

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REMAINING-DATA-FREE MACHINE UNLEARNING BY SUPPRESSING SAMPLE CONTRIBUTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Machine unlearning (MU) aims to remove the influence of specific training samples from a well-trained model, a task of growing importance due to the “right to be forgotten.” The unlearned model should approach the retrained model, where forgetting data do not contribute to the training process. Therefore, unlearning should withdraw their contribution from the pre-trained model. However, quantifying and disentangling sample’s contribution to overall learning process is highly challenging, leading most existing MU approaches to adopt other heuristic strategies such as random labeling or knowledge distillation. These operations inevitably degrade model utility, requiring additional maintenance with remaining data. To advance MU towards better utility and efficiency for practical deployment, we seek to approximate sample contribution with only the pre-trained model. We theoretically and empirically reveal that sample’s contribution during training manifests in the learned model’s increased sensitivity to it. In light of this, we propose MU-Mis (Machine Unlearning by Minimizing input sensitivity), which directly suppresses the contribution of forgetting data. This straightforward suppression enables MU-Mis to successfully unlearn without degrading model utility on the remaining data, thereby eliminating the need for access to the remaining data. To the best of our knowledge, this is the first time that a remaining-data-free method can [perform on par with top performing remaining-data-dependent methods](#).

1 INTRODUCTION

Deep neural networks (DNNs) are revealed to store information of training data (Feldman, 2020; Feldman & Zhang, 2020; Tian et al., 2025) and such information could be reproduced by privacy attacks (Shokri et al., 2017; Zhu et al., 2019), raising data privacy concerns. The “right to be forgotten” (Regulation, 2018) is introduced to safeguard user privacy, which entails ensuring that the DNN performs as if the data were never involved in the training.

While retraining from scratch would ideally achieve this, it is often infeasible due to the high cost of training DNNs. This has motivated the study of “*Machine Unlearning*” (MU) (Cao & Yang, 2015), which fine-tunes the *pre-trained model* to approach the *retrained model* as closely as possible. The essential distinction in pre-trained and retrained model lies in the contribution of forgetting data, whose role shift from “contributors” that affect parameter updates in the pre-trained model to “bystanders” that exert no influence in the retrained model. Therefore, unlearning should aim to withdraw their contribution to the learning process.

However, identifying such a contribution is highly challenging. Learning is a dynamic process that gradually remembers and assimilates data, while unlearning, which is the reverse process that gradually removes data information, is achieved by backtracking the training trajectory to withdraw historical gradients in early study (Graves et al., 2021; Thudi et al., 2022). Nevertheless, such tracking not only contradicts the efficiency demands of unlearning but also yields limited effectiveness due to the incrementality of training (Wang et al., 2024b).

Consequently, most existing MU methods circumvent the difficulty of estimating sample contribution through other heuristics. A common strategy is to introduce confusion, *e.g.*, random relabeling (Golatkar et al., 2020; Graves et al., 2021; Fan et al., 2024b) or knowledge distillation from useless teacher (Chundawat et al., 2023; Kurmanji et al., 2023). However, these approaches suffer from

several limitations: (i) such confusion causes *catastrophe unlearning* (Wang et al., 2024b) or *over-forgetting* (He et al., 2025), i.e., severe degradation of model utility on the remaining data; (ii) the degradation in turn necessitates costly maintenance using the remaining data, thereby substantially *undermining MU efficiency*; (iii) the remaining data are not always accessible in practice. These limitations collectively underscore the importance of moving beyond heuristic confusion strategies and developing more principled unlearning mechanisms to advance MU toward higher utility and efficiency. Therefore, although quantifying sample contribution is inherently challenging, in this paper, we make efforts to ground unlearning in a precise characterization of sample’s contribution.

Instead of accumulating the historical contributed gradient update during training, we identify the clue of contribution directly from the derivative of the training algorithm w.r.t a training sample. The learning process is a mapping by the training algorithm \mathcal{A} from the training set $\mathcal{D} = \{(x_i, y_i)\}$ to a learned function f : denoted as $f = \mathcal{A}(\mathcal{D})$. Therefore, the training sample x_i contributes to the output: $\partial \mathcal{A} / \partial x_i \neq 0$ while a sample out of the training set does not. A simple yet enlightening example lies in the support vector machine (Cortes & Vapnik, 1995; Christmann & Steinwart, 2008), where only the training data can act as support vectors that impact the decision boundary. Thus, withdrawing the sample contribution can be achieved by suppressing $\partial \mathcal{A} / \partial x_i$.

The main challenge is that \mathcal{A} corresponds to a dynamic training process without a closed-form expression. To address this, we theoretically illustrate that $\partial \mathcal{A} / \partial x_i$ could be approximated by the learned model’s sensitivity to its input x , i.e. $\partial f(x) / \partial x$ with $f = \mathcal{A}(\mathcal{D})$ in Section 3.2. To derive a principled and optimization-friendly guideline aligned with the behavior of a retrained model, we delve deeper into the input sensitivity across different logits. Our empirical investigations under the machine learning (Section 3.3) and machine unlearning (Section 3.4) scenarios reveal that a sample’s contribution manifests as disproportionately higher input sensitivity of the target logit relative to irrelevant logits. In light of this finding, we propose **MU-Mis** (Machine Unlearning by Minimizing Input Sensitivity), which suppresses sample contribution by reducing the sensitivity disparity between the target and non-target logits to the forgetting data.

We evaluate MU-Mis on 3 standard unlearning tasks across 6 datasets, benchmarking against 6 competitive remaining-data-dependent unlearning methods and 4 existing remaining-data-free baselines. The results demonstrate that MU-Mis achieves effective unlearning while preserving model utility on the remaining data **without utilizing them**, performing on par with SoTA remaining-data-dependent approaches and outperforming all remaining-data-free methods significantly, with the added advantage of notable computational efficiency. Moreover, due to its principled forgetting mechanism, MU-Mis exhibits stable and effective behavior in sequential unlearning, whereas existing methods are disclosed to exhibit several deficiencies. Collectively, these results underscore the practicality and reliability of MU-Mis for real-world deployment.

Our key contributions can be summarized as follows:

- ❶ We theoretically and empirically reveal that a sample’s contribution is reflected in the amplified sensitivity gap between the target logit and irrelevant logits, enabling the identification of sample contribution with only the pre-trained model.
- ❷ Based on the above analysis and findings, we propose MU-Mis, which suppresses the sample’s contribution by minimizing the sensitivity magnitude gap for the forgetting data.
- ❸ Comprehensive experiments demonstrate the effectiveness and efficiency of MU-Mis. To our best knowledge, it is the first time that a remaining-data-free method can **perform on par with top performing remaining-data-dependent methods**.

2 RELATED WORK

The primary goal of machine unlearning (MU) (Shaik et al., 2023; Xu et al., 2024; Bourtoule et al., 2021) is to remove the influence of specific data points on a pre-trained model, protecting data privacy. MU can be categorized into two types (Shaik et al., 2023): *exact* MU and *approximate* MU. Exact MU approaches *parameters* of the retrained model and guarantees the privacy risk statistically(Guo et al., 2020; Suriyakumar & Wilson, 2022; Neel et al., 2021; Giordano et al., 2019; Koh & Liang, 2017), while approximate MU is proposed to approach the *output distribution* of the retrained model.

108 In this paper, we concentrate on approximate unlearning, as it is more practical in large-scale models
 109 and situations with limited time and resources.

110 **MU by Gradient-Based Update.** One straightforward way to retrieve sample contribution is to keep
 111 and utilize the historical information (e.g. parameters and gradients) during the training process.
 112 Graves et al. (Graves et al., 2021) withdraw gradient updates of related batches, and Wu et al. (Wu
 113 et al., 2020) utilize intermediate checkpoints and quasi-newton method for rapid retraining. The
 114 requirement of storing historical information raises memory concerns. Another line of work estimates
 115 the contribution of the forgetting data on learned model parameters through influence function (Koh &
 116 Liang, 2017), initially introduced to unlearning by Guo et al. (Guo et al., 2020). However, calculating
 117 the inverse Hessian in influence function is computationally expensive for DNNs and follow-up
 118 studies are devoted to reducing the computation (Mehta et al., 2022; Peste et al., 2021; Meng et al.,
 119 2022). While influence-based unlearning shows potential, the withdrawal still hurts performance
 120 on the remaining data (Wu et al., 2022). Moreover, the influence function is revealed to be fragile
 121 in DNNs (Basu et al., 2020; Bae et al., 2022; Hammoudeh & Lowd, 2024) due to its reliance on
 122 the assumptions of convexity and optimality. Existing data influence estimations for DNNs (Hara
 123 et al., 2019; Pruthi et al., 2020; Chen et al., 2021; Hammoudeh & Lowd, 2024) all require retracing
 124 the training trajectory and cannot be optimized and applied to MU. In this paper, we shift sample
 125 contribution from parameter space to function space, *i.e.*, Δw to $\partial A / \partial x$, and theoretically indicate
 126 that sample contributions will be approximately reflected in the sensitivity of the pre-trained model to
 127 input samples, opening up a new perspective to view sample contribution in DNNs.

128 **MU by loss guided re-optimization.** Above gradient-based unlearning methods suffer from practical
 129 limitations for DNNs. Generally, practical MU methods unlearn by fine-tuning the model to optimize
 130 a proposed loss. They typically follow two design ideas: one is to make model’s behavior on the
 131 forgetting data similar to that on unseen data through knowledge distillation (Chundawat et al., 2023;
 132 Lin et al., 2023; Kurmanji et al., 2023) or label confusion (Graves et al., 2021; Fan et al., 2024b),
 133 the other is to suppress the part of parameters that are responsible for predictions of the forgetting
 134 data (Liu et al., 2024; Foster et al., 2024a; Fan et al., 2024b). However, due to the lack of identifying
 135 “what to unlearn”, above removal is done either in an “impair-then-repair” regime (Tarun et al., 2023)
 136 or through specifically designed mechanisms (Hoang et al., 2024; Foster et al., 2024b; Fan et al.,
 137 2024b) to alleviate the damage. In contrast, we pursue a more principled forgetting operation by
 138 explicitly identifying sample contributions, which eliminates the need for compensatory procedures.

139 **Remaining-data-free MU.** Developing remaining-data-free methods aligns more closely with the
 140 essence and practical demands of MU, given the limited accessibility of retained data and the need for
 141 efficiency in practice. JiT (Foster et al., 2024a) proposes to smooth the output around the forgetting
 142 data by minimizing local Lipschitz value. While SCAR (Bonato et al., 2024) distills knowledge
 143 from the pre-trained model and utilizes Out-of-distribution (OOD) data as a surrogate to preserve
 144 model utility. However, both approaches have an obvious performance gap to SoTA remaining-data-
 145 dependent methods, and SCAR still relies on additional OOD data. Remaining-data-free unlearning
 146 is essentially about developing a more principled forgetting mechanism, and we achieve a more
 147 nuanced removal by identifying sample contribution.

148 3 MACHINE LEARNING, MACHINE UNLEARNING AND INPUT SENSITIVITY

149 3.1 PROBLEM FORMULATION

150 **Machine Learning (ML)** is to learn a mapping from the input space \mathcal{X} to the output space \mathcal{Y} , denoted
 151 as the function $f(\cdot) : \mathcal{X} \rightarrow \mathcal{Y}$. As we mainly focus on classification models, the output of f is
 152 C-dimensional in a C-category classification model. Learning is performed by a *training algorithm*
 153 \mathcal{A} , which generally takes in a training dataset \mathcal{D} and returns the *learned function* f , *i.e.*, the outcome
 154 of \mathcal{A} varies with different training datasets. To investigate sample-wise influence on the learning
 155 process, we consider \mathcal{A} in a broader sense and distinguish different training processes by the *training*
 156 *dataset* $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$. That is to say, we have a family of the training algorithm $\mathcal{A}_{\mathcal{D}}$ and each
 157 one is a multivariate function that takes all the samples $\{\mathbf{x}_j \in \mathcal{X}\}$ as input, regardless of whether
 158 they are in the training dataset \mathcal{D} . Therefore, the output of $\mathcal{A}_{\mathcal{D}}$ does not vary with each input variable,
 159 but only varies with the change of the training data $\mathbf{x}_i \in \mathcal{D}$, and makes no response to the change of
 160 samples out of the training set.

162 **Machine Unlearning (MU)** is to remove the influence of *forgetting data* $\mathcal{D}_f \subset \mathcal{D}$ from the *pre-trained model* w_p , while preserving model utility on the *remaining data* $\mathcal{D}_r = \mathcal{D} \setminus \mathcal{D}_f$. The learned function f is parameterized by parameters $w \in \mathbb{R}^d$ with input variable \mathbf{x} , *i.e.*, instantiated as $f(\mathbf{x}; w)$. A good approximate unlearning mechanism should efficiently and effectively transform w_p into a *sanitized model* w_u , such that the output distribution of w_u closely matches *retrained model* w_r .

167 **Remark on notation.** To facilitate the understanding of the objectives in our analysis, we only bold 168 the input variables of the training algorithm \mathcal{A}_D and learned function $f(\mathbf{x})$, which are respectively 169 \mathbf{x}_i and \mathbf{x} in the following analysis.

171 3.2 THEORETICAL ANALYSIS CONNECTING SAMPLE CONTRIBUTION AND INPUT SENSITIVITY

173 As previously discussed, machine unlearning is to withdraw sample’s contribution to the learning 174 process, and an efficient unlearning method should explore the contribution directly from the pre- 175 trained model. To detach per-sample contribution with the pre-trained model, we propose to identify 176 the clue of contribution from the derivative of training mapping \mathcal{A}_D to training sample \mathbf{x}_i , *i.e.* 177 $\partial \mathcal{A}_D / \partial \mathbf{x}_i$. Recall that \mathcal{A}_D is determined by the training dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$ and outputs the 178 learned function $f(\mathbf{x}; w_p)$. Then $\partial \mathcal{A}_D / \partial \mathbf{x}_i$ is to compute $\partial f(\mathbf{x}; w_p) / \partial \mathbf{x}_i$. However, there is no 179 explicit expression for this derivative. Therefore, in this part, we reflect on the learning dynamics 180 to seek a surrogate with the pre-trained model. Figure 1 provides an overview of the key objectives 181 investigated in our following analysis.

188 **Figure 1: A brief overview of the theoretical connection between sample’s contribution and a**
189 **pre-trained model’s input sensitivity.** The dashed arrows illustrate how the influence of a training
190 sample propagates through gradient updates to the pre-trained model.

191 **Gradient Descent (GD).** After T iterations training updates in the parameter space, we have pre- 192 trained model parameter $w_p = w_0 + \sum_{k=1}^T \Delta w_k$, where w_0 is randomly initialized model parameters 193 and $\Delta w_k = w_{k+1} - w_k$ is the k^{th} parameter update. Specifically, when training loss \mathcal{L} and gradient 194 descent with step size η are used, we have

$$196 \Delta w_k = -\eta \sum_{i=1}^m \frac{\partial \mathcal{L}(\mathbf{x}_i)}{\partial w} \Big|_{w=w_k} = -\eta \sum_{i=1}^m \frac{\partial f(\mathbf{x}_i; w)}{\partial w} \Big|_{w=w_k} \frac{\partial \mathcal{L}(\mathbf{x}_i)}{\partial f}.$$

199 **Function space update induced by GD.** Viewing machine learning from the function space with 200 first-order Taylor expansion on parameters, correspondingly we have $f = f_0 + \sum_{k=1}^T \Delta f_k$, where 201 $f_0 = f(\mathbf{x}, w_0)$ is initial function and Δf_k is induced by parameter update Δw_k . The evolution in 202 function induced by parameter update is:

$$203 \Delta f_k(\mathbf{x}; w) \approx \frac{\partial f(\mathbf{x}; w)}{\partial w} \Big|_{w=w_k}^\top \Delta w_k = -\eta \sum_{i=1}^m \frac{\partial f(\mathbf{x}; w)}{\partial w} \Big|_{w=w_k}^\top \frac{\partial f(\mathbf{x}_i; w)}{\partial w} \Big|_{w=w_k} \frac{\partial \mathcal{L}(\mathbf{x}_i)}{\partial f}.$$

206 **Learned function.** To better explain the idea, we make simplifications: *(i)* Note that $\frac{\partial f(\cdot; w)}{\partial w} \Big|_{w=w_k}$ is 207 the mapping from model input \mathbf{x} to the induced backpropagation gradient with parameters w_k . We 208 abbreviate this mapping as $g_k(\mathbf{x}) : \mathcal{X} \rightarrow \mathbb{R}^{d \times C}$ and its derivative to input \mathbf{x} as g'_k , where d is total 209 number of model parameters. *(ii)* In classification problem with cross-entropy loss as \mathcal{L} , we have 210 $\frac{\partial \mathcal{L}(\mathbf{x}_i)}{\partial f} = e_c - p(\mathbf{x}_i)$, where e_c is a one-hot vector with only c^{th} element equals to 1, and p is the 211 probability vector of \mathbf{x}_i . The final learned function f is 212

$$213 f(\mathbf{x}; w_p) = f(\mathbf{x}; w_0) + \sum_{k=1}^T \Delta f_k(\mathbf{x}, w) = f(\mathbf{x}; w_0) - \eta \sum_{k=1}^T \underbrace{g_k^\top(\mathbf{x})}_{(1)} \underbrace{\sum_{i=1}^m g_k(\mathbf{x}_i) (e_c - p(\mathbf{x}_i))}_{(2)}.$$

Notice that term (1) is related to the **forward inference process** while term (2) is related to the **machine learning process**. Derivative of f w.r.t \mathbf{x} indicates how the prediction of f varies with its input \mathbf{x} at inference time, while derivative w.r.t \mathbf{x}_i indicates how the learned function f varies when the training sample \mathbf{x}_i varies. The former implies **the learned model's sensitivity to its input**, and the latter is **the training sample's influence on learning**. Next, we take the derivative of f w.r.t \mathbf{x} and \mathbf{x}_i respectively to view their relationship. Note that p is a probability vector determined by \mathbf{x}_i . Due to softmax activation, we consider $p(\mathbf{x}_i)$ hardly changes around \mathbf{x}_i , and omit its derivative term w.r.t \mathbf{x}_i . The difference in mapping g_k when \mathbf{x}_i changes is also omitted.

$$\begin{cases} \frac{\partial f(\mathbf{x}; w_p)}{\partial \mathbf{x}_i} = -\eta \sum_{k=1}^T \underbrace{g'_k(\mathbf{x}_i) g_k(\mathbf{x}) (e_c - p(\mathbf{x}_i))}_{=: \mathcal{C}_k(\mathbf{x}, \mathbf{x}_i)}, \\ \frac{\partial f(\mathbf{x}; w_p)}{\partial \mathbf{x}} = \frac{\partial f(\mathbf{x}; w_0)}{\partial \mathbf{x}} - \eta \sum_{k=1}^T \sum_{i=1}^m \underbrace{g'_k(\mathbf{x}) g_k(\mathbf{x}_i) (e_c - p(\mathbf{x}_i))}_{=: \mathcal{S}_k(\mathbf{x}, \mathbf{x}_i)}. \end{cases} \quad (1)$$

Input sensitivity of learned function reflects sample contribution. $\mathcal{C}_k(\mathbf{x}, \mathbf{x}_i)$ determines the prediction change on \mathbf{x} when \mathbf{x}_i changes, and $\mathcal{S}_k(\mathbf{x}, \mathbf{x}_i)$ stands for the part of model's sensitivity to \mathbf{x} contributed by training sample \mathbf{x}_i . Note that $\frac{\partial f(\mathbf{x}_i; w_p)}{\partial \mathbf{x}_i}$ is similar to the definition of memorization, which is framed as *self-influence* (Feldman, 2020; Feldman & Zhang, 2020). To be more specific, memorization of a sample is defined as the prediction difference in itself when training with or without it. Similarly, the self-influence here is the prediction difference on \mathbf{x}_i when it slightly changes, i.e. $\frac{\partial f(\mathbf{x}_i; w_p)}{\partial \mathbf{x}_i}$. Thus we consider $\frac{\partial f(\mathbf{x}_i; w_p)}{\partial \mathbf{x}_i}$ as the reflection of sample \mathbf{x}_i 's contribution. From the formulation, we have $\mathcal{S}_k(\mathbf{x}_i, \mathbf{x}_i) = \mathcal{C}_k(\mathbf{x}_i, \mathbf{x}_i)$. For a specific training sample $\hat{\mathbf{x}} \in \mathcal{D}$, the learned model's sensitivity to it can be further decomposed as

$$\begin{aligned} \frac{\partial f(\mathbf{x}; w_p)}{\partial \mathbf{x}}|_{\mathbf{x}=\hat{\mathbf{x}}} &= \frac{\partial f(\mathbf{x}; w_0)}{\partial \mathbf{x}}|_{\mathbf{x}=\hat{\mathbf{x}}} - \eta \sum_{k=1}^T \sum_{i=1}^m \mathcal{S}_k(\hat{\mathbf{x}}, \mathbf{x}_i) \\ &= \frac{\partial f(\mathbf{x}, w_0)}{\partial \mathbf{x}}|_{\mathbf{x}=\hat{\mathbf{x}}} - \eta \sum_{k=1}^T \left[\mathcal{S}_k(\hat{\mathbf{x}}, \hat{\mathbf{x}}) + \sum_{\tilde{\mathbf{x}} \in \mathcal{D} / \hat{\mathbf{x}}} \mathcal{S}_k(\hat{\mathbf{x}}, \tilde{\mathbf{x}}) \right] \\ &= \underbrace{-\eta \sum_{k=1}^T \mathcal{S}_k(\hat{\mathbf{x}}, \hat{\mathbf{x}})}_{\text{Contribution Term}} + \underbrace{\frac{\partial f(\mathbf{x}, w_0)}{\partial \mathbf{x}}|_{\mathbf{x}=\hat{\mathbf{x}}} - \eta \sum_{k=1}^T \sum_{\tilde{\mathbf{x}} \in \mathcal{D} / \hat{\mathbf{x}}} \mathcal{S}_k(\hat{\mathbf{x}}, \tilde{\mathbf{x}})}_{\text{Residual Term}}. \end{aligned} \quad (2)$$

The randomly initialized function f_0 is generally quite insensitive to input change. Thus, the first term of the above residual term is very small. The second term is related to the correlation between the gradient on $\tilde{\mathbf{x}}$ and the sensitivity of the gradient on $\hat{\mathbf{x}}$. We use a simple MLP model to illustrate the insight of $\mathcal{S}_k(\hat{\mathbf{x}}, \tilde{\mathbf{x}}) \ll \mathcal{S}_k(\hat{\mathbf{x}}, \hat{\mathbf{x}})$ with $\hat{\mathbf{x}} \neq \tilde{\mathbf{x}}$ in Appendix D. Therefore, the residual term is relatively smaller than the contribution term. In summary, the contribution of a training sample to the training process would be approximately reflected in the pre-trained model's output sensitivity to the sample.

Empirical validation. We validate the contribution to learning by comparing $\|\nabla_{\mathbf{x}} f\|_F$ of the training data before and after training in Figure 2. In a randomly initialized model, there is little response to input changes, only about 10^{-4} . After training, there is a significant order of magnitude growth to 10^3 , indicating an increased attention of the trained model to the training data's variations. This implies that the training data contribute to model performance, and such efforts include promoting the model's sensitivity to them during training.

3.3 INPUT SENSITIVITY OF THE TARGET AND IRRELEVANT CLASS LOGIT

During training, model predictions on samples are driven toward their correct labels, so sample contributions might differ across logits. To further refine our view of sample contribution, we examine individual logits of $f(\mathbf{x}) \in \mathbb{R}^C$ in the following part.

Figure 2: Input sensitivity $\|\nabla_{\mathbf{x}} f\|_F$ of training data before and after training. Left: In randomly initialized model w_0 . Right: In well-trained model w_p . After training, the model exhibits significantly increased sensitivity to the training data, reflecting their contribution during training.

270 Let f_c denotes the logit output of the target
 271 class and $f_{c'}$ denotes the logit output of irrele-
 272 vant classes. Figure 3 compares distributions
 273 between $\|\nabla_x f_c\|_F$ and $\frac{1}{C-1} \sum_{c' \neq c} \|\nabla_x f_{c'}\|_F$
 274 (denoted as $\|\nabla_x f_{c'}\|_F$ for brevity in the fol-
 275 lowing) of training data before and after train-
 276 ing. In the **randomly initialized** model, these
 277 two quantities are of **comparative magnitude**, but $\|\nabla_x f_c\|_F$ becomes **much larger**
 278 than $\|\nabla_x f_{c'}\|_F$ **after training**. This observa-
 279 tion implies that samples contribute to ampli-
 280 fying $\|\nabla_x f_c\|_F$ to surpass $\|\nabla_x f_{c'}\|_F$ during
 281 training, generating a discernible difference in
 282 whether a sample has been learned. A complemen-
 283 tary explanation of this finding comes from the
 284 generative view of discriminative models: the softmax-based discriminative classifier is revealed to
 285 be implicitly a density model which learns data distribution (Grathwohl et al.; Srinivas & Fleuret,
 286 2021). From this viewpoint, the logits $f(\mathbf{x})$ of standard classifiers are un-normalized log-densities,
 287 and corresponding input-gradients $\nabla_x f_i(\mathbf{x})$ are log-gradients of a class-conditional density model.
 288 In other words, we have $\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x}|y=i) = \nabla_x f_i(\mathbf{x})$ in the classification model, providing a
 289 rationale for the observed discrepancy.

Figure 3: **Input sensitivity** $\|\nabla_x f_c\|_F$ and $\|\nabla_x f_{c'}\|_F$ **before and after training**. Left: randomly initialized model w_0 . Right: well-trained model w_p . After training, the gap between target and irrelevant class sensitivities enlarges, providing a clearer signal of the sample’s contribution.

290 3.4 INPUT SENSITIVITY OF SAMPLES PRESENT AND ABSENT IN TRAINING

291 For effective unlearning, the optimization objective should accurately steer the pre-trained model
 292 toward the retrained model. To validate that the theoretically grounded sensitivity gap provides
 293 a reliable measure of sample contribution to guide unlearning, we empirically examine the input
 294 sensitivity of forgetting data under MU scenarios (introduced in Section 5.1 and Appendix F.1).

295 For each forgetting sample, we compute the difference Δ between the retrained and the pre-trained
 296 model’s sensitivity to it, where the sensitivity including $\|\nabla_x f_c\|_F$, $\|\nabla_x f_{c'}\|_F$ and $\|\nabla_x f_c\|_F -$
 297 $\|\nabla_x f_{c'}\|_F$. Aiming for a light-weight unlearning algorithm, we prefer an optimization direction
 298 rather than modeling a distribution or specifying a target value for each sample. Hence, we focus on
 299 the *sign* of Δ and count the ratio of rise and fall of Δ to examine the overall trend in Figure 4.

300 From left to right in Figure 4, Δ is the sample-wise difference between the retrained and pre-trained
 301 model on $\|\nabla_x f_c\|_F$, $\|\nabla_x f_{c'}\|_F$ and $\|\nabla_x f_c\|_F - \|\nabla_x f_{c'}\|_F$. For each quantity, there is a consistent
 302 trend across different unlearning settings. Generally, f_c of the retrained model exhibits lower
 303 sensitivity and $f_{c'}$ exhibits higher sensitivity to the forgetting data than the pre-trained model. And
 304 their sensitivity magnitude gap is consistently smaller in the retrained model across different settings.
 305 Therefore, the sensitivity magnitude gap faithfully reflects the behavior of the retrained model and
 306 thus serves as a reliable objective to guide unlearning.

307 Figure 4: **Ratio of input sensitivity difference Δ rise and fall of the forgetting data under**
 308 **different unlearning settings**. From left to right, Δ is the sample-wise difference between the
 309 retrained and pre-trained model on $\|\nabla_x f_c\|_F$, $\|\nabla_x f_{c'}\|_F$ and $\|\nabla_x f_c\|_F - \|\nabla_x f_{c'}\|_F$. Sample’s
 310 contribution to input sensitivity includes promoting $\|\nabla_x f_c\|_F$ and suppressing $\|\nabla_x f_{c'}\|_F$, thereby
 311 enlarging the magnitude gap $\|\nabla_x f_c\|_F - \|\nabla_x f_{c'}\|_F$.

321 4 PROPOSED METHOD

322 4.1 MU-MIS: MACHINE UNLEARNING BY MINIMIZING INPUT SENSITIVITY

In the above section, we theoretically and empirically derived an optimizable and lightweight approximation of sample contributions from the perspective of input sensitivity, showing that they manifest as disproportionately higher sensitivity of the target logit relative to irrelevant logits.

In light of this finding, we propose to withdraw the sample’s contribution by reducing such enhancement on the sensitivity magnitude gap. Minimizing this loss guides the pre-trained model to roll back $\|\nabla_x f_c\|_F$ and pick up $\|\nabla_x f_{c'}\|_F$. Mathematically, our proposed unlearning loss is:

$$\mathcal{L}(\mathcal{D}_f; w) = \frac{1}{N_f} \sum_{x_f \in \mathcal{D}_f} (\|\nabla_x f_c(x_f, w)\|_F^2 - \|\nabla_x f_{c'}(x_f, w)\|_F^2) \quad (3)$$

where N_f is number of the forgetting data, c represents the target class of sample x and $c' \neq c$ denotes an irrelevant class. For each forgetting sample, a new c' is randomly selected every time the loss is computed.

Stopping Guideline. To ensure a practical deployment of MU-Mis, we design a stopping rule for terminating optimization once the withdrawal is completed. Empirical analysis in Appendix E reveals a consistent trend of metrics during our optimization: as the MU-Mis loss decreases, forgetting accuracy (FA) drops steadily, while the accuracies on retained (RA) and test data (TA) initially decline slightly and then grow with the recovery of irrelevant-class logit sensitivity. Crucially, RA approaches the retrained model when this sensitivity returns to its initial level. Therefore, we introduce a threshold ratio δ to govern the termination of unlearning. This criterion ensures that optimization halts when irrelevant-class sensitivity is sufficiently restored. The overall algorithm is outlined in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Tasks, Datasets and Models. We evaluate unlearning across 3 settings: full-class (CIFAR-100 (Krizhevsky et al., 2009), PinsFaceRecognition (Burak, 2020), and Tiny ImageNet (Le & Yang, 2015)), sub-class (CIFAR-20 (Krizhevsky et al., 2009)), and random-subset (CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011)). ResNet-18 (He et al., 2016) is adopted as the default backbone, and we additionally evaluate under ViT (Dosovitskiy et al., 2021) to highlight the efficiency of remaining-data-free methods. Beyond unlearning utility, we assess the resilience of unlearning methods by executing multiple full-class and sub-class unlearning requests iteratively.

Evaluation Metrics. MU methods should be assessed from three aspects (Xu et al., 2024): *utility*, *privacy*, and *efficiency*. For *utility*, we compute forgetting data accuracy (FA), remaining data accuracy (RA), and test data accuracy (TA) of the unlearned model. The average gap (**Avg. Gap**) between the retrained model and the unlearned model across above 3 accuracy-related metrics are computed to illustrate the utility disparity. We compute the train (**FGTA**) and valid (**FGVA**) accuracy on the forgotten classes in sequential unlearning. *Regarding the privacy guarantee, we use 2 complementary membership inference attack (MIA) methods, MIA-Entropy (Chundawat et al., 2023) and MIA-SCRUB (Kurmanji et al., 2023) to probe the remaining information of the forgetting data.* For *efficiency*, we provide the run time efficiency (**RTE**) in **seconds** to indicate timeliness.

Baselines. We compare against 8 remaining-data methods: Bad Teacher(BT) (Chundawat et al., 2023), Fine-tune(FT) (Warnecke et al., 2023), SCRUB (Kurmanji et al., 2023), SSD (Foster et al., 2024b), DUCK (Cotogni et al., 2023), SalUn (Fan et al., 2024b), MUNBa (Wu & Harandi, 2025) and LoTus (Spartalis et al., 2025), as well as 4 remaining-data-free methods: RL (Golatkar et al., 2020), NG (Thudi et al., 2022), JiT (Foster et al., 2024a), SCAR (Bonato et al., 2024). Notably, unlike SCAR, our method requires no auxiliary OOD data. Further details on sequential unlearning settings, metrics, and baselines are provided in Appendix F.1.

Algorithm 1 MU-Mis: Machine Unlearning by Minimizing Input Sensitivity

Input: Forgetting data \mathcal{D}_f ; Pre-trained model weights w_p ; Learning rate η ; Stopping threshold ratio δ .

Initialization

1: $w_0 \leftarrow w_p, \epsilon \leftarrow \infty$

Iterative optimization

2: **repeat**

3: **for** each forgetting sample $x \in \mathcal{D}_f$ **do**

4: Randomly select an irrelevant class $c' \neq c$

5: **end for**

6: Compute loss \mathcal{L} according to equation 3

7: Update $w_{t+1} \leftarrow w_t - \eta \nabla \mathcal{L}$

8: Update $\epsilon \leftarrow \min(\epsilon, \|\nabla_x f_{c'}(x, w_t)\|_F)$

9: **until** $\|\nabla_x f_{c'}(x, w_t)\|_F > \epsilon$ **and**

$$\frac{\|\nabla_x f_{c'}(x, w_t)\|_F}{\|\nabla_x f_{c'}(x, w_0)\|_F} > \delta$$

Output: Updated model weights w_t

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810

378
379

5.2 UNLEARNING UTILITY

380
381
382
383
384
385
386Table 1: Performance overview for **full class** unlearning task evaluated on CIFAR-100 and Tiny ImageNet using ResNet-18. This table includes performances of our proposed MU-Mis, 6 remaining-data-dependent and 4 remaining-data-free methods, which are delineated by a horizontal line. The result format is given by $a \pm b$ with mean a and standard deviation b over 5 independent trials. The metric *average gap* (*Avg. Gap*) is calculated by the average of the performance gaps measured in accuracy-related metrics, including FA, RA and TA. RTE is reported in **seconds**. Values in terms of accuracy-related metrics deviating by more than 5% from the retrain model are highlighted in **red**.

387

Method	CIFAR-100						Tiny ImageNet					
	RA	FA	TA	Avg. Gap \downarrow	MIA	RTE	RA	FA	TA	Avg. Gap \downarrow	MIA	RTE
Pretrain	76.41	79.69	76.47	26.84	95.80	10880	65.85	62.00	65.50	21.03	93.59	13600
Retrain	76.52 \pm 0.27	0.00 \pm 0.00	75.76 \pm 0.24	0.00	2.87 \pm 0.46	7432	65.36 \pm 0.03	0.00 \pm 0.03	64.90 \pm 0.03	0.00	4.80 \pm 0.04	10367
BT	76.67 \pm 0.03	0.00 \pm 0.00	76.02 \pm 0.03	0.14	0.00 \pm 0.00	32	64.90 \pm 0.01	0.00 \pm 0.00	64.53 \pm 0.01	0.28	0.00 \pm 0.00	240
FT	76.67 \pm 0.21	0.28 \pm 0.62	75.88 \pm 0.22	0.19	0.28 \pm 0.00	250	64.16 \pm 0.26	0.00 \pm 0.00	63.87 \pm 0.22	0.74	4.40 \pm 0.58	262
SCRUB	76.81 \pm 0.04	0.00 \pm 0.00	76.02 \pm 0.04	0.18	5.57 \pm 0.34	124	65.06 \pm 0.04	0.00 \pm 0.00	64.69 \pm 0.03	0.17	14.60 \pm 0.52	860
SSD	76.27 \pm 0.00	0.00 \pm 0.00	75.49 \pm 0.00	0.17	0.00 \pm 0.00	26	65.58 \pm 0.00	0.00 \pm 0.00	65.19 \pm 0.00	0.17	0.00 \pm 0.00	59
DUCK	75.82 \pm 0.18	0.20 \pm 0.45	75.13 \pm 0.17	0.51	0.00 \pm 0.00	100	64.97 \pm 0.14	0.00 \pm 0.00	64.61 \pm 0.14	0.23	2.60 \pm 0.46	55
SalU	76.63 \pm 0.03	1.20 \pm 0.45	75.85 \pm 0.03	0.47	0.00 \pm 0.00	254	65.21 \pm 0.10	0.00 \pm 0.00	64.88 \pm 0.10	0.06	4.40 \pm 0.40	2630
MUNBa	74.09 \pm 0.11	0.00 \pm 0.00	73.40 \pm 0.12	1.60 \pm 0.03	9.30 \pm 0.18	217	64.22 \pm 0.14	0.00 \pm 0.00	63.88 \pm 0.15	0.72 \pm 0.02	7.80 \pm 0.16	897
LoTus	76.48 \pm 0.08	5.00 \pm 0.02	75.87 \pm 0.08	1.72 \pm 0.04	0.00 \pm 0.00	140	65.02 \pm 0.10	0.00 \pm 0.00	64.65 \pm 0.11	0.20 \pm 0.01	0.00 \pm 0.00	182
NG	69.76 \pm 0.01	0.00 \pm 0.00	69.23 \pm 0.01	4.43	0.00 \pm 0.00	2	59.62 \pm 0.00	0.00 \pm 0.00	59.26 \pm 0.00	3.79	1.80 \pm 0.00	3
RL	65.98 \pm 0.12	5.22 \pm 0.45	65.52 \pm 0.11	8.66	0.00 \pm 0.00	12	53.41 \pm 0.00	0.00 \pm 0.00	53.04 \pm 0.01	7.94	2.00 \pm 0.00	10
SCAR	71.33 \pm 0.12	5.61 \pm 0.89	70.66 \pm 0.14	5.29	13.28 \pm 0.67	367	59.98 \pm 0.06	0.00 \pm 0.00	59.62 \pm 0.06	3.55	0.67 \pm 0.12	1052
JIT	65.44 \pm 0.14	3.00 \pm 0.76	64.87 \pm 0.13	8.32	4.44 \pm 0.30	15	53.82 \pm 0.09	0.00 \pm 0.00	53.16 \pm 0.08	7.76	5.29 \pm 0.25	5
MU-Mis	76.42 \pm 0.07	0.00 \pm 0.00	75.64 \pm 0.07	0.07	0.00 \pm 0.00	30	64.95 \pm 0.00	0.00 \pm 0.00	64.85 \pm 0.00	0.15	0.20 \pm 0.00	83

398

399
400
401
402Table 2: Performance overview for **sub-class** unlearning task evaluated on ‘Rocket’ and ‘Sea’ (where the retrain model exhibits different degrees of generalization ability on the unlearned sub-class) of CIFAR-20 using ResNet-18. The content format follows Table 1.

403

Method	Rocket						Sea					
	RA	FA	TA	Avg. Gap \downarrow	MIA	RTE	RA	FA	TA	Avg. Gap \downarrow	MIA	RTE
Pretrain	85.26	80.73	85.21	26.53	92.89	6910	85.09	97.66	85.21	5.94	91.81	6910
Retrain	84.85 \pm 0.09	2.69 \pm 0.45	84.07 \pm 0.10	0.00	12.06 \pm 0.75	4298	84.60 \pm 0.22	80.93 \pm 2.20	84.61 \pm 0.19	0.00	51.61 \pm 3.60	4298
BT	85.24 \pm 0.02	2.80 \pm 0.45	84.36 \pm 0.02	0.26	0.00 \pm 0.00	27	82.51 \pm 0.00	81.00 \pm 0.00	82.63 \pm 0.00	1.38	15.00 \pm 0.00	47
FT	82.70 \pm 0.19	4.20 \pm 1.30	81.97 \pm 0.12	1.92	5.40 \pm 1.04	138	82.36 \pm 0.29	88.00 \pm 1.41	82.43 \pm 1.60	3.83	58.08 \pm 1.79	417
SCRUB	84.73 \pm 0.13	5.80 \pm 1.30	83.84 \pm 0.13	1.15	13.28 \pm 0.02	113	84.86 \pm 0.10	88.17 \pm 1.72	84.86 \pm 0.13	2.58	57.07 \pm 1.71	113
SSD	84.23 \pm 0.05	2.60 \pm 0.89	83.35 \pm 0.06	0.48	3.76 \pm 0.36	18	84.79 \pm 0.00	78.00 \pm 0.00	84.61 \pm 0.00	1.24	8.00 \pm 0.00	7
DUCK	82.09 \pm 0.33	19.4 \pm 3.28	81.43 \pm 0.35	7.37	32.84 \pm 1.57	58	80.95 \pm 0.19	66.45 \pm 2.30	80.77 \pm 0.19	7.34	54.92 \pm 2.29	68
SalUn	84.82 \pm 0.00	2.99 \pm 1.25	84.00 \pm 0.05	0.13	0.00 \pm 0.00	1042	82.85 \pm 0.00	81.00 \pm 0.00	83.10 \pm 0.00	1.11	13.40 \pm 0.00	63
MUNBa	81.43 \pm 0.13	7.00 \pm 0.05	80.80 \pm 0.12	3.67 \pm 0.06	7.20 \pm 0.14	362	80.64 \pm 0.14	84.00 \pm 0.15	80.66 \pm 0.13	3.66 \pm 0.05	60.00 \pm 0.20	564
LoTus	35.93 \pm 0.21	39.00 \pm 0.18	36.04 \pm 0.20	44.42 \pm 0.35	18.60 \pm 0.18	105	73.12 \pm 0.15	81.00 \pm 0.16	73.39 \pm 0.14	7.59 \pm 0.08	61.20 \pm 0.19	16
NG	62.84 \pm 5.66	5.67 \pm 4.08	62.48 \pm 5.59	15.52	72.70 \pm 1.80	4	80.95 \pm 0.00	75.00 \pm 0.00	80.84 \pm 0.02	4.45	60.00 \pm 0.00	3
RL	60.89 \pm 1.96	6.52 \pm 1.07	60.50 \pm 2.01	17.11	3.70 \pm 0.51	5	80.48 \pm 0.02	77.00 \pm 0.00	80.34 \pm 0.02	4.11	48.70 \pm 0.11	3
SCAR	76.49 \pm 0.22	43.81 \pm 4.44	76.26 \pm 0.23	19.09	28.04 \pm 1.67	442	76.30 \pm 0.15	77.40 \pm 2.71	76.12 \pm 0.19	6.77	51.84 \pm 1.98	434
JIT	59.15 \pm 0.05	4.00 \pm 0.00	58.60 \pm 0.05	17.49	29.03 \pm 0.20	4	51.48 \pm 0.04	7.20 \pm 1.10	51.04 \pm 0.04	46.81	32.20 \pm 0.24	4
MU-Mis	84.28 \pm 0.18	2.91 \pm 1.02	83.50 \pm 0.19	0.49	0.07 \pm 0.25	21	84.35 \pm 0.03	81.00 \pm 2.95	84.33 \pm 0.05	0.20	1.25 \pm 1.85	10

414

MU-Mis outperforms existing remaining-data-free methods significantly and remains highly competitive with SoTA remaining-data-dependent methods. Table 1 and Table 2 correspond to MU performances on full-class and sub-class unlearning respectively. More experiment results are referred to Appendix G.1. In terms of unlearning *utility*, MU-Mis achieves the smallest Avg. Gap in full-class-CIFAR-100, full-class-PinsFaceRecognition, sub-class-Sea and sub-class-Lamp unlearning, outperforming all the baseline methods. From the highlighted values in red in the tables, we could see that existing remaining-data-free methods suffer from poor utility preservation. From Table A8, we could see that there is a clear gap between MU-Mis and RUM in when removing mixture of different memorization level samples. But surprisingly, MU-Mis indicates a lowest KL divergence to the retrained model in the forgetting data, indicating a more principled removal than SalUn and RUM. Overall, MU-Mis surpasses strong remaining-data-dependent methods in full-class and sub-class unlearning, falls short of the RUM in the particularly challenging random-subset setting. But importantly, MU-Mis outperforms all existing remaining-data-free methods by a substantial margin across all scenarios. In terms of *privacy*, MIA-Entropy indicates the residual membership of the forgetting data and MIA-SCRUB indicates non-membership of the forgetting data in the unlearned model. We can see that MIA-Entropy remain consistently low and MIA-SCRUB remain consistently to the retrained model in Table A11 cross 3 tasks, collectively demonstrating a successful privacy protection of MU-Mis. In addition to resolving the issue of constrained access to the remaining data, our remaining-data-free method also offers a notable advantage in MU efficiency. In unlearning a full class Tiny ImageNet, MU-Mis is up to 30 \times faster than SalUn, with only 0.09 higher Avg. Gap.

432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
Efficiency advantage is more pronounced on larger scale models. Table 1 shows the performance when unlearning a full class of Tiny ImageNet under ViT (Dosovitskiy et al., 2021). MU-Mis outperforms other remaining-data-free methods ¹ significantly and performs comparably with the most competitive method SalUn in terms of model utility and privacy. The efficiency advantage of MU-Mis becomes markedly pronounced: the unlearning time is reduced from more than **1 hour** to **3 minutes**. We also evaluate subclass-CIFAR20-sea unlearning under ViT and show the results in Table A10, where MU-Mis exhibits the best Avg.Gap and is 20× faster than SalUn.

Table 3: Performance overview for **full class** unlearning task evaluated on **Tiny ImageNet** using ViT. RTE is reported in **minute**.

Methods	RA	FA	TA	Avg. Gap ↓	MIA	RTE (min)
Pretrain	84.21	87.5	84.23	30.44	95.40	-
Retrain	86.35 _{±0.17}	0.00 _{±0.00}	85.92 _{±0.14}	0.00	8.80 _{±0.26}	-
SalUn	83.94 _{±0.10}	0.00 _{±0.00}	83.49 _{±0.14}	1.88	0.00 _{±0.00}	81
NG	63.12 _{±0.00}	0.00 _{±0.00}	62.88 _{±0.00}	15.28	0.00 _{±0.00}	0.21
RL	67.69 _{±0.00}	0.00 _{±0.00}	67.43 _{±0.00}	12.38	0.00 _{±0.00}	0.15
MU-Mis	82.13 _{±0.24}	0.00 _{±0.00}	82.17 _{±0.23}	2.69	0.00 _{±0.00}	3

5.3 UNLEARNING RESILIENCE: SEQUENTIAL MACHINE UNLEARNING

Figure 5: **Disparities in accuracy-related metrics between the unlearned model and the retrained model for full class and sub-class sequential unlearning.** Left: Iteratively unlearns 5 distinct full classes of CIFAR-100. Right: Iteratively unlearns 5 sub-classes of the same super-class ‘Flower’.

Sequential unlearning requires principled unlearning mechanisms. In practice, unlearning requests may arrive sequentially, requiring multiple executions of the unlearning method. Wang et al. (2024a) point out that sequential unlearning greatly challenges the memorization management ability of unlearning methods due to underlying associations among unlearned classes. The sequentially unlearned model might break down due to disordered forgetting operation, exposing its accumulated effects on model knowledge. Therefore, to highlight the importance of principled forgetting, we perform sequential unlearning. We examine the impact of subsequent requests on previous unlearning efforts and present the disparities between the unlearned model and the retrain model at each iteration in accuracy-related MU metrics in Figure 5. For detailed experiment settings, refer to Appendix F.1.

Deficiencies in existing MU methods. From Figure 5, we can see that there are 3 kinds of deficiencies in existing SoTA MU methods:

(i) *Performance Recovery*. The performance on the forgotten classes stages a recovery in BT and Salun unlearned model, indicated by the above zero FGTA and FGVA. This suggests that retargeting model’s outputs of the forgetting data does not completely remove associated knowledge, posing a substantial risk since the concealed information might still be exploited by privacy attackers.

(ii) *Knowledge Residue*. High disparity of FTA and FVA in sub-class task indicates that FT method, which relies on “catastrophic forgetting” (Kirkpatrick et al., 2017) to unlearn, fails to unlearn effectively in sub-class task due to the resemblance between the forgetting and remaining data.

(iii) *Utility Breakdown*. In sub-class task, SSD exhibits a marked decline in utility after the last unlearning request, demonstrated by the final RA of 76.33%. In contrast, RA in the retrained model

¹We failed to identify effective hyper-parameters for JiT and SCAR for this experiment.

486 and MU-Mis unlearned model are respectively 84.83% and 84.59%. Such a plummet implies a
 487 potential risk of model utility breakdowns when the magnitude of parameters is continuously scaled.
 488

489 **Resilient performance of MU-Mis to sequential
 490 unlearning requests.** To facilitate an intuitive
 491 assessment in terms of utility and resilience, we
 492 compute the utility Avg. Gap and resilience Avg.
 493 Gap for each iteration in Figure 6. The utility Avg.
 494 Gap is averaged over FTA, FVA, RA and TA, and
 495 the resilience Avg. Gap is averaged over FGTA
 496 and FGVA. From Figure 6, it is evident that MU-
 497 Mis and SSD are significantly better than BT, FT,
 498 and Salun, demonstrating a notably small disparity
 499 to the retrained model regarding both the utility
 500 and resilience Avg. Gap across the full class and
 501 sub-class tasks. Importantly, MU-Mis achieves
 502 these results without relying on the remaining data,
 503 which are required by SSD.

504 **Minimal KL divergence of MU-Mis from
 505 retrain model during sequential unlearn.**

506 Beyond model predictions, we further pro-
 507 vide the empirical KL divergence (intro-
 508 duced in Appendix F.2) between the
 509 unlearned model and the retrained model’s
 510 output distributions during sequential re-
 511 requests in Figure 7. It is evident that MU-
 512 Mis exhibits the lowest KL divergence
 513 from the retrained model throughout both
 514 the full-class and sub-class sequential un-
 515 learning processes.

516 **Summary.** In general, MU-Mis stands out with its comprehensive capabilities in terms of unlearning
 517 utility, unlearning resilience as well as output indistinguishability, while current SoTA MU meth-
 518 ods are disclosed to exhibit limitations and deficiencies in certain aspects. Their inappropriate or
 519 inadequate unlearning approaches undermine their reliability and applicability in practical scenarios.

520 5.4 SUPPLEMENTARY EXPERIMENTS AND ANALYSES

521 We provide the following experiments and analyses for completeness in Appendix: (i) ablation
 522 study of MU-Mis in Appendix G.3; (ii) a hyper-parameter sensitivity analysis showing stability of
 523 MU-Mis in Appendix G.4; (iii) visualizations of attention map confirming effectiveness of MU-Mis in
 524 Appendix G.5; (iv) an empirical analysis attributing the effectiveness of MU-Mis to the orthogonality
 525 of input sensitivity gradients among samples in Appendix H; (vi) A comprehensive analysis covering
 526 the theoretical link between sensitivity gaps and loss curvature, empirical signatures of sensitivity
 527 across memorization and influence levels, and the broader role of unlearning in shaping memorization,
 528 generalization, and sample contribution in Appendix I.

529 6 CONCLUSION

531 There are 3 main challenges in machine unlearning: *the stochasticity of training, incrementality*
 532 *of training*, and *catastrophe of unlearning* (Wang et al., 2024b). We address incrementality by
 533 quantifying sample contribution through the lens of input sensitivity. Building on this, our proposed
 534 MU-Mis achieves effective and efficient unlearning without compromising model utility, alleviating
 535 catastrophic unlearning. Experiments validate the superiority of this principled forgetting mechanism.
 536 Overall, MU-Mis is well-grounded, lightweight and remaining-data-free, offering a practical and
 537 competitive alternative to existing unlearning methods. Furthermore, we highlight in Appendix I
 538 that there is a profound connection between input sensitivity view and machine unlearning, which
 539 we believe is an interesting direction to further improve remaining-data-free unlearning in the most
 challenging random subset scenario.

Figure 6: Overview of utility Avg. Gap and resilience Avg. Gap during full class (upper) and sub-class (bottom) sequential unlearning.

Figure 7: KL divergence between outputs of unlearned model and retrained model during full class (left) and sub-class (right) sequential unlearning.

540 BIBLIOGRAPHY
541

542 Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
543 are the answer, then what is the question? *Advances in Neural Information Processing Systems*
544 (*NeurIPS*), 35:17953–17967, 2022. 3

545 Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In
546 *International Conference on Learning Representations (ICLR)*, 2020. 3

548 Jacopo Bonato, Marco Cotogni, and Luigi Sabetta. Is retain set all you need in machine unlearn-
549 ing? restoring performance of unlearned models with out-of-distribution images. In *European*
550 *Conference on Computer Vision (ECCV)*, pp. 1–19. Springer, 2024. 3, 7, 17, 18

552 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
553 Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE Symposium*
554 *on Security and Privacy (SP)*, pp. 141–159. IEEE, 2021. 2

555 Burak. Pinterest face recognition dataset. www.kaggle.com/datasets/hereisburak/pins-facerecognition, 2020. 7, 16

558 Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *IEEE*
559 *Symposium on Security and Privacy*, pp. 463–480. IEEE, 2015. 1

560 Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas Terzis, and Florian
561 Tramer. The privacy onion effect: Memorization is relative. *Advances in Neural Information*
562 *Processing Systems (NeurIPS)*, 35:13263–13276, 2022. 16

564 Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. Hydra: Hypergradient
565 data relevance analysis for interpreting deep neural networks. In *AAAI Conference on Artificial*
566 *Intelligence (AAAI)*, volume 35, pp. 7081–7089, 2021. 3

567 Andreas Christmann and Ingo Steinwart. *Support Vector Machines*. Springer, 2008. 2

569 Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
570 induce forgetting? unlearning in deep networks using an incompetent teacher. In *AAAI Conference*
571 *on Artificial Intelligence (AAAI)*, pp. 7210–7217, 2023. 1, 3, 7, 17, 26

573 Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine Learning (ML)*, 20:273–297,
574 1995. 2

575 Marco Cotogni, Jacopo Bonato, Luigi Sabetta, Francesco Pelosi, and Alessandro Nicolosi. Duck:
576 Distance-based unlearning via centroid kinematics. *arXiv preprint arXiv:2312.02052*, 2023. 7, 17

578 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
579 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
580 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
581 In *9th International Conference on Learning Representations (ICLR)*, 2021. 7, 9

582 Harris Drucker and Yann Le Cun. Improving generalization performance using double backpropaga-
583 tion. *IEEE Transactions on Neural Networks*, 3(6):991–997, 1992. 26

585 Chongyu Fan, Jiancheng Liu, Alfred Hero, and Sijia Liu. Challenging forgets: Unveiling the worst-
586 case forget sets in machine unlearning. In *European Conference on Computer Vision*, pp. 278–297.
587 Springer, 2024a. 28

588 Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
589 powering machine unlearning via gradient-based weight saliency in both image classification and
590 generation. In *International Conference on Learning Representations (ICLR)*, 2024b. 1, 3, 7, 17,
591 26

593 Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In *the Annual*
594 *ACM SIGACT Symposium on Theory of Computing*, pp. 954–959, 2020. 1, 5, 27

594 Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
 595 tail via influence estimation. *Advances in Neural Information Processing Systems (NeurIPS)*, 33:
 596 2881–2891, 2020. 1, 5, 27

597

598 Jack Foster, Kyle Fogarty, Stefan Schoepf, Cengiz Öztureli, and Alexandra Brintrup. Zero-shot
 599 machine unlearning at scale via lipschitz regularization. *arXiv preprint arXiv:2402.01401*, 2024a.
 600 3, 7, 17, 18, 26

601 Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining
 602 through selective synaptic dampening. In *AAAI Conference on Artificial Intelligence (AAAI)*, pp.
 603 12043–12051, 2024b. 3, 7, 17

604 Isha Garg, Deepak Ravikumar, and Kaushik Roy. Memorization through the lens of curvature of loss
 605 function around samples. In *International Conference on Machine Learning (ICML)*, 2024. 27

606

607 Ryan Giordano, William Stephenson, Runjing Liu, Michael Jordan, and Tamara Broderick. A swiss
 608 army infinitesimal jackknife. In *International Conference on Artificial Intelligence and Statistics*,
 609 pp. 1139–1147. PMLR, 2019. 2

610 Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
 611 Selective forgetting in deep networks. In *IEEE/CVF Conference on Computer Vision and Pattern
 612 Recognition (CVPR)*, pp. 9304–9312, 2020. 1, 7, 17, 18

613

614 Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
 615 and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
 616 one. In *International Conference on Learning Representations (ICLR)*. 6

617 Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In *AAAI Conference
 618 on Artificial Intelligence (AAAI)*, pp. 11516–11524, 2021. 1, 3, 26

619

620 Chuan Guo, Tom Goldstein, Awni Y. Hannun, and Laurens van der Maaten. Certified data removal
 621 from machine learning models. In *International Conference on Machine Learning (ICML)*, pp.
 622 3832–3842, 2020. 2, 3

623 Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
 624 *Machine Learning (ML)*, 113(5):2351–2403, 2024. 3

625

626 Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. Data cleansing for models trained with sgd.
 627 *Advances in Neural Information Processing Systems (NeurIPS)*, 32, 2019. 3

628 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 629 recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 630 770–778, 2016. 7, 16

631

632 Zhengbao He, Tao Li, Xinwen Cheng, Zhehao Huang, and Xiaolin Huang. Towards natural machine
 633 unlearning. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2025. 2

634

635 Tuan Hoang, Santu Rana, Sunil Gupta, and Svetha Venkatesh. Learn to unlearn for deep neural
 636 networks: Minimizing unlearning interference with gradient projection. In *IEEE/CVF Winter
 637 Conference on Applications of Computer Vision*, pp. 4819–4828, 2024. 3

638 Judy Hoffman, Daniel A Roberts, and Sho Yaida. Robust learning with jacobian regularization. *arXiv
 639 preprint arXiv:1908.02729*, 2019. 24

640

641 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 642 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
 643 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114
 644 (13):3521–3526, 2017. 9

645

646 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 647 *International Conference on Machine Learning (ICML)*, pp. 1885–1894. PMLR, 2017. 2, 3

648

649 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 650 7, 16

648 Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
 649 machine unlearning. *Advances in Neural Information Processing Systems (NeurIPS)*, 36, 2023. 1,
 650 3, 7, 17, 23, 26

651

652 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015. 7, 16

653

654 Shen Lin, Xiaoyu Zhang, Chenyang Chen, Xiaofeng Chen, and Willy Susilo. Erm-ktp: Knowledge-
 655 level machine unlearning via knowledge transfer. In *Proceedings of the IEEE/CVF Conference on*
 656 *Computer Vision and Pattern Recognition (CVPR)*, pp. 20147–20155, 2023. 3, 26

657

658 Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, PRANAY SHARMA, Sijia Liu,
 659 et al. Model sparsity can simplify machine unlearning. *Advances in Neural Information Processing*
 660 *Systems (NeurIPS)*, 36, 2024. 3, 17, 26

661

662 Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N Ravi. Deep unlearning via randomized
 663 conditionally independent hessians. In *IEEE/CVF Conference on Computer Vision and Pattern*
 664 *Recognition (CVPR)*, pp. 10422–10431, 2022. 3

665

666 Xianjia Meng, Yong Yang, Ximeng Liu, and Nan Jiang. Active forgetting via influence estimation
 667 for neural networks. *International Journal of Intelligent Systems*, 37(11):9080–9107, 2022. 3

668

669 Fan Mo, Anastasia Borovykh, Mohammad Malekzadeh, Soteris Demetriadis, Deniz Gündüz, and
 670 Hamed Haddadi. Quantifying and localizing usable information leakage from neural network
 671 gradients. *arXiv preprint arXiv:2105.13929*, 2021. 27

672

673 Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
 674 for machine unlearning. In *Algorithmic Learning Theory*, pp. 931–962. PMLR, 2021. 2, 26

675

676 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 677 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep*
 678 *learning and unsupervised feature learning*, volume 2011, pp. 7. Granada, Spain, 2011. 7, 16

679

680 Vardan Petyan. Traces of class/cross-class structure pervade deep learning spectra. *Journal of*
 681 *Machine Learning (JMLR)*, 21(1):10197–10260, 2020. 26

682

683 Vardan Petyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
 684 phase of deep learning training. *Proceedings of the National Academy of Sciences (PNAS)*, 117
 685 (40):24652–24663, 2020. 26

686

687 Alexandra Peste, Dan Alistarh, and Christoph H Lampert. SSSE: Efficiently erasing samples from
 688 trained machine learning models. In *NeurIPS 2021 Workshop Privacy in Machine Learning*, 2021.
 689 3

690

691 Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
 692 influence by tracing gradient descent. *Advances in Neural Information Processing Systems*
 693 (NeurIPS), 33:19920–19930, 2020. 3

694

695 Deepak Ravikumar, Efstathia Souflieri, Abolfazl Hashemi, and Kaushik Roy. Unveiling privacy,
 696 memorization, and input curvature links. In *International Conference on Machine Learning*,
 697 (ICML), 2024. 27

698

699 General Data Protection Regulation. General data protection regulation (GDPR). *Intersoft Consulting*,
 700 *Accessed in October*, 24(1), 2018. 1

701

702 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 703 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based lo-
 704 calization. In *IEEE International Conference on Computer Vision (ICCV)*, pp. 618–626, 2017.
 705 25

706

707 Thanveer Shaik, Xiaohui Tao, Haoran Xie, Lin Li, Xiaofeng Zhu, and Qing Li. Exploring the
 708 landscape of machine unlearning: A survey and taxonomy. *arXiv preprint arXiv:2305.06360*, 1(2),
 709 2023. 2

702 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
 703 against machine learning models. In *2017 IEEE Symposium on Security and Privacy (SP)*, pp.
 704 3–18. IEEE, 2017. 1

705 Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
 706 removing noise by adding noise. *arXiv preprint arXiv:1706.03825*, 2017. 25

708 Christoforos N Spartalis, Theodoros Semertzidis, Efstratios Gavves, and Petros Daras. Lotus: Large-
 709 scale machine unlearning with a taste of uncertainty. In *Proceedings of the Computer Vision and*
 710 *Pattern Recognition Conference*, pp. 10046–10055, 2025. 7, 17

711 Suraj Srinivas and François Fleuret. Rethinking the role of gradient-based attribution methods for
 712 model interpretability. In *9th International Conference on Learning Representations (ICLR)*, 2021.
 713 6

714 Vinith Suriyakumar and Ashia C Wilson. Algorithms that approximate data removal: New results
 715 and limitations. *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 18892–18903,
 716 2022. 2

718 Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective
 719 machine unlearning. *IEEE Transactions on Neural Networks and Learning Systems*, 2023. 3

720 Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Under-
 721 standing factors influencing machine unlearning. In *2022 IEEE 7th European Symposium on*
 722 *Security and Privacy (EuroS&P)*, pp. 303–319. IEEE, 2022. 1, 7, 17, 18, 26

723 Hanling Tian, Yuhang Liu, Mingzhen He, Zhengbao He, Zhehao Huang, Ruikai Yang, and Xiaolin
 724 Huang. Simulating training dynamics to reconstruct training data from deep neural networks. In
 725 *The Thirteenth International Conference on Learning Representations (ICLR)*, 2025. 1

727 Cheng-Long Wang, Qi Li, Zihang Xiang, and Di Wang. Has approximate machine unlearning been
 728 evaluated properly? from auditing to side effects. *arXiv preprint arXiv:2403.12830*, 2024a. 9, 16

729 Weiqi Wang, Zhiyi Tian, and Shui Yu. Machine unlearning: A comprehensive survey. *arXiv preprint*
 730 *arXiv:2405.07406*, 2024b. 1, 2, 10

731 Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
 732 of features and labels. In *30th Annual Network and Distributed System Security Symposium, NDSS*,
 733 2023. 7, 17

735 Ga Wu, Masoud Hashemi, and Christopher Srinivasa. Puma: Performance unchanged model
 736 augmentation for training data removal. In *AAAI Conference on Artificial Intelligence (AAAI)*,
 737 volume 36, pp. 8675–8682, 2022. 3

738 Jing Wu and Mehrtash Harandi. Munba: Machine unlearning via nash bargaining. In *Proceedings of*
 739 *the IEEE/CVF International Conference on Computer Vision*, pp. 4754–4765, 2025. 7, 17

740 Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
 741 models. In *International Conference on Machine Learning (ICML)*, pp. 10355–10366. PMLR,
 742 2020. 3, 26

743 Jie Xu, Zihan Wu, Cong Wang, and Xiaohua Jia. Machine unlearning: Solutions and challenges.
 744 *IEEE Transactions on Emerging Topics in Computational Intelligence*, 8(3):2150–2168, 2024. 2,
 745 7, 16

747 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
 748 *arXiv preprint arXiv:2001.02610*, 2020. 27

749 Kairan Zhao and Peter Triantafillou. Scalability of memorization-based machine unlearning. *arXiv*
 750 *preprint arXiv:2410.16516*, 2024. 27

751 Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Tri-
 752 antafillou. What makes unlearning hard and what to do about it. *Advances in Neural Information*
 753 *Processing Systems*, 37:12293–12333, 2024. 17, 21, 22, 27, 28

755 Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. *Advances in Neural*
 756 *Information Processing Systems (NeurIPS)*, 32, 2019. 1, 27

APPENDIX

A ETHICS STATEMENT

This work studies machine unlearning (MU), motivated by the “right to be forgotten,” with the goal of enhancing user privacy and data protection. All experiments are conducted on publicly available datasets and standard benchmark models; no sensitive or personally identifiable information is used. While unlearning techniques could in principle be misused to manipulate model behavior, our focus is on strengthening trust and accountability in machine learning systems. We believe this work contributes positively to the development of privacy-preserving and ethically responsible AI.

B REPRODUCIBILITY STATEMENT

We include anonymized supplementary materials containing the complete algorithm implementations for executing all experiments. We provide detailed experimental settings, hyperparameters, datasets, and evaluation metrics in our Appendix to ensure reproducibility.

C THE USE OF LLMS

Large language models (LLMs) were employed solely as auxiliary writing tools. Their usage was strictly limited to surface-level assistance, including grammar correction, stylistic polishing, clarity improvement, and formatting consistency. LLMs were not involved in formulating research ideas, designing methods, conducting analyses, interpreting results, or drawing conclusions. At no stage were LLMs used to generate original content, experimental designs, or theoretical claims. All text segments refined with LLM assistance were subsequently reviewed, validated, and, where necessary, rewritten by the authors to ensure technical accuracy and precision of expression. The authors bear full responsibility for the final presentation and content of this paper. This disclosure is made in accordance with conference guidelines on LLM usage to ensure transparency and research integrity.

D A TOY EXAMPLE COMPLEMENTING SAMPLE CONTRIBUTION DERIVATION

We use a simple MLP model to illustrate the insight of $\mathcal{S}_k(\hat{x}, \tilde{x}) < \mathcal{S}_k(\hat{x}, \hat{x})$ with $\hat{x} \neq \tilde{x}$. Assume the l^{th} layer output of model is $x^l = \phi(\theta^l x^{l-1})$, where θ^l refers to l^{th} layer parameter and ϕ refers to activation function. Then,

$$g_k = \frac{\partial f_k}{\partial \theta^l} = \frac{\partial f_k}{\partial (\theta^l x^{l-1})} x^{l-1^T}, \quad (A1)$$

$$\begin{aligned} g'_k &= \frac{\partial f_k}{\partial \theta^l \partial x} = \frac{\partial f_k}{\partial (\theta^l x^{l-1})} \frac{\partial x^{l-1^T}}{\partial x} \\ &= \frac{\partial f_k}{\partial (\theta^l x^{l-1})} \phi'(\theta^{l-1} x^{l-2}) \theta^{l^T} \frac{\partial x^{l-2}}{\partial x}. \end{aligned} \quad (A2)$$

Thereby, the inner-dot $g'_k(\hat{x})g_k(\tilde{x}) \propto \hat{x}^{l-1} \phi'(\theta^{l-1} \hat{x}^{l-2})$. If ReLU activation is used, where $\phi'(x) = 1$ if $x > 0$ else $\phi'(x) = 0$, $\mathcal{S}_k(\hat{x}, \tilde{x}) \propto g'_k(\hat{x})g_k(\tilde{x})$ will be quite small. The conclusion here is that the residual term is relatively smaller than the contribution term. Therefore, the contribution of a training sample to the training process would be approximately reflected in the pre-trained model’s output sensitivity to the sample.

Additionally, we investigate sensitivity signatures across different samples (*i.e.*, different memorization levels and influence scores) in Appendix I.2. We find that highly memorized samples exhibit smaller sensitivity gap than low and middle memorized sample, and more influential samples exhibit higher sensitivity gap. This empirical evidence further confirms that our proposed sensitivity gap successfully reflect sample contribution and the residual term is not that crucial to some extent.

810 E STOPPING GUIDANCE 811

812 The optimization should cease once the withdrawal is completed, requiring a stopping guideline
813 for practical use. We monitor both the optimization objective and unlearning metrics during mini-
814 mizing the MU-Mis loss Eq.(3) in Figure A1, using the example of unlearning with ResNet-18 on
815 fullclass-CIFAR100-rocket. In Figure A1, different colors represent different learning rates and the
816 purple dashed line represents the accuracy of the retrained model. A consistent trend on accuracy
817 change during unlearning is observed across different learning rates: as the optimization of MU-Mis
818 loss progresses, the accuracy of the forgetting data (FA) gradually decreases, the accuracy of the
819 remaining (RA) and test data (TA) first decrease slightly and then grow up with the recovery of
820 $\|\nabla_x f_{c'}(x, w_p)\|_F$.

821 Notably, when $\|\nabla_x f_{c'}(x, w)\|_F$ re-
822 covers close to the level of its initial
823 value $\|\nabla_x f_{c'}(x, w_p)\|_F$, RA ap-
824 proaches the retrained model across
825 different learning rates. There exists a
826 clear relationship between the unlearn-
827 ing progress and model performance,
828 allowing for effective unlearning by
829 stopping the optimization timely. To
830 this end, we introduce a stopping
831 threshold ratio δ to regulate the time
832 of stopping. We record the minimal
833 value of irrelevant class logit sensi-
834 tivity as ϵ and terminate unlearning
835 process when $\|\nabla_x f_{c'}(\mathcal{D}_f, w)\|_F > \epsilon$
836 and $\frac{\|\nabla_x f_{c'}(\mathcal{D}_f, w)\|_F}{\|\nabla_x f_{c'}(\mathcal{D}_f, w_p)\|_F} > \delta$.

837 F EXPERIMENT DETAILS 838

839 F.1 EXPERIMENT SETTING 840

841 Tasks, Datasets and Models.

842 We investigate 3 kinds of unlearning tasks in supervised image classification scenarios, including forgetting
843 a full class, a sub-class under a super-class, and a random subset. We evaluate full class unlearning
844 on CIFAR-100 (Krizhevsky et al., 2009), PinsFaceRecognition (Burak, 2020), and Tiny ImageNet
845 (Le & Yang, 2015), sub-class unlearning on three sub-classes of CIFAR-20 (Krizhevsky et al., 2009),
846 random subset unlearning on CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011).
847 We perform sequential unlearning by iteratively unlearning a full and a sub-class to evaluate the
848 algorithm’s robustness to privacy onion effect (Carlini et al., 2022). For iterative full class MU, we
849 iteratively unlearn 5 distinct classes (label 0-4, corresponding to “Apple”, “Fish”, “Baby”, “Bear”
850 and “Beaver”) of CIFAR-100 in line with Wang et al. (Wang et al., 2024a). For sub-class setting, we
851 iteratively unlearn 5 sub-classes (“orchid”, “poppy”, “rose”, “sunflower”, “tulip”) under the same
852 superclass “flower” of CIFAR-20. We use ResNet-18 (He et al., 2016) for all the above experiments.
853 To further indicate the significant efficiency advantage of our remaining-data-free method, we perform
854 full class unlearning on Tiny-ImageNet and sub-class unlearning on CIFAR-20 with ViT.

855 **Evaluation Metrics.** MU methods should be assessed from three aspects: *utility*, *privacy*, and
856 *efficiency*(Xu et al., 2024). Beyond that, in practice, where the unlearning requests are made
857 constantly, the unlearning *resilience* should be assessed, i.e. subsequent unlearning should not spoil
858 previous unlearning efforts. For *utility*, we compute forgetting data accuracy (**FA**), remaining data
859 accuracy (**RA**), and test data accuracy (**TA**) of the unlearned model. FA and RA are computed on the
860 valid set in class-wise unlearning and on the train set in random subset unlearning. We compute the
861 average gap (**Avg. Gap**) between the retrained model and the unlearned model on accuracy-related
862 metrics, including FA, RA and TA to illustrate the utility disparity. In terms of *resilience*, we evaluate
863 on sequential unlearning tasks. We compute the train (**FGTA**) and valid (**FGVA**) accuracy on the
forgotten classes and quantify the unlearning resilience with the average of their disparity to the
retrained model (**Resilience Avg. Gap**). To further examine the indistinguishability between the

849 Figure A1: Accuracy and optimization objective during
850 fullclass-CIFAR100-rocket unlearning with different learn-
851 ing rates on ResNet-18. FA decreases gradually, RA and
852 TA first drop slightly and then rise with the recovery of
853 $\|\nabla_x f_{c'}(x, w)\|_F$. The endpoint of each curve corresponds
854 to the time when $\|\nabla_x f_{c'}\|_F$ exceeds 90% of its initial value.

864 retrained and unlearned model, we compute the **KL divergence** between their output distributions
 865 over the entire dataset. The retrained model is an oracle of approximate MU, therefore, above disparity
 866 metrics should be as small as possible. Regarding the *privacy* guarantee, we use membership inference
 867 attack (**MIA**) (Chundawat et al., 2023) to probe the remaining information of the forgetting data. The
 868 MIA success rate indicates how many samples in \mathcal{D}_f are predicted as membership samples of the
 869 unlearned model. From a privacy perspective, a lower MIA value implies less information leakage
 870 in the unlearned model and is preferred (Liu et al., 2024). For *efficiency*, we provide the run time
 871 efficiency (**RTE**) in **seconds** to indicate timeliness.

872 **Baselines.** We compare our method along with 6 baselines which utilize the remaining data, as well
 873 as 4 remaining-data-free methods. The 6 baselines include Bad Teacher (**BT**) (Chundawat et al.,
 874 2023), Finetune (**FT**) (Warnecke et al., 2023), SCalable Remembering and Unlearning unBound
 875 (**SCRUB**) (Kurmanji et al., 2023), Selective-Synaptic-Dampening (**SSD**) (Foster et al., 2024b),
 876 Distance-based Unlearning via Centroid Kinematics (**DUCK**) (Cotogni et al., 2023), Saliency-based
 877 unlearning (**SalUn**) (Fan et al., 2024b), Large-Scale Machine Unlearning with a Taste of Uncertainty
 878 (**LoTUS**) (Spartalis et al., 2025), Machine Unlearning via Nash Bargaining (**MUNBa**) (Wu & Harandi,
 879 2025). We also add a strong remaining-data-dependent method Refined-Unlearning Meta-algorithm
 880 (**RUM**) (Zhao et al., 2024) for the most challenging random subset setting. The 4 remaining-data-free
 881 methods include Random Labeling (**RL**) (Golatkar et al., 2020), Negative Gradient (**NG**) (Thudi
 882 et al., 2022), Just in Time unlearning (**JiT**) (Foster et al., 2024a) and Selective-distillation for Class
 883 and Architecture-agnostic unleaRning (**SCAR**) (Bonato et al., 2024).

884 The detailed method of each baseline is as the following:

- 885 • **BT** (Chundawat et al., 2023): Bad Teacher transfers knowledge from useful and useless
 886 teachers for the remaining data and the forgetting data. The code source is <https://github.com/if-loops/selective-synaptic-dampening>.
 887
- 888 • **FT** (Warnecke et al., 2023): Finetune optimizes the pre-trained model with the remaining
 889 data, unlearning relying on “catastrohic forgetting”. The code source is <https://github.com/if-loops/selective-synaptic-dampening>.
 890
- 891 • **SCRUB** (Kurmanji et al., 2023): SCRUB aims to push outputs of the student model (the
 892 unlearned model) away from the teacher model (the pre-trained model) to distill knowledge.
 893 This is achieved by first performing several max-steps (distill the knowledge) and then
 894 perform several min-steps (regain performance on the remaining data with cross-entropy
 895 loss). The code source is <https://github.com/meghdadk/SCRUB>.
 896
- 897 • **SSD** (Foster et al., 2024b): SSD uses the Fisher information matrix to assess parameter
 898 importance and suppress parameters that are important to the forgetting data while less im-
 899 portant to the remaining data. The code source is <https://github.com/if-loops/selective-synaptic-dampening>.
 900
- 901 • **DUCK** (Cotogni et al., 2023): DUCK employs metric learning to guide the removal of
 902 samples matching the nearest incorrect centroid in the embedding space. The code source is
 903 <https://github.com/OcraM17/DUCK>.
 904
- 905 • **SalUn** (Fan et al., 2024b): SalUn computes weight saliency map to enable the most im-
 906 portant weights for the forgetting data. The code source is <https://github.com/OPTML-Group/Unlearn-Saliency>.
 907
- 908 • **LoTUS** (Spartalis et al., 2025): LoTUS performs large-scale machine unlearning by es-
 909 timating and propagating uncertainty to guide parameter update suppression, enabling
 910 scalable forgetting without relying on remaining data. The source code is <https://github.com/sohomghosh/LoTUS>.
 911
- 912 • **MUNBa** (Wu & Harandi, 2025): MUNBa formulates machine unlearning as a Nash bar-
 913 gaining problem and jointly optimizes forgetting and retention objectives to balance util-
 914 ity preservation and effective removal. The source code is <https://github.com/OPTML-Group/MUNBa>.
 915
- 916 • **RUM** (Zhao et al., 2024): RUM analyzes fundamental factors that impact unlearning
 917 difficulty (e.g., embedding-space entanglement between forgotten and retained data, and

918 memorization levels), and proposes a meta-algorithm that partitions the forget set into
 919 homogeneous subsets and applies per-subset unlearning to improve performance. The
 920 source code is <https://github.com/kairanzhao/RUM>.
 921

- **NG** (Thudi et al., 2022): Negative gradient computes several steps of gradient ascent with
 922 the forgetting data. The source code is <https://github.com/jbonato1/scar>.
- **RL** (Golatkar et al., 2020): Random label relabels the forgetting data with randomly
 924 assigned class and fine-tune the model with computed cross-entropy loss. The source code
 925 is <https://github.com/jbonato1/scar>.
- **SCAR** (Bonato et al., 2024): SCAR utilizes Out-of-distribution (OOD) data as a surrogate for
 927 the remaining data and distills the knowledge of the original model into the unlearned model
 928 to preserve model utility. The source code is [https://github.com/jbonato1/
 929 scar](https://github.com/jbonato1/scar).
- **JiT** (Foster et al., 2024a): JiT smooths the model output around the forgetting data by
 931 minimizing the local Lipschitz constant. The source code is [https://github.com/
 932 jwf40/Information-Theoretic-Unlearning](https://github.com/jwf40/Information-Theoretic-Unlearning).

934 F.2 KL DIVERGENCE

936 The KL divergence between two distributions is:

$$937 D_{\text{KL}}(p_z(w_r) \parallel p_z(w_u)) = \int p_z(w_r) \log[p_z(w_r)/p_z(\theta)] d\mathcal{D} \quad (A3)$$

939 We calculate empirical KL divergence with the entire dataset (including both the train and valid set).
 940 We first collect the predicted class probabilities from both the unlearned and retrained models of each
 941 sample, then we compute the output KL divergence as follows:

$$942 D_{\text{KL}} = \frac{1}{N} \sum_{i=1}^N \sum_{c=1}^C p_c(x_i; w_r) \log \frac{p_c(x_i; w_r)}{p_c(x_i; w_u)}, \quad (A4)$$

945 where N is total number of dataset, C denotes the total number of classes, w_u is the unlearned model
 946 parameter and w_r is the retrained model parameter. $p_c(x_i, w)$ represents the c -th posterior probability
 947 of i -th sample in model w .

948 F.3 TRAINING DETAILS

950 For **ResNet-18**, training uses SGD with a momentum of 0.9, weight decay of 5×10^{-4} , and batch
 951 size of 128 with a learning rate initialized at 0.1. The learning rate decays at 60,120,160 by 0.1 with
 952 a total of 200 epochs.

953 For **ViT**, we initialize with model pre-trained on ImageNet provided by torchvision. Then we
 954 randomly initialize the last fully connected layers and train it with SGD with a momentum of 0.9,
 955 weight decay of 5×10^{-4} , batch size 64, constant learning rate $\eta = 0.1$ for 10 epochs. All the
 956 experiments are conducted on a single RTX 4090.

958 F.4 HYPER-PARAMETERS

960 For **MU-Mis**, we optimize the pretrained model under **model.eval()** mode with **vanilla SGD** without
 961 momentum for ResNet-18 and Adam for ViT. For only the forgetting data are used in MU-Mis, we
 962 must freeze the batch norm layers to avoid spoiling the remaining data. We use batch size of 256
 963 for MU-Mis across all the experiments with ResNet-18 and batch size of 32 with ViT. We report the
 964 learning rate η and stopping threshold δ used in different settings in Table A4 for reproducibility.

965 For each baseline, We perform grid search to find the best hyper-parameters in each setting. The
 966 hyper-parameter sweep range for each method is presented in Table A3. The hyper-parameters used
 967 for all the methods in sequential full class and sub-class tasks are shown in Table A1 and Table A2.
 968 For all the methods, we fix batch size as 256 for ResNet-18 and 64 for ViT unless otherwise stated in
 969 hyper-parameter ranges. For BT, we use constant learning rate. For fine-tune based methods, e.g.
 970 FT, as well as SCRUB and SalUn, we use cosine scheduler. We fix temperature= 1, alpha = 0.5,
 971 gamma = 0.99, weight decay = 5×10^{-4} for SCRUB. We fix weight decay = 5×10^{-4} for DUCK
 and SCAR.

972

973

Table A1: Hyperparameters for full class sequential unlearning in Fig. 5.

Methods	Hyperparameters
Retrain	epoch = 200, lr = 0.1, milestones = [60, 120, 160].
BT	epoch = 10, lr = $\{5, 5, 5, 1, 5\} \times 10^{-5}$, temperature scalar = {3, 1, 1, 1, 5}.
FT	epoch = 10, lr = 10^{-1} for all iterations.
SSD	dampening constant $\lambda = \{1, 1, 1, 1, 0.1\}$, selection weight $\alpha = \{95, 70, 50, 70, 80\}$.
SalUn	epoch = 10, lr = 10^{-3} , threshold = 0.6 for all iterations.
MU-Mis	epoch = 50, lr = $\{2, 1, 1, 0.5, 0.8\} \times 10^{-4}$

981

982

983

Table A2: Hyperparameters for subclass sequential unlearning in Fig. 5.

Methods	Hyperparameters
Retrain	epoch = 200, lr = 0.1, milestones = [60, 120, 160].
BT	epoch = $\{5, 10, 5, 10, 5\}$, lr = $\{0.5, 0.5, 1, 1, 5\} \times 10^{-5}$, temperature scalar = {5, 5, 5, 3, 1}.
FT	epoch = 20, lr = 10^{-1} for all iterations.
SSD	dampening constant $\lambda = \{1, 0.1, 0.1, 1, 1\}$, selection weight $\alpha = \{71, 100, 90, 87, 85\}$.
SalUn	epoch = 10, lr = 10^{-3} , threshold = 0.6 for all iterations.
MU-Mis	epoch = 30, lr = $\{5, 1, 0.1, 3, 3\} \times 10^{-6}$, stopping threshold $\delta = \{1.4, 1.4, 0.95, 10, 10\}$.

991

992

993

Table A3: Hyper-parameters range overview for different methods in all the experiments.

Methods	Hyperparameters
BT	epoch $\in \{1, 3, 5, 10\}$, lr $\in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 5 \times 10^{-5}, 5 \times 10^{-6}, 10^{-6}\}$, temperature scalar $\in \{1, 3, 5\}$.
FT	epoch $\in \{5, 10, 15, 20\}$, lr $\in \{10^{-1}, 10^{-2}, 10^{-3}\}$.
SSD	dampening constant $\lambda \in \{0.1, 0.5, 0.9, 1\}$, selection weight $\alpha \in \{1, 5, 10, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100\}$.
SCRUB	epoch = 10, lr $\in \{10^{-1}, 5 \times 10^{-2}, 10^{-2}, 5 \times 10^{-3}, 10^{-3}, 5 \times 10^{-4}, 10^{-4}, 5 \times 10^{-5}, 10^{-5}\}$, max step $\in \{2, 3, 5, 8\}$.
SalUn	epoch $\in \{10, 20\}$, lr $\in \{10^{-2}, 10^{-3}, 5 \times 10^{-4}, 5 \times 10^{-5}, 10^{-5}, 5 \times 10^{-6}, 10^{-6}\}$, threshold $\in \{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9\}$.
DUCK	lr $\in \{5 \times 10^{-2}, 10^{-2}, 5 \times 10^{-3}, 10^{-3}, 10^{-4}\}$, $\lambda_1, \lambda_2 \in \{0.5, 1, 1.2, 1.5, 2, 3, 5\}$.
NG	epoch $\in \{1, 3, 5, 10, 15, 20, 25, 30\}$, lr $\in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$.
RL	epoch $\in \{1, 3, 5, 10, 15, 20, 25, 30\}$, lr $\in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$.
JiT	dampening constant = 1, lr $\in [10^{-3}, 10^{-6}]$, lipschitz weight $\alpha \in [0, 1]$.
SCAR	lr $\in \{10^{-2}, 5 \times 10^{-3}, 10^{-3}, 5 \times 10^{-4}, 10^{-4}, 5 \times 10^{-5}, 5 \times 10^{-6}, 10^{-6}\}$, batch size $\in \{256, 512, 1024\}$, temperature $\in \{1, 3, 5\}$, $\lambda_1, \lambda_2 \in \{1, 1.5, 3, 5\}$.
LoTUS	lr $\in \{10^{-5}, 5 \times 10^{-5}, 10^{-4}, 5 \times 10^{-4}, 10^{-3}, 5 \times 10^{-3}, 10^{-2}, 5 \times 10^{-2}, 10^{-1}\}$, epochs $\in \{5, 10, 15, 20\}$, $\alpha \in \{2, 4, 6, 8, 16\}$.
MUNBa	lr $\in \{10^{-5}, 5 \times 10^{-5}, 10^{-4}, 5 \times 10^{-4}, 10^{-3}, 5 \times 10^{-3}, 10^{-2}, 5 \times 10^{-2}, 10^{-1}\}$, epochs $\in \{5, 10, 15, 20, 25, 30, 40\}$.

1025

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047

1048 Table A4: Hyperparameters of MU-Mis h(learning rate η and stopping threshold ratio δ).
 1049

Setting	η	δ
fullclass-CIFAR-100	7×10^{-5}	1.45
fullclass-PinsFaceRecognition	4×10^{-4}	0.68
fullclass-Tiny-ImageNet	4×10^{-6}	1.1
subclass-CIFAR-20-rocket	3×10^{-5}	3.00
subclass-CIFAR-20-sea	2×10^{-5}	0.93
subclass-CIFAR-20-lamp	5×10^{-5}	1.80
fullclass-Tiny-ImageNet-ViT	5×10^{-4}	1.03

1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 G ADDITIONAL EXPERIMENT RESULTS

1081 G.1 UNLEARNING UTILITY

1082 G.1.1 FULL CLASS MU ON PINSFACERECOGNITION

1083 Results of full class unlearning on PinsFaceRecognition dataset are presented in Table A5. MU-Mis
 1084 exhibits the smallest Avg.Gap to the retrained model, alongside a low MIA susceptibility. SCRUB
 1085 and Salun exhibit a notably high MIA score, demonstrating a high risk of privacy leakage.

1086 Table A5: Performance overview for **full class** unlearning (including MU-Mis and 6 baselines)
 1087 evaluated on PinsFaceRecognition with ResNet-18. The content format follows Table 1.

Method	RA	FA	TA	Avg. Gap ↓	MIA	RTE
Pretrain	93.49	100	93.59	34.54	100.00	13144
Retrain	93.06 _{±0.21}	0.00 _{±0.00}	92.25 _{±0.32}	0.00	0.00 _{±0.00}	11400
BT	92.69 _{±0.01}	0.00 _{±0.00}	91.48 _{±0.01}	0.26	0.00 _{±0.00}	36
FT	93.99 _{±0.09}	8.78 _{±1.34}	92.94 _{±0.10}	3.47	0.00 _{±0.00}	146
SCRUB	92.82 _{±0.02}	0.00 _{±0.00}	91.61 _{±0.02}	0.29	19.63 _{±0.28}	112
SSD	93.41 _{±0.00}	0.00 _{±0.00}	92.17 _{±0.00}	0.14	0.00 _{±0.00}	8
DUCK	92.17 _{±0.11}	0.00 _{±0.00}	91.06 _{±0.11}	0.69	0.00 _{±0.00}	64
SalUn	93.28 _{±0.05}	0.62 _{±0.00}	92.12 _{±0.06}	0.34	54.22 _{±1.06}	154
MunBa	91.44 _{±0.12}	1.63 _{±0.02}	90.27 _{±0.11}	1.74	0.00 _{±0.00}	522
LoTus	92.87 _{±0.08}	0.00 _{±0.00}	91.75 _{±0.09}	0.23	0.00 _{±0.00}	374
MU-Mis	92.98 _{±0.06}	0.00 _{±0.00}	92.13 _{±0.04}	0.07	0.00 _{±0.00}	24

1103 G.1.2 SUB CLASS MU ON CIFAR-20-LAMP

1104 We evaluate sub-class unlearning on CIFAR-20-Lamp as presented in Table A6. The FA of the
 1105 retrained model is 11.31, indicating certain generalization capability on the unlearned class. MU-Mis
 1106 exhibits the smallest Avg.Gap to the retrained model.

1107 Table A6: Performance overview for **sub-class** unlearning (including proposed MU-Mis and 6
 1108 baselines) evaluated on lamp of CIFAR-20 using ResNet-18. The content format follows Table 1.

Method	RA	FA	TA	Avg. Gap ↓	MIA	RTE
Pretrain	85.31	74.22	85.21	21.30	92.82	6910
Retrain	85.12 _{±0.22}	11.31 _{±1.60}	84.40 _{±0.20}	0.00	7.06 _{±0.11}	4298
BT	85.52 _{±0.04}	10.00 _{±0.00}	84.84 _{±0.04}	0.72	0.00 _{±0.00}	29
FT	82.47 _{±0.15}	14.00 _{±2.19}	81.90 _{±0.18}	1.97	2.80 _{±0.36}	128
SCRUB	82.17 _{±0.68}	19.00 _{±4.74}	81.60 _{±0.70}	4.48	26.20 _{±4.18}	113
SSD	84.56 _{±0.00}	15.00 _{±0.00}	83.84 _{±0.00}	1.60	0.60 _{±0.00}	18
DUCK	83.25 _{±0.31}	31.02 _{±2.74}	82.69 _{±0.34}	7.75	27.68 _{±5.15}	68
SalUn	84.44 _{±0.05}	13.70 _{±1.66}	83.74 _{±0.04}	1.24	1.68 _{±0.17}	1007
MunBa	81.17 _{±0.15}	17.00 _{±0.10}	80.69 _{±0.14}	4.45	5.00 _{±0.12}	676
LoTus	27.44 _{±0.22}	12.00 _{±0.08}	27.40 _{±0.20}	38.45	33.60 _{±0.18}	14
MU-Mis	84.36 _{±0.51}	11.70 _{±1.29}	83.66 _{±0.50}	0.63	0.00 _{±0.00}	10

1121 G.1.3 RANDOM SUBSET UNLEARNING

1122 We evaluate random subset unlearning on CIFAR-10 and SVHN as presented in Table A6. We could
 1123 see that it is much more challenging for remaining-data-free methods to preserve model utility in this
 1124 setting, for forgetting and remaining data are highly entangled in this scenario. Across CIFAR-10 and
 1125 SVHN, MU-Mis exhibits consistently low MIA value, demonstrating a good privacy preservation.

1126 **Comparison with RUM in random subset setting.** RUM(Zhao et al., 2024) provides a careful
 1127 analysis of what makes unlearning hard and applies tailored unlearning strategies to each group of
 1128 homogeneous subsets (i.e., by memorization level), achieving excellent performance in especially
 1129 challenging random-subset setting. Therefore, we follow the experiment of RUM (*i.e.*, Table 1 in its
 1130 original paper, where random subset is consist of 3000 samples of high, middle, low memorization
 1131 levels in CIFAR-10.) We compare performances of RUM, SalUn and MU-Mis in the following Table
 1132 A8. We could see that MU-Mis still outperforms GA, but there is a clear performance gap between
 1133 MU-Mis and RUM, indicating a room for further improvement.

1134 Table A7: Performance overview for **random subset (10%)** unlearning task evaluated on forgetting
 1135 10% CIFAR-10 and SVHN using ResNet-18. The content format follows Table 1.

1136

Method	CIFAR-10						SVHN					
	RA	FA	TA	Avg. Gap↓	MIA	RTE	RA	FA	TA	Avg. Gap↓	MIA	RTE
Pretrain	100.00	99.96	94.68	1.84	92.64	14322	100.00	100.00	96.48	1.65	83.11	16904
Retrain	100.00 _{±0.00}	94.51 _{±0.16}	94.75 _{±0.11}	0.00	84.77 _{±11.13}	12800	100.00 _{±0.00}	95.12 _{±0.12}	96.40 _{±0.14}	0.00	81.24 _{±11.13}	13890
BT	99.64 _{±0.01}	93.06 _{±0.06}	93.01 _{±0.04}	1.18	7.20 _{±0.00}	50	98.73 _{±0.01}	96.71 _{±0.03}	95.01 _{±0.01}	1.42	22.32 _{±0.00}	215
FT	100.0 _{±0.00}	94.73 _{±0.13}	93.17 _{±0.25}	0.51	68.66 _{±0.00}	395	100.0 _{±0.00}	96.38 _{±0.03}	96.87 _{±0.09}	0.54	80.72 _{±0.54}	805
SCRUB	100.00 _{±0.00}	95.79 _{±0.50}	93.43 _{±0.10}	0.87	77.56 _{±0.93}	207	95.40 _{±1.18}	94.79 _{±1.00}	94.94 _{±0.83}	1.98	23.15 _{±2.62}	104
SSD	99.99 _{±0.00}	99.98 _{±0.02}	94.66 _{±0.01}	1.86	92.54 _{±0.43}	18	98.67 _{±0.39}	98.63 _{±0.43}	96.59 _{±0.11}	1.52	84.23 _{±0.77}	55
DUCK	98.04 _{±0.05}	97.90 _{±0.21}	92.38 _{±0.06}	2.57	90.59 _{±0.29}	21	96.16 _{±0.20}	94.86 _{±0.39}	95.53 _{±0.25}	1.51	30.46 _{±0.28}	156
SalUn	100.0 _{±0.00}	94.31 _{±0.03}	93.19 _{±0.03}	0.59	26.52 _{±0.00}	247	99.77 _{±0.00}	94.50 _{±0.05}	95.85 _{±0.01}	0.47	19.92 _{±0.00}	409
MunBu	100.00 _{±0.00}	94.57 _{±0.10}	93.19 _{±0.08}	0.54	58.20 _{±0.18}	420	99.73 _{±0.05}	96.46 _{±0.06}	96.84 _{±0.05}	0.68	66.70 _{±0.20}	583
LoTus	96.90 _{±0.12}	96.73 _{±0.08}	90.55 _{±0.11}	3.17	56.10 _{±0.19}	172	94.48 _{±0.14}	94.31 _{±0.10}	86.65 _{±0.13}	5.36	78.80 _{±0.15}	35
NG	96.46 _{±0.23}	96.15 _{±0.35}	90.52 _{±0.22}	3.13	88.21 _{±0.32}	25	98.98 _{±0.02}	98.98 _{±0.05}	96.56 _{±0.01}	1.53	84.53 _{±0.26}	25
RL	96.17 _{±0.28}	93.99 _{±0.51}	88.29 _{±0.34}	4.27	83.11 _{±0.50}	26	98.66 _{±0.05}	98.53 _{±0.10}	96.02 _{±0.02}	1.56	73.94 _{±0.28}	25
JIT	95.45 _{±1.92}	95.46 _{±1.81}	89.63 _{±1.90}	3.54	86.00 _{±0.32}	255	96.30 _{±0.64}	96.26 _{±0.74}	95.14 _{±0.89}	1.88	62.78 _{±4.32}	333
SCAR	98.63 _{±0.13}	98.64 _{±0.08}	92.43 _{±0.13}	2.61	48.36 _{±0.35}	197	96.34 _{±0.54}	96.46 _{±0.69}	92.39 _{±0.70}	2.86	55.20 _{±2.86}	158
MU-Mis	97.76 _{±0.03}	97.43 _{±0.04}	91.50 _{±0.03}	2.80	33.04 _{±0.28}	116	95.48 _{±0.00}	95.50 _{±0.03}	94.22 _{±0.00}	2.36	26.11 _{±0.00}	116

1147

1148 **The complementary roles of RUM, SalUn, and MU-Mis.** Nonetheless, it is worth noting that
 1149 RUM, SalUn, and our MU-MIS focus on different aspects: **RUM** answers **how samples** (low →
 1150 middle → high memorization) should be scheduled and treated during unlearning, **SalUn** identifies
 1151 which parameters (gradient-based saliency map) should be updated, and **MU-Mis** figures out **what**
 1152 **information** (sample contribution) should be removed. The three aspects are all important and
 1153 numerically has their own advantages, e.g., RUM is perfect in random subset unlearning and MU-Mis
 1154 work well without using remaining data. Therefore, RUM, SalUn and MU-Mis are not competing
 1155 in the same design space, and are naturally complementary and can be combined. And we are very
 1156 happy to see performance of RUM and especially the combination of RUM and MU-Mis. Combining
 1157 RUM could improve performance of MU-Mis to some extent, but it still under-perform RUM by a
 1158 noticeable margin on model utility.

1159 **MU-Mis exhibit lowest KL-divergence on forget set to the retrain model than SalUn and RUM.**
 1160 Furthermore, we examine the KL divergence between MU-Mis and retrained model in Table A8.
 1161 Surprisingly, we find that MU-Mis achieves the smallest KL-divergence to the retrain model in
 1162 forget set across different methods. We attribute this to their fundamentally different unlearning
 1163 mechanisms: RUM (inherited from fine-tuning and SalUn) relies on random relabeling or catastrophic
 1164 forgetting. As discussed in our paper, random relabeling might not provide a principled way to
 1165 align the output distribution of the retrain model on forgetting data, leading to a sub-optimal output
 1166 distribution. Also, compared with RL, MU-Mis does improve existing RDF method in random subset
 1167 unlearning. The overall KL divergence of RL is 4.3, while that of MU-Mis is 0.65, which is an
 1168 substantial improvement, indicating that MU-Mis produces an output distribution much closer than
 1169 other RDF methods. Consequently, although MU-Mis still underperforms remaining-data-dependent
 1170 methods such as RUM+SalUn in terms of model utility, we think its lower KL divergence on the
 1171 forgetting data is a meaningful step that advances unlearning towards a more faithful/reasonable
 1172 unlearning.

1173 **Challenges of remainig-data-free methods in random subset removal.** As is investigated in Figure
 1174 A4 in Appendix H, we could see that intra-class samples assemble highly similar gradients. Moreover,
 1175 many existing remaining-data-dependent approaches are still suffering from utility degradation in
 1176 this setting. Therefore, it is important to acknowledge the daunting challenges such a vision of
 1177 remaining-data-free method in random subset setting faces. Although not perfect, but MU-Mis has
 1178 advanced remaining-data-free method in this challenging scenario. Therefore, we remain hopeful
 1179 about the vision of a perfectly RDF method that preserves model utility under random subset settings
 1180 and we believe a better location of sample contribution might offer a promising path.

1180

1181 Table A8: Unlearning performance and KL divergence metrics of SalUn, RUM and MU-Mis on
 1182 CIFAR-10 with ResNet-18 following Zhao et al. (2024).

1183

Method	FA	RA	TA	Avg. Gap↓	ToW	MIA	MIA.GAP	ToW_MIA	KL_Forget	KL_Test	KL_Retain	KL_All
Pretrain	100.00	100.00 _{±0.00}	85.10 _{±0.12}	12.24	0.64	0.03	0.45	0.44	2.7131	0.3040	0.0018	0.1826
Retrain	63.93 _{±0.15}	100.00 _{±0.00}	84.45 _{±0.11}	0.00	1.00 _{±0.07}	0.47 _{±0.05}	0.00	1.00 _{±0.08}	0.0000	0.0000	0.0000	0.0000
SalUn	73.63 _{±0.21}	99.99 _{±0.01}	81.64 _{±0.18}	4.17	0.88 _{±0.06}	0.79 _{±0.04}	0.31	0.64 _{±0.07}	0.9941	0.3601	0.0548	0.1175
RUM	66.40 _{±0.14}	100.00 _{±0.00}	84.41 _{±0.13}	0.84	0.97 _{±0.05}	0.99 _{±0.03}	0.52	0.48 _{±0.09}	1.4462	0.2770	0.0057	0.0675
RL	58.40 _{±0.24}	62.32 _{±0.20}	47.81 _{±0.15}	26.62	0.37 _{±0.04}	0.49 _{±0.08}	0.02	0.34 _{±0.06}	5.9854	4.5657	4.1801	4.3005
MU-Mis	66.90 _{±0.19}	70.48 _{±0.22}	57.37 _{±0.16}	19.85	0.50 _{±0.03}	0.42 _{±0.06}	0.06	0.40 _{±0.04}	0.6525	1.1091	1.2391	0.7509
RUM+MU-Mis	60.70 _{±0.23}	77.45 _{±0.19}	61.18 _{±0.14}	16.35	0.58 _{±0.08}	0.41 _{±0.07}	0.06	0.56 _{±0.05}	2.7765	1.0060	0.6421	0.7005

1188
1189

G.1.4 FULL CLASS MU COMPARED WITH JIT WITH VGG16

JiT unlearns by regularizing lipshitz constant around the forgetting data, which might fail on DNNs with batch norm layers. Following the architecture used in the original paper, we compare with it on CIFAR-100-rocket unlearning in Table A9. The results show that JiT exhibits greater efficacy when implemented with VGG-16 as opposed to ResNet-18. However, it still exhibits a noticeable performance disparity when compared to MU-Mis.

1199

1200
1201

G.1.5 SUB-CLASS MU ON CIFAR-20-SEA WITH ViT

1202
1203
1204
1205

We conducted experiments with ViT on subclass-CIFAR20-sea to further demonstrate our effectiveness across different tasks. MU-Mis exhibits the best RA, FA, and TA, and provides advantages in unlearning time.

1206
1207
1208

Table A10: Performance overview for **sub-class** unlearning task evaluated on **Cifar20-Sea** using **ViT**. RTE is reported in **minute**.

Methods	RA	FA	TA	Avg. Gap ↓	MIA	RTE (min)
Pretrain	93.65	91.32	93.63	0.93	69.80	-
Retrain	93.90 _{±0.12}	88.98 _{±0.08}	93.84 _{±0.14}	0.00	59.00 _{±0.23}	-
SalUn	94.15 _{±0.10}	89.29 _{±0.03}	94.13 _{±0.08}	0.27	62.10 _{±0.42}	10
MU-Mis	93.70 _{±0.02}	88.84 _{±0.25}	93.67 _{±0.02}	0.17	69.67 _{±0.31}	0.5

1213
1214

G.2 MEMBERSHIP INFERENCE ATTACK

1215
1216
1217
1218
1219
1220
1221

We examine our privacy leakage with a comparably good unlearning-adapted LiRA proposed by SCRUB Kurmanji et al. (2023). We report SCRUB-LiRA examined results across 3 unlearning settings in Table A11. We could see that in MU-Mis unlearned model, SCRUB-LiRA is quite close to random guessing, indicating that the forgetting data in MU-Mis unlearned model is similar to non-members.

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

LiRA-SCRUB and MIA-Entropy is complementary. The goal of the adversary in LiRA-based MIA is to distinguish “forgotten samples” from unseen (non-member) samples. Therefore, their criteria of successful unlearning is that in the unlearned model, the adversary could not well distinguish forgotten samples from unseen samples, i.e., MIA collapse to random guessing (50%) for random subset unlearning. LiRA-based MIA examines how indistinguishable the forgetting data to the non-members, thereby the closer of SCRUB-MIA value to 50% in random subset setting is the better. While MIA in our paper examines how much forgotten samples are predicted as members, thereby the lower is the better. That is to say, **LiRA-based MIA** examines the extent of **non-membership** of forgetting data, while our **MIA-Entropy** examines the extent of membership, i.e., the residual **membership** signals of forgetting data. Therefore, these 2 MIAs are not contradictory or competing, but complementary, which all support our conclusions.

1233
1234

Table A11: SCRUB-LiRA scores across different unlearning settings.

Setting	Model	FA (%)	RA (%)	TA (%)	MIA-Entropy	MIA-SCRUB
Fullclass-CIFAR100-Rocket	Pretrain	86.00	76.37	76.56	95.40	73.40 _{±2.60}
	Retrain	0.00	76.86	76.07	6.60	96.40 _{±1.60}
	MU-Mis	0.00	76.37	75.71	0.00	90.40 _{±2.00}
Subclass-CIFAR20-Sea	Pretrain	97.00	85.10	85.14	91.80	64.40 _{±2.40}
	Retrain	80.00	84.85	85.00	53.00	47.40 _{±6.40}
	MU-Mis	80.00	84.26	84.15	0.60	53.00 _{±4.60}
Random-CIFAR10-10%	Pretrain	99.96	100.00	94.68	92.64	56.64 _{±0.60}
	Retrain	94.51	100.00	94.75	84.77	49.68 _{±0.30}
	MU-Mis	97.43	97.42	91.50	83.34	52.66 _{±0.40}

1242 G.3 ABLATION STUDY
12431244 G.3.1 ABLATION STUDY ON EACH TERM OF MU-MIS
1245

1246 We study the role of each term in
1247 our loss through ablation, illustrating
1248 with fullclass-CIFAR100-Rocket on
1249 ResNet-18. We denote the first term
1250 $\|\nabla_x f_c(w, x)\|_F^2$ in our loss Eq. (3) as
1251 TC (Target Class) and the second term
1252 $\|\nabla_x f_{c'}(w, x)\|_F^2$ as OC (Other Class).
1253 In Table A12, we showcase the un-
1254 learning performance of decreasing
1255 TC, increasing OC, and decreasing
1256 TC - OC (MU-Mis) respectively. We also investigate another variant of MU-Mis: regressing
1257 sensitivity norm of TC(target class) term to OC(other class) term. During unlearning, we observe
1258 that as $\|\nabla_x f_c\|_F$ decreases, FA decreases gradually. We find that although the gradient of $\|\nabla_x f_{c'}\|_F$
1259 is detached, its norm exhibits slight decrease as well when minimizing. As the sensitivity norm
1260 of f_c approaches $f_{c'}$, i.e., the loss approaches 0, FA gradually stops to decrease and converges at
1261 17.35%. Therefore, this variant could unlearn successfully but failed to preserve model utility by
1262 regressing sensitivity magnitude of f_c to $f_{c'}$. As demonstrated by Figure A1, when minimizing
1263 $\|\nabla_x f_c\|_F$, $\|\nabla_x f_{c'}\|_F$ and retain accuracy (RA) will drop slightly as well, then RA will recover to
1264 its original level as the picking up of $\|\nabla_x f_{c'}\|_F$ in our loss. Therefore, the magnitude of $\|\nabla_x f_{c'}\|_F$
1265 is essential for preserving model utility on remaining data (which is also supported by the ablation
1266 study in our Table A10). Thus, when regressing $\|\nabla_x f_c\|_F$ to $\|\nabla_x f_{c'}\|_F$, the norm of $\|\nabla_x f_{c'}\|_F$
1267 is not explicitly preserved, and drops during minimizing. Therefore, this regressing variant is a useful
1268 diagnose and it confirms that the joint-term optimization in MU-Mis is necessary.

1269 From the ablation study, we know that minimizing the first term obviates information of the
1270 forgetting data, but greatly hurts performance on the remaining data. Solely increasing OC brings a
1271 slight accuracy drop on remaining data, but hardly unlearns the forgetting data. While our MU-Mis
1272 loss could unlearn effectively meanwhile preserve model utility on the remaining data.

1273 G.3.2 PERFORMANCE UNDER SENSITIVITY REGULARIZATION TECHNIQUE

1274 We employed Jacobian regularization Hoffman et al. (2019) to our pre-training and re-training.
1275 Jacobian regularization penalizes model's input-output sensitivity around training sample x , i.e.,
1276 $\|J(x)\| = \|\frac{\partial f(x)}{\partial x}\|_F$ to encourage a smoother decision boundary for better robustness and general-
1277 ization. We evaluated the unlearning of an full class on the CIFAR-10 dataset by training ResNet18
1278 for 30 epochs with lr = 0.1, bs = 256, regularization coefficient = 0.01. The unlearning performance is
1279 shown in Table A14, where the first 3 rows are performances on vanilla model (with data augmentation
1280 but without Jacobian regularization). In Jacobian regularized model, it seems to be more difficult
1281 to fully forget a class by MU-Mis, but it still preserves model utility well without remaining data.

1282 G.3.3 ROBUSTNESS OF PERFORMANCE TO SENSITIVITY METRIC.
1283

1284 We investigate performances of MU-
1285 Mis with different sensitivity norm
1286 choices in Table A13. We can see
1287 that the L_2 norm yields similar perfor-
1288 mance to the Frobenius norm (origi-
1289 nal MU-Mis) and retrain, suggesting
1290 that the method is robust as long as
1291 the norm aggregates all components
1292 of the sensitivity vector. In contrast,
1293 norms that emphasize only extreme
1294 coordinates (e.g., infinity norm) tend to over-penalize the worst-case direction, which empirically
1295 hurts model utility. We observed that the model tends to break down even under a very small learning
1296 rate (1e-8) for L_1 norm, which we attribute this to its non-smooth optimization, which induces abrupt
1297 and sparse updates in model outputs.

1246 Table A12: Ablation study on each term of our loss in full
1247 class (Rocket) unlearning. TC (Target Class) refers to the
1248 first term and OC (Other Class) refers to the second term.

Methods	RA	FA	TA	Avg. Gap ↓	MIA	RTE
Pretrain	76.41	79.69	76.47	26.84	95.80	-
Retrain	76.52 ± 0.27	0.00 ± 0.00	75.76 ± 0.24	0.00	2.87 ± 0.46	-
TC	65.41 ± 0.00	0.00 ± 0.00	64.73 ± 0.00	7.38	1.40 ± 0.00	44
OC	70.13 ± 0.41	74.62 ± 1.56	70.21 ± 0.42	28.85	0.00 ± 0.00	25
TC-OC.detach()	70.24 ± 0.01	17.35 ± 0.04	69.45 ± 0.03	9.98	0.016 ± 0.045	
TC - OC	76.42 ± 0.07	0.00 ± 0.00	75.64 ± 0.07	0.07	0.00 ± 0.00	30

1246 Table A13: Performances of MU-Mis under different sensi-
1247 tivity norm choices.

Methods	RA	FA	TA	Avg. Gap ↓	MIA
Pretrain	76.41	79.69	76.47	26.84	95.80
Retrain	76.52 ± 0.27	0.00 ± 0.00	75.76 ± 0.24	0.00	2.87 ± 0.46
L_2	75.53 ± 0.05	1.95 ± 0.02	74.89 ± 0.11	1.27	0.000 ± 0.00
Inf	50.34 ± 0.12	1.95 ± 0.04	50.11 ± 0.14	17.93	0.710 ± 0.02
Frobenius	76.42 ± 0.07	0.00 ± 0.00	75.64 ± 0.07	0.07	0.000 ± 0.00

1296 Table A14: Unlearning performance w/o Jacobian regularization on CIFAR-100-full-class-rocket.
1297

Method	No Jacob Regularization					Jacob Regularization = 0.01				
	FA	RA	TA	Avg. Gap↓	MIA	FA	RA	TA	Avg. Gap↓	MIA
Pretrain	88.54	83.59	84.03	32.54	0.9498	88.53	83.33	83.11	32.58	0.9436
Retrain	0.00±0.00	86.11±0.11	77.56±0.15	0.00	9.56±0.08	0.00±0.00	85.77±0.23	77.35±0.07	0.00	0.11±0.09
MU-Mis	1.40±0.35	84.13±0.28	75.98±0.52	1.62	0.98±0.12	5.67±0.32	82.37±0.14	75.12±0.07	3.77	0.21±0.09

1302
1303 G.4 HYPER-PARAMETER SENSITIVITY
1304

1305 We show that there is a clear relationship between the norm ratio and model performance during
1306 unlearning in Figure A1. The stopping threshold ratio δ controls the magnitude ratio of final irrelevant
1307 class sensitivity norm $\|\nabla_x f_{c'}(x, w)\|_F$ to initial one $\|\nabla_x f_{c'}(x, w_p)\|_F$. In this part, we investigate
1308 the sensitivity of unlearning performance to δ in Figure A2, taking fullclass-CIFAR100-Rocket with
1309 ResNet-18 as an example. Different colors represent different δ , ranging from 70% to 100%. The
1310 green dashed line indicates the performance of the retrained model. Notably, under a specific learning
1311 rate, the Avg. Gap exhibits minimal variation with changes in δ . Generally, MU-Mis demonstrates
1312 resilience against variations in hyper-parameters δ . In summary, the hyper-parameter tuning for
1313 MU-Mis is effortless, resilient and well-guided. This advantage in hyper-tuning indirectly enhances
1314 the efficiency of unlearning and facilitates straightforward application of MU-Mis, making it valuable
1315 for practical applications of MU methods.

1316
1317 Figure A2: MU-Mis unlearning performance with different stopping threshold ratio under different
1318 learning rates on fullclass-CIFAR100-rocket with ResNet-18. Performance varies little with the
1319 threshold ratio when the learning rate is fixed.
1320
1321
1322
1323
1324
13251326 G.5 EFFECTIVENESS VISUALIZATION BY ATTENTION MAP
1327

1328 To further investigate and understand the behavior
1329 of our unlearned model, we showcase the attention
1330 heatmaps (Selvaraju et al., 2017) of models before
1331 and after applying MU-Mis on PinsFaceRecognition
1332 dataset in Figure A3. For the forgetting data,
1333 the original attention concentrates on the faces.
1334 After applying MU-Mis, the attention on the faces
1335 either disappears or significantly weakens, and is
1336 shifted towards the background. For the remaining
1337 data, MU-Mis fully maintains previous attention.
1338 Notably, an alternative interpretation of input
1339 sensitivity is the measurement of how changes in
1340 the image influence its model prediction (Smilkov
1341 et al., 2017). Our proposed method reduces the
1342 target class logit sensitivity to the forgetting data
1343 while recovering irrelevant classes', thereby en-
1344 abling the unlearned model to disregard the seman-
1345 tic information in the forgetting data meanwhile
1346 preserve prediction sensitivity and performance
1347 on the remaining data.
1348
1349

1350 Figure A3: **Visualization of attention maps**
1351 for the full class unlearning task on PinsFace-
1352 Recognition. MU-Mis distracts attention from
1353 forgetting data regions while preserving atten-
1354 tion on remaining data.

1350 H UNDERLYING REASONS FOR MODEL UTILITY PRESERVATION

1352 We suggest the favorable preservation on model utility might be attributed to two factors:

- 1354 • **Conceptual motivations:** The forgetting operation in MU-Mis differs fundamentally from
1355 previous methods. While previous methods involved relabelling the forgetting data (Liu
1356 et al., 2024; Foster et al., 2024a; Fan et al., 2024b) or knowledge distillation from a useless
1357 teacher (Chundawat et al., 2023; Lin et al., 2023; Kurmanji et al., 2023), which unlearn by
1358 introducing incorrect information to spoil original knowledge, MU-Mis unlearns by solely
1359 withdrawing the contribution of forgetting data. In Figure A1, we show that RA and TA stay
1360 at a high level throughout the withdrawal process.
- 1361 • **Empirical investigation:** Current gradient-based unlearning methods (Liu et al., 2024;
1362 Foster et al., 2024a; Fan et al., 2024b; Wu et al., 2020; Graves et al., 2021; Neel et al.,
1363 2021; Thudi et al., 2022) all employ cross-entropy loss gradient $\nabla_{\theta}\mathcal{L}(w, x)$ to unlearn.
1364 However, the intra-class gradients in a well-trained model are quite similar (Papyan, 2020;
1365 Papyan et al., 2020). While the gradient of input sensitivity norm w.r.t parameters is double
1366 back-propagation (Drucker & Le Cun, 1992), enhancing sample-specificity by first back-
1367 propagating to the input samples before reaching the parameters. Our pairwise analysis
1368 of cosine similarity among intra-class and inter-class samples, detailed in the following,
1369 reveals a distinctive orthogonality in input sensitivity gradients, spontaneously reducing the
1370 interference between the forgetting and remaining data.

1371 We calculate the pairwise cosine similarity within a class and between classes of the derivatives
1372 of four metrics w.r.t. parameters in a well-trained model in Figure A4 to demonstrate an inherent
1373 orthogonality input sensitivity view. They are $\nabla_w\mathcal{L}$, $\nabla_w f_c$, $\nabla_w \|\nabla_x f_c\|_F$, and $\nabla_w \sum_{c' \neq c} \|\nabla_x f_{c'}\|_F$
1374 (denoted as $\nabla_w \|\nabla_x f_{c'}\|_F$ in the following for brevity). The first two metrics are commonly used
1375 in current unlearning methods, and the last two are utilized in MU-Mis. Derivatives of all four
1376 metrics are approximately orthogonal between samples from different classes. However, intra-class
1377 similarities differ across four metrics. We can see that both $\nabla_w\mathcal{L}$ and $\nabla_w f_c$ bear a resemblance within
1378 a class, with cosine similarity centering around 0.3 and reaching up to 0.6. While $\nabla_w \|\nabla_x f_c\|_F$
1379 centers around 0.1 with intra-class similarity scarcely exceeding 0.3. **Directly taking the derivative**
1380 **of output w.r.t parameters preserves within-class similarity of the output, but such similarity is**
1381 **reduced when output first takes the derivative to the input and then back to parameters.**

1381 Interestingly, $\nabla_w \sum_{c' \neq c} \|\nabla_x f_{c'}\|_F$ seems to be pairwise similar. We speculate that there are two
1382 reasons why this portion of our loss function does not significantly harm the performance of the
1383 remaining data. Firstly, as shown in Figure 3, $\sum_{c' \neq c} \|\nabla_x f_{c'}\|_F$ is significantly smaller than $\|\nabla_x f_c\|_F$
1384 on well-trained models. Therefore, in the early stages of optimizing the relative magnitudes of input
1385 sensitivities, the contribution of $\nabla_w \sum_{c' \neq c} \|\nabla_x f_{c'}\|_F$ to the optimization direction can be neglected.
1386 Secondly, $\sum_{c' \neq c} \|\nabla_x f_{c'}\|_F$ for the forgetting data actually corresponds to the target class of the
1387 remaining data. The inter-class similarity of $\nabla_w \sum_{c' \neq c} \|\nabla_x f_{c'}\|_F$ implies that when sensitivity of
1388 other irrelevant classes increases, the input sensitivity of the remaining data of the corresponding
1389 classes increases as well, thereby preserving their sample contributions.

1401 **Figure A4: Inter-class and intra-class cosine similarity of four different metrics w.r.t parameters.**
1402 From left to right: $\nabla_w\mathcal{L}$, $\nabla_w f_c$, $\nabla_w \|\nabla_x f_c\|_F$, and $\nabla_w \sum_{c' \neq c} \|\nabla_x f_{c'}\|_F$. Directly taking the derivative of
1403 output w.r.t parameters bears a resemblance across samples, but such similarity is reduced when
1404 output first takes derivative to input and then back to parameters.

1404 **I DISCUSSION**
 1405

1406 Beyond the advantages of input sensitivity for measuring sample contribution, we raise the attention
 1407 that the input sensitivity perspective possesses a profound connection to MU. MU emerges from
 1408 model’s memorization of the training data and seeks to safeguard the privacy of training data. Recent
 1409 studies by Garg et al. (Garg et al., 2024) and Ravikumar et al. (Ravikumar et al., 2024) reveal the
 1410 intrinsic relationship between memorization, privacy and sample’s input curvature. Also, Mo et al.
 1411 (Mo et al., 2021) demonstrates that the input sensitivity of model gradient is the underlying cause of
 1412 information leakage exposed by Model Inversion Attack (MIA) (Zhu et al., 2019; Zhao et al., 2020).
 1413 Collectively, these works further underscore the inherent advantages of adopting an input sensitivity
 1414 perspective for machine unlearning.

1415 **I.1 CORRELATIONS BETWEEN SENSTIVITY GAP AND LOSS CURVATURE IN FORMULA**
 1416

1417 The loss curvature for memorization proxy used in Zhao et al. (2024); Zhao & Triantafillou (2024) is
 1418 $\text{Curvature}(x) \propto \text{tr}(\nabla_x^2 \mathcal{L}(x))$. For input sensitivity of loss, we have
 1419

$$\begin{aligned} \nabla_x \mathcal{L}(x) &= (p - e_c)^\top \nabla_x f(x) = (1 - p_c) \nabla_x f_c(x) - \sum_{c' \neq c} p_{c'} \nabla_x f_{c'}(x) \\ &= \left(\sum_{c'=1}^C p_{c'} \right) \nabla_x f_c(x) - \sum_{c'=1}^C p_{c'} \nabla_x f_{c'}(x) = \sum_{c=1}^C p_c (\nabla_x f_c(x) - \nabla_x f_{c'}(x)). \end{aligned} \quad (\text{A5})$$

1420 By comparing the formula of loss curvature and sensitivity gap used in MU-Mis, we could see that:
 1421

$$\text{tr}(\nabla_x^2 \mathcal{L}(x)) = \sum_{c=1}^C p_c \text{tr}(\nabla_x^2 (f_c(x) - f_{c'}(x))) \text{v.s.} \|\nabla_x f_c(x)\|_F^2 - \|\nabla_x f_{c'}(x)\|_F^2 \quad (\text{A6})$$

1422 While both terms reflects sensitivity gap between target class and irrelevant classes, they refers to
 1423 different order of gradient. Specifically, **loss curvature** primarily aims at **second-order** sensitivity,
 1424 while sensitivity gap in **MU-Mis** refers to the **first-order** sensitivity. Mathematically, it seems that
 1425 there is no straightforward equality or conserved bound that could directly links this two metrics.
 1426 Therefore, we’re afraid that we could not provide a general deterministic bound or functional
 1427 equivalence without further assumptions.

1428 **I.2 INPUT SENSITIVITY SIGNATURES ACROSS DIFFERENT SAMPLES**
 1429

1430 Although there is few clue of mathematical relationship for analysis, we further investigate their
 1431 correlations by examining the sensitivity signatures across different samples empirically, *i.e.* samples
 1432 of different memorization/influence levels.

1433 We partition training samples of CIFAR-10 dataset according to their sample-wise memorization
 1434 score (provided by Feldman (2020); Feldman & Zhang (2020) through training many models on
 1435 different held-out subsets to measure each sample’s self-influence on its own prediction) into low,
 1436 middle, high memorization levels (following Zhao et al. (2024)). We partition training samples of
 1437 CIFAR-100 dataset according to their influence score (provided by Feldman (2020); Feldman &
 1438 Zhang (2020) through training many models on different held-out subsets to quantify each sample’s
 1439 cross-influence on test data) into the same 3 levels. The scores are available at <https://github.com/google-research/heldout-influence-estimation..>

1440 Interestingly, the distributions of sensitivity gap of different sample groups are shown in Table A15. For
 1441 memorization level, highly memorized samples exhibit smaller sensitivity gap than low and middle
 1442 memorized sample. For influence score, more influencial samples exhibit higher sensitivity gap.
 1443 Importantly, we think this empirical findings provide meaningful support for our use of sensitivity
 1444 gap as a proxy for sample contribution.

1445 We evaluate MU-Mis when respectively unlearning samples with low, medium, and high memoriza-
 1446 tion levels in Table A16. We could see that removing those highly-memorized samples causes a

1458 Table A15: Sensitivity gaps across memorization and influence levels on CIFAR-10 and CIFAR-100.
1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511	CIFAR-10 (Memorization Level)					CIFAR-100 (Influence Level)				
	Level	Mean	Std	10th	50th	90th	Mean	Std	10th	50th
Low	10.7632	4.2386	6.0814	10.0681	16.4851	36.1209	14.7241	19.3663	34.3506	56.0993
Mid	10.5156	5.5244	3.9959	10.0496	17.6092	39.3604	16.7700	21.3345	36.4983	61.0855
High	6.7922	6.0817	-0.7257	6.6459	14.5839	42.5803	17.1963	23.9295	39.5377	65.7531

more substantial utility drop in the remaining data, indicating that the performance of MU-Mis is not uniform across samples of different memorization levels. But maybe this is understandable, to some extent, expected, as unlearning highly entangled and influential samples is intrinsically difficult for any unlearning method Fan et al. (2024a); Zhao et al. (2024). We acknowledge this is an important limitation and a promising direction for future work, where more fine-grained unlearning mechanisms could be developed to further improve remaining-data-free unlearning.

Table A16: Performance of MU-Mis when unlearning low, middle, high levels of samples.

Memorization	Method	FA	RA	TA	Avg. Gap	MIA
Low	Original	100.00	100.00	85.10	0.45	0.013
	Retrain	99.83	100.00	83.93	0.00	0.049
	MU-Mis	100.00	99.96	83.32	0.27	0.041
Mid	Original	100.00	100.00	85.10	9.02	0.019
	Retrain	74.40	100.00	83.63	0.00	0.539
	MU-Mis	93.63	87.09	69.29	15.49	0.194
High	Original	100.00	100.00	85.10	26.83	0.055
	Retrain	21.63	100.00	82.99	0.00	0.811
	MU-Mis	46.10	66.79	57.03	27.88	0.607

I.3 ESSENTIAL GOAL OF MU IN TERMS OF MEMORIZATION, GENERALIZATION AND SAMPLE CONTRIBUTION

There is an important question that might connect core idea of MU-Mis and RUM:

Q1. What's the correlation between sample contribution and memorization?

Q2. Is unlearning equivalent to alleviating sample's memorization level?

Brief clarification between memorization, sample influence and sample contribution.

1. **Memorization is defined as the change in its own prediction when a sample leaves the training set, i.e., self-influence.**
2. **Sample influence is the change on prediction of other data (test data), thereby more lies in cross-influence.**
3. **Sample contribution is the contribution of a training sample to all the model predictions, thereby comprising both the memorization (self-influence) and sample influence (cross-influence).**

RQ1. Memorization level is not proportional to sample contribution. On the one hand, high memorization can coincide with large contribution, *e.g.*, long-tail but but genuinely informative examples, the model may need to “memorize” them to support generalization. On the other hand, high memorization does not guarantee substantial contribution: a model might over-fit noise, duplicates, or outliers, thereby exhibiting strong memory for those examples even though they contribute little or may harm the remaining data’s performance. Conversely, a training example may exert substantial influence on the model’s remaining predictions (high contribution) without having been deeply memorized (low memorization).

RQ2. Minimizing sample contribution is more essential for unlearning than reducing memorization. Generally, in random subset case, to unlearn an instance, we would aim to alleviate model’s memorization of it to prevent privacy leakage exploited by MIA. However, as discussed above, memorization (self-influence) and influence (cross-influence) consist sample contribution

1512 together. Therefore, in a broader sense, de-memorization is not that enough for a complete removal,
1513 while withdrawing sample contribution is more fundamental.

1514
1515 In light of the effectiveness of MU-Mis in full/sub-class unlearning, where removal is beyond merely
1516 reducing memorization, we think MU-Mis is not limited to directly alleviate memorization by
1517 optimizing certain curvature-based measures. Rather, we prefer to view MU-Mis as a practical and
1518 efficient proxy that could implicitly reduce memorization by suppressing a sample’s contribution.
1519 Additionally, given the less satisfactory results of MU-Mis in the random-subset unlearning setting,
1520 we suspect that a direct optimization of loss curvature (*i.e.*, explicitly minimizing loss curvature
1521 around a specific sample) might be sufficient to prevent privacy leakage and yield better model-utility
1522 trade-offs in this scenario.

1522

1523

J LIMITATION

1524

1525 Although MU-Mis could achieve comparable performance to SoTA remaining-data-dependent meth-
1526 ods, there is a clear room for further improvement in the most challenging unlearning scenario,
1527 random subset unlearning. We fully acknowledge that our investigation is quite preliminary, but
1528 we believe that the input sensitivity might be a valuable and beneficial perspective for developing
1529 remaining-data-free unlearning, which is collectively demonstrated by MU-Mis and RUM, leaving a
1530 good starting point for future study.

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565