D representing the coordinates of the atoms, and h =
(h1, ...,hM ) ∈ RM×D are the associated scalar features
(e.g. atomic types or charges).

When dealing with molecules, we are particularly interested
in E(3), the Euclidean group in 3 dimensions, generated by
translations, rotations and reflections. Each group element
in E(3) can be represented as a combination of a translation
vector t ∈ R3 and an orthogonal matrix R ∈ O(3) encod-
ing rotation or reflection. While scalar features h remain
invariant, coordinates r transform under translation, rotation
and reflection as Rr + t = (Rr1 + t, ...,RrM + t).

Equivariant functions A function f : X → Y is said to
be equivariant to the action of a group G, or G-equivariant,
if g · f(x) = f(g · x),∀g ∈ G. It is said to be G-invariant,
if f(x) = f(g · x),∀g ∈ G. In the case of a function
f : (RM×3 × RM×D)→ (RM×3 × RM×D) operating on
geometric graphs, the function is said to be E(3)-equivariant
if,

Ry(r) + t,y(h) = f
(
Rr + t,h

)
,

∀ R ∈ O(3) and t ∈ R3, where y(r) and y(h) denote the
output related to r and h respectively. There exists a large
variety of graph neural network architectures designed to
be equivariant to the Euclidean group (Schütt et al., 2017;
2021; Batzner et al., 2022; Batatia et al., 2022).

Equivariant distributions A conditional distribution
p(y|x) is equivariant to rotations and reflections when
p(y|x) = p(Ry|Rx),∀ R ∈ O(3), while a distribution
is said to be invariant when p(x) = p(Rx),∀ R ∈ O(3).
Regarding translation, it is not possible to have a translation-
invariant non-zero distribution, as it would require that
p(x) = p(x + t),∀t ∈ R3,x ∈ RM×3, which would
mean that p(x) cannot integrate to 1 (Garcia Satorras
et al., 2021). However, a translation invariant distribu-
tion can be constructed in the linear subspace R where
the centre of gravity is fixed to 0 (i.e. zero CoG sub-
space): R = {r ∈ RM×3 : 1

M

∑M
i=1 ri = 0} (Xu et al.,

2022). As R can be shown to be intrinsically equivalent
to R(M−1)×3 (Bao et al., 2023), we will consider in what
follows that r is defined in R(M−1)×3 for ease of notation.

2.2. Equivariant Diffusion Models

Diffusion Models (DM) (Sohl-Dickstein et al., 2015; Ho
et al., 2020) are generative models that learn distributions
through a hierarchy of latent variables, corresponding to per-

turbed versions of the data at increasing noise scales. DM
consist of a forward and a reverse (or generative) process.
The Equivariant Diffusion Model (EDM) (Hoogeboom et al.,
2022) is a particular instance of a DM, where the learned
marginal pθ(x) is made invariant to the action of transla-
tions, rotations and reflections by construction. Intuitively,
this means that the likelihood of a given molecule does not
depend on its orientation.

Forward process The forward process perturbs samples
from the data distribution, x ∼ q(x), over time through
noise injection, resulting in a trajectory of latent variables
(zt)t∈[0,1], conditional on x. The conditional distribution for
(zt)t∈[0,1] given x, can be described by an initial distribution
q(z0|x) and a Stochastic Differential Equation (SDE),

d{z(r)
t , z

(h)
t } = f(t)

[
z
(r)
t , z

(h)
t

]
dt

+ g(t) d{w(r),w(h)},

where the drift f(t) and volatility g(t) are scalar func-
tions of time, and w(r) and w(h) are two independent stan-
dard Wiener processes defined in R(M−1)×3 and RM×D

respectively. Specifically, EDM implements the Variance-
Preserving SDE (VP-SDE) scheme (Song et al., 2020), with
f(t) = − 1

2β(t) and g(t) =
√
β(t) for a fixed schedule

β(t). Due to the linearity of the drift term, the conditional
marginal distribution can be reconstructed as

q
(
[z

(r)
t , z

(h)
t ]

∣∣[r,h]) = q(z
(r)
t |r)q(z

(h)
t |h),

= N (z
(r)
t , |αtr, σ

2
t I) · N (z

(h)
t , |αth, σ

2
t I),

where αt = exp
(
− 1

2

∫ t

0
β(s) ds

)
and σt = 1 − exp

(
−

1
2

∫ t

0
β(s) ds

)
. The conditional distribution evolves from a

low-variance Gaussian centered around the data q(z0|x) ≈
N (z0|x, δI) to an uninformative prior distribution (that con-
tains no information about the data distribution), i.e. a unit
Gaussian q(z1|x) ≈ N (z1|0, I).

Reverse (generative) process Starting from the prior
[z

(r)
1 , z

(h)
1 ] ∼ N (z

(r)
t |0, I) · N (z

(h)
t |0, I), samples from

q(x) can be generated by reversing the forward process.
This can be done by following the reverse-time SDE (An-
derson, 1982),

d{z(r)
t , z

(h)
t } = fB(zt, t) dt+g(t) d{w̄(r), w̄(h)}

=
[
f(t)zt − g2(t)∇zt

log q(zt)
]
dt+g(t) d{w̄(r)w̄(h)},

where zt =
[
z
(r)
t , z

(h)
t

]
, w̄(r) and w̄(h) are indepen-

dent standard Wiener processes defined in R(M−1)×3 and
RM×D, respectively, with time flowing backwards. DM
approximate the reverse process by learning an approxima-
tion of the score function ∇zt

log q(zt) parameterized by
a neural network sθ(zt, t). With the learned score func-
tion sθ(zt, t), a sample z0 ∼ pθ(z0) ≈ q(z0) ≈ q(x) can
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be obtained by first sampling from the prior [z(r)
1 , z

(h)
1 ] ∼

N (z
(r)
t |0, I) ·N (z

(h)
t |0, I), and then simulating the reverse

SDE,

dzt =
[
f(t)zt − g2(t)sθ(zt, t)

]
dt+g(t) d{w̄(r), w̄(h)},

where the true score function has been replaced by its ap-
proximation sθ(zt, t). In EDM, the approximate score is
parameterized through an equivariant function: sθ(zt, t) =[
s
(r)
θ (zt, t), s

(h)
θ (zt, t)

]
such that sθ([Rz

(r)
t , z

(h)
t ], t) =[

Rs
(r)
θ (zt, t), s

(h)
θ (zt, t)

]
,∀ R ∈ O(3). This is realised

through the specific parameterization,

sθ(zt, t) =
αtx̂θ(zt, t)− zt

σ2
t

,

where the data point predictor x̂θ is implemented by an
equivariant neural network.

Optimization The data point predictor x̂θ, or sθ, is
trained by optimizing the denoising score matching loss

LDSM = E u(t)
q(x,zt)

[
λ(t)

∣∣∣∣sθ(zt, t)−∇zt
log q(zt|x)

∣∣∣∣2
2

]
,

where λ(t) is a positive weighting function, and u(t) is a
uniform distribution over the interval [0, 1].

2.3. Neural Flow Diffusion Models

Neural Flow Diffusion Models (NFDM) (Bartosh et al.,
2024) are based on the observation that latent variables, zt,
in conventional DM are inferred through a pre-specified
transformation. This potentially limits the flexibility of the
latent space, and make the learning of the reverse (genera-
tive) process more challenging.

Forward process In contrast to conventional DMs,
NFDM defines the forward process implicitly through a
learnable transformation Fφ(ε, t,x) of injected noise ε,
time t, and data point x. The latent variables zt are ob-
tained by transforming noise samples ε, conditional on data
point x and time step t: zt = Fφ(ε, t,x). If Fφ is differ-
entiable with respect to ε and t, and invertible with respect
to ε, then, for fixed x and ε, samples from qφ(zt|x) can
be obtained by solving the following conditional Ordinary
Differential Equation (ODE) until time t,

dzt = fφ(zt, t,x) dt, (1)

where fφ(zt, t,x) =
∂Fφ(ε,t,x)

∂t

∣∣∣
ε=F−1

φ (zt,t,x)
, and with

z0 ∼ q(z0|x). While Fφ and q(ε) define the conditional
marginal distribution qφ(zt|x), we need a distribution over
the trajectories (zt)t∈[0,1]. NFDM obtains this through the
introduction of a conditional SDE starting from z0 and

running forward in time. Given access to the ODE in Equa-
tion (1) and the score function ∇zt log qφ(zt|x), a condi-
tional SDE with conditional marginal distribution qφ(zt|x)
is given by

dzt = fF
φ (zt, t,x) dt+gφ(t) dw, (2)

where fF
φ (zt, t,x) = fφ(zt, t,x)+

g2
φ(t)

2 ∇zt log qφ(zt|x).
The score function of qφ(zt|x) is

∇zt
log qφ(zt|x) = ∇zt

[
log q(ε) + log

∣∣J−1
F

∣∣], (3)

with ε = F−1
φ (zt, t,x), and J−1

F =
∂F−1

φ (zt,t,x)

∂zt
.

Reverse (generative) process A conditional reverse SDE
that starts from z1 ∼ q(z1), runs backward in time, and
reverses the conditional forward SDE from Equation (2) can
be defined as

dzt = fB
φ (zt, t,x) + gφ(t) dw̄

=
[
fφ(zt, t,x)−

g2φ(t)

2
∇zt

log qφ(zt|x)
]
dt+gφ(t) dw̄ .

As we do not have access to x when generating samples,
we can rewrite Equation (2), with the prediction of x,

dzt = f̂θ,φ(zt, t) dt+gφ(t) dw̄, (4)

where f̂θ,φ(zt, t) = fB
φ

(
zt, t, x̂θ(zt, t)

)
, and x̂θ is a func-

tion that predicts the data point x. Provided that the re-
construction distribution q(z0|x) and the prior distribution
q(z1) are defined, this fully specifies the reverse process.

Optimization The forward and reverse processes can be
optimized jointly by matching the drift terms of the true and
approximate conditional reverse SDEs,

LNFDM = E u(t)
qφ(x,zt)

[ 1

2g2φ(t)

∣∣∣∣fB
φ (zt, t,x)− f̂θ,φ(zt, t)

∣∣∣∣2
2

]
.

(5)

3. Equivariant Neural Diffusion
Equivariant Neural Diffusion (END) generalizes the Equiv-
ariant Diffusion Model (EDM) (Hoogeboom et al., 2022),
by defining the forward process through a learnable transfor-
mation. Our approach is a synthesis of NFDM introduced
in Section 2.3, and leverages ideas of EDM outlined in Sec-
tion 2.2 to maintain the desired invariance of the learned
marginal distribution pθ,φ(z0). By providing an equivari-
ant learnable transformation Fφ and an equivariant data
point predictor x̂θ, we show that it is possible to obtain a
generative model with the desired properties. Finally, we
propose a simple yet flexible parameterization meeting the
requirements.
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3.1. Formulation

The key innovation in END lies in its forward process, which
is also leveraged in the reverse (generative) process. The
forward process is defined through a learnable time- and
data-dependent transformation Fφ(ε, t,x), such that the
latent zt transforms covariantly with the injected noise ε
(i.e. a collection of random vectors) and the data point x,

Fφ(Rε, t,Rx) = RFφ(ε, t,x) = Rzt.

We then define x̂θ as another learnable equivariant function,
implying that the predicted data point transforms covariantly
with the latent zt, i.e. x̂θ(Rzt, t) = Rx̂θ(zt, t). Finally,
we choose the noise distribution p(ε), and the prior distri-
bution p(z1) to be invariant to the considered symmetry
group.

Invariance of the learned distribution With the fol-
lowing choices: (1) p(z1) an invariant distribution, (2)
Fφ an equivariant function that satisfies Fφ(Rε, t,Rx) =
RFφ(ε, t,x), and (3) x̂θ an equivariant function, we have
that the learned marginal pθ,φ(z0) is invariant as desired.
This can be shown by demonstrating that the reverse SDE
is equivariant. We start by noting that the reverse SDE in
END is given by

dzt = f̂θ,φ(zt, t) dt+gφ(t) dw̄ .

As the Wiener process is isotropic, this boils down to
showing that the drift term, f̂θ,φ, (zt, t) is equivariant, i.e.
f̂θ,φ(Rzt, t) = Rf̂θ,φ(zt, t). As the drift is expressed as a
sum of two terms, we inspect each of them separately. The
first term is

fφ
(
zt, t, x̂θ

)
=

∂Fφ

(
ε, t, x̂θ

)
∂t

∣∣∣
ε=F−1

φ (zt,t,x̂θ)
,

where x̂θ = x̂θ(zt, t).

If Fφ is equivariant, then so is its time-derivative (see Ap-
pendix A.1). The same holds for its inverse with respect to ε
(see Appendix A.2), such that we have F−1

φ (Rzt, t,Rx) =
RF−1

φ (zt, t,x) = Rε. We additionally have that x̂θ is
equivariant by definition.

As the equivariance of Fφ implies the equivariance of qφ,
when looking at the second term of the drift, we can see that,
for yt = Rzt, we have

∇yt
log qφ

(
yt|x̂θ(yt, t)

)
= R∇zt

log qφ
(
zt|x̂θ(zt, t)

)
.

In summary, in addition to an invariant prior, an equiv-
ariant Fφ and an equivariant x̂θ ensure the equivariance
of the reverse process, and hence the invariance of the
learned distribution. In Appendix A.3, we additionally show
that the objective function in Equation (5) is invariant, i.e.
LEND(Rx) = LEND(x),∀R ∈ O(3).

3.2. Parameterization

We now introduce a simple parameterization of Fφ that
meets the requirements outlined above:

Fφ(ε, t,x) = µφ(x, t) + Uφ(x, t)ε, (6)

where, due to the geometric nature of x, Uφ(x, t) ∈
R(M−1)×3×3 is structured as a block-diagonal matrix where
each block is a 3 × 3 matrix. This is the equivalent to a
diagonal parameterization in the case of scalar features.
Similarly to EDM, our parametrization of Fφ leads to a
conditional marginal qφ(zt|x) that is a conditional Gaus-
sian with (block-) diagonal covariance, with the notable
difference that the mean and covariance are now learnable
through Fφ,

qφ(zt|x) = N
(
zt|µφ(x, t),Σφ(x, t)

)
, (7)

where Σφ(x, t) = Uφ(x, t)U
⊤
φ (x, t) such that Σφ(x, t) is

also block-diagonal.

As Fφ is linear in ε, both µφ and Uφ must be equivariant
functions whose outputs transform covariantly with x, to
ensure the equivariance of Fφ(ε, t,x),

Fφ(Rε, t,Rx) = µφ(Rx, t) + Uφ(Rx, t)Rε,

= Rµφ(x, t) +RUφ(x, t)Rε

= RFφ(ε, t,x),

as desired. We can then readily check that qφ is equivariant,
as ∀R ∈ O(3), we have that

qφ(zt|x) = N
(
zt|µφ(x, t),Σφ(x, t)

)
= N

(
Rzt|Rµφ(x, t),RΣφ(x, t)R

⊤)
= qφ(Rzt|Rx).

Prior and Reconstruction While not strictly required, it
can be advantageous to parameterize Fφ such that the prior
and reconstruction losses do not need to be computed. To
do so, we need to make sure that Fφ(ε,x, t) is such that (i)
q(z0|x) ≈ N (z0|x, δ2I), and (ii) q(z1|x) ≈ N (0, I). We
parameterize the mean function as

µφ(x, t) = (1− t)x+ t
(
1− t

)
µ̄φ(x, t), (8)

which ensures that µφ(x, 0) = x, and µφ(x, 1) = 0;
whereas for Uφ(x, t), we use the following

Uφ(x, t) =
(
δ1−tσ̄φ(x, t)

t(1−t)
)
I

+ t
(
1− t

)
Ūφ(x, t), (9)

which ensures that Σφ(x, 0) = δ2I, and Σφ(x, 1) = I,
while being unconstrained for t ∈]0, 1[. We give additional
details about Fφ in Appendix A.4.
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Implementation In practice, Fφ is implemented as a
neural network with an architecture similar to that of the
data point predictor x̂θ(zt, t), but with a specific readout
layer that produces [µ̄φ(x, t), σ̄φ, Ūφ(x, t)]. The mean out-
put µ̄φ(x, t) is similar to that of x̂θ(zt, t). For Uφ(x, t),
we need to ensure that Σφ(x, t) = Uφ(x, t)U

⊤
φ (x, t) ro-

tates properly: σ̄φ(x, t) is a positive invariant scalar, while
Ūφ(x, t) is constructed as matrix whose columns are vectors
that transform covariantly with x.

For ease of notation, we introduced all notations in the linear
subspace R, however in practice we work in the ambient
space, i.e. r ∈ RM×3. We detail in Appendix A.4.1, how
working in ambient space is possible.

The training and sampling procedures are detailed in Algo-
rithms 1 and 2 in the appendix.

3.3. Conditional Generation

While unconditional generation is a required stepping stone,
many real-life applications require some form of control-
lability. As other generative models, DM can model con-
ditional distributions p(x|c), where c is a given condition.
While different methods exist for sampling from the con-
ditional distribution, e.g. (Wu et al., 2024), the simplest
approach consists in training a conditional model on pairs
(x, c). In that setting, Fφ and x̂θ are simply provided
with an extra input c representing the conditional infor-
mation, such that they respectively become Fφ(ε, t,x, c),
and x̂θ(zt, t, c). It is important to note that, compared
to conventional DM, the forward process of END is now
condition-dependent.

4. Experiments
In this section, we demonstrate the benefits of END with a
comprehensive set of experiments. In Section 4.1, we first
display the advantages of END for unconditional genera-
tion on 2 standard benchmarks, namely QM9 (Ramakrish-
nan et al., 2014) and GEOM-DRUGS (Axelrod & Gomez-
Bombarelli, 2022), including an ablation study on QM9.
Then, in Section 4.2, we perform conditional generation in
2 distinct settings on QM9.

4.1. Unconditional Generation

Datasets The QM9 dataset (Ramakrishnan et al., 2014)
contains 134 thousand small- and medium-sized organic
molecules with up to 9 heavy atoms, and up to 29 when
counting hydrogen atoms. GEOM-DRUGS (Axelrod &
Gomez-Bombarelli, 2022) contains 430 thousand medium-
and large-sized drug-like molecules with 44 atoms on aver-
age, and up to maximum 181 atoms. We follow the same
setup as previous work (Hoogeboom et al., 2022).

Task and Evaluation For each method, we sample
10 000 molecules using the stochastic sampling procedure
detailed in Algorithm 2, with the number of integration steps
varying from 50 to 1000. We repeat each sampling for 3
seeds, and report averages along with standard deviations
for each metric.

On QM9, we follow previous work (Hoogeboom et al.,
2022; Xu et al., 2023), and first evaluate the chemical qual-
ity of the generated samples in terms of stability, validity,
and uniqueness. We additionally evaluate the ability of
the model to learn the atom and bond types distributions
by measuring the total variation between the dataset’s and
generated distributions. Finally, we evaluate the geome-
try of the generated molecules, by computing the MMD
(Gretton et al., 2012) between the generated and true bond
distances distributions for the 10 most common bonds. We
provide additional details about the evaluation procedure in
Appendix A.6.1.

On GEOM-DRUGS, in addition to atom stability and valid-
ity as commonly reported in previous work (Hoogeboom
et al., 2022; Xu et al., 2023), we also compute connectivity
and total variation for atom types. Connectivity accounts
for the fact that validity can easily be increased by generat-
ing several disconnected fragments (where only the largest
counts towards validity), while the total variation ensures
that the model properly samples all atom types.

Baselines We compare END to several relevant base-
lines from the literature: the original EDM (Hoogeboom
et al., 2022), EDM-BRIDGE (Wu et al., 2022) an improved
version of EDM that adds a physics-inspired force guidance
in the reverse process, and GEOLDM (Xu et al., 2023) an
equivariant latent DM. For a fair comparison, we addition-
ally implement our own EDM (Hoogeboom et al., 2022),
and denote it EDM*. It features the exact same architecture
as END, as well as the same amount of learnable parameters.
In EDM*, x̂θ is made of 10 layers, while END comprises a
5-layer x̂θ and a 5-layer Fφ. We provide additional details
in Appendix A.6.

Results on QM9 Our results on the QM9 dataset are
summarized in Table 1, and a few illustrative samples are
shown in Figure 1. In addition to comparing with baselines
from the literature, we conduct an ablation study, where
EDM* + γ is similar to EDM*, but with a learned SNR
(Kingma et al., 2021) for each data modality (i.e. atomic
types and coordinates), and END (µφ only) where only the
mean of the conditional marginal is learned. Details about
the compared models are provided in Table 5.

We observe that the addition of a learnable forward allows
for improved generative modeling, as the two variants of
END are shown to perform better than (or be on par with)
all baselines across all metrics. Most notably, with as few
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Figure 1: Representative samples generated by END on QM9 (top row), and GEOM-DRUGS (bottom row).

Table 1: Results on QM9. Metrics are obtained over 10000 samples, with mean/standard deviation across 3 sampling
runs. For baselines from the literature, results are extracted from the respective papers. The two variants of END compare
favorably to baselines across metrics, while offering competitive performance for reduced number of sampling steps.

Stability (↑) Validity / Uniqueness (↑) Total Variation (↓) MMD (↓)
A [%] M [%] V [%] V×U [%] A [10−2] B [10−3] [10−1]

Model Steps

Data 99.0 95.2 97.7 97.7

EDM (Hoogeboom et al., 2022) 1000 98.7 82.0 91.9 90.7
EDM-BRIDGE (Wu et al., 2022) 1000 98.8 84.6 92.0 90.7
GEOLDM (Xu et al., 2023) 1000 98.9±.1 89.4±.5 93.8±.4 92.7±.5

EDM*

50 97.6±.0 77.6±.5 90.2±.2 89.2±.2 4.6±.1 1.7±.5 1.91±.03

100 98.1±.0 81.9±.4 92.1±.2 90.9±.2 3.5±.1 1.4±.3 1.67±.02

250 98.3±.0 84.3±.1 93.2±.4 91.7±.3 2.8±.2 1.3±.4 1.52±.02

500 98.4±.0 85.2±.5 93.5±.2 92.2±.3 2.6±.2 1.3±.4 1.50±.04

1000 98.4±.0 85.3±.3 93.5±.1 91.9±.1 2.5±.1 1.4±.4 1.51±.02

EDM* + γφ

50 97.7±.0 77.4±.3 91.1±.4 90.2±.4 4.3±.1 1.5±.2 2.04±.02

100 98.2±.0 82.6±.2 92.9±.2 91.6±.2 3.2±.1 1.2±.2 1.66±.01

250 98.5±.0 85.3±.3 93.9±.1 92.4±.1 2.5±.1 1.0±.1 1.54±.02

500 98.5±.1 86.1±.4 94.1±.2 92.5±.2 2.2±.1 1.0±.3 1.50±.02

1000 98.5±.0 86.1±.3 94.1±.2 92.4±.2 2.1±.1 1.1±.1 1.45±.03

END (µφ only)

50 98.5±.0 83.9±.2 95.2±.2 93.8±.3 1.4±.1 1.9±.4 2.80±.06

100 98.7±.0 87.0±.3 95.5±.2 93.6±.2 1.1±.0 1.5±.2 1.97±.05

250 98.9±.0 89.0±.2 95.8±.2 93.8±.2 1.0±.0 0.5±.1 1.48±.03

500 98.9±.0 88.6±.2 95.6±.1 93.5±.1 0.9±.0 0.7±.1 1.36±.03

1000 98.9±.0 89.2±.3 95.6±.1 93.5±.1 0.9±.2 1.0±.1 1.36±.02

END

50 98.6±.0 84.6±.1 92.7±.1 91.4±.1 1.5±.1 1.9±.4 1.91±.00

100 98.8±.0 87.4±.2 94.1±.0 92.3±.2 1.3±.0 1.8±.3 1.63±.02

250 98.9±.1 88.8±.5 94.7±.2 92.6±.1 1.2±.1 0.8±.2 1.44±.04

500 98.9±.0 88.8±.4 94.8±.2 92.8±.2 1.2±.1 0.8±.5 1.41±.01

1000 98.9±.0 89.1±.1 94.8±.1 92.6±.2 1.2±.1 0.8±.5 1.37±.04
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Table 2: Results on GEOM-DRUGS. Metrics are obtained over 10000 samples, with mean/standard deviation across 3
sampling runs. For baselines from the literature, results are extracted from the respective papers. Most notably, END
generates more connected samples.

Stability (↑) Val. / Conn. (↑) TV (↓)
A [%] V [%] V×C [%] A [10−2]

Model Steps

Data 86.5 99.0

EDM (Hoogeboom et al., 2022) 1000 81.3 92.6 − −
EDM-BRIDGE (Wu et al., 2022) 1000 82.4 − − −
GEOLDM (Xu et al., 2023) 1000 84.4 99.3 − −

EDM*

50 84.7±.0 93.6±.2 46.6±.3 10.5±.1

100 85.2±.1 93.8±.3 56.2±.4 8.0±.1

250 85.4±.0 94.2±.1 61.4±.6 6.7±.1

500 85.4±.0 94.3±.2 63.4±.1 6.4±.1

1000 85.3±.1 94.4±.1 64.2±.6 6.2±.0

END

50 87.8±.0 89.8±.2 68.2±.9 5.7±.1

100 87.6±.1 91.5±.1 76.0±.3 4.6±.2

250 87.2±.0 92.4±.4 80.0±.3 3.5±.3

500 87.1±.0 92.8±.3 81.1±.5 3.3±.2

1000 87.0±.0 92.9±.3 82.2±.2 3.0±.3

as 100 integration steps, END is able to generate samples
that are qualitatively better than those generated by most
baselines in 1000 steps.

Results on GEOM-DRUGS Our results on the GEOM-
DRUGS dataset are presented in Table 2, and a few samples
are displayed in Figure 1. We observe that END outperforms
all baselines across all metrics but validity. This is due to the
fact that the validity metric, as computed by (Hoogeboom
et al., 2022; Xu et al., 2023), is obtained by only considering
the largest fragment that can be extracted from a given sam-
ple. A method generating smaller disconnected fragments,
can easily exploit and artificially increase this metric. When
discarding disconnected samples, we observe that END does
much better than the baseline, with an increase of around
20% on average.

4.2. Controllable Generation

Dataset and Setup We perform our experiments on the
QM9 dataset, on 2 different tasks: composition-conditioned
generation, and substructure-conditioned generation. Both
tasks allow for direct validation with ground-truth properties
without requiring expensive quantum mechanics calcula-
tions, or approximations with surrogate models. In each
case, we train a conditional diffusion model as described in
Section 3.3, i.e. where Fφ and x̂θ are provided with an extra
input corresponding to the condition. Additional details are
provided in Appendix A.6.4.

Task 1: composition-conditioned generation The
model is tasked to generate a compound with a predefined
composition, i.e. structural isomers of a given formula. The

Table 3: Results on composition-conditioned generation,
where CEND offers nearly perfect composition controllabil-
ity. Matching refers to the proportion of samples featuring
the prompted composition.

Matching [%] (↑)
Model Steps

CEDM*

50 69.6±.6

100 73.0±.6

250 74.1±1.4

500 76.2±.6

1000 75.5±.5

CEND

50 89.2±0.8

100 90.1±1.0

250 91.2±0.8

500 91.5±0.8

1000 91.0±0.9

condition is specified as a vector c = (c1, ..., cD) ∈ ZD,
where cd denotes the number of atoms of type d that the
sample should contain. To evaluate the model, we generate
10 samples per target formula, and compute the propor-
tion of samples that match the provided composition. Our
results are provided in Table 3, where we observe that con-
ditional END significantly outperforms the baseline, and
offers nearly perfectly controllable composition generation.
Additionally, we can also see that reducing the number of
sampling steps has a very limited impact on the controllabil-
ity.

Task 2: substructure-conditioned generation We fol-
low the same setup as (Bao et al., 2023) and train a con-
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Table 4: Results on substructure-conditional sampling. For
baselines from the literature, results are borrowed from
the corresponding paper (Bao et al., 2023). CEND shows
competitive performance, even surpassing EEGSDE that
leverages an additional property predictor.

Tanimoto Sim. (↑)
Model Steps

CEDM (Bao et al., 2023) 1000 0.671±.004

EEGSDE (Bao et al., 2023) 1000 0.750±.003

CEDM*

50 0.601±.000

100 0.640±.002

250 0.663±.002

500 0.669±.001

1000 0.673±.002

CEND

50 0.783±.001

100 0.807±.001

250 0.819±.001

500 0.825±.001

1000 0.828±.001

ditional END, where the condition is a molecular finger-
print encoding structural information about the molecule.
A fingerprint is a binary vector c = (c1, ..., cF ) ∈ {0, 1}F ,
where cf is set to 1 if substructure f is present in the
molecule, or to 0 if not. Fingerprints are obtained using
OPENBABEL (O’Boyle et al., 2011). To evaluate the ability
of the compared models to leverage the provided structural
information, we evaluate them by conditioning on unseen
fingerprints (taken from test set) at sampling time. We then
compute the similarity between the fingerprints computed
on the generated samples and the fingerprints provided as
inputs. We compare CEND to EEGSDE (Bao et al., 2023),
an improved version of EDM (Hoogeboom et al., 2022),
that performs conditional generation by combining a condi-
tional diffusion model and regressor guidance. Our results
are presented in Table 4, along with a handful of samples
in Figure 2. CEND offers better controllability than the
compared baselines, as highlighted by the higher similarity.

5. Related Work
The main approaches to molecule generation in 3D are auto-
regressive models (Gebauer et al., 2019; Simm et al., 2020;
Gebauer et al., 2022; Luo & Ji, 2022; Daigavane et al.,
2024), flow-based models (Garcia Satorras et al., 2021), and
diffusion models (Hoogeboom et al., 2022; Igashov et al.,
2024). A notable exception to the geometric graph repre-
sentation of 3D molecules are voxels (Skalic et al., 2019;
Ragoza et al., 2022; O Pinheiro et al., 2024), from which
the 3D graph is extracted using some post-processing pro-
cedure. The closest work to ours is GEOLDM (Xu et al.,
2023), a geometric latent diffusion model that performs

Target cEDM cEND

Figure 2: Excerpt of substructure-conditioned samples.,
where CEND can be seen to match the provided substructure
better (in terms of compositions and local patterns).

diffusion in the latent space of an equivariant Variational
Auto-Encoder (VAE). It corresponds to a particular instance
of END with Fφ(ε, t,x) = αtEφ(x) + ϵσt, where Eφ(x)
corresponds to the encoder of the VAE. Recently, several
works have shown that leveraging 2D connectivity informa-
tion can lead to improved results (Peng et al., 2023; Vignac
et al., 2023; Le et al., 2024). While not incompatible with
END, we perform our experiments without modeling that
auxiliary information, and therefore do not compare to these
approaches directly. Other generative frameworks have also
been tailored to molecule generation, such as Flow Match-
ing (Lipman et al., 2022; Song et al., 2023) or Bayesian
Flow Networks (Graves et al., 2024; Song et al., 2024).

6. Conclusion
In this work, we have presented Equivariant Neural Diffu-
sion (END), a novel diffusion model that is equivariant to
Euclidean transformations. The key innovation in END lies
in the forward process that is specified by a learnable data-
and time-dependent transformation. Experimental results
demonstrate the benefits of our method. In the unconditional
setting, we show that END yields competitive generative
performance across two different benchmarks. In the con-
ditional setting, END offers better controllability, when
conditioning on composition and substructure. Avenues for
future work are numerous. In particular, leveraging the flex-
ible framework of NFDM (Bartosh et al., 2024) to constrain
the generative trajectories, e.g. to be straight and enable
faster sampling, modelling bond information, or extending
the conditional setting to other types of conditioning infor-
mation, e.g. other point cloud or target property, are all
promising directions.
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A. Appendix / supplemental material
A.1. Time-derivative of an O(3)-equivariant function

Let f : X×[0, 1]→ Y be a function that is equivariant to actions of the group O(3), such that R·f(x, t) = f(R·x, t),∀R ∈
O(3).

Proof sketch We need to show that ∂
∂t

(
f(R · x, t)

)
= R · ∂

∂t

(
f(x, t)

)
, ∀R ∈ O(3) and ∀x ∈ X .

∂

∂t

(
f(R · x, t)

)
=

∂

∂t

(
R · f(x, t)

)
, (10)

= R · ∂
∂t

(
f(x, t)

)
(11)

where the last equality follows by linearity.

A.2. Inverse of an O(3)-equivariant function

Let f : X → Y be a function that (1) is equivariant to the action of the group O(3), and (2) admits an inverse f−1 : Y → X ,
then f−1 is also equivariant to the action of O(3).

Proof sketch We need to show that f−1
(
R · y

)
= R · f−1(y), ∀R ∈ O(3) and ∀y ∈ Y .

Since f is invertible, we have that to any y ∈ Y corresponds a unique x ∈ X , such that y = f(x), and that f−1(y) =
f−1(f(x)) = x. As f is equivariant to the action of O(3), we have that R · f(x) = f(R · x),∀R ∈ O(3):

f−1
(
R · y

)
= f−1

(
R · f(x)

)
, (12)

= f−1
(
f(R · x)

)
, (13)

= R · x, (14)

= R · f−1(y). (15)
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A.3. O(3)-invariance of the objective function

In this section, we show that the objective function is invariant under the action of O(3): LEND(Rx) = LEND(x),∀R ∈
O(3), provided that Fφ and x̂θ.

LEND(Rx) = Eu(t),qφ(zt|Rx)q(Rx)

[ 1

2g2φ(t)

∣∣∣∣fφ(zt, t,Rx)−
g2φ(t)

2
∇zt log qφ(zt|Rx)

− fφ(zt, t, x̂θ(zt, t)) +
g2φ(t)

2
∇zt log qφ(zt|x̂θ(zt, t))

∣∣∣∣2
2

]
,

= Eu(t),qφ(zt|Rx)q(Rx)

[ 1

2g2φ(t)

∣∣∣∣fφ(RR−1zt, t,Rx)−
g2φ(t)

2
∇zt

log qφ(RR−1zt|Rx)

− fφ(RR−1zt, t, x̂θ(RR−1zt, t)) +
g2φ(t)

2
∇zt

log qφ(RR−1zt|x̂θ(RR−1zt, t))
∣∣∣∣2
2

]
,

= Eu(t),qφ(zt|Rx)q(Rx)

[ 1

2g2φ(t)

∣∣∣∣Rfφ(R
−1zt, t,x)−

g2φ(t)

2
∇zt

log qφ(R
−1zt|x)

−Rfφ(R
−1zt, t, x̂θ(R

−1zt, t)) +
g2φ(t)

2
∇zt

log qφ(R
−1zt|x̂θ(R

−1zt, t))
∣∣∣∣2
2

]
,

= Eu(t),qφ(Ryt|Rx)q(Rx)

[ 1

2g2φ(t)

∣∣∣∣Rfφ(yt, t,x)−
g2φ(t)

2
R∇yt log qφ(yt|x)

−Rfφ(yt, t, x̂θ(yt, t)) +
g2φ(t)

2
R∇yt log qφ(yt|x̂θ(yt, t))

∣∣∣∣2
2

]
,

= Eu(t),qφ(yt|x)q(x)

[ 1

2g2φ(t)

∣∣∣∣fφ(yt, t,x)−
g2φ(t)

2
∇yt

log qφ(yt|x)

− fφ(yt, t, x̂θ(yt, t)) +
g2φ(t)

2
∇yt

log qφ(yt|x̂θ(yt, t))
∣∣∣∣2
2

]
,

= LEND(x)

The first equality is obtained by replacing x by Rx in the definition of the objective function Equation (5). The second
is obtained by multiplying by RR−1 = I. The third equality by leveraging that fφ, qφ and x̂θ are equivariant. We then
perform a change of variable yt = R−1zt. As rotation does preserve distances, we obtain the last equality.

A.4. Details about Fφ

A.4.1. WORKING IN AMBIENT SPACE

In practice, we would like Fφ and x̂θ to operate in ambient space, i.e. on z
(r)
t ∈ RM×3.

Garcia Satorras et al. (2021) showed that the Jacobian of the transformation can be directly computed in ambient space for
z
(r)
t and ε(r) that live in the linear subspace R, provided that the transformation Fφ leaves the center of mass unchanged.

Additionally, Fφ is required to be invertible with respect to ε.

If we consider a flat representation of z(r)
t ∈ RM ·d, such transformation can be written as,

Uφ(x, t) = (IM ·d −
1

M
TT⊤)Ũφ(x, t) +

1

M
TT⊤, (16)

where T ∈ RM ·d×d = [Id, Id, ...]⊤, and 1
M TT⊤ corresponds to the linear operator computing the center of mass. Intuitively,

the first term corresponds to a linear transformation followed by a projection to the 0-CoM subspace, while the second term
translates the system back to the initial center of mass.

Computing z
(r)
t from ε(r) Given that ε(r) ∈ R, obtaining z

(r)
t ∈ R from ε(r) simply amounts to (1) computing

z̃
(r)
t = Ũφ(x, t)ε

(r), and then (2) removing the center of mass from z̃
(r)
t .

Computing |JF | and F−1 In what follows, we shorten the notation, and denote Uφ(x, t) by U and Ũφ(x, t) by Ũ . We
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start by reorganizing Equation (16), as

U = Ũ +
1

M
TT⊤(IM ·d − Ũ). (17)

Computing detU can be done by leveraging the Matrix Determinant Lemma,

detU = det Ũ · det
(
Id +

1

M
T⊤(IM ·d − Ũ)Ũ−1T

)
, (18)

= det Ũ · det
(
Id +

1

M
T⊤(Ũ−1 − IM ·d)T

)
, (19)

= det Ũ · det
( 1

M

M∑
m=1

(Ũm)−1
)
, (20)

= det Ũ · detV, (21)

=

M∏
m=1

det Ũm · detV (22)

where V = 1
M

∑M
m=1(Ũ

m)−1 is a d× d-matrix, and Ũm denotes the m-th d× d-block in Ũ .

The inverse can be obtained by leveraging the Woodbury matrix identity,

U−1 =
(
Ũ +

1

M
TT⊤(IM ·d − Ũ)

)−1
(23)

= Ũ−1 − 1

M
Ũ−1TV −1T⊤(Ũ−1 − IM ·d), (24)

= Ũ−1(I− C) (25)

where V = 1
M

∑M
m=1(Ũ

m)−1, as previously defined, and C = 1
M TV −1T⊤(Ũ−1 − IM ·d).

In practice, we do not need the inverse itself, but rather ε(r) given z
(r)
t ,

ε(r) = U−1z
(r)
t , (26)

= Ũ−1(I− C)z
(r)
t , (27)

= Ũ−1
[
z
(r)
t − c

]
, (28)

where c is a translation vector that can be obtained without constructing the full matrix C.

A.4.2. INVARIANT FEATURES

For simplicity, we omitted in Section 3.1 that molecules are described as tuples: x = (r,h), as only r transform under
Euclidean transformations. For the invariant features h, we use the following parameterization

µ(h)
φ (x, t) = (1− t)h+ t

(
1− t

)
µ̄(h)
φ (x, t), (29)

which ensures that µ(h)
φ (x, 0) = h, and µ

(h)
φ (x, 1) = 0; whereas for σ(h)

φ (x, t), we use the following

σ(h)
φ (x, t) = δ1−tσ̄φ(x, t)

t(1−t). (30)

Implementation Fφ is implemented as a neural network with an architecture similar to that of the data point predictor
x̂θ(zt, t), but with a specific readout layer that produces the outputs related to r ([µ̄φ(x, t), σ̄φ, Ūφ(x, t)]), as described in
the main text in Section 3.1. Additionally, it produces µ̄(h)

φ (x, t) and σ̄
(h)
φ (x, t) as invariant outputs.

Inverse transformation The logarithm of the determinant of the inverse transformation log |J−1
F | writes

log |J−1
F | = − log |JF | = −

M×D∑
i=1

σ(h),i
φ (x, t)︸ ︷︷ ︸

invariant features

−
M∑

i=m

log
∣∣ det(Um

φ (x, t))
∣∣− log det |V |︸ ︷︷ ︸

vectorial features

, (31)

where V is defined as in Equation (22).
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A.5. Algorithms

Algorithm 1 Training algorithm of END

Require: q(x), Fφ, x̂θ

for training iterations do
x ∼ q(x), t ∼ u(t), ε ∼ p(ε)
zt ← µφ(x, t) + Uφ(x, t)ε

L = 1
2g2

φ(t)

∣∣∣∣fB
φ (zt, t,x)− f̂θ,φ(zt, t)

∣∣∣∣2
2

Gradient step on θ and φ
end for

Algorithm 2 Stochastic sampling from END

Require: Fφ, x̂θ, integration steps T , empirical distribution of number of atoms p(N)
∆t = 1

T
N ∼ p(N)
z1 ∼ p(z1)
for t = 1, ..., 1

T do
w̄ ∼ N (0, I)
zt−∆t ← zt − f̂θ,φ(zt, t)∆t+ gφ(t)w̄

√
∆t

end for
x ∼ p(x|z0)

A.6. Experimental details

A.6.1. EVALUATION METRICS

Stability An atom is deemed stable if it has a charge of 0, whereas a molecule is stable if all its atoms have 0 charge. We
reuse the lookup table from (Hoogeboom et al., 2022) to infer bond types from pairwise distances.

Validity Validity corresponds to the percentage of samples that can be parsed and sanitized by RDKIT (Landrum et al.,
2013), after inference of the bonds using a lookup table (Hoogeboom et al., 2022). It should be noted that the metric does
not penalize fragmented samples as long as each individual fragment appears valid. This can be problematic when running
evaluation on larger compounds, as models tend to generated disconnected structures.

Uniqueness It is the proportion of samples that are valid and have a unique SMILES string (Weininger, 1988).

Total variation The total variation is computed as the MAE between the (discrete) marginal obtained on the training data
and on the generated samples. For bond types, we compute the ground truth and generated distributions using the lookup
table mechanism.

MMD We follow the procedure of (Daigavane et al., 2024), and compute the MMD between true and generated
pairwise distances distributions for the 10 most common bonds in QM9: [”C-H:1.0”, ”C-C:1.0”, ”C-O:1.0”, ”C-
N:1.0”, ”H-N:1.0”, ”C-O:2.0”, ”C-N:1.5”, ”H-O:1.0”, ”C-C:1.5”, ”C-N:2.0”]. Here, we infer bonds using RDKIT’s
rdDetermineBonds.DetermineBonds with charge=0.

A.6.2. ARCHITECTURE

Our forward transformation Fφ and data point predictor x̂θ share a common neural network architecture that we detail here.
The architecture is similar to that of EQCAT (Le et al., 2022), and updates a collection of invariant and equivariant features
for each node in the graph. We chose that architecture because it allows for an easy construction of Ūφ(x, t) by linear
projection of the final equivariant layer.

We follow previous work (Hoogeboom et al., 2022) and consider fully-connected graphs. We initially featurize pairwise
distances through Gaussian Radial Basis functions, with dataset-specific cutoff taken large enough to ensure full connectivity.
In opposition to (Hoogeboom et al., 2022), we do not update positions in the message-passing phase, but instead obtain
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the positions prediction through a linear projection of the final equivariant hidden states. The predictions for the invariant
features are obtained by reading out the final invariant hidden states.

Optimization For all model variants, we employ Adam with a learning rate of 10−4. We perform gradient clipping (norm)
with a value of 10 on QM9, and a value of 1 on GEOM-DRUGS.

A.6.3. UNCONDITIONAL GENERATION

We reuse the data setup from previous work (Hoogeboom et al., 2022; Xu et al., 2023).

QM9 On QM9, we use 10 layers of message passing for EDM*, while the variants of END feature 5 layers of message-
passing in Fφ and 5 layers in x̂θ. For all models, we use 256 invariant and 256 equivariant hidden features, along with an
RBF expansion of dimension 64 with a cutoff of 10Å for pairwise distances. This ensures that the compared models have
the same number of learnable parameters, i.e. 9.4M each. We train all models for 1000 epochs with a batch size of 64.

GEOM-Drugs On GEOM-DRUGS, we use 10 layers of message passing for EDM*, while the variants of END feature 5
layers of message-passing in Fφ and 5 in x̂θ. The hidden size of the invariant and equivariant features is set to 192, along
with an RBF expansion of dimension 64 with a cutoff of 30Å for pairwise distances. Each model features 5.4M learnable
parameters. We train all models for 10 epochs with an effective batch size of 64.

A.6.4. CONDITIONAL GENERATION

We use 10 layers of message passing for EDM*, while the variants of END feature 5 layers of message-passing in Fφ and 5
in x̂θ. The hidden size of the invariant and equivariant features is set to 192 , along with an RBF expansion of dimension 64
with a cutoff of 10Å for pairwise distances. We train all models for 1000 epochs with a batch size of 64.

After an initial encoding, the conditional information is introduced at the end of each message passing step, and alters the
scalar hidden states through a one-layer MLP, that shares the same dimension as the hidden scalar state.

Composition-conditioned generation The encoding of the condition follows that of (Gebauer et al., 2022). Each atom type
gets its own embedding, weighted by the proportion it represents in the provided formula. The weighted embeddings of all
atom types are then concatenated and flattened, and the obtained vector is processed through a 2-layer MLP with 64 hidden
units. The composition used at sampling time are extracted from the validation and test set. For each unique formula, the
model gets to generate 10 samples.

Substructure-conditioned generation The encoding of the condition follows that of (Bao et al., 2023). The 1024-
dimensional fingerprint is simply processed by a 2−layer MLP with hidden dimensions [512, 256], and a final linear
projection to 192, i.e. the hidden size of the invariant features.

A.7. Compared models

In Table 5, we detail the compared all models in terms of their transformation Fφ.

Table 5: Compared models.

Fφ(ε, t,x) Comment

EDM (Hoogeboom et al., 2022)
/

EDM* αtx+ σtε
αt = exp

(
− 1

2

∫ t

0
β(s) ds

)
σt = 1− exp

(
− 1

2

∫ t

0
β(s) ds

)
GEOLDM (Xu et al., 2023) αtEφ(x) + σtε

αt and σt similar to EDM
p(x|z0) = N

(
x|Dφ(z0), δ

2I
)

EDM* + γφ αφ(t)x+ σφ(t)ε learned γφ with 2 separate outputs (for r and h)

END (µφ only) µφ(x, t) + σtε σt similar to EDM

END µφ(x, t) + Uφ(x, t)ε as introduced in Equation (6)
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A.8. Compute resources

All experiments were run on a single GPU. The experiments on QM9 were run on a NVIDIA SM3090 with 24 GB of
memory. The experiments on GEOM-DRUGS were run on NVIDIA A100 with 40 GB. Training took up to 7 days.
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