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Abstract

Recent advancements in text-to-video generative models, such as Sora [3], have
showcased impressive capabilities. These models have attracted significant interest
for their potential applications. However, they often rely on extensive datasets of
variable quality, which can result in generated videos that lack aesthetic appeal and
do not accurately reflect the input text prompts. A promising approach to mitigate
these issues is to leverage Reinforcement Learning from Human Feedback (RLHF),
which aims to align the outputs of text-to-video models with human preferences.
However, the considerable costs associated with manual annotation have led to a
scarcity of comprehensive preference datasets. In response to this challenge, our
study begins by investigating the efficacy of Multimodal Large Language Models
(MLLMs) generated annotations in capturing video preferences, discovering a high
degree of concordance with human judgments. Building upon this finding, we
utilize MLLMs to perform fine-grained video preference annotations across two
dimensions, resulting in the creation of VIDEOPREFER, which includes 135,000
preference annotations. Utilizing this dataset, we introduce VIDEORM, the first
general-purpose reward model tailored for video preference in the text-to-video
domain. Our comprehensive experiments confirm the effectiveness of both VIDEO-
PREFER and VIDEORM, representing a significant step forward in the field.

1 Introduction

Diffusion models have significantly enhanced the quality of generation across various media formats,
including images [30, 31, 55] and videos [13, 22, 42]. In the context of text-to-video generation,
recent advancements in text-to-video diffusion models, exemplified by Sora [4], have achieved
remarkable success in generating high-quality videos from textual prompts. However, despite recent
progress, the visual fidelity of generated videos still presents opportunities for refinement [38]. Video
generation poses greater challenges than image generation, as it entails modeling a higher-dimensional
spatio-temporal output space while remaining conditioned solely on a textual prompt. Consequently,
existing text-to-video generative models often produce results that are visually unappealing and
inadequately aligned with the provided textual prompts.

To address these limitations, a pivotal solution is Reinforcement Learning from Human Feedback
(RLHF), which has proven its efficacy in text-to-image diffusion models [51, 2, 26]. These methods
aim to fine-tune a diffusion model to maximize a reward function corresponding to specific aspects
of image quality or alignment with text prompts. Despite this, when a Reward Model trained in
the image domain is transferred to the video domain, it can exhibit significant disparities with the
objectives of video optimization (e.g., InstructVideo [53]). Training a reward model directly in the
video domain is becoming increasingly urgent, but the scale of preference datasets in the video field
is small (see in Table 1).
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Table 1: Statistics of existing preference datasets
for text-to-video generative models. ∗ denotes
annotated by human while † denotes annotated by
GPT-4 V.

Dataset Prompts Videos Preference
Choices

VBench [15]∗ 1K 4K 44K
TVGE [56]∗ 0.5K 2.5K 2.5K
T2VQA-DB [18]∗ 1K 45K 45K
VIDEOPREFER† 14K 54K 135K

Table 2: Correlations between MLLMs and hu-
man judgment on text-video alignment on TVGE
datasets [56]. ∗ denotes image-based MLLMs
while † denotes Video-based MLLMs.

Model Spearman ρ Kendall τ Acc (%)

Video-LLaMA [54]† 0.288 0.206 –
mPLUG-OWL2-V [52]† 0.394 0.285 61.87
InstructBLIP [10]∗ 0.342 0.246 54.33
mPLUG-OWL2-I [52]∗ 0.358 0.257 53.36
Gemini pro Vision∗ 0.3921 0.2993 64.71
LLaVA 1.6-34B∗ 0.3139 0.2278 53.20
GPT-4 V∗ 0.486 0.360 69.65

Recognizing the importance of addressing these challenges in text-to-video generative models, we
first construct a large-scale fine-grained preference benchmark by utilizing MLLMs as annotators,
namely VIDEOPREFER. VIDEOPREFER contains following strength: (1) VIDEOPREFER is the
largest open-source video preference dataset, containing 135,000 preference choices (see in Table 1).
(2) Different from existing video preference datasets, VIDEOPREFER contains true video captured
by human, making VIDEOPREFER more generalizable. (3) VIDEOPREFER is annotated using
Multimodal Large Language Models, which is cost-effective and easily scalable.

Based on VIDEOPREFER, we release the first general-purpose text-to-video preference reward model,
VIDEORM. Unlike the preference rewards in the image domain used by previous methods for video
generation alignment [53], our VIDEORM automatically captures the temporal information in videos,
enhancing the modeling of quality assessment and alignment. Furthermore, we investigate the
alignment of text-to-video generative models using VIDEORM and conduct extensive experiments
that demonstrate its efficacy as a reward model and metric for video alignment. This significantly
improves the generation quality of video generation models across multiple aspects. Our main
contributions are:

• We systematically identify the challenges for text-to-video human preference annotation. Con-
sequently, we employ MLLMs for preference annotation and construct the largest and most
comprehensive video preference dataset, VIDEOPREFER.

• We systematically identify the lack of general-purpose text-to-video preference reward model and
propose VIDEORM, outperforming existing reward models for text-to-video alignment.

• Extensive experimental results validate the effectiveness of both the VIDEOPREFER and VIDE-
ORM. Furthermore, through detailed discussions, we demonstrate that MLLMs are effective and
cost-effective as annotators for video preferences, revealing the promising future prospects of
RLAIF in the domain of video preference alignment.

2 VIDEOPREFER

We introduce VIDEOPREFER, a large-scale, fine-grained video preference dataset constructed by
collecting feedback from multimodal large language model annotators. In total, VIDEOPREFER
contains 135K pairs of binary preference choices for 54K videos. In § 2.1, we provide evidence
demonstrating that GPT-4 V is a human-aligned preference annotator in the video domain. The
construction pipeline of VIDEOPREFER is introduced in § 2.2. Detailed analysis of the statistics of
VIDEOPREFER can be found in Appendix § B.1.

2.1 Why GPT-4 V(ision) can act as a human-aligned preference annotator?

GPT-4 V has already demonstrated annotation performance aligned with human consistency in text-
to-image generation [7, 46, 44]. To further validate GPT-4 V’s ability to provide reliable preference
annotations in the video domain, we used different MLLMs to annotate a subset of the TVGE dataset
and calculated their correlation with the ground truth annotations, e.g., accuracy and kendall. The
results are shown in Table 2. We find that (1) GPT-4 V’s annotation accuracy and correlation are the
best among all MLLMs. (2) The accuracy of GPT-4 V is 69.65%, which is very close to the previously
reported agreement rate between qualified human annotators (approximately 70% [9, 46, 25, 11]).
This demonstrates that GPT-4 V is a reliable annotator.
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2.2 Construction Pipeline

The construction pipeline of VIDEOPREFER can be split into following three steps:

Step-1: Prompts Collection. We collect prompts from VidProM [40] which contains 1.67 million
unique text-to-video prompts, as well as from two video-captioning benchmarks: ActivityNet[5]
and MSR-VTT[49]. For VidProM, we just randomly sample 12.9k prompts from its corpus. For
video-captioning benchmarks, we directly utilize the provided video segment captions from the
original dataset as prompts. For instance, in the ActivityNet [5], we utilize the text provided in
caption corpus, comprising 0.9K thousand text instances corresponding to distinct video segments.
Consequently, we obtain a total of 14K prompts, constituting the prompt set for our VIDEOPREFER.

Step-2: Video Collection & Generation. We generate videos with text-to-video models and collect
real-world videos based on prompts collected in Step-1 for preference annotation. Through these two
ways, we obtained 54K video candidates:

· Model-generated videos. We selected the top-ranked text-to-video generation models on Hugging-
Face1 (e.g., ModelScopeT2V [38]), as well as the open-source state-of-the-art text-to-video models
(e.g., Open-Sora [57]), to constitute our video generation model pool. Details regarding these models,
as well as the proportions and resolutions of the generated videos, can be found in Table 5. For each
prompt, we randomly sample models from the model pools, along with class-free guidance scales,
to generate four different corresponding videos. This approach results in a high degree of diversity,
facilitating the training of a more generalizable and comprehensive preference reward model.

· Real-world videos. Given the substantial quality disparity between videos generated by existing
text-to-video generation algorithms and real videos, we also incorporate real-world videos to enhance
the generalizability and diversity of our VIDEOPREFER. Specifically, we incorporate video segments
from the two datasets introduced in Step-1 (ActivityNet [5] and MSR-VTT [49]), as one of the four
candidate videos, with the remaining three being generated as above.

Step-3: Preference Generation. Due to the prohibitively high cost of manual annotation, we utilize
the state-of-the-art multimodal large language models (MLLMs), i.e., GPT-4 V to annotate video
preferences, enabling extensive and fine-grained annotation at scale. The reliability of GPT-4 V as
annotators is thoroughly discussed in § 2.1. Specifically, for each prompt and its corresponding four
video candidates, we employ GPT-4 V to assign preference scores on a 1-to-5 Likert scale to each
video candidate for two aspects: Prompt-Following and Video Quality. Lower scores indicate lower
preference and vice versa. Finally, we obtain 135K preference choices. Detailed input instructions
used for GPT-4 V’s annotation can be found in the Appendix E.

By performing the above three steps, we finally have 14K data items in VIDEOPREFER, while each
data item contains a textual prompt and four corresponding generated videos. For each video, there
are preference annotations for two aspects: Prompt-Following and Video-Quality provided. More
details of VIDEOPREFER, e.g., visualization of example data item (see in Figure 10), can be found in
Appendix B.

3 VIDEORM: A General-Purpose Video Preference Reward Model

Based on VIDEOPREFER, we implement the reward model training and derive the first general-
purpose video preference reward model, VIDEORM. We detail the architecture of VIDEORM in
§ 3.1, its optimization objectives in § 3.2, and the methodology for fine-tuning video generative
models with VIDEORM in § 3.3.

3.1 Architecture

Existing text-to-video alignment work [53] adopts HPS v2 [45] as the reward model, which is fine-
tuned from CLIP [27] and optimized upon a large image preference benchmark and demonstrates
state-of-the-art preference evaluation capabilities for text-to-image generation.

However, we contend that the direct application of HPS v2 may lead to a one-sided assessment
of video preferences, as it lacks the capability to evaluate the overall attributes of a video, such

1https://huggingface.co/models?pipeline_tag=text-to-video
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as temporal coherence and dynamics. Nevertheless, given the strong correlation between video
preferences and the preferences of individual frames, the proficiency of HPS v2 [45] in evaluating
single-frame image preferences can still aid in enhancing the assessment of video preferences. Thus,
to achieve a better evaluation for video preferences, we modify the structure of HPS v2 by integrating
several temporal modeling modules, to develop a specialized reward model VIDEORM for the video
domain.

Temporal Transformer

video embedding text embedding

V Q

CLIP Text Encoder

0 1 2 3 T…

0 1 2 3 T…

…
Linear Projection

ViT Layer

Temporal Shift

× 𝑁

Text: A young man is riding a bicycle on a sunny day. 
He is wearing a blue hoodie and ……… brown and 
styled messily. He has a small scar above his left eye

T Frames

Figure 1: Overview of VIDEORM. By incor-
porating temporal modeling modules, VIDE-
ORM is capable of not only capturing the
preference scores of individual frames but
also modeling the temporal features of the
video, thereby better evaluating the overall
preference score of the video.

The full architecture of VIDEORM is shown in Fig-
ure 1. Specifically, inspired by recent advance-
ments [39, 21] in enhancing the temporal modeling
capabilities of the CLIP [27], we add two kinds of
temporal modeling modules into HPS v2 to modeling
videos:

Temporal Shift [20], a parameter-free module which
shifts part of the feature channels along the temporal
dimension and facilitates information exchange be-
tween neighboring input frames. Following [39], we
insert the module between every two ViT Layers of
the image encoder of HPS v2.

Temporal Transformer. The sequence of frame-
wise features extracted by the image encoder are then
fed into a temporal transformer to modeling the tem-
poral features of the video.

3.2 Optimization

During the optimization process of VIDEORM, we freeze the text encoder and ViT layers contained
in the image encoder to retain the single-frame preference modeling capability of HPS v2, while
only optimizing the temporal transformer module. Thus, VIDEORM achieves the capability to model
video preferences from both the perspectives of individual frames and temporal dynamics, allowing
for a more comprehensive understanding of video content.

Similar to previous works [36, 25], to train VIDEORM on VIDEOPREFER, we first average the scores
of all 16 aspects for each video candidate, obtaining the final preference score for that video candidate.
Then we formulate the preference score for each pair-wise video candidates as rankings. Thus, for
each data item (consisting of one prompt T and its corresponding four video candidates v1,v2,v3

and v4), we get at most C2
4 comparison pairs if there are no ties between two video candidates. For

each comparison, if v+ is better and v− is worse (v+ ≻ v−), the loss function can be formulated as:

loss(θ) = −E(T,v+,v−)∼D
[
log

(
σ
(
Rθ

(
T,v+

)
−Rθ

(
T,v−)))] (1)

where Rθ(T,v) is a scalar value of preference model for prompt T and generated video v.

3.3 Fine-tuning Text-to-Video Models with VIDEORM

Current exploration of reward reinforcement learning algorithms for fine-tuning text-to-video gen-
erative models is quite limited. The only related work is InstructVideo [53], which utilizes an
image-domain reward model (HPS v2 [45]) to fine-tune text-to-video models.

Consequently, InstructVideo may have the following shortcomings: (1) Due to the inherent gap
between images and videos, directly using image-domain reward models cannot accurately calculate
the reward for generated videos, leading to visual artifacts such as structural twitching and color
jittering [53]. (2) Additionally, InstructVideo [53] calculates the reward value for all frames selected
from generated videos throughout the full DDIM [34] sampling procedure, making the fine-tuning
process highly sample inefficient.

VIDEORM is specifically designed for the video domain. It is initialized with the weights of the best
image-domain reward model and trained on video preference datasets, utilizing temporal modeling
mechanisms (e.g., temporal transformers) to capture temporal features of videos. This enables it
to evaluate the reward score of generated videos more effectively from both individual frame and
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temporal perspectives. Additionally, unlike the image-domain reward model used in InstructVideo,
which takes single video frames as input, VIDEORM processes the entire video as input. Therefore,
our approach is more computational efficient and can directly leverage various effective image-domain
reward reinforcement learning algorithms (such as DRaFT [8]) without the need to balance rewards
between frames generated at each step, as required by InstructVideo.

Based on the above, we integrated VIDEORM into the image-domain DRaFT [8] algorithm and
design a reward reinforcement learning algorithm suitable for text-to-video generative models, named
DRaFT-V. The specific algorithm details are shown in Algorithm 1. DRaFT-V truncates the backward
pass, differentiating and computing reward score from VIDEORM through only the last K steps,
making the full fine-tuning process more efficient.

Algorithm 1 DRaFT-V: Reward Reinforcement
Learning for Fine-tuning Text-to-Video Models
with VIDEORM
1: Dataset: Prompt set Y = {y1, y2, ..., yn}
2: Pre-training Dataset: Text-Video pairs

dataset D = {(t1, v1), ...(tn, vn)}
3: Input: Text-to-video models Υ with pre-

trained parameters θ0, VIDEORM R, reward-
to-loss map function θ, Text-to-video models
pre-training loss function ψ, reward re-weight
scale λ

4: Initialization: The number of noise scheduler
time steps T , and the truncating step K

5: for yi ∈ Y and (ti, vi) ∈ D do
6: Lpre ← ψθi(ti, vi)
7: wi ← wi // Update Υθi using Lpre

8: xT ∼ N (0, I) // Sample noise as latent
9: for j = T, ..., 1 do

10: if j > K then
11: no grad: xj−1 ← Υθi{xj}
12: else
13: with grad: xj−1 ← Υθi{xj}
14: x0 ← xj // Predict the original latent

by noise scheduler
15: zji ← x0 // From latent to image
16: Lreward ← λϕ(r(yi, z

j
i )) // Reward

loss
17: end if
18: end for
19: θi+1 ← θi // Update Υθi using Lreward

20: end for

In implementation, rather than fine-tuning the full
set of model parameters, we follow [53] to adopt
LoRA [14] to further accelerate fine-tuning and cir-
cumvent the issue of computational intensity as well
as the risk of catastrophic forgetting associated with
the reward loss in diffusion models.

4 Experiments

We conduct extensive experiments to validate the ef-
fectiveness of VIDEOPREFER and VIDEORM. We
first train VIDEORM and evaluate it on existing
human-preference benchmark (§ 4.1). Next, we fine-
tune existing text-to-video diffusion models for align-
ing human preference by utilizing DRaFT-V with
VIDEORM (§ 4.2). Finally, we present ablation stud-
ies (§ 4.3).

4.1 Task 1: Reward Modeling

Setup. Based on VIDEOPREFER, we develop VIDE-
ORM, an advanced open-source general-purpose re-
ward model that provides preferences for generated
videos. Specifically, we train three versions of VIDE-
ORM. (1) Firstly, to validate the effectiveness of
VIDEOPREFER, we average the preference scores
in each aspect of VIDEOPREFER to get a final prefer-
ence score, and train VIDEORM-V with the merging
version of VIDEOPREFER. (2) Then, we train VIDEORM-H on several open-source human-crafted
preference datasets listed in Table 1. (3) Finally, to build a stronger RM for text-to-video generation,
we mix these open-source human-crafted preference datasets with VIDEOPREFER to train VIDE-
ORM. The details for dataset processing can be found in Appendix A. All VIDEORM series models
are trained in half-precision on 8 × 32GB NVIDIA V100 GPUs, with a learning rate of 1e-5 and
batch size of 64 in total. We set the input frames N = 8.

Compared Baselines. Due to the lack of reward models in the video domain, we compare VIDEORM
with state-of-the-art reward models from the image domain, i.e., CLIP ViT-H/14 [27], ImageRe-
ward [48], PickScore [17] and HPS v2 [45]. For all these reward models from the image domain, we
calculate the scores for all video frames and then take the average as the final reward score for the
video.

Preference Accuracy. The preference prediction accuracy across test benchmarks from three human-
crafted preference datasets are reported in Table 3. As we can see, the VIDEORM series outperform
baseline reward models by a large margin, indicating that VIDEORM series are the best open-source
reward models for text-to-video domain. We also find that VIDEORM-V which does not train on
any open-source video preference datasets also surpasses all other baselines. This result validates
the high quality of VIDEOPREFER enables strong out-of-distribution generalization and validate
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Table 3: Pair-wise preference prediction accuracy across
human-crafted preference datasets. The Aesthetic Clas-
sifier (simplified as Aesthetic) makes prediction without
seeing the text prompt. The best results are in blod and the
second are underlined.

Model TVGE [56] VBench [15] T2VQA-DB [18] Avg
CLIP ViT-H/14 [27] 57.3 52.7 52.1 54.0
Aesthetic [33] 56.1 51.0 52.7 53.3
ImageReward [48] 66.8 54.3 53.9 58.3
PickScore [17] 64.7 53.9 61.2 59.9
HPS v2 [45] 69.5 55.7 52.8 59.3

VIDEORM-H 72.8 60.2 64.3 65.8
VIDEORM-V 73.0 61.1 65.1 66.4
VIDEORM 73.7 63.5 65.4 67.5

Figure 2: Best-of-n experiments on the
T2VQA-DB [18] test benchmark. We
sample n generated videos and choose
the one with the highest reward.

TVGE [56] VBench [15] T2VQA-DB [18]

Figure 3: Win rates of VIDEORM compared to other reward models across three test benchmarks.
On average, 72% to CLIP, 67% to ImageReward, 62% to PickScore and 65% to HPS v2.

the effectiveness of treating state-of-the-art MLLMs, i.e., GPT-4 V, as preference annotator for
text-to-video generation domain.

Best-of-n Experiments. To verify that our VIDEORM could serve as a good indicator of video
generation quality, we conduct best-of-n experiments on the T2VQA-DB [18] test benchmark. For
each data item, which includes a prompt and ten corresponding videos, we calculate the reward score
for each of the ten videos with VIDEORM. Thereafter, we select the best-of-{1, 2, 4, 8} responses
and calculate their scores. The final results are presented at Figure 2, we find the win rate at the test
benchmark increases proportionally with rewards, which validates that our VIDEORM gives rigorous
rewards that reflect the overall preference score.

Human Evaluation. To evaluate the ability of VIDEORM to select the more preferred videos among
large amounts of generated videos, we produce human study. We randomly select 200 textual prompts
from these three test benchmarks and generate 32 different videos for each prompt by utilizing
ModelScopeT2V [38]. Then, we perform different reward to select from those videos to get top3
results. After that, five annotators are asked to identify which video was superior or if both were
of equal quality (denoted as ‘Tie’) and we show the corresponding win rates against other reward
models [45] at Figure 3. Qualitative results can be seen at Figure 11 in Appendix. All of these results
show that VIDEORM can select videos that are more aligned to text and with higher fidelity and
avoid toxic contents.

4.2 Task 2: Fine-tuning Text-to-Video Generative Models

Setup. Based on VIDEORM, we validate the effectiveness of DRaFT-V. We adopt the publicly
available text-to-video diffusion model ModelScopeT2V [38] as base model, which is trained on
WebVid10M with T = 1000 and is able to generate videos of 16 × 256 × 256 resolution. We random
sample 2K prompt-video pair from the mixture of existing video preference datasets (TVGE [56],
VBench [15] and T2VQA-DB [18]) and VIDEOPREFER as the training data. Each group of experi-
ment is trained in half-precision on 4 × 32GB NVIDIA V100 GPUs, with a learning rate of 1e-5,
batch size of 8, fine-tuning step of 400 and K adopted in DRaFT-V as 10 in total.

Compared Baselines. Since the only existing reward-based fine-tuning algorithm for text-to-video
models is InstructVideo [53]. We compare our DRaFT-V with the the baseline text-to-video model
(i.e., ModelScopeT2V [38]) and InstructVideo implemented by ourselves. Note that in the aforemen-
tioned algorithms, InstructVideo uses HPS v2 [45] as the reward model. Additionally, to verify the
effectiveness of using VIDEORM as a reward model for fine-tuning video generation models, we
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TVGE [56] VBench [15] T2VQA-DB [18]

Figure 5: Win rates of text-to-video models fine-tuned with DRaFT-V compared to other baselines.
Here baseline denotes the base text-to-video model without any fine-tuning.

(a) (b) (c)

Figure 6: (a) Visualization of reward model values change with the training steps for both DRaFT-V
and DRaFT-H. (b) Evaluation result across three test benchmarks for the size of training data used in
optimizing VIDEORM. (c) Ablation study for the number of input frames N in VIDEORM.

introduced two comparison groups: (1) DRaFT-H, which uses the same algorithm as our DRaFT-V
(i.e., DRaFT [8]), but with HPS v2 as the reward model. (2) InstructVideo-V, which uses the same
algorithm as InstructVideo [53], but with VIDEORM as the reward model.

Figure 4: Evaluation results of
the text-to-video model’s gen-
eration quality across multi-
ple reward models when max-
imizing scores from VIDE-
ORM during the DRaFT-V
fine-tuning process.

Generation Quality Evaluated by Multiple Reward Models. At
first, we visualize the evolution of model’s generation quality across
multiple reward models as the model training steps increase when
using our DRaFT-V at Figure 4. We observe that with the progress
of training, all reward models show an increasing trend, indicating
that VIDEORM can serve as a reliable reward model to enable the
generated videos to align more closely with human preferences.

Human Evaluation. To evaluate the generative ability of text-to-
video models fine-tuned with DRaFT-V and other compared base-
lines, we produce human study. We randomly select 100 prompts
from these three test benchmarks (TVGE [56], VBench [15] and
T2VQA-DB [18]), and for each prompt, we generate videos using
different fine-tuned models. Five annotators are asked to identify
which video was superior or if both were of equal quality (denoted as ‘Tie’) and we show the
corresponding win rates at Figure 5. We find that: (1) All of these results show that DRaFT-V can
generate videos that are more prefered by human. (2) By comparing DRaFT-V with DRaFT-H, as
well as InstructVideo-V with InstructVideo, we demonstrate that VIDEORM is a more effective
reward model for fine-tuning text-to-video models.

Besides, qualitative results are presented at Figure 12 in Appendix D. We find that: (1) The base gener-
ation model often fails to align videos with prompt descriptions, but fine-tuning with a reward model
(image or video domain) improves quality and prompt consistency, demonstrating the effectiveness of
reward-based fine-tuning. (2) Fine-tuning with VIDEORM (DRaFT-V and InstructVideo-V) signifi-
cantly outperforms fine-tuning with an image domain reward model HPS v2, indicating VIDEORM’s
superiority for text-to-video model fine-tuning.

Efficiency Evaluation. We compare the efficiency of our algorithm on two aspects: (1) Convergence
speed: we visualize the changes in reward values with training steps for DRaFT-H and DRaFT-V in
Figure 6 (a). We find that under the same reward-based fine-tuning algorithm, using VIDEORM leads
to earlier convergence and better performance (as demonstrated by the results above) compared to
HPS v2, further validating the effectiveness of VIDEORM in fine-tuning text-to-video models. (2)
Inference speed. For a single video with 8 frames, HPS v2 requires approximately an average of 5
seconds for inference, while VIDEORM only needs an average of 1.3 seconds. Besides, InstructVideo
requires 20 DDIM steps for a single fine-tuning step, taking approximately an average of 8.8 seconds,
while DRaFT-V only needs an average of 2.3 seconds.
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4.3 Ablation Study

Scalability. To investigate the effect of training dataset sizes on the performance of VIDEORM,
and to verify the scalability of VIDEOPREFER, comparative experiments are conducted. Note that
VIDEORM in this experiment are only trained on VIDEOPREFER. Figure 6 (b) shows that adding up
the scale of the dataset significantly improves the preference accuracy of VIDEORM. It’s promising
that if we employ GPT-4 V to collect more annotation data in the future, VIDEORM will get better
performance.

Number of Video Frames N Input to VIDEORM. We investigate the impact of different numbers
of input video frames on the performance of the RM model. Specifically, we set the number of
input frames to N = 1, 4, 8, and 12 and test corresponding model at TVGE [56] test benchmark.
The corresponding results are presented at Figure 6 (c), we find that the VIDEORM’s performance
significantly decreases when N is small. This is promising because too few input frames prevent
the model from accurately capturing all the information and temporal features of the video, e.g., the
degree of motion and temporal consistency.

Figure 7: Ablation over K
adopted in DRaFT-V during fine-
tuning text-to-video model.

Temporal Feature Modeling method in VIDEORM. We conduct
experiments to explore the impact of different video frame temporal
feature modeling methods on the performance of the reward model.
In VIDEORM, we use a temporal transformer trained from scratch
to model the temporal features of video frames. Additionally, we
conducted ablation experiments by replacing this transformer with
1D Convolutional Layer (denoted as VIDEORM†) and LSTM (de-
noted as VIDEORM‡). Note that we adjusted the number of layers
in the temporal feature modeling module to ensure that the number
of trainable parameters remains equal. Besides, Temporal Shift are
employed for all compared methods. The results are presented at Table 4. We find that: (1) All
models outperform the image-domain reward model. (2) Replacing the temporal transformer with
LSTM achieved comparable performance, indicating that VIDEORM is robust to the choice of model
architecture for temporal feature modeling. (3) Replacing the temporal transformer with Conv1D
resulted in a significant performance drop. We hypothesize that this is because Conv1D cannot
effectively model temporal features, leading to VIDEORM†’s inability to accurately evaluate video
generation quality from a temporal perspective. This highlights the effectiveness of using a temporal
transformer for modeling temporal features in VIDEORM.

Backbone of VIDEORM. We explore the impact of different backbone on the final performance
of VIDEORM. In our design, VIDEORM is initialized with the weights of HPS v2 [45], which is
demonstrated as the best reward model for image domain. Here we replace HPS v2 with other reward
models in image domain, e.g., PickScore [17] (denoted as VIDEORMσ) and ImageReward [48]
(denoted as VIDEORMβ) while keep the count of trainable parameter equal. The corresponding
results are presented at Table 4. We find that the final performance of the corresponding VIDEORM
is proportional to the performance of the initialized backbone weights. For example, ImageReward,
which has the lowest performance among the three (see Table 3), corresponds to the worst VIDE-
ORMβ , while PickScore, which has the best performance among the three (see Table 3), corresponds
to the best VIDEORMσ .

Step K adopted in DRaFT-V. We investigate the impact of different K adopted in DRaFT-V on the
final generative performance. The results are presented at Figure 7, we find that: (1) Performance
degrades as K increases for K > 10. (2) Even with smaller values of K, e.g., K = 1, DRaFT-V can
achieve good results. Both findings are aligned with the results in DRaFT [8].

5 Analysis

In this section, we analyze the impact of different parameter selections—specifically, the number
of frames (N ) sampled from a single video and the temperature setting τ of the GPT-4 V, on the
accuracy of GPT-4 V-generated annotations. Due to GPT-4 V’s limitation of processing a maximum
of 10 frames, we analyze annotation accuracy for N = 4, 6, 8, and 10 frames. The temperature τ
controls the diversity and randomness of GPT-4 V’s outputs. We analyze annotation accuracy for τ =
0.3, 0.5, 0.7, and 0.9.
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Table 4: Ablation study for VIDEORM. The Aesthetic
Classifier (simplified as Aesthetic) makes prediction with-
out seeing the text prompt.

Model TVGE [56] VBench [15] T2VQA-DB [18] Avg

VIDEORM† 70.1 58.4 61.5 63.3
VIDEORM‡ 73.9 62.7 65.2 67.3

VIDEORMσ 72.2 64.2 66.9 67.7
VIDEORMβ 72.4 63.6 64.2 66.7

VIDEORM 73.7 63.5 65.4 67.5

Figure 8: The impact of different hyper-
parameter choices on the annotation accu-
racy of GPT-4 V.

The summarized results are shown in Figure 8. For N , accuracy initially increases with more frames
but decreases beyond N = 8, achieving the highest accuracy at N = 8. This is because more frames
allow for a comprehensive evaluation, but too many frames can lead to overly long contexts, reducing
accuracy due to GPT-4 V’s limited capacity. For τ , lower values yield higher accuracy, likely because
reduced randomness leads to more comprehensive predictions, while higher randomness might cause
GPT-4 V to overly focus on specific frames or aspects, resulting in less comprehensive outcomes.

6 Related Work
Generative models, particularly those based on diffusion techniques, have demonstrated high-quality
generation capabilities [32, 28, 31, 30, 35] by training on extensive internet-scale datasets, but the
mixed quality of these datasets often leads to visually unappealing and misaligned outputs.

Aligning text-to-image generative models. Aligning text-to-image generative models [37, 17, 8, 26,
37] has garnered increasing attention in recent years and has shown promising results in producing
outputs that are more aligned with human preference. Imagereward [48], HPS v2 [47, 45], and
PickScore [17] are the three most commonly used reward models for align text-to-image models.
They are respectively trained on three major image domain preference datasets, namely Imagereward,
ImageRewardDB [48], HPD [47, 45] and Pick-a-Pic [17]. The effectiveness of these reward models
has been validated across alignment algorithmss like AlignProp [26], DRAFT [8] and ReFL [48].

Aligning text-to-video generative models. Compared to text-to-image, exploration related to
aligning text-to-video generative models is relatively sparse. InstructVideo [53] instruct text-to-video
diffusion models with by fine-tuning with existing image-wise preference reward model HPS v2. We
hypothesize that this may restrict effective preference evaluations for generated videos, as image-
based reward models cannot adequately capture temporal features, impairing assessments of video
coherence and dynamics. Additionally, preference datasets for text-to-video generation are also
scarce. The lack of large-scale and effective open-source preference datasets severely restricts the
development of research related to align text-to-video generative models.

Reinforcement Learning from AI Feedback. LLMs have been extensively used for data genera-
tion [43, 24], augmentation [12] and in self-training setups [41, 23]. Some works [1] introduced the
idea of reinforcement learning from AI feedback (RLAIF), which used LLMs labeled preferences in
conjunction with human labeled preferences to jointly optimize for the two objectives of helpfulness
and harmlessness. Recent works have also explored related techniques for generating rewards from
LLMs [29, 19, 50]. These works demonstrate that LLMs can generate useful signals for reinforcement
learning fine-tuning. However, leveraging the feedback from MLLMs for aligning text-to-image
generative model or for text-to-video generative model is less explored.

7 Conclusion
In this paper, we identify the current obstacles faced in aligning text-to-video generative models, i.e.,
lacking of large-scale preference datasets and reward models specifically tailored for videos. Thus,
we introduce VIDEOPREFER and VIDEORM to address the aforementioned issues. Experimental
validation confirms that GPT-4 V can act as a human-aligned preference annotator. We utilized it to
label 135K video preference annotation, forming VIDEOPREFER. Based on this, we trained a video-
specific reward model, VIDEORM. Extensive analytical usage has demonstrated the effectiveness of
both VIDEOPREFER and VIDEORM.
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A Datasets Processing

T2VQA-DB [18]. The T2VQA-DB dataset only comprises a single overall preference evaluation
score for each data item. We randomly selected 2.3K samples to serve as the final test benchmark.

TVGE [56]. The TVGE dataset comprises preference evaluations from 2 aspects, namely: text
alignment and video quality. We just simply average the scores across these two aspects to obtain
a final overall evaluation score as with the aforementioned datasets. We randomly selected 15K
samples to serve as the final test benchmark.

VBench [15]. The VBench dataset comprises preference evaluations from 16 aspects, namely:
subject consistency, background consistency, temporal flickering, motion smoothness, dynamic
degree, aesthetic quality, imaging quality, object class, multiple objects, human action, color, spatial
relationship, scene, temporal style, appearance style, overall consistency.

Due to the fact that the videos and prompts evaluated for preference in each aspect are largely
non-overlapping, we cannot simply average the scores across all aspects to obtain a final overall
evaluation score as with the aforementioned datasets. Instead, we mixed all samples from the 16
aspects and randomly selected 10K samples to serve as the final test benchmark.

B VIDEOPREFER

B.1 Statistic of VIDEOPREFER

In Table 5, we present the sources and distribution of the videos in our VIDEOPREFER. We find
that VIDEOPREFER comprises a diverse range of video sources, including videos generated by
state-of-the-art text-to-video models as well as real videos. This extensive variety of video sources
enhances the robustness and generalization capabilities of VIDEOPREFER.

We visualize the distribution of preference annotations across two evaluation aspects (prompt-
following an video-quality) in VIDEOPREFER in Figure 9. We find that the overall score distribution
of the dataset is close to the normal distribution for the Prompt-Following evaluation perspective.
From the perspective of Video-quality evaluation, the overall distribution of data sets tends to be low,
which indicates that the generation effect of the existing text-to-video model is not satisfactory.

Besides, we also visualize some data examples in VIDEOPREFER at Figure 10.

Table 5: Video sources of VIDEOPREFER. † denotes the realistic videos from existing benchmarks.
Source Proportion Video Length Type Resolution

LaVie [42] 16.4% 2.0s Diffusion 512×512
ModelScope [22] 21.0% 2.0s Diffusion 256×256
VideoCrafter2 [6] 17.2% 1.6s Diffusion 320×320
Open-Sora [57] 2.4% - DiT 512×512
Pika2 7.2% 3.0s DiT 1088×640
Text2Video-Zero [16] 15.3% 2.0s Diffusion 512×512
ZeroScope 13.8% - Diffusion 1024×576
Gen-2 0.7% - - 1792×1024

ActivityNet [5]† 1.7% - Human-captured -
MSR-VTT [49]† 0.03% - Human-captured -

Figure 9: Score distribution across two annotation aspects in VIDEOPREFER.
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Prompt-Following

Rating: 5

Rationale: The sampled frames from the video show a man working on a portable computer with a cat watching him, which aligns perfectly 

with the original text provided. The setting appears to be a room, as indicated by the presence of a bookshelf in the background, which 

further supports the text description. There are no deviations from the text in the visuals provided.

Video-Quality

Rating: 3

Rationale: The sampled frames showed that there was no obvious artifacts in this video as a whole, but from the perspective of time 

sequence, both humans and cats were almost immobile, lacking the dynamic continuity of the video, so the final score is 3.

Prompt: A man working in his room, typing a portable 

computer, and a cat watching him 

Video-Quality

Prompt-Following

Rating: 4

Rationale: The video frames show a cat watching and interacting with a laptop, which aligns with the text describing a cat watching a man 

working on a portable computer. However, the man is not visible in the frames, only his hand is shown, which leads to a minor deviation 

from the text. The setting appears to be a room, as mentioned in the text. Overall, the video is nearly aligned with the original text, but the 

absence of a clear depiction of the man working results in a rating of 4.

Video-Quality

Rating: 4

Rationale: On the whole, the video is rich in details, beautiful and strong in color, which is in line with human aesthetics. In terms of 

temporal dynamics, the hands in the video have tapping movements, so it can meet the dynamic requirements of the video.    

Video-Quality

Prompt-Following

Rating: 4

Rationale: The video frames show a man working in a room on a portable computer, which aligns well with the text description. However, 

the cat is not actively watching the man but is instead lying on the couch, partially visible in some frames. This constitutes a minor 

deviation from the text, which specifies the cat should be watching the man. Hence, the rating is \"Almost There\" due to this slight 

discrepancy.

Video-Quality

Rating: 2

Rationale: In the sampled frames of this video, there are obvious object deformations such as laptop computers. In addition, in terms of 

timing features, the task has the action of tapping the keyboard, which conforms to the timing features, but objects disappear, which is not 

good in the continuity of time series, so the final score is 2 

Video-Quality

Prompt-Following

Rating: 5

Rationale: The frames from the video show a person typing on a portable computer with a cat watching, which is in full alignment with the 

provided text. There are no deviations from the described scenario, thus the video fully aligns with the original text requirements.

Video-Quality

Rating: 3

Rationale: The overall contrast of light and dark light in the video is strong, and the object details are rich, which is in line with human 

aesthetics, but the sequence dynamics is not good, so the final score is 3

Figure 10: Visualization of example data item in VIDEOPREFER. Here we show one data item which
contains a prompt and four corresponding generated videos. For each video, there are two annotations
from different annotation aspects (Prompt-Following and Video-Quality) are provided by GPT-4 V
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C Visualization of Selection Results

CLIP

ImageReward

PickScore

HPS v2

VideoRM

A cat is playing with a butterfly A dog wearing VR goggles on a boat A small bird sits atop a blooming flower 

stem

CLIP

ImageReward

PickScore

HPS v2

VideoRM

Hawaiian woman playing a ukulele Two elephants are playing on the beach A woman with striking blue eyes and curly hair

Figure 11: Top-1 videos from 32 generated videos select by CLIP, ImageReward, PickScore, HPS v2
and VIDEORM. VIDEORM is capable of selecting higher-quality generated videos, e.g., those
that better match the prompt descriptions and exhibit more dynamic content.
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D Visualization Results for Fine-tuning Text-to-Video Models

Baseline

InstructVideo

DRaFT-H

InstructVideo-V

DRaFT-V

A person scuba dives in a deep blue ocean One person feeding goats pod of dolphins gracefully swim and jump in the ocean

Baseline

InstructVideo

DRaFT-H

InstructVideo-V

DRaFT-V

A fat people in McDonaldA giraffe eating an apple A bear and 2 people making pizza

Figure 12: Visualization Results for different fine-tuning methods. We find that compared to fine-
tuning with an image domain reward model, fine-tuning with VIDEORM significantly enhances the
performance of text-to-video models (DRaFT-V and InstructVideo-V).
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E Instruction Template

Preference Instruction for Prompt-Following

Prompt-Following:
You are an AI assistant programmed to assess videos with impartial and balanced standards.
A video has been created based on a piece of text. Your task is to evaluate how well The
content of the video aligns with the original text provided as (“Input”) The video evaluation
is based on sampled frames shown in sequence.
Scoring: Rating outputs 1 to 5:

1. Irrelevant: No alignment.
2. Partial Focus: Addresses one aspect poorly.
3. Partial Compliance:

- (1) Meets goal or restrictions, neglecting other.
- (2) Acknowledges both but slight deviations.

4. Almost There: Near alignment, minor deviations.
5. Comprehensive Compliance: Fully aligns, meets all requirements.

Please present your assessment as follows:
Output
Rating: [Provide the rating]
Rationale: [Explain the reason for your rating in concise sentences]
——————————————————
Now, review the following video and its corresponding text.
Input:
#### Text: [INSERT PROMPT HERE]
#### Frames sampled from video: [INSERT THE FRAMES OF VIDEO HERE]
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Preference Instruction for Video-Quality:

Video-Quality:
You are an AI assistant trained to impartially assess temporal consistency quality, dynamic
quality and aesthetic quality in videos. A video has been created based on a piece of text.
Your task is to analyze the quality of this video based on the following guidelines and provide
a comprehensive evaluation.
Scoring: Rating outputs 1 to 5:

1. Bad: blurry, underexposed with significant noise, indiscernible subjects, exhibits
significant inconsistencies and noticeable discrepancies in appearance of subjects.

2. Poor: Noticeable blur, poor lighting, washed-out colors, and awkward composition
with cut-off subjects, suffers from noticeable issues in maintaining uniformity of
subjects and backgrounds.

3. Fair: In focus with adequate lighting, dull colors, decent composition but lacks
creativity. Subjects and backgrounds maintain a reasonable degree of uniformity
throughout most of the video, with only minor discrepancies.

4. Good: Sharp, good exposure, vibrant colors, thoughtful composition with a clear
focal point. Good video dynamics and temporal consistency.

5. Excellent: Exceptional clarity, perfect exposure, rich colors, masterful composition
with emotional impact. perfect temporal consistency and excellent dynamics.

Please present your assessment as follows:
Output
Rating: [Provide the rating]
Rationale: [Explain the reason for your rating in concise sentences]
——————————————————
Now, review the following video and its corresponding text.
Input:
#### Text: [INSERT PROMPT HERE]
#### Frames sampled from video: [INSERT THE FRAMES OF VIDEO HERE]
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper includes our motivation, preference data construction details, ex-
perimental settings, quantitative experimental results, and qualitative visual examples that
reflect and justify the claims in our abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The analysis section contains a discussion of limitations in our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We state the reference before illustrating formulations.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the dataset construction process, imple-
mentation for training the reward model, and offer a multitude of visualization examples.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will public our data and code upon paper acceptance, due to the manage-
ment regulations of our institution.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Full training and testing details are in §4 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It would take too long with our available computational resources to repeat all
experiments multiple times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include the name of GPU we used for experiments in Setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All relevant human questions and relevant datasets have been checked for
privacy compliance prior to experiments and submission.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work supports the alignment of generative models with human values, and
its societal impact is discussed in the introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our contribution does not include new datasets or pre-trained models that pose
a risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Code that we derive from earlier work is properly licensed and referenced.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide detailed illustration of new data benchmark and visualized exam-
ples.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: We only recruited participants for user experiments to validate the effective-
ness of our model, where they were asked to choose from generated images. No human
participants were involved in the dataset construction or model training process.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our experiment solely involves measurement and does not entail behavioral
manipulation; therefore, we did not apply for IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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