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Abstract

Event cameras harness advantages such as low latency, high temporal resolution,
and high dynamic range (HDR), compared to standard cameras. Due to the distinct
imaging paradigm shift, a dominant line of research focuses on event-to-video
(E2V) reconstruction to bridge event-based and standard computer vision. How-
ever, this task remains challenging due to its inherently ill-posed nature: event
cameras only detect the edge and motion information locally. Consequently, the
reconstructed videos are often plagued by artifacts and regional blur, primarily
caused by the ambiguous semantics of event data. In this paper, we find language
naturally conveys abundant semantic information, rendering it stunningly supe-
rior in ensuring semantic consistency for E2V reconstruction. Accordingly, we
propose a novel framework, called LaSe-E2V, that can achieve semantic-aware
high-quality E2V reconstruction from a language-guided perspective, buttressed by
the text-conditional diffusion models. However, due to diffusion models’ inherent
diversity and randomness, it is hardly possible to directly apply them to achieve
spatial and temporal consistency for E2V reconstruction. Thus, we first propose an
Event-guided Spatiotemporal Attention (ESA) module to condition the event data
to the denoising pipeline effectively. We then introduce an event-aware mask loss
to ensure temporal coherence and a noise initialization strategy to enhance spatial
consistency. Given the absence of event-text-video paired data, we aggregate exist-
ing E2V datasets and generate textual descriptions using the tagging models for
training and evaluation. Extensive experiments on three datasets covering diverse
challenging scenarios (e.g., fast motion, low light) demonstrate the superiority of
our method. Demo videos for the results are attached to the project page.

1 Introduction

Event cameras are bio-inspired sensors that detect per-pixel intensity changes, producing asyn-
chronous event streams [5] with high dynamic range (HDR) and high temporal resolution. They
particularly excel in capturing the edge information of moving objects, thus discarding the redundant
visual information. Such a distinct imaging shift poses challenges for integration with the off-the-shelf
vision algorithms designed for standard cameras. To bridge the event-based and standard computer
vision [27, 31, 3, 29], a promising way is event-to-video (E2V) reconstruction.

Recently, deep learning has been applied to E2V reconstruction [49, 54, 64], and remarkable perfor-
mance is achieved thanks to the availability of synthetic event-video datasets and the development
of model architectures. Most existing research emphasizes on the network design [64, 13, 54, 34]
or high-quality data synthesis [57, 34]. However, this task remains challenging due to its inherently
ill-posed nature: event cameras capture edge and motion information locally but neglect semantic
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Figure 1: Comparison of the E2V pipeline between HyperE2VID [13] and our LaSe-E2V: The
baseline method solely relies on event data, leading to ambiguity in local structures. In contrast, our
approach integrates language descriptions to enrich the semantic information and ensure the video
remains coherent with the event stream.

information in regions with no intensity changes (See Fig. 1 (a)). Consequently, the reconstructed
videos, e.g., HyperE2VID [13], are plagued by artifacts and regional blur, as shown in Fig. 1 (b).

To fill this gap, in this paper, we find language naturally conveys abundant semantic information,
which is beneficial in enhancing the semantic consistency for the reconstructed video, as shown
in Fig. 1 (c). Intuitively, we propose a novel language-guided semantic-aware E2V reconstruction
framework, called LaSe-E2V, with the text-conditional diffusion model [52] as the backbone. While
many efforts [62, 51, 23] apply diffusion models for images and video generation, adapting them to
our problem is hardly possible. The reason is that the inherent randomness in diffusion sampling
and the diversity objectives of generative models may result in temporal inconsistency between
consecutive frames and spatial inconsistency between the event data and reconstructed videos.

Therefore, we first introduce an Event-guided Spatio-temporal Attention (ESA) module to enhance
reconstructed video by introducing spatial and temporal event-driven attention layers, respectively
(Sec. 3.2). This module not only achieves fine-grained spatial alignment between the events and
video (See Fig. 7 (right)) but also maintains temporal smoothness and coherence by adhering to
the temporal properties of event cameras. We then introduce an event-aware mask loss to maintain
temporal coherence throughout the video by considering the spatial constraints of event data from
adjacent frames (Sec. 3.3). Lastly, we propose a noise initialization strategy that utilizes accumulated
event frames to provide layout guidance and reduce discrepancies between the training and inference
stages of the denoising process (Sec. 3.4).

Given the absence of event-text-video paired data, we aggregate existing E2V datasets and employ
tagging models to generate textual descriptions, thereby facilitating both training and evaluation
processes. Extensive experiments on three widely used real-world datasets demonstrate the superiority
of our method in enhancing the quality and visual effects of reconstructed videos, especially its super
generalization ability when applied in challenging scenarios, e.g., fast motion, and low light (See
Fig. 4 and Fig. 5). In summary, the contributions of our work are three-fold: (I) We explore E2V
reconstruction from a language-guided perspective, utilizing the text-conditioned diffusion model to
effectively address the semantic ambiguities inherent in event data. (II) We propose the event-guided
spatio-temporal attention mechanism, an event-aware mask loss, and a noise initialization strategy to
ensure the semantic consistency and spatio-temporal coherency of the reconstructed video. (III) We
have rebuilt event-text-video paired datasets based on existing event datasets with textual descriptions
generated from off-the-shelf models [73]. Extensive experiments on three datasets covering diverse
scenarios (e.g., fast motion, low light) demonstrate the effectiveness of our framework.

2 Related Works
Event-to-Video (E2V) Reconstruction. E2V reconstruction falls into two categories: model-
based and learning-based methods. Model-based approaches [2, 44, 6, 53] exploit the correlation
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between events and intensity frames through hand-crafted regularization techniques. However,
its reconstruction result is comparatively inferior to the more recent learning-based methods [50,
49, 54, 34, 13]. For example, E2VID [50, 49] used an Unet-like network with skip connections
and ConvLSTM units to reconstruct videos from long event streams. Following E2VID, SPADE-
E2VID [7] extended E2VID to enhance temporal coherence by feeding previously reconstructed
frames into a SPADE block. HyperE2VID [13] introduced hypernetworks to generate per-pixel
adaptive filters guided by a context fusion module. GANs, such as conditional GAN [61] and cycle-
consistency GAN [69], are used to address this issue, but often exhibit blurry images with artifacts
in non-activated areas. In summary, previous learning-based methods can only achieve plausible
reconstructed results for this ill-posed problem because event data solely captures motion information
without semantic context information. In this work, we explore the possibility of incorporating textual
descriptions with semantic awareness for E2V reconstruction.

Text-to-Video Diffusion Models. The success of Diffusion models [45, 52] in generating high-
quality images from text prompts has advanced text-to-image (T2I) synthesis. Inspired by T2I
synthesis, text-to-video (T2V) diffusion models, such as [4, 19, 20, 23, 30, 40, 55, 60, 66] adapt
T2I synthesis to video. Subsequent developments [23, 4, 18] focused on refining the temporal
information interaction, such as optimizing temporal convolution or self-attention modules for motion
learning. Meanwhile, one T2V research line focuses on enhancing controllability by incorporating
additional conditions, thus addressing the text prompts’ ambiguity in motion, content, and spatial
structure. For high-level video motion control, studies propose learning LoRA [24] layers for
specific motion patterns [18, 75], or utilizing extracted trajectories [68], motion vectors [62], pose
sequences [41] to guide the synthesis. For fine-grained spatial structure control, methods like Gen-
1 [14], VideoComposer [62], and others [42, 70] leverage monocular depth, sketch, and image control
models [42, 70] for flexible and controllable video generation [8, 18, 30, 72].

Formally, given a video sample x0, the latent diffusion model (LDM) [52] first encodes it into a
latent feature z0 = EI(x0). A noisy input is obtained based on the forward diffusion process by
introducing Gaussian noise to the latent representation: zt =

√
ᾱtz0 +

√
1− ᾱtϵ, where t = 1, ..., T

and T denotes the maximum timestep. ᾱt =
∏t

i=1(1− βi) is the coefficient that controls the noise
strength. The diffusion model is trained by predicting the noise ϵ through a mean squared error:

lϵ = ∥ϵ− ϵθ(zt, c, t)∥2, (1)

where θ denotes the parameters of the U-Net of the diffusion model. c denotes the addition conditions
(text, image, depth, et al.) to control the diffusion process. In the inference stage, the generated
sample x̂0 can be obtained from the denoised latent ẑ0 using a pre-trained decoder x̂0 = DI(ẑ0).

These methods achieve fine-grained controllability based on the well-designed condition c, focusing
on flexible user instructions and diverse outcomes. In this study, we employ a basic T2V diffusion
model with the 3D-UNet [60] architecture as the foundation for language-guided E2V reconstruction.
In particular, our framework prioritizes video fidelity by aligning motion details from event data and
semantic insights from text, thus outperforming previous models, especially in extreme scenarios like
fast motion and low light.

3 The Proposed LaSe-E2V Framework

Event Representation. An event stream E = {etk}
Ne

k=1 consists of Ne events. Each event etk ∈ E is
represented as a tuple (xk, yk, tk, pk), which denotes the pixel coordinates, timestamp, and polarity.
To make the event stream compatible with the pre-trained diffusion model, we convert E into a
grid-like event voxel grid V ∈ RB×H×W with B time bins using temporal bilinear interpolation [77].

3.1 Overall Pipeline

The goal of our LaSe-E2V is to reconstruct a video x̂ = {x̂1, x̂2, ..., x̂N} ∈ RN×C×H×W from
the set of event segments {E i}Ni=1, where E i is i-th event segment corresponding to the frames.
The reconstructed video is expected to retain the motion and edge content from the event data and
compensate for the semantic information from the language description. The difficulty of our task lies
not only in achieving high visual quality that aligns with the text descriptions but also in maintaining
content consistency with the event data. We address the difficulty by integrating the diffusion model
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Figure 2: An overview of our proposed LaSe-E2V framework.

with events and text descriptions effectively. As shown in Fig. 2, LaSe-E2V consists of four major
components: an image encoder EI , an event encoder Ee, a video LDM, and a decoder DI .

Image Encoder EI . Given a sequence of frames x = {x1, x2, ..., xN}, we extract the latent
representation z = {z1, z2, ..., zN} with the pre-trained image encoder of LDM [52].

Event Encoder Ee. To adapt the event voxel grids to the latent space of EI , we first project it into
a latent representation with an event encoder Ee(V). As illustrated in Fig. 2 (a), we initially apply
lightweight spatial 2D and temporal 3D convolution blocks to the set of input voxel V = {V i}Ni=1
with N segments. These blocks are designed to extract local spatial and temporal feature information,
which is then processed through an attention block (AttBlock) for global temporal modeling. Subse-
quently, we concatenate the event latent representation with the noise latent representation along the
channel dimension to serve as a rough condition for the model. Finally, we construct the input latent
representation as zt = {[zit, zie]}Ni=1 ∈ RN×(C′+Ce)×H′×W ′

, where zit and zie denote the noise latent
and event feature corresponding to the i frame with channel dimensions C ′ and Ce.

Video LDM. We first extend the capabilities of the text-conditional image-based LDM by incorporat-
ing temporal layers in the U-Net, following the approach of video diffusion models [14, 23, 55, 62].
As depicted in Fig. 2, our framework presents a video LDM with multiple blocks consisting of 2D
spatial convolution, 3D temporal convolution, 2D spatial attention, and 3D temporal attention layers.
A pre-trained CLIP [48] text encoder is employed to extract text descriptions conditioning on the
attention layers to provide semantic information for the reconstructed video. To facilitate fine-grained
control of event data, we propose an Event-guided Spatio-temporal Attention (ESA) module (see
Fig. 2 (b) and (c)) following Ee to convert the event voxel grids to the latent space. The ESA module
enhances the control by introducing a specific spatial and temporal cross-attention in the U-Net. The
technical details will be discussed in Sec. 3.2.

Decoder DI . Finally, we apply the pre-trained decoder DI of [52] to convert the estimated latent
representation ẑ to video x̂ in the image space.

Event-aware Mask Loss lm. To optimize LaSe-E2V, we propose a novel event-aware mask loss lm,
in addition to the ϵ-prediction loss (Eq. 1). The details of lm will be described in Sec. 3.3.

In addition, different from previous LDM models [10, 51], we introduce a noise initialization strategy
to alleviate the train-test gap in the inference stage, which will be described in Sec. 3.4.

3.2 Event-guided Spatio-temporal Attention (ESA)

Relying solely on the 3D U-Net and feature concatenation is insufficient to reconstruct a content-
consistent video with fine-grained control from event data, as demonstrated experimentally in Fig. 7
(right). To address this, we propose using the event latent representation to condition spatial and
temporal attention, ensuring more reliable spatial alignment and temporal consistency (See Tab. 4).
Our ESA module is specially designed to enhance the spatio-temporal consistency between events
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and video in contrast to the original SD [52], which serves as a baseline attention mechanism for
integrating conditional input. Our approach differs in attention design, which introduces two distinct
attention mechanisms respective to the spatial domain and temporal domain.

Event Spatial Cross-Attention. As illustrated in Fig. 2 (b), the 2D spatial attention layer in the
LDM U-Net integrates a self-attention mechanism that processes each frame individually and a cross-
attention mechanism connecting frames with text embedding, which follows Stable Diffusion [52].
Intuitively, Event data naturally deliver abundant edge information in the spatial space, which is
expected to directly constrain the structural information of the reconstructed video. To incorporate
event information in the spatial attention module, we concatenate the features from the event latent
zie to the U-Net intermediate features z to formulate a event-based spatial attention:

zout = Softmax

(
QKT

e−s√
d

)
Ve−s, (2)

where Q = WQzi, Ke−s = WK [zi, zie]s, Ve−s = WV [zi, zie]s. [∗]s represents the concatenation
operation on the spatial dimension. This modification ensures that each spatial position in all frames
accesses comprehensive information from the corresponding event data, enabling detailed structural
feature control within the spatial attention layers.

Event Temporal Cross-Attention. In addition to the spatial information, event data inherently
represents the difference between the adjacent frames, which is a strong constraint. As shown in
Fig. 2 (c), to effectively leverage the temporal constraint of the event data, we facilitate event features
into temporal attention. Specifically, given the intermediate features z, we first reshape the height and
width dimensions into the batch dimension, forming a new hidden state z̄ ∈ R(H×W )×N×C . Then
the event latent feature zie is employed to interact with the latent feature z̄ in the temporal dimension
through the temporal attention layer:

zout = Softmax

(
QKT

e−t√
d

)
Ve−t, (3)

where Q = WQz̄i, Ke−t = WK [z̄i, zie]t, Ve−t = WV [z̄i, zie]t. [∗]t represents the concatenation
operation on the temporal dimension.

Previous Frame Conditioning. To ensure consistency for the whole video reconstruction, we use an
autoregressive way to reconstruct the video, by conditioning the model on the last frame x̂N of the
previously estimated video clip x̂. We concatenate the previous frame with the latent representation ẑ

on the temporal dimension as a condition to obtain z̄ = [z00 , zt] ∈ R(N+1)×C′×H′×W ′
. Due to the

absence of the previous frame in the first video clip, we randomly drop the previous frame condition
by applying Gaussian noise to the frame latent representation. During inference, the first video clip is
reconstructed directly from the events and text data without the previous frame. For subsequent video
clips, the reconstruction process utilizes the last frame from the previous video clip as a condition to
ensure temporal coherency and smoothness.

3.3 Event-aware Mask Loss

Considering the noise prediction loss can not capture the event constraint on temporal coherence, we
introduce an event-aware mask loss to directly supervise the inter-frame difference:

lm =
∥∥(1−M) · (ẑt0 − ẑt−1

0 )
∥∥2
2
, (4)

where M = I(V) indicates the event motion mask obtained by setting value one for event activated
area and value zero for non-activated part; ẑ0 represents the model’s estimated clean video latent,
which can be obtained by:

ẑ0 =
zt −

√
1− ᾱtϵθ(zt, t, c)√

ᾱt
. (5)

Finally, we combine the noise prediction loss and the event-aware mask loss with the scaling factor λ.

l = lϵ + λ · lm. (6)
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Table 1: Quantitative comparison with state-of-the-art methods on both synthetic and real-world
benchmarks. The best and second best results of each metric are highlighted in red and blue,
respectively. To align the metric of SSIM, we re-evaluate the previous methods based on their
pre-trained models to obtain SSIM∗.

Datasets Metrics E2VID [50] FireNet [54] E2VID+ [57] FireNet+ [57] SPADE-E2VID [7] SSL-E2VID [46] ET-Net [64] HyperE2VID [13] LaSe-E2V (Ours)

ECD

MSE↓ 0.212 0.131 0.070 0.063 0.091 0.046 0.047 0.033 0.023
SSIM↑ 0.424 0.502 0.560 0.555 0.517 0.364 0.617 0.655 -

SSIM∗ ↑ 0.450 0.459 0.503 0.452 0.461 0.415 0.552 0.576 0.629
LPIPS↓ 0.350 0.320 0.236 0.290 0.337 0.425 0.224 0.212 0.194

MVSEC

MSE↓ 0.337 0.292 0.132 0.218 0.138 0.062 0.107 0.076 0.055
SSIM↑ 0.206 0.261 0.345 0.297 0.342 0.345 0.380 0.419 -

SSIM∗ ↑ 0.241 0.198 0.262 0.212 0.266 0.264 0.288 0.315 0.342
LPIPS↓ 0.705 0.700 0.514 0.570 0.589 0.593 0.489 0.476 0.461

HQF

MSE↓ 0.127 0.094 0.036 0.040 0.077 0.126 0.032 0.031 0.034
SSIM↑ 0.540 0.533 0.643 0.614 0.521 0.295 0.658 0.658 -

SSIM∗ ↑ 0.462 0.422 0.536 0.474 0.405 0.407 0.534 0.531 0.548
LPIPS↓ 0.382 0.441 0.252 0.314 0.502 0.498 0.260 0.257 0.254

3.4 Event-aware Noise Initialization

During training, we construct the input latent by adding noise on the clean video latent. The noise
schedule leaves some residual signal even at the terminal diffusion timestep T . As a result, the
diffusion model has a domain gap to generalize the video during the inference time when we sample
from random Gaussian noise without any real data signal. To solve this train-test discrepancy problem,
during the testing, we obtain the base noise by adding noise on event-accumulated frames using the
forward process of DDPM [21]. The noise latent for frame i can be expressed as:

ztT =
√
αT z

t
e +

√
1− αT ϵ

i, (7)

where αT denotes the diffusion factor and zte = EI(I
−1 +

∑t
0 e

i). The I−1 is the last frame of the
previous estimated video clip. Intuitively, accumulated event data provides structural information
(e.g., edges) in the scene, acting as an additional spatial constraint during the denoising process.

4 Experiments

4.1 Datasets and Implementation Details

Dataset. We train our pipeline using both synthetic and real-world datasets. For synthetic data,
following prior arts [50, 34], we generate event and video sequences from the MS-COCO dataset [33]
using the v2e [25] event simulator because it ensures stable and high-quality ground truth images. To
enrich semantic information, we also utilize the real-world dataset BS-ERGB [58], which includes 1k
training sequences. For all datasets, we employ the off-the-shelf tagging model RAM [73] to generate
language descriptions. Recent work [65] has demonstrated the superiority of RAM compared to
other prompting models due to its rich objects and concise description. We evaluate our model on
Event Camera Dataset (ECD) [43], Multi Vehicle Stereo Event Camera (MVSEC) dataset [76] and
High-Quality Frames (HQF) dataset [57]. RAM is also used to generate tags for these datasets.

Implementation Details. Based on Stable Diffusion 2.1-base [52], we use a text-guided video
diffusion model [51] to initialize our model, pre-trained on large-scale video datasets [1]. For each
training video clip, we sample 16 frames and the corresponding event streams, with an interval of
1 ≤ v ≤ 3 frames. The input size is adapted to 256× 256. Following previous methods [64, 57], the
data augmentation strategies include Gaussian noise, random flipping, and random pause. The value
λ is set to 0.01 for all experiments. The model is trained with the proposed loss across all U-Net
parameters, with a batch size of 3 and a learning rate of 5e-5 for 150k steps on 8 NVIDIA V100
GPUs. We also provide an analysis of the computation complexity. See more details in Appendix 5.

Evaluation Metric. The Mean Squared Error (MSE), Structural Similarity (SSIM [63]), and
Perceptual Similarity (LPIPS [71]) are used to measure image quality. The SSIM metric raises
ambiguity as it involves several hyperparameters that may differ across various codebases. For this
reason, we reevaluated all compared methods using a unified metric, denoted as the SSIM∗ scores.
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Figure 3: Qualitative comparisons on four sampled sequences from the test datasets. While the
previous approaches suffer from low contrast, blur, and extensive artifacts, LaSe-E2V obtains clear
edges with high contrast and preserves the semantic details of the objects

Reference Frame

Figure 4: Qualitative results of fast-motion condition from HS-ERGB dataset [58].
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Figure 5: Qualitative results in low light condition from MVSEC dataset [76] (outdoor_night2).
LaSe-E2V performs better to preserve the HDR characteristic of event cameras with higher contrast.

4.2 Comparison with State-of-the-Art Methods

Quantitative results. We compare LaSe-E2V with eight existing learning-based methods [50, 54, 57,
57, 7, 46, 64, 13]. To ensure fair comparison, we maintain identical experiment settings without any
post-processing operations across all methods. As shown in Tab. 1, LaSE-E2V mostly outperforms
previous methods. In particular, LaSE-E2V significantly surpasses HyperE2VID by 30% on MSE on
the ECD dataset. LaSe-E2V also excels in SSIM and LPIPS mostly. This highlights the superiority
of the structural and semantic reconstruction ability of LaSE-E2V.

Qualitative Results. Fig. 3 illustrates the qualitative results reconstructed by our LaSe-E2V and
previous methods. As shown in the street reconstruction (Column 1), our method reconstructs more
details, especially for the car and the building. For the bike in Column 2, our method achieves
clearer edges and higher contrast, while the previous methods are inclined to exhibit foggy artifacts
around the bikes. Although our method achieves superior performance, some artifacts persist for the
reconstruction of the text region (e.g.3rd row). This issue arises because it depends on the prior of
the pre-trained diffusion model (SD2 [52]), which faces challenges in text generation. The recently
released SD3 [15] claims to show improved text generation capabilities, which could potentially
address the problem. Please refer to the video demo and the appendix for additional qualitative
results, which demonstrates the superiority of our LaSe-E2V on temporal smoothness and consistency.

Results with Fast Motion. In Fig. 4, we show sampled reconstructed frames based on sequences of
HS-ERGB [58] captured by Prophesee Gen4 (1280× 720) event camera with high resolution and
relatively fast motion conditions. We can see that our method is capable of clearly recovering the
details for high-speed movement and preserving temporal consistency.

HDR Results. We test our model on the video sequences in extreme conditions (i.e.low light and
fast motion) to further demonstrate the advantages of event cameras and the effectiveness of our
framework. As shown in Fig. 5, we sample sequences from MVSEC (outdoor_night2) with relatively
low-light conditions in nighty streets. We can see that LaSe-E2V performs better in reconstructing
the scene with higher contrast and more clear edge. Compared with HyperE2VID exhibiting foggy
artifacts of the whole street, E2VID can reconstruct video without over-exposure or under-exposure.

Quantitative Result on Temporal Consistency. We further evaluate the results based on the
temporal quality metrics from VBench [26]. As shown in Tab. 2, the numerical results demonstrate
the effectiveness of our approach in maintaining temporal consistency. In particular, our method
significantly outperforms others on the subject consistency and background consistency, while
achieving comparable performance on motion smoothness.
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Reference FrameTimestamp

Figure 6: Qualitative results for color video reconstruction.

w/o text with text
“pavement, floor, juice …" Ground-Truth w/o ESA with ESA Ground-Truth

Figure 7: Qualitative comparison for the ablation study on text guidance and ESA module.

Table 2: Quantitative comparison on temporal consistency on ECD [43] based on VBench [26].
Metrics E2VID [50] FireNet [54] SPADE-E2VID [7] SSL-E2VID [46] ET-Net [64] HyperE2VID [13] LaSe-E2V (Ours) GT (Empirical Max)

Subject
Consistency↑ 52.14% 49.61% 50.58% 51.89% 55.49% 50.41% 84.25% 88.29%

Background
Consistency↑ 85.26% 82.78% 82.61% 84.86% 86.85% 83.50% 93.39% 93.65%

Motion
Smoothness↑ 97.62% 98.40% 98.41% 95.97% 97.72% 97.59% 98.11% 98.67%

4.3 Discussion

Video Editing with Language. In our framework, language serves as supplementary semantic
information for E2V reconstruction. We investigate the impact of varying language guidance for video
editing, as illustrated in Fig. 8. Utilizing a text description from the off-the-shelf tagging model [73],

“night, dark, 
city street…”

“bright, day light, 
city street …” Reference Frame

Figure 8: Qualitative results for video editing with text.

our method reconstructs a scene with a
reasonable structure in low-light condi-
tions based on descriptors like "night,
dark, ...". Interestingly, when we manu-
ally alter the text description to "bright,
day light, ...", the lighting condition in
the scene shifts to daylight, revealing
clearer details, especially in the sky area.
This demonstrates our framework’s abil-
ity to modify lighting conditions based
on textual descriptions, by effectively
modeling light conditions as semantic in-
formation. In this way, with a language-
guided perspective, it offers the flexibil-
ity to manually adapt the reconstructed
video according to user preferences.

Color Video Reconstruction. Based on a pre-trained diffusion model [51], our model inherits
the capability for colored video generation by training on real-world datasets. As illustrated in
Fig. 6, our method successfully reconstructs color videos with clear details, although it occasionally
misinterprets background semantics due to the absence of event data.

4.4 Ablation Study

We conducted ablation experiments on the LaSe-E2V framework to evaluate the effectiveness of
language guidance, event-based attention, event-aware mask loss, and initialization strategy.
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Language Guidance. To evaluate the effectiveness of language guidance, we conducted ex-
periments without text conditions by setting the text input to null during the denoising stage.
As shown in Tab. 3, introducing the text description achieves a 0.015 improvement on SSIM.

Table 3: Ablation study on context conditions.
Event Text Frame MSE↓ SSIM↑ LPIPS↓
✓ - ✓ 0.038 0.567 0.199
✓ ✓ - 0.067 0.474 0.258
✓ ✓ ✓ 0.023 0.629 0.194

As shown in Fig. 7 (left), when provided
with the language description "pave-
ment", the model tends to reconstruct the
scene more closely to the ground truth,
whereas the baseline model randomly
generates a background which distinct
to the ground truth. This demonstrates
the importance of semantic information for E2V reconstruction, especially in cases where semantic
ambiguity exists in the event data. We also conduct an ablation study on the previous frame condition,
as indicated in Tab. 3 (row 2), where performance significantly dropped across all metrics. This
underscores the critical role of the previous frame condition in our diffusion pipeline, ensuring
temporal consistency within the autoregressive reconstruction process.

Event-guided Spatio-temporal Attention. To demonstrate the effectiveness of our event-
guided spatio-temporal attention (ESA), we conducted experiments by training the model

Table 4: Ablation study on key components."EML"
denotes the event-aware mask loss. "EI" denotes
event-based initialization.

ESA EML EI MSE↓ SSIM↑ LPIPS↓
- ✓ ✓ 0.105 0.468 0.288
✓ - ✓ 0.042 0.443 0.322
✓ ✓ - 0.043 0.482 0.251
✓ ✓ ✓ 0.023 0.629 0.194

with simple channel-wise concatenation for
event input. As shown in Tab. 4, performance
significantly drops without the attention mech-
anism, which demonstrates the effectiveness of
ESA in preserving the event control on the video.
Fig. 7 illustrates that our model maintains visual
content close to the ground-truth, whereas the
baseline method loses control over lighting and
luminance. We further investigate the effective-
ness of the event-aware mask loss. As is shown
in Tab. 4 , the event-aware loss function achieves
a clear margin of improvement compared to the baseline method (row 2). Moreover, Tab. 4 (row 3)
demonstrates the effectiveness of our event-based initialization.

5 Conclusion and Future Work

Conclusion. In this paper, we introduce LaSe-E2V, a language-guided, semantic-aware E2V re-
construction method. Leveraging language descriptions that naturally contain abundant semantic
information, LaSe-E2V explores text-conditional diffusion models with our proposed attention mech-
anism and loss function, thus achieving high-quality, semantic-aware E2V reconstruction. Extensive
experiments demonstrate the effectiveness of our innovative framework.

Limitations and Future Work. Despite the promising performance of our method, LaSe-E2V
has several limitations. First, the training datasets, comprising synthetic and limited real-world
data, are inadequate for optimizing data-intensive diffusion models. Consequently, our method may
reconstruct scenes with artifacts differing from the training data. Second, given that LaSe-E2V relies
on the diffusion model, multiple denoising steps are required for high-quality videos, slowing the
process. Future work can focus on accelerating the inference efficiency based on the recent progress
of diffusion models [37, 9, 38, 39].

Broader Impacts. Based on the event camera, our LaSe-E2V enhances the capabilities of various
technologies by improving the safety and robustness of intelligent systems. As this technology
matures, its integration into everyday devices and systems seems likely, heralding a shift in how
visual data is captured and utilized across industries.
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Appendix

A. Event voxel representation

Given a event stream E i = {etk}Nk=1 with N events stream, each event etk ∈ E i denotes a four-
element tuple (xk, yk, tk, pk), reporting spatial coordinates, timestamp and polarity respectively. The
event voxel representation is formulated as follows:

V i(k) =
∑
j

pj max

(
0, 1−

∣∣∣∣k − tj − t0
tN − t0

(B − 1)

∣∣∣∣) , (8)

where t0, tN denote the start time and end time of event stream E i respectively, k ∈ [0, B − 1],
B = 5 for our experimental setting.

B. Additional datasets and Implementation Details

Datasets. For ECD, we use seven short sequences from this dataset, where the DAVIS240C [5]
camera moves with 6-DOF and with increasing speed in six of them. These sequences mostly
contain simple office environments with static objects. MVSEC is recorded by a synchronized stereo
event camera system. Each sequence of MVSEC releases extensive ground-truth reference data for
evaluations. The HQF dataset, recorded by two DAVIS240C [5] cameras, provides high-quality
ground truth frames, of which the motion blur is maximally mitigated under preferable exposure. 14
sequences are contained, covering a wider range of motions and scene types, including static scenes
and motion scenes of slow, medium and fast, indoor and outdoor scenes. Following the training
processing, we generate language descriptions for each sequence. For a fair comparison, we select the
same sequences from the three datasets as those reported in the recent benchmark of EVREAL [12].

Implementation Details. During training, we randomly drop input text prompts with a probability
of 0.1 to enable classifier-free guidance [22]. For the reconstruction of the first clips and the
accumulation error of the autoregressive pipeline, we randomly drop the first frame as the condition
with 0.4 probability. During inference, we employ the DDIM sampler [56] with 50 steps and
classifier-free guidance with a text guidance scale of w = 5 to sample videos.

Evaluation Metrics. The SSIM metric raises ambiguity because it involves several hyper-parameters
that may differ across various codebases. For example, in the structural_similarity function of the
skimage package, parameters like gaussian_weights and sigma are used for spatial weighting of
each patch with a Gaussian kernel, use_sample_covariance indicate whether normalize covariances,
and K1 and K2 are algorithm-specific parameters that need to be set. For this reason, we reevaluated
all comparison methods by using a unified metric, denoted as the SSIM∗ scores.
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Figure 9: Additional qualitative results for three datasets.

C. Additional qualitative results

In Fig. 9, we provide the additional qualitative results. For example, as shown in column 4 and 5, our
method presents more accurate reconstructed results, especially for those vocabularies. In column 1,
2 and 3, our method reconstructs more details. In the supplementary material, we also provide several
reconstructed video clips to demonstrate the superiority of LaSe-E2V on temporal smoothness and
consistency.

D. Complexity analysis

We provide a detailed computational complexity analysis in Tab. 5, which includes recent event-
to-video reconstruction methods and related diffusion-based approaches. Our method requires a
significant amount of inference time due to the 50 denoising steps, in contrast to previous single-step
event-to-video methods. However, this is a common challenge for all diffusion-based models, as
observed in diffusion-based super-resolution [59, 67, 65] and depth estimation methods [17, 28]. To
reduce inference time, some research, e.g., Instaflow [36], already explored decreasing the number
of denoising steps, offering a promising direction for further improvement (as a future work) to our
framework. Albeit with lower inference speed than conventional E2V methods (but higher than
diffusion-based super-resolution and depth estimation methods), our work brings new ideas and may
hopefully inspire new future research for event-based vision by incorporating language guidance.

D. More analysis results

Additional comparison methods. We mainly compared with the latest state-of-the-art method,
e.g., HyperE2VID [13] in the main paper. By default, our method is superior to all the previous
methods. We also provide more comparison methods in Tab. 6, which further demonstrates the
superior performance of our method.

Quantitative results on HS-ERGB dataset. Tab. 7 provides a quantitative comparison based on
three sequences (horse_11, horse_12, horse_13) from the HS-ERGB dataset. Existing E2V methods
typically fail to reconstruct regions without events, leading to significantly worse quantitative results.
Although our method may not perfectly reconstruct every detail for reality, it does generate a
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Table 5: Complexity comparison on various methods. All tests are conducted on one NVIDIA Tesla
32G-V100 GPU.

Methods Parameters Inference time (per frame)
Conventional Event-to-Video
ET-Net [64] 22.18M 0.0124 s
HyperE2VID [13] 10.15M 0.0043 s

Diffusion-based Depth Estimation
DepthFM [17] 891M 2.1 s
Marigold [28] 948M 5.2 s

Diffusion-based Super-Resolution
StableSR [59] 1409M 18.70 s
PASD [67] 1900M 6.07 s
SeeSR [65] 2284M 7.24 s

Diffusion-based Event-to-Video
LaSe-E2V (Ours) 1801M 1.09 s

Table 6: Comparison with more event-to-video methods.

Methods ECD MVSEC HQF
MSE↓ SSIM↑ LPIPS↓ MSE↓ SSIM↑ LPIPS↓ MSE↓ SSIM↑ LPIPS↓

Zhang et al. (TPAMI2022) [74] 0.076 0.519 0.457 - - - - - -

EVSNN (CVPR2022) [78] 0.061 0.570 0.362 0.104 0.389 0.538 0.086 0.482 0.433

PA-EVSNN (CVPR2022) [78] 0.046 0.626 0.367 0.107 0.403 0.566 0.061 0.532 0.416

CISTA-LSTC (TPAMI2023) [34] 0.038 0.585 0.229 - - - 0.041 0.563 0.271

CISTA-Flow (Arxiv2024) [35] 0.047 0.586 0.225 - - - 0.034 0.590 0.257

HyperE2VID (TIP2024) [13] 0.033 0.576 0.212 0.076 0.315 0.476 0.031 0.531 0.257

LaSe-E2V (Ours) 0.023 0.629 0.194 0.055 0.342 0.461 0.034 0.548 0.254

reasonable output that aligns with human preference and is generally close to the distribution of the
real scene. Therefore, while our results on the HS-ERGB dataset may be less significant than those
on "constantly moving" datasets (ECD, MVSEC, HQF), our method is still substantially better than
baseline methods.

Impact of the prompting model. We also tested BLIP [32] on a sampled sequence (i.e., boxes in
HQF) to further evaluate the influence of the prompting model, as shown in Tab. 8. BLIP can generate
reasonable text prompts in caption-style and show nearly reconstructed performance on MSE (0.025
vs 0.027).

E. Discussion

We begin by discussing the source of text prompts used for event data. Our framework primarily
aims to establish a pipeline for reconstructing videos from events using a language-guided approach.
This is based on our observation that language naturally conveys rich semantic information, which
improves the semantic consistency of the reconstructed video. This form of text guidance resembles
text-guided denoising [11, 47] and super-resolution [16] methods, which also use natural language as
a user-friendly interface to control the image restoration process. In this work, we do not emphasize
the specific sources of text prompts, as these can vary depending on the application scenario. For
instance, when using a DAVIS346 camera, text can conveniently be obtained from APS frames. If a
Prophesee camera is used and only event data is available, tagging-based text prompts derived from
event-based multi-modality models can be employed. Additionally, in complex scenes with limited
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Table 7: Quantitative comparison of HS-ERGB [58]. Results are conducted on 3 sequences with a
total of 497 frames.

Methods MSE SSIM LPIPS
E2VID [50] 0.199 0.382 0.736
HyperE2VID [13] 0.161 0.374 0.745

LaSe-E2V (Ours) 0.078 0.429 0.665

Table 8: Comparisons between different prompting models on boxes of HQF.

Prompting Models MSE↓ SSIM↑ LPIPS↓

RAM [73] 0.025 0.557 0.196

BLIP [32] 0.027 0.546 0.207

event data, human intervention can be incorporated interactively to enable user control. Overall, our
method offers a flexible and generic language-guided interface for E2V reconstruction.

Regarding the role of text information, it serves as a crucial component to activate the semantic prior
in the diffusion model and compensate for missing semantic content. In regions with sufficient event
data, our approach enhances reconstruction performance by leveraging the semantic priors provided
by the text prompts, ensuring high fidelity. For regions with sparse event data, the method relies solely
on the text prompts to reconstruct scenes that align with human expectations. While this approach
may introduce textures or details that differ from the actual ones, it still produces images closer to
reality than previous methods. In contrast, prior E2V models typically reconstruct such regions as
indistinct haze, far from the true distribution of real images, as shown in Fig. 1. The quantitative
comparison in Tab. 7 further demonstrates the superiority of our approach.

Admittedly, hallucination is a potential side effect introduced by incorporating semantic priors
from the diffusion model into our framework. While our proposed techniques effectively reduce
hallucinations, completely eliminating them remains a challenge in the diffusion model research
community. Extensive experiments (Tab. 1 and Fig. 3) show that our method significantly improves
fidelity and reduces hallucinations in scenes with adequate event data. Additionally, our approach
exhibits superior reconstruction performance even in scenes with insufficient event data (Tab. 7).
It is important to note that eliminating hallucinations entirely for regions with sparse event data
is not feasible. However, our method effectively leverages the semantic priors in the diffusion
model to produce images closer to the true scene distribution, whereas previous E2V methods (e.g.,
HyperE2VID) fail in these regions, as demonstrated in Fig. 1.

For future work, given that our method reliably ensures fidelity in regions with sufficient event data,
it is practical to assign a confidence map based on event density to identify high-confidence regions.
For safety-critical applications, decisions could be made based on both the reconstructed video and
the confidence map, allowing simultaneous consideration of image quality and safety. Moreover,
event-based multi-modality models offer a potential source of semantic information, which could be
explored in future research. Since these models are trained with large-scale event-image paired data,
they have the potential to provide prior semantic information absent in event data.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. The claims are supported by our experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present all methodology details in Sec. 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We don’t provide open access to data and code in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the guidance carefully and make sure that our research is conducted
in accordance with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explicitly mention and respect the creators and original owners.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not research human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not research human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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