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Abstract
Treatment decisions based on cutoffs of continu-
ous variables, such as the blood sugar threshold
for diabetes diagnosis, provide valuable oppor-
tunities for causal inference. Regression discon-
tinuities (RDs) are used to analyze such scenar-
ios, where units just above and below the thresh-
old differ only in their treatment assignment sta-
tus, thus providing as-if randomization. In prac-
tice however, implementing RD studies can be
difficult as identifying treatment thresholds re-
quire considerable domain expertise – further-
more, the thresholds may differ across popula-
tion subgroups (e.g., the blood sugar threshold
for diabetes may differ across demographics), and
ignoring these differences can lower statistical
power. Here, we introduce Regression Disconti-
nuity SubGroup Discovery (RDSGD), a machine
learning method that identifies more powerful and
interpretable subgroups for RD thresholds. Using
a claims dataset with over 60 million patients, we
apply our method to multiple clinical contexts and
identify subgroups with increased compliance to
treatment assignment thresholds. As subgroup-
specific treatment thresholds are relevant to many
diseases, RDSGD can be a powerful tool for dis-
covering new avenues for causal estimation across
a range of clinical applications.

1. Introduction
Many questions in data science are ultimately causal in na-
ture, yet evaluating causal questions through experimental
randomization can be costly or otherwise infeasible (Musci
& Stuart, 2019). There are numerous methods that esti-
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mate causality from observational data, but many rely on
the key assumption of no unobserved confounding, which
is generally difficult to justify in high-dimensional data
settings (Hernán & Robins, 2020). However, econometri-
cians over the past few decades have been developing study
designs that can make credible causal claims from obser-
vational data (Leamer, 1983). These study designs address
confounding by exploiting naturally occurring randomness
in the data, so-called quasi-experiments (Angrist & Pischke,
2008; Liu et al., 2021).

We focus on the regression discontinuity (RD), a specific
quasi-experimental method for evaluating causal effects
from observational data where a cutoff in an observed con-
tinuous running variable determines treatment assignment
(Hahn et al., 2001). Such a situation may arise when treat-
ment depends on a threshold. For example, when a patient’s
blood sugar level (measured by A1C %) is above 6.5%,
they are diagnosed as diabetic (American Diabetes Asso-
ciation, 2010) and hence eligible for treatment assignment.
Critically, RDs are more robust to confounding than other
observational causal inference methods (Lee & Lemieux,
2009), as the cutoff in treatment assignment provides “as-if”
randomization for individuals just above and just below the
cutoff: a patient with an A1C of 6.5%, on average, is not
materially different from a patient with an A1C of 6.4%,
yet the former is diagnosed with diabetes and treated for
the disease while the latter is not. Because of this “as-if”
randomization, RDs allow us to estimate treatment effects at
the threshold without explicit randomization. RD opportu-
nities are particularly natural in medicine, where thresholds
govern diagnoses or treatment for many diseases, e.g. dia-
betes, coronary artery disease, and cancer (Petersen et al.,
2020; Scott et al., 2022; Oeffinger et al., 2015).

Despite the ubiquity of such RD opportunities in clinical
settings, RDs are often underutilized (Moscoe et al., 2015;
Marinescu et al., 2018). Because a priori knowledge of the
treatment threshold is needed to use an RD, the typical study
design approach is a “top-down” process, in which a domain
expert hypothesizes that a particular data generating process
might yield an RD, followed by verification of study validity
by examining the data. Often enough, the RD opportunity
is underpowered due to sample size limitations (Naidech
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et al., 2020; McKenzie, 2016). Identifying potential RDs is
an ad-hoc process that relies heavily on human intuition and
domain expertise, and thus does not scale well to the vast
amounts of high-dimensional data we have available today.

This holds especially true as treatment thresholds in prac-
tice are often multi-faceted, with heterogeneity in treatment
assignment as a function of other covariates. For example,
in medicine, though diagnostic criteria for diabetes ostensi-
bly are made only according to blood sugar levels, the risk
for the disease varies by gender, race, and age categories,
leading to different clinical decisions where official guide-
lines may not always be followed. As treatment assignment
thresholds become more complex, it becomes difficult for
domain experts to generate study designs and verify them.
Thus, taking a “bottom-up” data-driven approach would
streamline and scale RD study discovery, unlocking more
opportunities for causal inference.

Futhermore, these threshold decisions could identify de-
mographic biases in treatment assignment, as opposed to
differences in treatment assignment that are medically jus-
tified. Previous work has shown that there is implicit bias
present in clinical thresholds (FitzGerald & Hurst, 2017),
and bottom-up data-driven approaches for detecting candi-
date RDs can help identify differences in treatment assign-
ment. Thus, data-driven methods for RD discovery have
the potential to not only facilitate study design, but also can
inform policy in making treatment decisions more equitable.

Here we propose a data-driven method, Regression Disconti-
nuity Subgroup Discovery (RDSGD), to learn RD subgroups
with different treatment assignment thresholds (see Figure 1
for an illustration of our approach). We frame regression
discontinuity discovery similarly to the task of conditional
average treatment effect (CATE) estimation (Section 3).
Note that our method differs from CATE estimation by fo-
cusing on heterogeneity in treatment assignment rather than
heterogeneity in treatment effects. We introduce a novel
statistical framework targeting higher effective sample sizes
of the discovered subgroups to maximize statistical power
and maintain interpretability(Section 4). We show the utility
of our approach through both synthetic experiments (Sec-
tion 5) and a case study using a medical claims dataset
consisting of over 60 million patients (Section 6). We apply
our method to three clinical contexts (breast cancer screen-
ing, colon cancer screening, diabetes diagnosis) in this data
and discover subgroups, with some that are validated by
clinical domain knowledge and others that show promise as
potential studies. RDSGD can not only discover new oppor-
tunities for quasi-experimental studies in healthcare but also
can provide actionable interpretability in the form of treat-
ment assignment subgroups, which can be easily understood
and validated by clinical practitioners (Section 7).

2. Related Work
Automatic regression discontinuity discovery has been ex-
plored in a number of different contexts. Porter & Yu (2015)
propose a statistical testing framework for regression dis-
continuity treatment effect inference where the discontinu-
ity point is unknown. In particularly relevant work, Her-
lands et al. (2018) define an automated RD search procedure
called local regression discontinuity discovery (LoRD3) that
first requires fitting a “smooth” background function to the
probability of treatment, and then computing test statistics
for candidate RDs based on the residuals of the background
function. Notably, LoRD3 has the ability to detect RDs
defined by multiple real-valued dimensions, while here we
focus on single-dimensional running variables. However,
both LoRD3 and Porter & Yu (2015)’s approach do not ex-
plicitly consider heterogeneity in treatment assignment. To
the best of our knowledge, our method is the first RD dis-
covery algorithm that considers heterogeneity in additional
covariates which affect treatment as a machine learning task.

Specifically, we take a novel approach by: 1) formulating
the discovery procedure in terms of data-driven treatment
assignment uptake estimation and 2) explicitly identifying
heterogeneous subgroups with a higher effective sample
size for both improved interpretability and statistical power.
Thus, our method improves on prior work by identifying
more powerful and interpretable subgroups for RD studies.

3. RD Discovery Framework
In the following subsections we build upon well-established
econometric estimation frameworks (Imbens, 2014; Angrist
& Pischke, 2008) as well as the conditional average treat-
ment effect (CATE) estimation literature (Athey & Imbens,
2016; Chernozhukov et al., 2018) to frame our regression
discontinuity discovery procedure. We then target the ef-
fective sample size of the discovered RD sample and show
how optimizing for this quantity improves study feasibility
by increasing statistical power.

3.1. Regression Discontinuity Preliminaries

Here we briefly review the potential outcomes framework
for analyzing regression discontinuities (RDs); see, e.g. Im-
bens & Lemieux (2007); Lee & Lemieux (2009), and Cat-
taneo et al. (2019a) for comprehensive overviews of RDs.
For an indiviual i, let Xi be their running variable, c the
corresponding assignment threshold, W⃗i the vector of pre-
treatment covariaties, Zi = 1[Xi ≥ c] the threshold in-
dicator, Yi their observed outcome, Ti(·) their potential
treatment assignment, and Yi(·) their potential outcome.

We note here that the potential treatment assignments are
defined in terms of the threshold indicator Ti(Zi). Ti(1) cor-
responds to the potential treatment assignment for Xi ≥ c,
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Figure 1. This work develops RDSGD, a machine learning method for discovering regression discontinuity (RD) opportunities
that improve study feasibility by searching for heterogeneous subgroups that have higher compliance with treatment assignment
uptake (TAU). We show one of our medical case studies (Section 6) on colon cancer screening as an illustrative example.

and Ti(0) to Xi < c. We focus on the “fuzzy” regression
discontinuity (FRD) case, which assumes that the probabil-
ity of treatment assignment uptake jumps at threshold c, but
not necessarily from 0 to 1 (Hahn et al., 2001).

We also define compliers as individuals for which Ti(1) >
Ti(0), namely that they receive the treatment when above
the threshold, and do not receive treatment when below the
threshold. Under the standard assumptions of continuity,
monotonicity, and threshold excludability (Lee & Lemieux
(2009), Appendix B.1), the treatment effect estimate γ can
be written as a ratio (Imbens & Lemieux, 2007):

γ =
λ

τ
=

limx↓cE[Y |X = x]− limx↑cE[Y |X = x]

limx↓cE[T |X = x]− limx↑cE[T |X = x]
(1)

Where λ is the discontinuous jump in expected outcome Y
at the cutoff c, and τ is the jump in treatment assignment
uptake (TAU). We turn our attention to the task of estimating
τ in the context of predicting a unit’s compliance status.

3.2. Treatment Assignment Uptake (TAU)

As the goal of our method is to identify potential RD oppor-
tunities rather than explicitly estimating downstream treat-
ment effects, we focus on estimating treatment assignment
uptake (TAU) τ̂ , and in particular will look to maximize
TAU using heterogeneity in observed covariates.

In practice, τ can be modeled using a local linear regression
within a bandwidth h around the cutoff c (Hahn et al., 2001):

T = τcZ+β0+β1(1−Z)(X− c)+β2Z(X− c)+ ϵ (2)

Where treatment assignment uptake τc is indexed by the
cutoff c, ϵ is homoskedastic noise, and samples are within
Xi ∈ [c − h, c + h]. We use this linear probability model
estimation strategy in order to ensure causal validity, and
it is commonly used in the econometric literature as an
efficient approach to estimate treatment assignment (though
other non-parametric methods can be used as well) (Imbens
& Lemieux, 2007; Angrist & Pischke, 2008). Our RD study

discovery task can be formalized as a hypothesis test of
the existence of a treatment discontinuity at threshold c:
H0 : τc = 0, HA : τc ̸= 0, which can be operationalized by
testing the significance of the estimated τ̂c in Equation 2.

Furthermore, our estimation and subsequent maximization
of treatment assignment uptake can be equivalently framed
as estimation and maximization of compliance probability
for subgroups at the threshold (Aronow & Carnegie, 2013;
Li & Pearl, 2019; Kennedy et al., 2020) (see Appendix B.2):

Proposition 3.1. For a given bandwidth h and cutoff c,
estimating τ̂c is equivalent to estimating the probability of
compliance P (T (1) > T (0)).

We leverage this connection in our subgroup discovery
method in order maximize TAU heterogeneity to discover
the most promising subgroups of data for RD analysis.

3.3. Heterogeneity in TAU

Beyond identifying candidate thresholds c that produce sig-
nificant TAU estimates, we want to find heterogeneous sub-
groups among our sample population at a given cutpoint c
in order to propose more statistically powerful RD studies.
This problem can be framed as conditional compliance esti-
mation (Aronow & Carnegie, 2013; Kennedy et al., 2020;
Liu et al., 2022), where we want to identify the individuals
(the compliers) to which the threshold cutoff applies, us-
ing the other pre-treatment covariates W⃗ . For example, if
we wanted to study the effects of breast cancer screening
which is recommended at age 40 for women (Oeffinger et al.,
2015), we would clearly want to exclude all men, lest their
inclusion reduce any observed discontinuity in treatment
due to their non-compliance with the screening guideline.

In order to identify such subgroups, we define the hetero-
geneous TAU estimation task. Given the standard FRD
assumptions presented in Section 3.1, Kennedy et al. (2020)
and Coussens & Spiess (2021) have shown that estimating
the probability a unit is a complier, τc(W⃗i) (their TAU prob-
ability), can be equivalently framed as conditional average
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Figure 2. Optimizing for effective sample size (left) increases
statistical power regardless of subgroup sample size. We simu-
late 1,000 randomly selected subgroups and show the relationship
power has with the effective sample size ηG (left) and treatment
assignment uptake (τG) (right), where the shading indicates differ-
ent subgroup sizes as a proportion of the total population.

treatment effect (CATE) estimation (see Appendix B.3):

Proposition 3.2. τc(W⃗i) for a given cutoff c can be identi-
fied as the conditional probability of compliance.

P (T (1) > T (0)|W⃗ ) = τc(W⃗ ) (3)

Heterogeneous TAU τc(W⃗ ) can thus be estimated using
data-driven machine learning methods developed in the re-
cent years for CATE estimation (e.g., Chernozhukov et al.
(2018); Oprescu et al. (2019), and Padilla et al. (2021)).
The machine-learned estimates of τc(W⃗ ) will be unbiased
due to the sample-splitting honesty property of such estima-
tors (Athey & Imbens, 2016; Chernozhukov et al., 2018).
We therefore have data-driven methods available for esti-
mating τc(W⃗ ) for a given RD threshold c.

Because our goal is to identify subgroups of individuals
where treatment assignment uptake varies, we choose to
use tree-based approaches (Athey & Imbens, 2016; Oprescu
et al., 2019; Athey et al., 2019) for the estimation problem,
which provide valid, honest, and interpretable subgroup
populations defined by the learned causal tree’s nodes. In
particular, we can distill a tree-based model that estimates
τ̂(W⃗ ) into a single decision tree, and extract heterogeneous
subgroups that correspond to the learned tree’s nodes (Athey
et al., 2019; Athey & Imbens, 2016; Battocchi et al., 2019).
Tree-based CATE models thus provide a data-driven ap-
proach for identifying interpretable subgroups that have
heterogeneous treatment assignment uptake.

3.4. From TAU to effective sample size

Though we have established the TAU objective for hetero-
geneous treatment uptake at a threshold and an approach
to identify subgroups using CATE estimators, in order to
actually increase power in finite samples we cannot only
account for τc(W⃗ ); we also need to consider the sample
size of the given subgroup. Solely maximizing for TAU
when discovering subgroups may not yield higher power, as
it is possible for such an objective to select infeasibly small
subgroups with higher TAU: in our breast cancer example,
a subgroup of ten women may have a higher TAU than a

subgroup of size 1,000 with 50% women, but we would
much prefer the latter subgroup in terms of study feasibility.

Thus, we propose to target the effective sample size (Liu
et al., 2022; Heng et al., 2020) of a given subgroup G ηG,
which explicitly accounts for both the TAU as well as the
size of the subgroup. Let P = (W⃗i, Zi, Ti, Xi)

NP
i=1 repre-

sent the “baseline population” samples i.e., all of the sam-
ples within the data bandwidth h for a cutoff c where NP

is the sample size, and G = (W⃗j , Zj , Tj , Xj)
NG
i=1 represent

the samples that are part of a subgroup G, where NG is
the sample size. The TAU for a subgroup G is defined as
τG := τc(W⃗G), where W⃗G are the pre-treatment covariates
that define a sample’s membership in group G; similarly, τP
is the TAU for all of the samples in the baseline population.
Letting EG[·] be expectations taken over the subgroup G,
the effective sample size ηG is then:

ηG = NGτ
2
G = NG(EG[T |Z = 1]− EG[T |Z = 0])2 (4)

The intuition behind ηG is that only units compliant with
the threshold indicator Z contribute to the treatment effect
estimation. Furthermore, non-compliers can be seen as con-
tributing noise to the estimate, so the “effective” sample is
the nominal sample size scaled by a quantity of τG, which
is the probability of compliance with the threshold indicator
(Proposition 3.1). This is a desirable quantity to maximize
as it has been shown that the variance of a fuzzy RD estima-
tor will decrease as the effective sample size increases (Liu
et al., 2022; Coussens & Spiess, 2021; Heng et al., 2020).
An important consequence of this relationship between ef-
fective sample size and variance is that power increases as
effective sample size increases (Appendix B.4):
Proposition 3.3. Statistical power is a non-decreasing func-
tion of ηG, regardless of subgroup size G.

Maximizing effective sample size η is therefore a superior
objective than maximizing heterogeneous TAU alone as it is
possible to select a small subgroup G that has a high TAU
but will ultimately still have lower power than the baseline
population sample. We demonstrate this empirically in Fig-
ure 2, which in conjunction with Proposition 3.3 motivates
the use of ηG in our subgroup discovery algorithm.

3.5. A novel test statistic for effective sample size

Furthermore, when discovering subgroups that have higher
effective sample size than the baseline population, we want
to ensure that the differences are not due to noise in the
selected samples. To formalize this, we develop a novel
testing framework for whether the effective sample size
for a subgroup G is greater than that of the whole popula-
tion P : H0 : ηG − ηP = 0, HA : ηG − ηP > 0. The corre-
sponding test statistic is then:

tη =
ηG − ηP√

Var[ηG − ηP ]
(5)
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Figure 3. RDs with heterogeneous cutoffs have smaller TAU (a), but RDSGD can correctly identify cutoffs with hetereogeneity
(b). Figure 2a is a pointplot of treatment probabilities across different running variables X (95% CIs). 2b is a pictorial representation of
RDSGD (Algorithm 1), where causal trees are fit to each candidate threshold Z which generate subgroups with higher effective sample
sizes (step 1) and statistically significant subgroups are selected (orange nodes, step 2).

Though Var[ηG − ηP ] can be difficult to derive as groups
G and P are overlapping, we leverage properties of influ-
ence functions (Newey & McFadden, 1994; Kahn, 2022)
to construct a consistent estimator for this variance term
(Appendix B.5). As Empirical analogues of η (Equation 4)
can be easily calculated using sample means, we are able
to estimate the test statistic tη. We verify this test statistic
behaves correctly asymptotically under the null hypothesis
(Figure B.1). We thus have established a valid statistical
test for selecting subgroups that have a larger effective sam-
ple size, allowing us to leverage heterogeneity in treatment
assignment uptake for improved study power.

4. Methodology
We use the mathematical framework for RD discovery and
statistical testing for the effective sample size presented in
Section 3 to implement our RDSGD (Regression Discon-
tinuity SubGroup Discovery) method, which is outlined in
Algorithm 1 and visualized in Figure 3. RDSGD comprises
of two main steps: 1) identification of candidate thresholds
and subgroups with higher effective sample size, and 2)
subsequent selection of subgroups.

4.1. Identifying Discontinuities and Subgroups

In order to discover regression discontinuities with potential
heterogeneity, we must first identify candidate thresholds.
Given a set of cutpoints CX = {c1, c2, ...} for a running
variable X , RDSGD analyzes thresholds c ∈ CX . It first
generates threshold indicator Z := 1[X ≥ c] and selects a
bandwidth hc (Algorithm 1, steps 1a-b), which can be cho-
sen by the user or by a data-driven selection process (Catta-
neo et al., 2019a; Imbens & Kalyanaraman, 2009).

RDSGD then computes the baseline population effective

Algorithm 1 RD SubGroup Discovery (RDSGD)

1. Identify discontinuities and subgroups.

For c ∈ CX :
(a) Select bandwidth hc of analysis
(b) Generate threshold indicator Z := 1[X ≥ c]

(c) Select baseline population P =
{(W⃗i, Zi, Ti, Xi) | i ∈ [c − hc, c + hc]}
and compute effective sample size η̂P

(d) Fit subgroup tree model f̂ estimating τ̂(W⃗ )
(Eq. 3)

(e) Obtain subgroups Gs,c = {(W⃗i, Zi, Ti, Xi) | i ∈
s} for each node s in f̂ and corresponding sub-
group effective sample size η̂Gs

(f) Output subgroups with stat. sig. greater effective
sample size Gc = {Gs,c | η̂Gs

> η̂P }

2. Select subgroups.

(a) For each subgroup Gs,c ∈
⋃

c∈CX
Gc:

i. Select data XG = {Xj | (j ∈ Gs,c)}
ii. Fit local linear estimator T̂ (XG, c) (Eq. 2),

obtain TAU estimate τ̂G and p-value pτ̂G
(b) Compute corrected significance level α̃
(c) Output discovered cutoffs and subgroups: DX =

{(c,Gs,c) | (pτ̂G < α̃)
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sample size η̂P for subsequent subgroup comparison (step
1c). Because X is real-valued, it can theoretically yield
infinite potential cutpoints. However, in many situations
(such as the clinical contexts we consider) the grid of candi-
date cutpoints for X can be sensibly defined in terms of the
running variable. For example, in whole years for age-based
clinical guidelines, or at the precision of lab result readings
(e.g., 0.1 increments for A1C %). In situations where the
candidate cutpoints do not have an sensible definition, other
data-driven methods such as LoRD3 (Herlands et al., 2018)
can be used to provide CX (Section 2).

Next, RDSGD generates heterogeneous subgroups for each
c based on the pre-treatment covariates W⃗ by estimating
τ̂c(W⃗ ) for the given cutoff and bandwidth (Steps 1d-e).
As discussed in Section 3.3, RDSGD uses tree-based ap-
proaches to estimate τ̂c(W⃗ ) and produce candidate sub-
groups Gs,c for a given cutoff c for RD study evaluation.
RDSGD then applies the testing framework for effective
sample size (Section 3.5) to determine whether the subgroup
effective sample size η̂G,s is greater than the baseline pop-
ulation effective sample size η̂P , outputting the subgroups
Gs,c that have a statistically significant larger effective sam-
ple size than the baseline population (Step 1f).

4.2. Selecting subgroups

Once we have candidate heterogeneous subgroups identified,
we need to select the most promising subgroups in terms of
study power while preserving statistical validity. Given a
subgroup Gs,c for a cutpoint c, RDSGD evaluates the local
linear regression for treatment assignment uptake for each
subgroup to test for the discontinuous jump indicative of a
potential RD study (Algorithm 1, steps 2ai-ii).

In order for the TAU test to be valid, RDSGD must account
for the multiple comparisons across the set GX of all the
subgroups considered for running variable X , including
the candidate subgroups generated in Step 1e. RDSGD
thus applies a Bonferroni correction (Wasserman, 2010) to
produce the adjusted significance level α̃ (Step 2b).

Finally, RDSGD outputs discovered subgroups and cutoffs
based on α̃ (Step 2c). By leveraging connections between
1) treatment assignment uptake estimation and machine-
learned CATE estimation as well as 2) our statistical test-
ing framework for effective sample size (Sections 3.4-3.5),
RDSGD is a data-driven RD discovery procedure that di-
rectly uses potential heterogeneity among subgroups to iden-
tify more powerful RD studies (Algorithm 1, Figure 3).

5. Synthetic Experiments
To validate RDSGD, we first evaluate it using synthetic data
where the presence of multiple discontinuities in a given
running variable can be distinguished via heterogeneity in

Figure 4. RDSGD improves the statistical power of discovering
RD opportunities by considering heterogeneity. We simulate
RDs over 500 trials for each τ and record the number of correct
discoveries at c1 and c2 for an empirical power estimate.

Table 1. RDSGD discovers more powerful subgroups over base-
line in higher dimensions. We run 500 trials with τ = 0.5,
recording mean power and comparing with baseline powers.

dim(W⃗ ) c1 power c2 power

baseline 0.52 0.48
2 0.82±0.15 0.80±0.16
4 0.79±0.15 0.79±0.16
8 0.77±0.15 0.78±0.16

16 0.78±0.15 0.78±0.15

another observable covariate. We compare RDSGD to a
baseline method that only tests the TAU regression of Equa-
tion 2 for each cutpoint c (Algorithm A), and thus does not
consider heterogeneity. We also make comparisons to the
LoRD3 method proposed by Herlands et al. (2018).

5.1. Heterogeneity in One Covariate

Data Generation. Here we generate data where half of
the units in our sample follow a fuzzy RD threshold for
running variable X ∈ [0, 1] at c1 = 0.25, Z = 1[X ≥ c1],
while the other half follow a fuzzy RD threshold at c2 =
0.75, Z = 1[X ≥ c2]. The threshold a particular unit
follows can be identified by observed covariate W ∈ [0, 1],
with units W < 0.50 following threshold c1 and units W ≥
0.50 following threshold c2 (Appendix C.1-C.3). Such a
scenario might arise in real-world settings where the clinical
threshold varies depending on other patient attributes e.g.,
women with high risk of breast cancer due to hereditary
factors (W = 1) should begin screening earlier than the
recommended age of 40 for women without risk factors
(W = 0) (Center for Disease Control, 2021). The TAUs at
c1 and c2 will appear much smaller if covariate W is not
accounted for, thus this synthetic data scenario is one where
we would expect RDSGD to showcase its advantages.

Power Calculations. In order to quantify RDSGD’s perfor-
mance, we need to be able to calculate the theoretical power
that can be achieved for a given RD study. Given the regres-
sion framework for TAU estimation (Equation 2), we derive
the theoretically achievable power levels analytically (Ap-
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pendix B.8). We can then use these power calculations and
our synthetic data to evaluate the baseline method, LoRD3,
and RDSGD. We simulate RD datasets as described above
varying across different ground-truth τ ∈ [0.2, 0.3, ..., 0.7],
evaluating empirical power at each τ setting for correctly
identifying a discontinuity at c1 and c2.

Simulated results. Our empirical results show the ben-
efit of RDSGD (Figure 4). We calculate the theoretical
power achievable without considering heterogeneity in W
(red dashed lines) and find that the baseline method (Algo-
rithm A.1, blue lines) matches that power level across the
different τ settings. RDSGD (Algorithm 1, orange lines)
uniformly improves upon the baseline method as well as
LoRD3 for both cutoffs c1 and c2 (Appendix C.4). Fur-
thermore, RDSGD maintains empirical false positive rates
below the nominal α = 0.05 for every τ level due to the
multiple testing corrections made (Figure C.3). Empirical
power for RDSGD approaches the theoretical power when
heterogeneity in W is accounted for (dashed green lines).
The gap between the power levels of RDSGD and the theo-
retical power is sensible, as in practice we lose power due
to testing corrections and the data-driven tree fitting, which
does not perform an exhaustive search over all subgroups.

5.2. Heterogeneity in Multiple Covariates

The improvement in power over baseline methods also ex-
tends to heterogeneity in multiple dimensions (Table 1),
where we increase the dimensionality of the covariates
dim(W⃗ ) ∈ [2, 4, 8, 16] that determine whether an individ-
ual complies with cutoff c1 or c2 and record the power of
the discovered subgroups (Appendix C.5); note that we do
not include LoRD3 in this comparison as one of its stated
limitations is that it that does not consider heterogeneity.
Though empirical power decreases slightly as the number
of covariates increases (which is to be expected), RDSGD
overall scales well to higher dimensions, as the average sub-
group powers for both cutoffs are statistically significantly
greater than the baseline theoretical powers at all dim(W⃗ )
(Appendix C.5). Together, these simulation results (Fig-
ure 4, Table 1) provide empirical evidence that RDSGD can
improve RD discovery in the presence of heterogeneity.

6. Case Study: Medical Claims Data
To evaluate RDSGD in real-world settings, we target a vari-
ety of clinical contexts where we believe RDs exist: breast
cancer screening, colon cancer screening, and diabetes diag-
nosis. We use Optum’s de-identified Clinformatics® Data
Mart Database (2007-2018) for analysis, which contains
claims data on, diagnoses, treatment, prescriptions, and lab
results. We use all adult users with demographic data avail-
able, which span roughly 60 million unique patients over
the twelve year period across the U.S. We note that each

clinical setting uses a different subset of the data as there
are inclusion criteria that are specific to that setting, e.g. the
presence of a lab result. Full details on demographics and
the sample selection process can be found in Appendix D.

6.1. Data Extraction and Featurization

For each clinical setting, we target a specific running vari-
able X that corresponds to a treatment T (see the first
two columns of Table 2). We use LOINC, CPT, and ICD
codes (McDonald et al., 2003; WHO, 2016) to identify
specific laboratory results, procedures, and diagnoses. To
convert longitudinal data in the claims database into tabular
form, we index a patient by the first recorded presence of
the running variable (Appendix D.2). We then assume a
fixed window of time after the running variable is recorded
for the treatment to occur, in order to account for lags in
claims data reporting. If the treatment of interest appears
for the patient within the fixed window, they are coded as
“treated,” otherwise they are “untreated.” For example, in
the diabetes diagnosis setting where we wish to estimate
the “treatment” uptake of diabetes diagnosis, we find a pa-
tient’s first recorded A1C measurement and then search the
database for a subsequent type II diabetes diagnosis within
the following seven days. In the screening clinical settings
where age is the running variable, we use a patient’s age at
their first recorded preventative care visit.

Once we have both the running variable X and treatment
T identified for a patient, we additionally query the claims
database for covariates that may impact TAU heterogeneity.
For all clinical settings, we consider heterogeneity across pa-
tient demographics (age, gender, race), socio-economic sta-
tus (education level, household income) and claims-specific
features (recorded initial encounter date, insurance type).
Our data extraction method provides a pipeline for convert-
ing raw claims data into feature matrices for RDSGD.

We use the EconML package (Battocchi et al., 2019) to esti-
mate the heterogeneous TAU tree model needed for RDSGD
(Algorithm 1, step 1d). Note that due to our larger sample
size, most candidate RDs that RDSGD returns will have

Figure 5. RDSGD discovers subgroups that improve the TAU
in different clinical settings. We show the discovered cutoff for
each clinical setting and the probability of treatment for the entire
sample (blue) and for subgroup discovered by RDSGD (orange).
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Table 2. Discovered RD thresholds and subgroups in medical claims data. We report τ̂ and η̂ (higher is better in both cases) for
baseline RDs and discovered subgroups.

Clinical
guideline

Running
variable Threshold Subgroup

discovered
Baseline
τ̂ (SE)

RDSGD
τ̂ (SE)

Baseline
η̂

RDSGD
η̂

Breast cancer
screening Age ≥40 Gender

= Female 0.039 (0.0009) 0.081 (0.002) 970.1 2194.4

Colon cancer
screening Age ≥50 Encounter date

> 2014-05-05 0.059 (0.001) 0.13 (0.002) 2385.5 3440.4

Type 2 diabetes
diagnosis A1C % ≥6.5 Encounter date

> 2010-05-11 0.089 (0.003) 0.11 (0.003) 3694.0 4730.1

power approaching 1, so here we compare the estimated
TAU and effective sample size η of the discovered subgroups
to the baseline RD study without considering heterogeneity.

6.2. Results

The most promising discovered RD thresholds and sub-
groups for each clinical setting are shown in Table 2, with
treatment probability point plots shown in Figure 5.

Breast Cancer. As our validation case, RDSGD correctly
identifies that breast cancer screening only applies to women
at a screening age of 40 (Oeffinger et al., 2015), doubling
the effective sample size from 970.1 to 2194.4.

Colon Cancer. RDSGD correctly identifies the recom-
mended screening age of 50 for colon cancer, and addi-
tionally discovered a subgroup of patients who were more
likely to be screened at the threshold; these individuals had
an encounter date later than 2014-05-05, producing a sub-
group with a higher effective sample size than the baseline
population (2385.5 vs. 3440.4). This could be due to an
increase of adherence to screening resulting from a guide-
line update that occurred approximately in the same time
period (US Preventive Services Task Force, 2016).

Type 2 Diabetes. RDSGD identifies the A1C cutoff of
6.5% for diabetes diagnosis (American Diabetes Associa-
tion, 2010), and also identifies a subgroup of patients more
likely to be compliant with the cutoff, increasing the effec-
tive sample size over baseline from 3694.0 to 4730.1. This
subgroup excludes patients who have encounter dates before
2010-05-11, which aligns with intuition as A1C was not
introduced as a diagnostic criteria for diabetes until 2010.

7. Discussion
In this paper we have proposed RDSGD, a method for data-
driven regression discontinuity (RD) discovery that pro-
duces interpretable subgroups by optimizing for the effective
sample size through a causal machine learning framework.
We demonstrate through synthetic studies how RDSGD pro-
vides power improvements in the presence of heterogeneity.

We apply RDSGD to a variety of clinical settings that both
validate the correctness of our method as well as discover
new RDs for practitioners to investigate. We now discuss
how our method fits into clinical study use cases as well as
highlight limitations and future work opportunities.

7.1. Clinical Use Cases via Interpretable Subgroups

RDSGD is most useful in scenarios for treatment effect es-
timation when explicit randomization of the treatment is
not possible. While our method only discovers RD oppor-
tunities within the data (the so-called treatment assignment
regression, Section 3.1) and does not make treatment effect
estimates, the primary goal is to identify quasi-experimental
randomness that can be used to estimate the downstream
effects of the given treatment T on an outcome of interest Y .
For example, in our A1C diabetes case study, a practitioner
may wish to study the effect of the A1C cutoff on different
outcomes, such as metformin prescription, follow-up A1C
levels, or heart attack incidence. By identifying both the
cutoff as well as subgroups where the effective sample size
is stronger, any downstream treatment effect estimation a
practitioner wishes to conduct has both: 1) an identified
variable that provides quasi-experimental randomness and
2) an interpretable cohort to which it applies.

Furthermore, RDSGD could be used to investigate implicit
differences in treatment assignment. Because the subgroups
produced by RDSGD define clear inclusion criteria based
on the path of the fitted causal tree, it can be used to iden-
tify sources of bias in treatment decisions such as those
documented in FitzGerald & Hurst (2017); Hausmann et al.
(2013); Hoffman et al. (2016).

7.2. Limitations and Future Work

We highlight some limitations and opportunities for future
work. First, we note that there are issues of causal validity
that still need be addressed when applying RDSGD to real
data. As discussed above, we do not make treatment effect
estimates as part of our method and defer that step to practi-
tioners, who are free to choose which outcome Y they wish
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to study. However, care must be taken when moving for-
ward to the treatment effect estimation stage (estimating γ,
Section 3.1). When making treatment effect estimates with
identified cutoffs we need to be mindful of the exclusion
restriction assumption (Imbens & Lemieux, 2007), which
can be violated when the cutoff decision Z influences the
outcome Y outside of its influence on T . In our case studies,
this assumption can be somewhat difficult to justify when
using insurance claims data as we only have partial visibility
into how patients interact with their healthcare provider.

Moreover, there are additional limitations in using medical
claims data, as there may be selection biases in healthcare
utilization as well as potential under-reporting of diagnoses
and treatments of interest (van Walraven & Austin, 2012;
Jensen et al., 2015). Thus, when moving forward with RD
studies that use cutoffs identified by RDSGD, practition-
ers need to work in close concert with domain experts to
ensure that causal validity is maintained. Validation tests
specific to RDs, such as whether the running variable has
been manipulated, also need to be run to ensure a plausible
design (McCrary, 2008; Imbens & Lemieux, 2007).

We also note that because RDSGD uses tree-based methods
to identify heterogeneous TAU subgroups, it is inherently
greedy (see Figure 4 where RDSGD approaches, but does
not achieve max power). Though our use of trees was a
deliberate design decision made to maintain interpretability
and scalabililty to large datasets (Wu et al., 2022), future
work could investigate other methods that are optimal in
terms of TAU maximization: for example, applying policy
learning methods that maximize power in randomized trials
to RDs (Spiess & Syrgkanis, 2021). Future work could
also investigate using other CATE estimators to identify
subgroups that maximize effective sample size.

Additionally, further analysis of false positive control can
improve our method. We conservatively perform a Bonfer-
roni correction, but due to the correlated nature of candidate
RDs across the same running variable, less stringent cor-
rections could be used to maintain the nominal significance
levels while further improving power (e.g., Hu et al. (2010)).

7.3. Conclusion

Here we have introduced a machine learning-based method
for RD study discovery, RDSGD, which identifies inter-
pretable subgroups that increase the effective sample size of
a study. RDSGD is shown to be effective in both simulated
and real data settings, and could provide new avenues for
more credible causal inference studies in medicine through
quasi-experimental designs.
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A. Baseline algorithm details
We give the full baseline RD discovery procedure used for comparison with RDSGD in Algorithm A.1.

Algorithm A.1 Baseline method: RD threshold discovery

1. For c ∈ CX :

(a) Select bandwidth hc for treatment regression (Section 3.1)
(b) Select data X = {Xi | Xi ∈ [c− hc, c+ hc]}
(c) Fit estimator T̂ (X, c) of Equation 2 to obtain TAU estimate τ̂c and output p-value pτ̂c

2. Compute corrected corrected significance level α̃ = α/|CX |

3. Output discovered cutoffs and bandwidths: DX = {(c, hc) | pτ̂c < α̃}

B. Mathematical details
B.1. FRD and IV assumptions

We assume the following standard FRD assumptions for valid estimation (Lee & Lemieux, 2009) to identify Equation ??:

• Continuity. Both the potential outcomes Y (1) and Y (0) are continuous as a function of the running variable X:

E[Yi(1)|X], E[Yi(0)|X] continuous over domain of X (6)

• Monotonicity. X crossing the cutoff cannot simultaneously cause some units to take up and others to reject the
treatment (also known as the “no defiers” assumption):

T (1) ≥ T (0) (7)

• Excludability of crossing the threshold. X crossing the cutoff cannot impact Y except through impacting the
treatment:

Y (T = t, Z = z) = Y (T = t) (8)

Where Y (T = t, Z = z) is the potential outcome Y that would have been observed if both T = t and Z = z.

Given the equivalence between FRDs and IVs we discuss in the main text (Section 3.1), many of the assumptions needed for
valid TSLS estimation are equivalent (Imbens, 2014; Kennedy et al., 2020):

• Consistency. If Z = z and T = t, then the observed outcomes of T and Y are the potential outcomes under Z = z
and T = t.

T = ZT (1) + (1− Z)T (0) (9)
Y = TY (1) + (1− T )Y (0) (10)

• Unconfounded instrument. The instrument is unconfounded with the potential treatment given the observed covariates.

Z ⊥ T (1), T (0) | W⃗ (11)
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• Monotonicity. The instrument cannot simultaneously cause some units to take up and others to reject the treatment.

T (1) ≥ T (0) (12)

• Exclusion restriction. The instrument cannot impact Y except through impacting the treatment:

Y (T = t, Z = z) = Y (T = t) (13)

B.2. Proposition 3.1 details: compliance and TAU equivalence

Imbens & Lemieux (2007); Hahn et al. (2001) show how a fuzzy regression discontinuity estimated via local linear regression
for a given cutoff c and fixed bandwidth h is numerically to a two-stage least squares (TSLS) estimation problem with the
following additional regressors:

 1
1[Xi < c](Xi − c)
1[Xi ≥ c](Xi − c)

 (14)

Note that the instrument Zi is defined as Zi = 1[Xi ≥ c], the same as our RD cutoff indicator. These regressors thus give
the form of the treatment regression in Equation 2.

Imbens & Rubin (2015) further show that under IV assumptions of consistency, unconfounded instrument and monotonicity
(Appendix B.1), the IV estimate of treatment effects can be expressed as:

γIV =
E[Yi(1)− Yi(0)|unit i is a complier] · πcomply

πcomply
(15)

Where P (T (1) > T (0)) = πcomply is the probability of compliance. Within the data bandwidth of analysis h, we can
equivalently write τ of Equation 1 in terms of Z (Hahn et al., 2001):

τ = E[T |Z = 1]− E[T |Z = 0]

= P (T = 1|Z = 1)− P (T = 1|Z = 0)

= 1− P (T = 0|Z = 1)− P (T = 1|Z = 0)

= 1− πnever taker − πalways taker, (unconfounded instrument)
= πcomply, (monotonicity) (16)

Where πalways taker and πnever taker are the proportions of always-takers and never-takers. We then have that τ is equivalent
to the probability of compliance, and that the first stage (denominator of γIV from Equation 15) regression of the TSLS
framework estimates the probability of compliance. Thus we can use the TSLS framework for our analysis and estimation
of RD TAU.

B.3. Proposition 3.2 details: conditional compliance identification

Identification of the conditional probability of compliance follows a similar argument as Appendix B.2. Given the cutoff
choice c generating Z = 1[X ≥ c] and a fixed bandwidth h, we can use the equivalent analysis of Z as an IV like we do in
Appendix B.2. The conditional probability of compliance is given by:

P
(
T (1) > T (0)|W⃗

)
From the monotonicity assumption, there are no defiers (units where T (1) < T (0)). We can thus write:

P (T (1) > T (0)|W⃗ )

= 1− P
(
T (1) = 1, T (0) = 1|W⃗

)
− P

(
T (1) = 0, T (0) = 0|W⃗

)
(17)
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The latter two terms are the probability of always-takers and never-takers given covariates W⃗ , respectively. From the
unconfounded instrument assumption, these quantities can be identified (can be converted from causal quantities to estimable
statistical quantities) (Imbens & Rubin, 2015):

P (T (1) = 1, T (0) = 1|W⃗ ) = P (T = 1|Z = 0, W⃗ )

P (T (1) = 0, T (0) = 0|W⃗ ) = P (T = 0|Z = 1, W⃗ )

This then gives:

P (T (1) > T (0)|W⃗ ) = 1− P (T = 1|Z = 0, W⃗ )− P (T = 0|Z = 1, W⃗ )

= 1− P (T = 1|Z = 0, W⃗ )− (1− P (T = 1|Z = 1, W⃗ ))

= P (T = 1|Z = 1, W⃗ )− P (T = 1|Z = 0, W⃗ ) (18)

Allowing us to identify the conditional probability of compliance, and thus the conditional TAU τc(W⃗ ) as desired.

Equivalence of CATE and heterogeneity treatment assignment uptake. Next, we make a connection between the
conditional TAU and conditional average treatment estimation (CATE).

The CATE of a treatment T on outcome Y is given by:

CATE = E[Y |T = 1, W⃗ ]− E[Y |T = 0, W⃗ ] (19)

Given the two-stage process of RD treatment effect estimation, we not only have potential outcomes Y (·) but also potential
treatments T (·). We can thus equivalently analyze the “treatment effect” the cutoff indicator Z has on “outcome” T , yielding
Equation 3. The same standard fuzzy RD assumptions that enable estimation of the treatment effect γ at cutoff c (Section 3.1)
also enable estimation of the heterogeneous TAU τc(W⃗ ) through CATE estimation frameworks (Kennedy et al., 2020;
Coussens & Spiess, 2021).

B.4. Proposition 3.3 details: power and effective sample size

We describe the relationship between η and power. From Cattaneo et al. (2019b), we have the following power function for
an α-level two-sided test for fixed TAU τ given a local linear treatment regression:

β(τ) = 1 + Φ

(
τ√
V

− zα/2

)
− Φ

( τ√
V

+ zα/2

)
(20)

where Φ is the Normal distribution CDF, zt is its tth percentile (e.g. za = Φ−1(a)), and V is the variance of τ . Next, lever-
aging the equivalence between instrumental variable (IV) analysis and fuzzy regression discontintuities (FRD) established in
Proposition 3.1, the variance of an FRD estimator under constant treatment effects has been shown to be (Liu et al., 2022;
Coussens & Spiess, 2021):

V =
Var[Y |Z, compliers]
ηE[Z](1− E[Z])

(21)

Thus, variance decreases as η increases. We note that even under the relaxation of the constant treatment effects assumption,
Heng et al. (2020) and Baiocchi et al. (2014) have shown that the IV variance with n samples is at least as large as the
variance with η samples of known compliers. Thus, the two-sided power function is non-decreasing as V decreases, and
hence when η increases. Freeman et al. (2013) also equivalently show this relationship between IV power and η in their
power calculation analysis of Mendelian randomization studies.

Note that our statements are of the power non-decreasing as a function of τ because power is bounded (β(τ) ∈ [0, 1]). We
show empirically in Figure 2 that power in practice increases as η̂ increases, regardless of the size of the subgroup. Data
simulated in Figure B.1 follow the TAU regression data generation described in Appendix C.1 with n = 1000, τ = 0.2,
and a bandwidth of 0.5. Random subgroups of sizes uniformly distributed between 450 and 950 are drawn to show the
relationship between τG and ηG and power across varying G sizes.
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B.5. Effective sample size test statistic derivation

From Section 3.5, in order to construct a test statistic for Equation 5 we need a consistent estimator of Var[ηG − ηP ]:

Var[ηG − ηP ] = Var[ηG] + Var[ηP ]− 2Cov[ηG, ηP ] (22)

We use influence functions to empirically estimate this variance term (Newey & McFadden, 1994; Kahn, 2022). The
influence function ψG,i for i in subgroup G is given in Equation 23(see Appendix B.6 for a full derivation):

ψG,i = 2NGτ̂G

(
1[Zi = 1]

NG

N1G
(Ti − T 1G) (23)

−1[Zi = 0]
NG

N0G
(Ti − T 0G)

)
Where 1[·] is the indicator function and NzG is the number of samples in subgroup G where Z = z. This function consists
of products and differences of empirical means over different subgroups which are straightforward and fast to compute.
Following the properties of influence functions (Newey & McFadden, 1994; Erickson & Whited, 2002), we can next derive
the variance-covariance matrix of ηP , ηG as follows. Let

Ψ =
[
ψ⃗P , ψ⃗G

]
NP×2

(24)

where ψ⃗G is a vector of length NP with values at the ith index of ψG,i if i ∈ G and 0 otherwise. We can then compute the
variance-covariance matrix of ηP , ηG as follows (Appendix B.7):

V =
1

N2
P

(
ΨTΨ

)
(25)

The elements of V give us empirical, consistent estimates of Var[ηG], Var[ηP ], and Cov[ηG, ηP ] due to the properties of
influence functions, allowing us to calculate tη (Equation 5).

B.6. Effective sample size influence function

We first give the influence function of a sample i on τG, which can be seen as a difference-in-means estimator (Imbens &
Rubin, 2015) as shown by Kahn (2022):

ψτG,i = 1[Zi = 1]
NG

N1G
(Ti − T 1G)− 1[Zi = 0]

NG

N0G
(Ti − T 0G) (26)

We can then apply the influence function chain rule (Kahn, 2022) to obtain the influence function for the effective sample
size. For an estimator θ̂ such that θ̂ = T (θ̂j , ..., θ̂n), the influence function of θ̂ is:

ψθ̂,i =

n∑
j

∂T

∂θ̂i
ψθ̂j ,i

(27)

The influence function ψηG,i of ηG for a given sample in subgroup G is thus:

ψηG,i =
∂

∂τ̂G
NGτ̂

2
G

= 2NGτ̂GψτG,i

= 2NGτ̂G

(
1[Zi = 1]

NG

N1G
(Ti − T 1G)− 1[Zi = 0]

NG

N0G
(Ti − T 0G)

)
(28)
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Note that in the above text we refer to ψηG,i as ψG,i to reduce notational clutter.

B.7. Effective sample size variance-covariance matrix

We follow Kahn (2022) and Erickson & Whited (2002) for the derivation of the variance-covariance matrix between ηG and
ηP in Equation 25. The distribution of an estimator θ is equivalent to 1√

N

∑N
i ψθ,i. Erickson & Whited (2002) show:

√
NP

(
η̂P − ηP
η̂G − ηG

)
=

1√
NP

NP∑
i

(
ψηP ,i

ψηG,i

)
d−→ N

((
0
0

)
,E

(
ψ2
ηP ,i ψηP ,iψηG,i

ψηP ,iψηG,i ψ2
ηG,i

))
(29)

Kahn (2022) then shows that the variance-covariance matrix defined in Equation 25 gives us the variances of ηG, ηP on the
diagonal and the covariance of ηG and ηP on the off-diagonal, allowing us to compute the test statistic in Equation 5. As a
sanity check, we verify that the distribution of the computed test statistic under the null hypothesis behaves correctly in
empirical simulations (Figure B.1). Data simulated in Figure B.1 follow the TAU regression data generation described in
Appendix C.1 with n = 200, τ = 0.5, and a bandwidth of 0.5. Random overlapping subgroups of size 100 are drawn to test
the null distribution.

Figure B.1. Our overlapping η hypothesis test produces well-behaved null distributions, yielding valid p-values. We conduct six different
simulations with varying numbers of trials under the null hypothesis that the overlapping groups have the same effective sample size.

B.8. Closed-form power calculations

We use Equation 20 shown in Appendix B.8 to compute the theoretical power of a treatment regression. To calculate V ,
Imbens & Lemieux (2007) give a closed form solution for the asymptotic variance of the treatment regression, assuming a
symmetric bandwidth h:

V =
8 · pbw

n
(σ2

T,l + σ2
T,u) (30)

where n is the total sample size, σ2
T,l is the TAU variance below the cutoff, σ2

T,u is the TAU variance above the cutoff, and
pbw is the fraction of units in the sample that are included in the bandwidth h.

Since T is binary, we have that:

σ2
T,l = lim

x↑c
V ar(T |X = x) = µT,l · (1− µT,l)

σ2
T,u = lim

x↓c
V ar(T |X = x) = µT,u · (1− µT,u)

where:
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Figure C.2. Heterogeneity in TAU can be observed when considering the additional covariate W . Left is a pointplot of treatment
assignment uptake probabilities as a function of the running variable X (the same as pictured in Figure 3) for a single trial of our
simulation, with error bars as 95% CIs and a nominal τ = 0.7. Right is a density plot of treated units as a function of both X and W .

µT,l = lim
x↑c

Pr(T = 1|X = x)

µT,u = lim
x↓c

Pr(T = 1|X = x)

µT,u and µT,l can be computed given our simulated data generating process, giving us a closed form solution of the
theoretical power that can be achieved in our synthetic experiments.

C. Synthetic experiment details
C.1. TAU regression setup

For our blended RD simulation scenario, data are generated in the following manner. Let Xi ∼ Unif(0, 1) be the running
variable for unit i. We generate threshold indicator Zi = 1[Xi > c], where c is the chosen treatment threshold. Each unit’s
probability of treatment assignment is defined as:

pi = τZi + νXi + η + ψi (31)

where τ is the true TAU, ν the coefficient determining the running variable’s effect on the outcome, η a constant, and ψi a
Gaussian noise term. For each generated data set, we vary τ and draw ν ∼ N(0, 0.1) and set η = 0.2, ν = 0.05. pi values
are clamped to [0, 1], with an individual’s treatment assignment then defined as Ti ∼ Bern(pi).

C.2. Blended RD in one covariate

For the simulation setting shown in Section 5, for each unit we additionally draw Wi ∼ Unif(0, 1), with the cutoff c a unit
complies with being determined by:

c =

{
0.25 if Wi < 0.5

0.75 if Wi ≥ 0.5
(32)

For each trial of our synthetic experiment, we draw 1000 units with half of the units complying with the lower cutoff and half
complying with the upper cutoff. Differences in TAU can be observed when visualizing heterogeneity in Wi (Figure C.2).

C.3. Treatment assignment uptake reduction in the presence of heterogeneity

As our simulated data contains two equally-sized populations that comply with different cutoffs, the observed τ will
effectively be reduced by half, since for each cutoff c1, c2, half of the units do not comply with the jump in TAU at that
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Figure C.3. RDSGD maintains empirical false positive rates below the nominal α level. We simulate RDs with multiple running
variables over 500 trials for each τ and record the number of false threshold discoveries.

point. For example, at a given τ and n, we can estimate the observed TAU at c1 for our sample by computing µT,u − µT,l:

µT,u = lim
x↓c1

Pr(T = 1|X = x)

=
ν · c1 · n+ η · n+ (τ · n

2 )

n
= νc1 + η +

1

2
τ

µT,l = lim
x↑c1

Pr(T = 1|X = x)

=
ν · c1 · n+ η · n

n
= νc1 + η

Thus we have µT,u − µT,l =
1
2τ .

C.4. Heterogeneity in one covariate: simulation details

Results presented in Section 5.1 use data generated according to Appendix C.1-C.2. We use a fixed bandwidth h = 0.25 to
ensure that the closed form oracle powers calculated in Appendix B.8 are valid. Causal forests were fit according to default
parameters specified in the EconML package (Battocchi et al., 2019) (with honesty enabled for valid and unbiased inference),
and a fixed depth of 3 and minimum leaf size of 100 were used for subsequent CATE causal trees distilled from the forests
to ensure subgroups remained interpretable. We note that the causal forest implementation in EconML by default runs a
two-fold cross validation internally when selecting hyperparameters for the LogisticRegressionCV scikit-learn models for
treatment, which searches over L2 regularization parameters in a grid of 10 values between 1e− 4 and 1e4 using the default
accuracy criterion. Seeds were passed to machine learning models to ensure reproducibility. All 500 trials were seeded
with their trial number, and once implementation was complete experiments were run twice to validate reproducibility. We
run Herlands et al. (2018)’s RD discovery method, LoRD3, according to recommended parameters in their code repository,
setting (in their notation) k = 100 and z = {X,W} so that information from both X and W are used. All simulations were
run on a Ubuntu 20.04 LTS server, with a 24-core Intel i9-7920X CPU and 94 GB RAM.

The false positive rates shown in Figure C.3 are computed based on the number of significant discontinuities discovered that
do not equal c1 or c2 divided by the total number of tests over the 500 trials for each τ level. As our empirical power metric
amounts to a count of “successful” detections of statistically significant discontinuities at c1 and c2 out of the 500 trials, we
use a χ2 test (or corresponding Fisher’s exact test if count numbers are not sufficient) to compare RDSGD’s performance
with the baseline discovery method. With the exception of the τ = 0.2, c2 case, all the differences between RDSGD and the
baseline algorithm are statistically significant with p < 0.001. We also show comparisons to LoRD3 in Figure ??, where
RDSGD outperforms it across all τ levels; this is to be expected due to the stated limitations of LoRD3 with regards to
heterogeneity.
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C.5. Heterogeneity in multiple covariates: simulation details

Results presented in Section 5.2 used data generated according to Appendix C.1. Instead of having a single covariate
govern the choice of c as in Appendix C.2, we generate dim(W⃗ ) covariates W1,W2, ... for each unit i using scikit-learn’s
make regression() method, producing output ωi. We then scale ωi to fall in the range [0, 1] with sample mean 0.5, and
determine which cutoff a unit complies with by:

c =

{
0.25 if ωi < 0.5

0.75 if ωi ≥ 0.5
(33)

We fix ground truth τ = 0.5 for the simulation trials and calculate the baseline oracle power according to Appendix B.8. All
hyperparameters, hardware, and seeding strategy for the 500 trials are the same as described in Appendix C.4.

All statistically significant subgroups discovered by RDSGD are recorded, and their power is computed according to
Equation 20. Means and standard deviations reported in Table 1 are taken across all trials. For significance testing, we use a
one-sample t-test comparing the subgroups in each cell of Table 1 with their corresponding baseline oracle powers. All tests
were statistically significant at p < 0.001.

D. Clinical setting and cohort details
D.1. Justifying use of private claims dataset

In order to evaluate RDSGD in a real-world setting where our clinical collaborators can help verify discovered candidate RD
studies, we needed a large-scale clinical data source that spanned general healthcare settings with enough data granularity
on individuals so our method can leverage potential TAU heterogeneity across common demographic covariates (described
in Appendix D.2). The claims dataset that we use has the advantage of having an array of disease classes and visibility into
patient information in general healthcare settings, as opposed to publicly available datasets such as MIMIC which focuses
on a very specific context (critical care). Working with such detailed patient information necessitates adherence to federal
HIPAA privacy rules concerning privacy, which restrict access to “protectable health information”; we do however provide
descriptive statistics of the cohort presented in Table D.1.

D.2. Data extraction per clinical setting

Breast cancer screening. We extract a patient’s first recorded routine preventative care visit as designated by ICD and CPT
codes. The treatment indicator T for a patient is whether they received a breast cancer screen as designated by ICD code
within 7 days of the recorded encounter date. The running variable X is the patient’s age at the initial encounter date (note
that in order to protect patient privacy, the claims database only has resolution to a patient’s year of birth). We consider
candidate thresholds of CX = [40, 45, ..., 60] with the data-driven bandwidth selected to be 4, at age increments of 5 years
to align with typical screening guideline values.

Colon cancer screening. Similar to the breast cancer setting, we use a patient’s first recorded routine preventative care
visit. The treatment indicator T for a patient is whether they received a colon cancer screen within 7 days of the recorded
encounter date, and age is the running variable X with candidate thresholds of CX = [40, 45, ..., 60] and bandwidth 4, at
age increments of 5 years to align with typical screening guideline values.

Type 2 diabetes diagnosis. We extract patient’s first recorded A1C measure as designated by LOINC codes and use it as the
running variable X . The treatment indicator T for a patient is whether a type II diabetes diagnosis ICD code appears in their
record within 30 days of the first recorded A1C measure. We consider candidate thresholds of CX = [5.0, 5.1, 5.2, ..., 7.5]
and a data-driven bandwidth selected to be 0.4 as this is the standard range of A1C values, with the lab readings having
precision to one decimal place.

In all three clinical settings, we exclude patients that have a recorded treatment indicator code prior to their initial encounter
date, as well as patients that do not have recorded demographic information. The following covariates are included as W⃗ for
each patient (unordered categorical variables are one-hot encoded, while ordinal variables are coded as integers): gender,
encounter date, insurance type (Medicare vs. commercial), race, education level, household income range.
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D.3. Full result and cohort details

Claims data analyses were run on a secure CentOS Linux 7 server with a 40-core Intel Xeon E5-4650 CPU and 504 GB
RAM. We follow the same hyperparameter and model training strategy as described in Appendix C.4. For the RD candidate
cutoff identified in each clinical setting, we show the best subgroup in terms of effective sample size in Table 2. We describe
the demographics of patients within the RD bandwidth of analysis in Table D.1.

Table D.1. Demographic details for each clinical setting within RD bandwidth.

Breast cancer
screen, age ≥ 40

Colon cancer
screen, age ≥ 50

Type 2 diabetes
diagnosis, A1C ≥ 6.5

Sample size 631,337 691,559 389,257

Mean age (SD) 39.9 (1.97) 49.9 (1.98) 60.6 (13.4)

Gender (%)
Male 338,052 (53.5) 342,930 (49.6) 181,137 (46.5)
Female 293,285 (46.5) 348,629 (50.4) 208,120 (53.5)

Race (%)
White 425,331 (67.4) 513,856 (74.3) 226,714 (58.2)
Black 65,453 (10.4) 66,751 (9.7) 64,038 (16.5)
Asian 52,356 (8.3) 33,106 (4.7) 29,707 (7.6)
Hispanic 88,197 (13.9) 77,846 (11.3) 68,798 (17.7)

Education level (%)
Less than 12th grade 2,571 (0.4) 2,766 (0.4) 3,080 (0.8)
High school diploma 120,045 (19.0) 147,990 (21.4) 118,531 (30.5)
Less than Bachelor’s 333,560 (52.8) 373,284 (54.0) 208,949 (53.7)
Bachelor’s degree plus 175,161 (27.7) 167,519 (24.2) 58,697 (15.1)

Household income (%)
<$40k 95,517 (15.1) 101,403 (14.7) 103,685 (26.6)
$40k - 49k 35,275 (5.6) 38,394 (5.6) 33,165 (8.5)
$50k - 59k 36,644 (5.8) 42,394 (6.1) 35,179 (9.0)
$60k - 74k 57,411 (9.1) 66,384 (9.6) 46,627 (12.0)
$75k - 99k 94,409 (14.9) 111,848 (16.2) 62,877 (16.2)
>$100k 311,981 (49.4) 331,136 (47.9) 107,724 (27.7)
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