Improving Progressive Generation with Decomposable
Flow Matching

Moayed Haji-Ali* 12 Willi Menapace*:2 Ivan Skorokhodov? Arpit Sahni?

Sergey Tulyakov? Vicente Ordonez' Aliaksandr Siarohin?

Rice University 2Snap Inc

Project Webpage: https://snap-research.github.io/dfm

Abstract

Generating high-dimensional visual modalities is a computationally intensive task.
A common solution is progressive generation, where the outputs are synthesized
in a coarse-to-fine spectral autoregressive manner. While diffusion models benefit
from the coarse-to-fine nature of denoising, explicit multi-stage architectures are
rarely adopted. These architectures have increased the complexity of the overall
approach, introducing the need for a custom diffusion formulation, decomposition-
dependent stage transitions, ad-hoc samplers, or a model cascade. Our contribution,
Decomposable Flow Matching (DFM), is a simple and effective framework for
the progressive generation of visual media. DFM applies Flow Matching indepen-
dently at each level of a user-defined multi-scale representation (such as Laplacian
pyramid). As shown by our experiments, our approach improves visual quality
for both images and videos, featuring superior results compared to prior multi-
stage frameworks. On Imagenet-1k 512px, DFM achieves 35.2% improvements in
Frechet DINOv2 Distance (FDD) scores over the base architecture and 26.4% over
the best-performing baseline, under the same training compute. When applied to
finetuning of large models, such as FLUX, DFM shows faster convergence speed to
the training distribution. Crucially, all these advantages are achieved with a single
model, architectural simplicity, and minimal modifications to existing training
pipelines.

1 Introduction

The high dimensionality of images and videos poses a challenge for generative modeling. An
approach to make the problem more tractable involves decomposing the generative task into a
sequence of simpler sub-problems. An increasing number of generative models adopt this practice by
progressively modeling visual signals of increasing resolution [1}[11} 16} [18}41,42]]. Autoregressive
generative models, for instance, have demonstrated that switching from a next-token prediction
pattern in a 1D sequence of flattened tokens [4} 6] 24} 311, 135, 49, 150] to a next-scale [42] or next-
frequency [16] prediction pattern, yields substantial performance improvements. Recently, the success
of diffusion models has been connected to a form of spectral autoregression enforced by the diffusion
process which erases details progressively from the coarsest to the finest [30} 36, 38]].
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Figure 1: Comparison of different diffusion frameworks. Cascaded models employ a separate model
per stage. Pyramidal Flow [18] progressively increases resolution through careful upsampling and
renoising operations. Our framework models multiple stages independently from each other within
the same model, enabling progressive generation with minimal modifications to Flow Matching
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A variety of diffusion frameworks [T}, 9] [18][37] 41]] have reformulated the diffusion process
to enforce spectral autoregression, an approach we refer to as progressive modeling. This is typically
realized by restructuring the diffusion process to include transition points where the signal resolution is
altered, thereby defining a sequence of stages of progressively increasing resolution. Key progressive
modeling paradigms are illustrated in Figure [T} where cascaded models [14] and Pyramidal
Flow [18]] are exemplified and contrasted with vanilla Flow Matching [26] 27]. However, while
these frameworks demonstrate the feasibility of the progressive paradigm, they often operate directly
in pixel space [} 41]], depend on multiple models [13} [14, [37, 41]], or deviate from the original
formulation of the diffusion process [11 [9] 41]. Such deviations introduce complexities in
managing inter-stage transitions, requiring careful consideration of operations such as resizing
411, renoising [T} 18 411 or blurring [41]] and, in some instances, require specialized samplers [9} [41].

To address these challenges, we propose Decomposable Flow Matching (DFM), a progressive
modeling framework based on a simple extension of Flow Matching, depicted in Figure[2] At its
core, a user-defined decomposition function is applied to the input, producing a multiscale input
representation that defines each stage of the generation, and a Flow Matching process is independently
applied to each stage, utilizing a set of per-stage flow timesteps. During inference, a standard sampler
operates separately on each stage of the representation guided by a user-defined sampler schedule
that dictates the progression of flow timesteps per each stage. Timesteps are evolved sequentially,
starting from the coarsest stage; progression to a subsequent stage only begins once the preceding
stage has reached a predefined threshold. During training, progressive generation is simulated by
selecting a stage, sampling a noise level for it, and injecting the maximal noise level into subsequent
stages of the representation and a small noise level to preceding ones. These capabilities are realized
without the need for expert models, ad-hoc diffusion processes, or specialized samplers, all while
offering the flexibility of user-defined input decomposition.

We conduct a thorough analysis of the design space for DFM, providing insights into its behavior
across different training and sampling strategies, and model architectures. Based on these findings, we
instantiate DFM and evaluate its performance on established image and video generation benchmarks,
specifically ImageNet-1K [5]] and Kinetics-700 [3]]. Our results demonstrate uniform improvements
over Flow Matching [27], cascaded models, and Pyramidal Flow [18]. Furthermore, we apply DFM to
the finetuning of FLUX [23]], demonstrating its efficacy in enhancing the performance of large-scale
generative models. Compared with standard full finetuning, applying DFM for the same amount of
finetuning iterations yields a 29.7% reduction in FID and 3.7% increase in CLIP score.

In summary, our work introduces Decomposable Flow Matching, a novel progressive generation
framework that offers several key advantages: (i) It presents a simple formulation rooted in Flow
Matching; (ii) it is agnostic to the choice of decompositions; (iii) it does not need multiple models
or per-stage training; (iv) it includes a comprehensive analysis of critical training and sampling
hyperparameters; (v) it outperforms existing state-of-the-art progressive generation frameworks on
ImageNet-1K [3] and Kinetics-700 [3], and enhances FLUX [23] finetuning performance.

2 Related Work

2.1 Progressive Generation in Autoregressive Models

Autoregressive models for visual generation [4], [6, 24] [31] 33} 49, [50] formulate the generation
of visual data as a next-token prediction problem. This is typically achieved by first obtaining a



Algorithm 1 Sampling procedure of training timesteps across multi-scale stages

1: procedure SAMPLETRAININGTIMESTEPS(S)
Input: S > total number of scales
Output: (t',...,t%)

2: () < SAMPLEDISCRETEDISTRIBUTION(p,) > stage index corresponding to #scales

3 t¢ + SAMPLELOGITNORMAL(m = 0)

4 fors=1toQ — 1do

5: t* <~ SAMPLELOGITNORMAL(m = 1.5)

6: end for

7: fors=Q +1to S do

8 t°«0

9 end for

0 return (t1,... ¢

1

: %)
: end procedure

discrete input representation, which is then flattened into a 1D sequence to enable autoregressive
modeling. However, recent work [[16}42] has demonstrated that flattening undermines the intrinsic
multidimensional structure of visual data. VAR [42] addresses this limitation by modeling image
generation as a spectral autoregressive process. A multiscale tokenizer generates discrete tokens at
different resolutions, and the model predicts each scale conditioned on the previous ones, yielding
substantial improvements over baselines. NFIG [16] adopts a similar approach where frequency
decomposition is used to define different scales that are predicted autoregressively. In our work, we
explore spectral autoregression in the context of diffusion models.

2.2 Progressive Generation in Diffusion Models

Diffusion models have achieved state-of-the-art results across various visual generation tasks [7, 23|
28, 146]. Their effectiveness has been linked to an implicit form of spectral autoregression, whereby
the diffusion process erases fine-grained details in a coarse-to-fine fashion [30} 36, 38]].

Several progressive generation frameworks made spectral autoregression an explicit part of their
design, generating their outputs stage-by-stage. Cascaded diffusion models [13} [14, 37]] generate
low-resolution outputs in an initial stage, followed by upsampling stages conditioned on previous
outputs. A separate model is used for each stage. Other methods redefine the generative process
to incorporate progressive signal transformations. f-DM [9] and RDM [41]] introduce stages via
downsampling. MDM [10] simultaneously denoises multiple resolutions. Edify Image [1] introduces
frequency-specific attenuation in the diffusion process. Pyramidal Flow Matching [18]] operates in
the latent space over a hierarchy of increasing resolutions, combining upsampling and re-noising
operations. Despite these advances, existing approaches share limitations. They often require complex
stage-transition mechanisms [[1, 9} [18| |41]] or tailored samplers [9, 41], are tightly coupled to specific
decomposition strategies [1, |9, 18} 41]], and primarily focus on pixel-space generation [1 10, 41]]. In
contrast, we propose a simple and generic framework for progressive generation in the latent space
that supports user-defined decompositions without altering the core architecture.

2.3 Autoencoders with Spectral Latent Structure

Coarse-to-fine or spectral autoregressive modeling benefits from an autoencoder with a well-
structured spectral representation where low-, mid-, and high-frequency components in the RGB
space correspond to the respective low-, mid-, and high-frequency components in the latent rep-
resentation. Modern image and video autoencoders typically lack such spectral structure [38]], so
recent works fine-tune them to enforce the desired spectral properties through scale equivariance
regularization [[17, 22} [38]. Another viable strategy is to train a Spectral Image Tokenizer [8]]-like
model from scratch, which encodes a wavelet-decomposed image representation into a causally
ordered sequence, yielding spectrally structured latents by design. Our framework is agnostic to the
choice of the autoencoder but benefits from such spectral latent structure, and we opt for the first
strategy of fine-tuning with scale equivariance [22,|38] to stay closer to existing diffusion pipelines.
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Figure 2: Overview of Decomposable Flow Matching (a) Sampling procedure. A sampling schedule
is defined that dictates the timestep progression of each stage. The model predicts velocities for each
input scale and a vanilla sampler denoises each scale according to its schedule. Intermediate stages
can decoded during inference to provide a low-resolution preview of the generation. (b) Training
procedure. A stage index is sampled from a discrete probability distribution and defines the main
stage. Timesteps for each stage are sampled accordingly. The model minimizes velocity prediction
errors for each scale. (¢) DiT [33] architecture for progressive generation. Patchification layers and
time embedders are replicated for each scale.

3 Method

This section details our progressive generation framework, summarized in Figure[2] The method is
based on Flow Matching [26] 27]], which is introduced in Section[3.I] A Laplacian decomposition
strategy, detailed in Section[3.2] is exemplified as a way of producing a multiscale input representation
amenable to stage-by-stage progressive modeling. In Section [3.3] the Flow Matching framework
is extended to account for the multiple stages by introducing per-stage flow timesteps, which are
leveraged to instantiate the progressive generation scheme by denoising stages one-by-one, starting
from the coarsest. Finally, the DiT [33]] architecture is extended in Section[3.4]to support the proposed
generation scheme by introducing per-scale patchification and time embedding layers.

3.1 Flow Matching

We base our generative models on the Flow Matching framework [26} 27]], which defines a generation
of data X; ~ pg as the progressive transformation of X following a path connecting samples from
the two distributions. Often, the path is instantiated as a linear interpolation: X; = tX; + (1 — ¢)Xj,
and Xg ~ p, = N(0,1) originates from a noise distribution [27]]. The velocity along this path is

given by v; = d;if = X3 — Xjp. A generator G is trained to predict this velocity by minimizing:

L = Etnp,Xi~paXo~pn ||g(Xt’ t) M

where p; is a training-time distribution over ¢. At inference, samples are generated from noise using
an ODE solver (e.g., Euler), integrating the learned velocity field to produce data samples.

3.2 Input Representations for Progressive Modeling

The high dimensionality of visual modalities makes their modeling challenging. This complexity can
be reduced by factorizing their generation into simpler stages, instantiating a progressive generation
framework which generates coarse details such as structure first, and finer details later.

To this end, each input X is structured into a multiscale representatlon P = {X*®}5_, across S scales,
each defining a generative stage, containing a progressively increasing level of detaﬂ from the most
coarse to the finest. Various decomposition techniques are viable, including DWT, DCT, Fourier
transforms, or multiscale autoencoders [8]]. We adopt the Laplacian pyramid due to its simplicity and
flexibility, but note that, unlike existing methods, our framework is agnostic to the particular choice
of decomposition. The pyramid levels are defined as:



{Xs = down(X, s) — up(down(X,s — 1),s) ifs>1 @

X! = down(X, 1) ifs=1"

where each scale s is associated with a user-defined resolution, and down(. .., s) and up(...,s)
respectively represent downsampling and upsampling to the resolution of s. A downsampled approxi-
mation of the input can be obtained as X5 = X! + ... 4 X%,

3.3 Decomposable Flow Matching

The multiscale input is amenable to progressive modeling. We define a number of stages where each
stage models a set of scales from the coarsest to the finest. We extend Flow Matching to support
multistage generation. To this end, we introduce an independent flow timesteps ¢* for each scale, and
formulate the forward process as:

Py s ={X5}5, where X ="X; + (1 -t%)XS. 3)

The factorization of flow timesteps enables control over stage generation by imposing conditional
generation on previous stages and marginalization on successive stages by respectively applying low
or full noise levels [22]]. To this end, we define a discrete distribution p, over the number of sampling
stages, and for each scale s within the sampled stage (), we draw timesteps independently from a
predefined logit-normal distribution p; .. Consequently, rather than predicting a single velocity, the
model predicts per-scale velocities v® using a shared generator G conditioned on the full set of noisy
input scales and their timesteps, which is learned by minimizing:

S
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where p, represents the a discrete distribution over the number of stages, () represents the sampled
stage, p; represents the training distribution of each scale timesteps, and G, represents the the model
velocity prediction for scale s.

During inference, a timestep schedule is defined that activates stages progressively as shown in
Figure The sampler starts from the first stage and advances ¢! only, before introducing subsequent
scales one at a time once the last introduced scale reaches a predefined threshold 7 in its generation.
Then, the last stage along with all previous stages, continues the generation at different rates (see
Sampling Schedule in Figure [J] (a)). Each time the generated scale reaches its threshold, the
representation can undergo partial decoding up to the current stage, producing an output preview. At
the end of the generation, all scales representations are summed to visualize the generated output.

Both the stage distribution p, and the training timestep distribution p; are central to effective learning
of this progressive strategy, and training timesteps are chosen to simulate the progressive sampling
through stages, as shown in Figure[2b] First, a stage index, representing the number of stages that
are currently under generation, is sampled from a discrete probability distribution p,. Given the
stage number, we sample the timestep of the last scale within the stage according to a logit normal
distribution [7]. For every preceding stage, we instead sample the respective timestep from a logit
normal distribution shifted towards lower noise levels to simulate inference time behavior where the
earlier stages are less noisy than the last stage currently being generated. For simplicity, we apply the
same shift to all preceding scales, using the same logit-normal parameters across them. Finally, the
timesteps for each subsequent stage are set to zero to prevent the model from spending its capacity in
modeling such zeroed scales. Algorithm[I]shows the procedure for sampling the stage index and the
timesteps for each scale within the stage. We additionally introduce a masking term M? that ignores
their loss contributions. This promotes progressive learning dynamics, where the model focuses on
global structure before local detail, enabling high-quality progressive generation.

3.4 Architectural Adaptations

We choose to experiment on a DiT architecture [33]] due to the pervasive adoption of its variants [7,
231125, 28], 146, 48], and we extend it to accommodate multiscale inputs and their associated flow



Table 1: Ablation results on Imagenet-1K [S] using a DiT-B backbone.

Res. FIDiok | FDDigk | IS T Res. FIDiok | FDDigk | IS T Res. FIDiok | FDDiok | IS T

(a) First stage samp. prob. p (c) Architecture (e) Compute Allocation
0.7 512 36.02 676.0 322 baseline 512 29.56 571.0 41.0 1 Batch size 512 3195 6150 39.9
0.8 512 32.09 622.0  36.1 —masking 512 299 584.0  40.0 | Patch size 512 | 29.56 571.0 410

09 512 29.56 571.0 41.0 —standardization 512 | 27.13 505.0 428
0.95 512 [ 275 540.0 437

(f) Input Decomposition
512—1024 1024 58.03 899.0 203

(d) Parameter Specialization

(b) Previous scale lognorm location

None 512 2837 5640 415 256—512—1024 1024 | 40.60 6832 318
0.0 512 29.83 567.0 404 Mod. 512 2895 5680 414 256—1024 1024  41.06 7040 309
0.5 512 | 2889 569.0 415 Proj. 512 29.56 571.0 41.0
1.0 512 29.14 567.0 412 Cond. 512 28.88 565.0 40.0
L5 512 2956 571.0  41.0 Attn. 512 2899 564.0  40.7
20 512 29.96 589.0 39.8 MLP 512 27.65 545.0 43.0
Tied 512 5549 8850 214 Full 512 | 26.63 5260 455

timesteps (see Figure[2c). At their core, a DiT transforms the input visual modality into a sequence
of tokens through a linear layer called patchification layer, where each token corresponds to a small
portion of the input of size k x k, denoted as patch size. An inverse operation is performed by the
output patchification layer. A sequence of transformer blocks [45] processes the token sequence.
To make the model aware of the input timestep, a timestep embedder MLP produces a respective
conditioning embedding, which is passed to the transformer blocks through modulation layers.

To accommodate multiscale inputs, rather than using single input and output patchification layers,
dedicated input and output patchification layers are instantiated per scale. Patch sizes are chosen such
that each input scale yields an equal number of patches, ensuring consistent spatial alignment across
scales. For example, for two stages of resolution 256 x 256 and 512 x 512, we use patch sizes of
1 x 1 and 2 x 2, respectively. The resulting patch embeddings from all scales are summed and fed
into the transformer backbone. Finally, a dedicated per-scale projection layer is used to output each
scale velocity. Loss masks M are integrated to zero out model inputs at masked scales. This prevents
noisy inputs whose contribution to the loss is negated by the mask from harming model performance.
To incorporate the per-scale timesteps, we use a dedicated timestep embedder for each level and sum
their outputs to form a unified conditioning signal.

4 Experiments

4.1 Experimental setup

Latent space The FLUX [23]] and Cogvideo [48]] autoencoders are used, respectively, to produce
the latent spaces for all image and video experiments. To maximize the benefits of coarse-to-
fine modeling, low-, mid-, and high-frequency components in the latents should correspond to
the respective low-, mid-, and high-frequency RGB components once decoded, a property not
typically found in modern autoencoders. We establish it for all autoencoders by scale-equivariant
finetuning [38]. Namely, we fine-tune the FLUX autoencoder for 10,000 steps on our internal image
dataset at 2562-resolution with x2-4 scale equivariance regularization [38] with a batch size of 64.

Training details We train our models on the ImageNet-1K [5] and Kinetics-700 [3] datasets. We
run all ablations using DiT-B and main experiments on the DiT-XL architecture. All experiments
use a batch size of 256, a learning rate of le—4 with 10k steps warmup, gradient clipping of 1.0,
the Adam [21] optimizer, and an EMA with 5 = 0.9999. We train ablations on ImageNet-1K for
600k steps, and the main experiment for 500k and 350k steps, respectively, for 512px and 1024px
resolution. For Kinetics-700, we train the main experiments for 200k steps.

Evaluation metrics and protocol We report FID, and Inception Score (IS) for image experiments and
frame-FID and FVD [43] for video experiments. We also include FDD (Frechet Distance computed
against DINOV2 [32] features) as it was shown to be a more reliable metric than FID [20}139]]. We
use 50k generated samples for ImageNet-1K 512px evaluation and 10k samples for the rest of the
experiments. We report main experiment results with cfg [12] values of 1.0, 1.25, and 1.5 as [33].

4.2 Training Parameters Ablation

We conduct ablations to provide insights into the behavior of the main training hyperparameter.
Unless otherwise specified, the ablations are run on ImageNet-1K [5]] 512px using a DiT-B backbone.
The default backbone employs a 2-stage Laplacian decomposition of 256px and 512px resolution,
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Figure 3: FID,gx results ablating sampling configuration, threshold, and per-stage steps.

Table 2: DFM efficiency comparison with Flow Matching

Model # Params Peak Memory GFLOPs Forward Latency Train Iter Speed Sampling Time
Flow Matching 712.122 M 6.258 GB 524.613 60.25 ms 297.39 ms 243s
DFM 716.482 M 6.294 GB 524.638 61.32 ms 301.00 ms 243s

respectively, where each decomposed input scale is normalized to unit standard deviation. Results
are presented in Table [T} and practical guidance on their optimal configuration is provided in
Appendix Sec.[A3]

Training timestep distribution. The sampling distribution of timesteps p; during training is crucial
as it determines the implicit loss weighting for each stage (see Section [3.3). We parametrize its
design across two dimensions. The first is the distribution over the stage index s, which corresponds
to a number of scales being trained. Since we ablate over a 2-stage configuration, this can be
expressed as the probability of sampling stage 0 (pg). The second is the location for the logit normal
distribution [7] of all preceding stages, representing the amount of bias towards lower noise levels for
already-generated stages. We report the performance of various sampling strategies in Table[T] (a)
and (b). Performance is positively impacted by large probabilities of sampling stage 0, indicating
that allocating more model capacity towards predicting structural details benefits generation. This
is aligned with previous cascaded model training strategies, where the first stage model is trained
longer than the second stage model [29]. Performance is also positively impacted by larger shifts
in the logit normal distribution of already-generated scales through previous stages, as this better
simulates the inference-time sampling schedule. We found that location values of 0.5, 1.0, and 1.5
yield comparable performance, with differences of less than 1% in FDD and 1.3% in IS. A larger
location value, however, simulates availability of a cleaner first scale (low-frequency) result and aligns
more closely to inference time behavior. We hypothesize that under the increased DiT/XL capacity
used in the main experiments, a closer alignment to inference-time behavior would be beneficial
as we speculate that larger models may afford spending more capacity for non-structural details.
Therefore, we select pg = 0.9 and location of 1.5 for our main experiments. Finally, we consider a
strategy that ties the timesteps of every stage, enforcing the same value for them, and accordingly
modify sampling. This variation presents degraded performance as it loses the benefits of progressive
generation.

Architecture. We ablate our baseline by removing input masking (see Section[3.4) and removing
the normalization of each stage to unit standard deviation before the application of the diffusion
process. We report the results in Table[I](c). Removing input masking for successive stages degrades
performance over all metrics due to the negative influence of injecting pure noise tensors into
the model. However, we found that removing standardization improves performance. Removing
normalization results in a lower magnitude for the input of the second stage. This affects the model in
a similar way to increasing pg, giving more importance to stage 1 structural modeling and improving
performance. Therefore, we adopt masking but exclude standardization for our main experiment.

Parameter Specialization. We leverage the factorization of generation into multiple stages by
exploring model parameter specialization for each stage. Specifically, in addition to base model
parameters, we create a set of per-stage model parameters acting as stage experts, akin to using
distinct sets of model parameters in cascaded models. During the generation of stage s, the specialized
version of the weights corresponding to s is averaged with the base model parameter, enabling scale-
specific behavior without significant computational overhead. As shown in Table[I](d), parameter
specialization improves performance when applied to MLP layers and produces the best results when
applied to every model parameter. Despite its performance benefit, we exclude this technique from
our main experiments to keep the parameter count similar across baselines.



Table 3: Comparison to baselines on ImageNet-1K [5] and Kinetics-700 [3] using a DiT-XL model
and training convergence plot for ImageNet-1K [5] 512px.

ImageNet 512px ImageNet 1024px Kinetics 512px 1000 75— o Mateh.
FIDsox . FDDsox 4 ISt FIDiok . FDDiok 4 IS* FIDiok 4 FDDiok 4 FVDiok L o Cascaded
o byt Flow
Flow Matching 15.89 2829 585 4218 5759 267 126 370.1 304.1 700 )t o
Cascaded 13.67 2609 727 20.16 3183 550 1381 346.2 3172 00
Pyramidal Flow 10.98 2612 773 169 3511 640 1051 353.8 265.6
DFM (Ours) 9.77 2006 779 1411 2773 782 998 336.7 260.2 o 500
Flow Matching (cfg=1.25)  7.59 1857 972 3157 4053 394  10.1 312.9 297.0 2 oo
Cascaded (cfg=1.25) 6.80 163.0 1284 1168 2219 892 1162  279.9 308.8
Pyramidal Flow (cfg=1.25)  4.95 1647 1320 938 2457 1093 824 2922 266.3
DFM (Ours) (cfg=1.25) 428 1200 1356 7.56 1817 1302  7.88 2775 257.4 300
Flow Matching (cfg=1.5) 473 1325 1389 2468 4125 460 843 268.4 309.8
Cascaded (cfg=1.5) 5.68 1140 1181 823 167.3 1268 1039 [ 2350 327.1 200
Pyramidal Flow (cfg=1.5) ~ 4.57 1162 1910  7.68 1859 1523 698 247.1 280.2 100k 300k 500k
DFM (Ours) (cfg=1.5) 428 858 1968 642 1325 1865 6.85 236.5 2717 Training Steps

Compute allocation. Compared with a single-stage model, input decomposition entails a lower
dimensionality for earlier stages which results in saved computation at similar settings. In the abla-
tions, for example, the first stage corresponds to 256px inputs rather than 512px. Such computational
savings can be leveraged by either increasing the training batch size and number of inference steps
or reducing the DiT patch size so that each stage results in an equal number of tokens. We observe
performance increases at a steady rate when reducing patch size, yet increasing the batch size quickly
reaches a plateau, converging to lower performance as reported in Table (1| (e). We select the patch
size reduction strategy for the final model.

Input Decomposition. Our framework is agnostic to the exact choice of input decomposition,
and thus different number of stages or different resolutions at different stages can be seemingly
applied. We explore different configurations of the Laplacian decomposition for 1024px ImageNet-1k
generations and report the results in Table [T| (f). Each decomposition is denoted as the sequence
of resolutions corresponding to each stage e.g. 256—1024 for a 2-stage decomposition with 4x
downsampling between stages. The 512— 1024 decomposition yields the worst performance due to
the initial stage being performed in 512px resolution and containing a larger amount of non-structural
components, reducing the effectiveness of the progressive framework. We find the three-stage setting
(256—512—1024) to yield the best result. However, we adopt 2-stage decompositions of 256—512
and 256— 1024, respectively, for 512px and 1024px experiments for easier comparison with baselines.

4.3 Sampling Parameters Ablation

This section analyzes the effects of sampling parameters on a DiT-XL trained on ImageNet-1k 512px
and 1024px using the optimal training parameters discussed in Section f.2] Results are given in
Figure|3| and practical guidance on their optimal configuration is provided in the Appendix Sec.

Stage Timestep Thresholds. We analyze the optimal timestep threshold 7 determining the switch
between sampling stages. We choose a threshold of 0.7 for 512px as it produces the best FDD and
second-best FID at the respective optimal cfg level and 0.95 for 1024px experiments.

Per-Stage Sampling Steps. We evaluate model performance using different numbers of steps
allocated to the sampling of the first and second stages under a sampling threshold of 0.7 and 0.95
respectively for 512px and 1024px. Allocating a larger number of steps to the first stage gives overall
better performance, matching the intuition that the generation of structural details represents a more
crucial component of sample quality than fine-grained details. We fix a total number of steps equal to
40 for our experiments and choose 30 and 10 sampling steps, respectively, for the two stages.

4.4 Comparison to baselines

Baselines selection and details. We select baselines corresponding to the main generation paradigms
in Figure[I] which we train on the same underlying model backbone, ensuring a constant amount of
training compute. The cascaded model baseline consists of separate models, one for each stage. Two
stages are employed to avoid excessive error accumulation. We train the first stage model for 80%
of the total training iterations and use it to initialize the second stage model for faster convergence.
Pyramidal Flow [18] is chosen due to its state-of-the-art progressive generation performance and
due to it operating in latent spaces while using a rectified flow formulation. We operate it in a 2
and 3-stage configuration for 512px and 1024px datasets, ensuring the same base resolution across
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Figure 4: Comparison of DFM against baselines on ImageNet-1K 512px [5]] on selected samples.
Samples are generated with cfg 3.0

experiments. All baselines are configured to ensure the same amount of training compute. Please
refer to Appendix Sec. [B]for exact details on each baseline.

Results. As shown in Table 3] our method surpasses the baselines across all metrics and cfg settings
with the exception of Kinetics-700 [3]] FDD. Notably, DFM matches baselines best reported FDD
in roughly half of the number of iterations, while using the same training compute (See Figure 4}
right) Qualitative comparison (see Figure @ and Appendix Sec.|C) suggests that DFM generates better
structural details, an observation which we attribute to its progressive formulation which focuses the
model’s capacity on its lowest resolution stage.

Efficiency. To ensure a fair comparison, we keep the training compute budget comparable across
all baselines in Table 3] We further benchmark DFM against Flow Matching in Table 2Jon DiT-XL.
As shown, the additional patchification and timestep-embedding layers introduced by DFM incur
only a minor increase in parameters and training FLOPs, translating to less than 1.2% slowdown per
training iteration.

4.5 Finetuning of large-scale models

To evaluate the effectiveness of DFM in large-scale

generative models, we finetune FLUX-dev [23]] on our  Taple 4: FLUX fine-tuning comparison.
internal image dataset using DFM and scale equivari-
ant autoencoder. First, the original FLUX model is  Method FID1ok . FDDiok | CLIPSIM
finetuned for 24k steps to adapt it to the scale equiv- FLUX 17.79 1727 03280
ariant autoencoder. Starting from this checkpoint, we g yx-FT 12.56 153.6 0.3261
branch two finetunings. The first continues regular fine- FLUX-DFM | 8.83 116.2 0.3381
tuning to obtain the FLUX-FT checkpoint, the second
finetunes for our framework to obtain the FLUX-DFM
checkpoint. Both are finetuned for 32k steps under the same settings and training compute. We
use FLUX-dev patchification and projection layers weights to initialize the first stage layers of
FLUX-DFM, and zero-initalize the second stage layers. We train on multiple aspect ratios and use a
total batchsize of 192 for the 1024px resolution. More details on the finetuning are included in the
Appendix Sec.[E| We compare the baselines by generating 10k samples from a validation split of our
internal dataset and report FID, FDD, and CLIP [34] similarity (CLIPSIM) in Table @] We include
qualitative results and comparisons for FLUX-DFM in Figure [5|and Appendix Sec.[C| FLUX-DFM
achieves consistently better performance compared with standard full finetuning, improving FID and
FDD by 28.7% and 24.3%, respectively. We report original FLUX-dev checkpoint numbers as a
reference. Please note that in this experiment, we do not aim to improve FLUX-dev quality but rather
show that finetuning with DFM achieves overall faster convergence in learning the finetuning dataset
distribution. Thus, report FID and FDD as reliable metrics comparing FLUX-FT and FLUX-DFM.




FLUX-FT FLUX-FT FLUX-DFM

Figure 5: (Top) Qualitative results produced by FLUX finetuned with DFM. (Bottom) a compar-
ison of FLUX-DFM to the baseline (FLUX-FT).

5 Discussion

Limitations Similarly to other progressive generation frameworks [1,[9] our method introduces
additional training and sampling hyperparameters. The framework’s most important hyperparameters
balance between learning of low and high-frequency visual components, enabling users to pose more
emphasis on structural details. When excessive importance is put on structural details, a decreased
presence of high-frequency details is noticed. We provide extensive ablations, and practical guidance
for their setup, and show that the same parameters can be reused across different settings. We provide
further ablations and guidance in Appendix Sec.[Aland discuss further our framework limitations and
failed experiments in Appendix Sec.[F and Appendix Sec.

Conclusions We propose DFM, a novel framework for the progressive generation of images and
videos. Differently from existing formulations, our framework is simple, agnostic to the choice of
decompositions and does not necessitate multiple networks. We analyze it to provide insights into its
main training and sampling hyperparameters and show that it outperforms both Flow Matching and
the state-of-the-art progressive diffusion formulations on both ImageNet-1K [3] and Kinetics-700 [3].
We further validate the effectiveness of DFM on large-scale models, showing its faster convergence
than standard full fine-tuning. A promising avenue for future work is to explore other decomposition
paradigms such as discrete cosine, wavelet transforms, and multiscale autoencoders. Extending these
findings to large-scale settings remains an exciting direction for future research.

Acknowledgments The authors thank Anil Kag and Dishani Lahiri for their engineering support.
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A Framework Details

A.1 DFM Implementation Details

We base our architecture on a modified version of DiT [33]]. Specifically, we normalize the data
across scales by applying scale-wise pre- and postconditioning following the scheme of [19], which
ensures that each input and output distribution has unit variance in expectation. Additionally, we
replace ViT frequency-based positional embeddings applied in DiT [33] with 2D rotary positional
embeddings (RoPE) [40] due to its wide adaptation in recent models [23| 46]. Furthermore, we
condition the model on the stage being generated by adding an embedding of the current stage index
to the modulation signal. Finally, we drop the class label conditioning 10% of the time to enable
classifier-free guidance.

To adapt the DiT [33] for video generation, we patchify the latent frames independently and apply
tokenwise concatenation of the resulting tokens [46]. Furthermore, we replace the 2D RoPE with 3D
ROPE to adapt the position information to the video input. Finally, our ablations on Kinetics-700 reveal
that unlike the FLUX autoencoder (See Table. 1 (c)), Cogvideo latents benefit from standardizing the
input to have unit variance before the application of the diffusion process. Therefore, we apply such
standardization to all of our video experiments.

A.2 DFM Training Details

We train using the Adam optimizer (8; = 0.9, 82 = 0.99, ¢ = 1072) and a base learning rate of
0.0001 with 10k linear warmup steps, weight decay of 0.01, and total batchsize of 256. The main
experiments are trained with DiT-XL/2 on ImageNet-1K for 512px and 1024px, respectively, for 500k
and 350k steps. For the main video experiments on Kinetics-700, we train for 200k steps. Ablations
are trained with DiT-B/2 for 600k steps using the same hyperparameters as the main experiments.
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ImageNet-1K 512px experiments are trained on a single node containing 8 H100 GPUs, whereas
ImageNet-1K 1024px and Kinetics-700 512px experiments used 2 nodes of the same type. Ablations
were trained on a single node.

A.3 DFM Dataset Details

Our main image experiments are trained and evaluated on ImageNet-1K [5] which has a research-only,
non-commercial license. Our video experiments are trained and evaluated on Kinetics-700 [3], which
is available under the Creative Commons Attribution 4.0 (CC BY 4.0) license.

A.4 Inference Details

For all of our experiments, unless otherwise specified, we use an Euler ODE sampler with 40 steps
and a linear timestep scheduler.

A.5 Choosing Training and Inference Hyperparameter

DFM introduces several training and inference hyperparameters. In practice, a default configuration
of such hyperparameters generalizes well across different datasets and settings. In the following,
we discuss such optimal configurations and summarize the observed effects of varying the main
hyperparameters.

* Number of generation stages: Using 2 stages works well for most experiments, where the
first stage has a resolution of 256px, while the second stage has a resolution equal to the
final resolution (see Table. 1). We find that a base resolution of 256px for the first stage
contains an ideal amount of structural detail to support generation of the successive ones
while not containing excessive amounts of fine-grained details.

* First stage sampling probability p?: We find that 0.9 generalizes well across different
model sizes. The probability determines the amount of model capacity spent on structural
detail modeling, so smaller models may benefit from higher values (see Table. 1)

* Stage noise sampling parameters: At training time, we use a logit normal distribution
with parameter (location=0, scale=1.0) for the stage currently sampled for training, and
(location=1.5, scale=1.0) for the previous stage. Larger location values for previous stages
allow the model to leverage more structural details as conditioning during second stage
generation, but expose the model more to train-inference mismatches if the first stage results
are not generated with sufficient quality. Thus, larger location values are more beneficial for
larger models (see Table. 1).

* Sampling stage threshold 7: 0.9 generalizes well across different settings (see Figure|[6)).
As the parameter determines the amount of information in the first stage that the second
stage can leverage as conditioning, in the presence of a high-quality first stage prediction,
larger thresholds are desirable. While the optimal value varies depending on cfg, model, and
dataset, we find the suggested value to be a reliable default.

* Input standardization: Before applying noise, we standardize each level in the decomposed
input representation to have unit-variance for Kinetics-700 video experiments using the
CogVideo autoencoder, while this behavior is disabled for ImageNet-1K image generation
experiments with the FLUX autoencoder. Standardization has an impact on loss magnitude
for each stage, thus it acts similarly to the first stage sampling probability p? in balancing
the amount of model capacity allocated to modeling structural details or fine details. We
found that the optimal parameters can vary depending on the autoencoder representation
and we suggest ablating over this setting when adopting a new autoencoder.

B Baseline Details.

This section, includes details about the baselines training and inference. First, the base architecture is
described, then specific details about the Cascaded and Pyramidal Flow baselines are detailed.
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Table 5: DFM with original (orig) and scale-equivariant (SE) FLUX autoencoder. Experiments are
performed on DiT-B and trained on ImageNet-1K [5] 512px for 400k steps.

Method FID50k \l, FDDs5ox i/ IS T
Flow Matching (FLUX-ae-orig) 54.50 855.5 21.4
DFM (FLUX-ae-orig) 34.00 630.1 342
Flow Matching (FLUX-ae-SE) 43.16 728.85 26.6
DFM (FLUX-ae-SE) 32.89 626.5 35.0

Table 6: Comparison of various decomposition methods on ImageNet-1K [5] 512px. Resutls at
different with different guidance (CFG) values are reported.

CFG 1.0 CFG 1.25 CFG 1.5
FIDsox | FDDsox | IST FIDsox | FDDsox | IS1T FIDsox | FDDsox | IS T
Flow Matching 15.89 282.9 58.5 7.59 185.7 97.2 473 132.5 138.9
Ours (DWT) 9.48 195.6 78.8 4.20 117.3 136.9 4.40 84.8 199.2
Ours (DCT) 9.60 194.4 78.6 4.19 115.1 138.3 4.37 82.5 201.2
Ours (Laplacian) 9.77 200.6 77.9 4.28 120.0 135.6 4.28 85.8 196.8

Baselines architecture. All baselines use the hyperparameters and architecture of [33]], with the mod-
ification to incorporate rotary positional embeddings (RoPE) [40] and Network Precondtioning [19].
Inference is performed with 40 steps using an Euler sampler and a linear sampling schedule.

Cascaded baseline. We initially train the stage 1 model following the spatial baseline for ~ 80%
of the total training steps. To match the training and inference compute of the other baselines, we
adopt a patch size of 1 x 1, yielding the same number of tokens as the other baselines. Subsequently,
we finetune the stage 1 model to obtain the stage 2 model, which upsamples the first stage output.
For the stage 2 model, we introduce a dedicated pacification layer for the conditioning input from
stage 1 and concatenate its output tokens with those in stage 2. We add a small amount of noise to the
conditioning input during training to reduce exposure bias. The amount of noise is sampled from a
logit normal distribution with scale parameters of 1.0 and location of 1.5. For inference, we perform
a grid search over the best inference parameters and found that equally dividing the inference steps
between stage 1 and stage 2 (i. e. 20 inference steps for each stage) and using a noise level of 0.025
yields the best results. Therefore, we use these settings for our evaluations.

Pyramidal Flow baseline. We follow Jin ef al [18] in training the Pyramidal Flow baseline. For the
three-stages experiments, we allocate twice the batch size for the second stage compared with the first
and second stage following [18]] and use a gamma parameter of 0.33. In the two-stages experiments,
we allocate an equal batch size between the first and second stages. During inference, we use an
equal number of inference stapes for each stage.

C Additional Evaluation Results and Details

Choice of decomposition method. DFM employs a multi-scale spatial representation that explicitly
separates low- and high-frequency content. This separation can be realized with several decom-
position methods(e.g., Laplacian pyramid, discrete cosine transform (DCT), or discrete wavelet
transform (DWT)) by decoding low- and high-frequency components independently. Despite their
representational differences, we find the practical guidance on choosing the hyper-parameters in
section[A.5]still applies. We retrained DFM on ImageNet-1K at 512px with DCT- and DWT-based
decompositions using exactly the settings in Table [3] and report results in ?2. As shown, using
identical hyper-parameters yields comparable gains over the Flow-Matching baseline across all
decompositions, indicating that DFM is agnostic to the choice of decomposition and that the default
hyper-parameters are broadly transferable.

Sampling parameters ablation We report quantitative results ablating the role of different sampling
hyperparameters in Figure []and show qualitative results in Figure[I8]and Figure [I9]ablating, respec-
tively, sampling steps allocated to each stage, and different cfg and sampling threshold configurations.
Increasing the number of steps allocated to the first stage results in improved image structure, while
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Figure 6: FID1ox, FDD1gx and IS ablating sampling configuration, threshold, and per-stage steps
on DiT-XL/2 trained with DFM on ImageNet-1K [3].

increasing the number of steps allocated to the second stage results in reduced gains which are ob-
servable in areas with complex textures such as foliage, grass, or animal fur. The sampling threshold
has a reduced impact on generation quality and is most visible at low cfg values.

Comparison to baselines Convergence behavior for DFM and baselines is shown in Figure [§]
Figure [0} and Figure [I0] respectively, for ImageNet-1K [5] 512px, ImageNet-1K [5]] 1024px, and
Kinetics-700 [3]]. In addition, we show qualitative comparison on non-curated samples for DFM
against baselines on ImageNet-1K [5] 512px (see Figure[TT]), ImageNet-1K [3] 1024px (see Figure[I2)),
and Kinetics-700 [3] (see Figure 13| Figure [T4] and Figure[T5). Addtional qualitative results and
videos are provided in the Website.

FLUX-DFM qualitative comparison with FLUX-FT. We provide additional qualitative comparison
of FLUX finetuned with DFM (FLUX-DFM) against FLUX with standard finetuning applied (FLUX-
FT) on 1024px text-to-image generation in Figure[I6]and Figure[T7]

Qualitative results. We provide qualitative results on ImageNet-1K [5] 512px of selected classes in
Figure 20} Figure [21] and Figure[22] Addtionally, we provide fully uncurated samples in Figure 23]
Figure [24] and Figure 23]

D Autoencoders without Scale Equivariance

DFM explicitly decouples low- and high-frequency content into two successive stages. The first
stage diffuses coarse, low-frequency information. Its output then conditions the generation of high-
frequency details in the second stage. Recent work shows that diffusion models follow this spectral
autoregressive pattern implicitly [30,36,138] and proposed scale-equivariant autoencoders to improve
this separation, making the produced latents easier to diffuse [38]. Although DFM is agnostic to the
choice of autoencoder, we conduct our experiments with the autoencoders of [38] finetuned for scale
equivariance to ensure desirable spectral properties both for baselines and DFM.

In this section, we explore the behavior of DFM on non-regularized autoencoders. Table 5| reports
a comparison between Flow Matching and DFM on the original FLUX autoencoder and scale-
equivariant FLUX autoencoder for a DiT-B architecture trained for 400k steps on ImageNet-1K [3].
When the scale-equivariant FLUX autoencoder is replaced with the original variant, Flow Matching

17



suffers a substantial drop in performance, whereas DFM preserves a similar performance, thanks to
its explicit spectral decomposition. In both cases, DFM outperforms Flow Matching.

E Large Scale Finetuning

This section explores the usage of DFM for fine-tuning large-scale models. Since the stage 1 input
resembles a low-resolution version of the original input, we aim to preserve the pretrained model’s
behavior as much as possible. DFM adds a per-stage patchification layer, timestep embedding, and
output head. Accordingly, we reuse the pretrained patchification layer and timestep embedding for
stage 1, while zero-initialising the corresponding stage 2 modules. Before training, the framework
therefore replicates the pretrained model’s low-resolution predictions. After training, all weights
(including patchification layers) are adapted to generate consistent stage 1 and stage 2 outputs.
To adjust the model patchfication layers weight to stage 1, which uses a smaller patch size, we
upsample stage 1 input by a factor of 2 before adding noise, halving the effective patch size. We then
downsample the model’s output to match stage 1 resolution.

E.1 FLUX DFM Finetuning

We choose to fine-tune FLUX-DEV [23]] due to its strong performance. To avoid biases introduced by
cfg distillation, the distillation-guidance factor is fixed at 1.0 throughout training, and all fine-tuning
is carried on an internal dataset. We follow [38]] to regularize the the FLUX autoencoder, yielding a
scale-equivariant autoencoder.

Then, we perform full-finetuning of FLUX for 24k steps to adjust it to the new autoencoder, producing
FLUX-SE. During the initial 4k training steps, we freeze all layers except the patchfication layers.
Then, we finetune FLUX-SE for 32k steps to obtain FLUX-DFM. As a baseline, we finetune FLUX-
SE for the same 32k steps using standard full-finetuning. Finetuning uses 1024-px and 512-px images
at variable aspect ratios. We use Adam optimizer (8; = 0.9, f2 = 0.99, € = 10~8) and a base
learning rate of 0.00001 with 2k linear warmup steps, weight decay of 0.01, and total batch size of
192. We drop the text conditioning 10% of the time to enable classifier-free guidance.

Please note that since FLUX-DEV is distilled and post-trained on highly aesthetic images, its
distribution differs from that of our internal data. Therefore, a direct comparison with the original
FLUX-DEV would not be informative. Rather, we measure speed in learning the new training
distribution with DFM compared with standard full-finetuning at an equal training cost.

Inference. We evaluate using a test split of 10k prompts from our internal dataset. We use 40
sampling steps and Euler ODE solver, cfg of 3.0, and a distillation guidance factor of 1.0 (equivalent
to not applying cfg).

F Failed Experiments

DCT-Space DFM We apply DFM in the DCT space, where the input visual modality is represented
in the frequency domain rather than in the spatial domain. We obtain the DCT decomposition by first
dividing the visual input into 2D or 3D blocks of pixels of size 4 or 8 and applying DCT to each of
them. Different stages are formulated as the progressive modeling of DCT components of increased
frequency. We find, however, that DiT models provide reduced performance when working in the
frequency rather than the spatial domain, a finding we speculate may originate from an increased
difficulty of leveraging token similarities in attention operations. While experiments showed that
DCT can be used as a way of producing the input decomposition, input to the DiT model should
be converted to the spatial domain for optimal performance, and the Laplacian decomposition is
preferred due to its simplicity.

Alternative parameter specialization methods As parameter specialization showed the capabil-
ity of increasing the model’s performance (see Table. 1 (d)), we investigate alternative ways of
specializing model parameters per each stage. As an alternative avenue, we investigate the recent
Tokenformer [47] architecture due to its capacity to progressively integrate new parameters during
training. In particular, we instantiate a shared set of parameters and a set of specialized parameters
for each stage. The shared set of parameters is always active, while the specialized parameters
are activated only when corresponding to the currently active stage. We find the Tokenformer [47]]
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Figure 7: (left) Selected samples highlighting failure cases generated by our framework trained on
ImageNet-1K [5]] 512px on DiT-XL for 1.3M iterations. When generating high-frequency details
such as fine structures, vegetation or cluttered environments, DFM may produce artifacts. (right)
Artifacts can be mitigated by increasing the number of sampling steps for the second stage.

architecture to underperform the regular DiT design when given the same amount of computation,
thus we abort this experiment. To reduce the number of parameters required for specialization,
we wrap each linear layer in different LoRA wrappers [13, 44], one for each stage, and activate
the respective wrapper when the corresponding stage is selected at training or inference. LoRA
showed improved results over the baseline when utilizing high LoRA ranks which resulted in similar
parameter counts to full parameter specialization.

Expert Models We train separate or expert models for each stage rather than a joint model. We then
evaluate performance by mixing expert models trained for different numbers of steps. We find that
performance improves steadily with more training of the first stage and improves marginally with
more training with longer training of the second stage model, supporting the intuition that modeling
of structural detail has a larger importance to sample quality. To reduce the computational burden of
training separate models for each stage, we explore finetuning the second stage model starting from
the first stage model with positive results. Despite positive results, the idea is not explored further due
to the increased complexity of maintaining separate models for each stage. We note that, in principle,
it is possible to obtain expert models by finetuning a jointly trained model separately for each stage
with full or LoRA finetuning. We leave the exploration of this possibility as future work.

G Limitations

DFM improves modeling of visual inputs by decomposing them into different components. The
framework’s hyperparameters control the amount of model capacity dedicated to modeling each of
the components. As an example, a larger probability of sampling stage 0 (p?) during training (see
Table. 1 (a)) results in a larger emphasis on structural details. As shown in Figure[7] selected samples
containing large amounts of high-frequency components such as vegetation, fur, thin structures, or
cluttered environments may exhibit artifacts in such regions which manifest as a flattened appearance.
Increasing the number of sampling steps for the second stage (see Figure[7] (right) and Figure [T8)
mitigates such artifacts. By acting on training sampling probabilities for each stage, and distribution
of sampling steps between different stages, the framework allows for balance between structural and
fine details modeling quality.
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Figure 8: Convergence curves for different datasets and metrics comparing our framework to baselines
on ImageNet-1K [3] 512px.
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Figure 9: Convergence curves for different datasets and metrics comparing our framework to baselines
on ImageNet-1K [5] 1024px.
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Figure 10: Convergence curves for different datasets and metrics comparing our framework to
baselines on Kinetics-700 [3] 512px.
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Figure 11: Comparison of DFM against baselines on DiT-XL trained on ImageNet-1K 512px [3] for
500k steps. Samples are fully uncurated and generated with cfg 3.0.
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Figure 12: Comparison of DFM against baselines on DiT-XL trained on ImageNet-1K 1024px [3]] for
350k steps. Samples are fully uncurated and generated with cfg 3.0.
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Figure 13: Comparison of DFM against baselines on DiT-XL trained on Kinetics-700 [3] 512px for
200k steps. Samples are fully uncurated and generated with cfg 3.0.
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Figure 14: Comparison of DFM against baselines on DiT-XL trained on Kinetics-700 [3] 512px for
200k steps. Samples are fully uncurated and generated with cfg 3.0.
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Figure 15: Comparison of DFM against baselines on DiT-XL trained on Kinetics-700 [3] 512px for
200k steps. Samples are fully uncurated and generated with cfg 3.0.
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FLUX-FT FLUX-DFM FLUX-FT

Figure 16: Comparison of finetuning FLUX-DEV with DFM against standard full finetuning trained
finetuned for 24k steps. Samples are generated with cfg 4.5.
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Figure 17: Comparison of finetuning FLUX-DEV with DFM against standard full finetuning trained
finetuned for 24k steps. Samples are generated with cfg 4.5.
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Figure 18: Ablation of per-stage sampling steps on DiT-XL trained on ImageNet-1K 512px [5] for
500k steps. Samples are selected to highlight the effects of varying sampling parameters. Samples
are generated with cfg 3.0.
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Figure 19: Ablation of the effect of cfg values and sampling threshold 7 on DiT-XL trained on
ImageNet-1K 512px [3] for 500k steps. Samples are selected to highlight the effects of varying
sampling parameters. Samples are generated with cfg 3.0.
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Figure 20: Qualitative results from selected classes on ImageNet-1K [5] 512px produced by DiT-XL
trained with DFM for 1.3M steps. We use 30 and 10 sampling steps respectively for the first and
second stages and a cfg value of 3.0.
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Figure 21: Qualitative results from selected classes on ImageNet-1K [5] 512px produced by DiT-XL

trained with DFM for 1.3M steps. We use 30 and 10 sampling steps respectively for the first and
second stages and a cfg value of 3.0.
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trained with DFM for 1.3M steps. We use 30 and 10 sampling steps respectively for the first and
second stages and a cfg value of 3.0.
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Figure 23: Fully uncurated samples from ImageNet-1K [5]] 512px produced by DiT-XL trained with
DFM for 1.3M steps. We use 30 and 10 sampling steps respectively for the first and second stages
and a cfg value of 3.0.
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Figure 24: Fully uncurated samples from ImageNet-1K [5]] 512px produced by DiT-XL trained with
DFM for 1.3M steps. We use 30 and 10 sampling steps respectively for the first and second stages
and a cfg value of 3.0.
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Figure 25: Fully uncurated samples from ImageNet-1K [5]] 512px produced by DiT-XL trained with
DFM for 1.3M steps. We use 30 and 10 sampling steps respectively for the first and second stages
and a cfg value of 3.0.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the paper reflect the contributions highlighted at the
end of the Introduction section. We perform extensive experimental evaluation in Section 4
supporting the claimed performance improvements over baselines.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We provide a "Limitations" section as part of the main paper in Section 5
providing details on the main observed limitations of the framework.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our paper does not provide theoretical results
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The framework and its implementation details are comprehensively described
in Section 4.1 and the Appendix. We base our architecture of the widely-used DiT [33]], we
comprehensively describe our evaluation settings and produce our main results on academic
datasets (Imagenet-1K [5]] and Kinetics-700 [3]) to favor reproducibility.
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Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: At the time of submission we do not possess authorization to publish our code.
However, we comprehensively describe our framework and evaluation procedures to allow
reproducibility and produce our main results on public datasets.

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide complete details on the experimental settings in Section 4.1 and
the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the expensive nature of generative models training and inference, we
do not provide statistical significance information.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail in the Appendix details for the computational resources on which
each experiment is run.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The work adheres to the NeurIPS Code of Ethics
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The work falls within the umbrella of generative methods for visual modalities.
No special considerations apply related to its progressive generation formulation.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer:
Justification: We do not consider safeguards.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide citations for the used models and data and utilize them in compli-
ance to their license. We report dataset licenses in the Appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines: The paper does not release new assets.

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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