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ABSTRACT

Machine unlearning (MU) aims to remove the influence of specific training samples
from a well-trained model, a task of growing importance due to the “right to be
forgotten.” The unlearned model should approach the retrained model, where for-
getting data do not contribute to the training process. Therefore, unlearning should
withdraw their contribution from the pre-trained model. However, quantifying and
disentangling sample’s contribution to overall learning process is highly challeng-
ing, leading most existing MU approaches to adopt other heuristic strategies such
as random labeling or knowledge distillation. These operations inevitably degrade
model utility, requiring additional maintenance with remaining data. To advance
MU towards better utility and efficiency for practical deployment, we seek to
approximate sample contribution with only the pre-trained model. We theoretically
and empirically reveal that sample’s contribution during training manifests in the
learned model’s increased sensitivity to it. In light of this, we propose MU-Mis
(Machine Unlearning by Minimizing input sensitivity), which directly suppresses
the contribution of forgetting data. This straightforward suppression enables MU-
Mis to successfully unlearn without degrading model utility on the remaining data,
thereby eliminating the need for access to the remaining data. To the best of our
knowledge, this is the first time that a remaining-data-free method can outperform
state-of-the-art (SOTA) unlearning methods that utilize the remaining data.

1 INTRODUCTION

Deep neural networks (DNN5s) are revealed to store information of training data (Feldman, 2020;
Feldman & Zhang, 2020; Tian et al., 2025) and such information could be reproduced by privacy
attacks (Shokri et al., 2017; Zhu et al., 2019), raising data privacy concerns. The “right to be forgotten”
(Regulation, 2018) is introduced to safeguard user privacy, which entails ensuring that the DNN
performs as if the data were never involved in the training.

While retraining from scratch would ideally achieve this, it is often infeasible due to the high cost
of training DNNs. This has motivated the study of “Machine Unlearning” (MU) (Cao & Yang,
2015), which fine-tunes the pre-trained model to approach the retrained model as closely as possible.
The essential distinction in pre-trained and retrained model lies in the contribution of forgetting
data, whose role shift from “contributors” that affect parameter updates in the pre-trained model
to “bystanders” that exert no influence in the retrained model. Therefore, unlearning should aim to
withdraw their contribution to the learning process.

However, identifying such a contribution is highly challenging. Learning is a dynamic process
that gradually remembers and assimilates data, while unlearning, which is the reverse process that
gradually removes data information, is achieved by backtracking the training trajectory to withdraw
historical gradients in early study (Graves et al., 2021; Thudi et al., 2022). Nevertheless, such tracking
not only contradicts the efficiency demands of unlearning but also yields limited effectiveness due to
the incrementality of training (Wang et al., 2024b).

Consequently, most existing MU methods circumvent the difficulty of estimating sample contribution
through other heuristics. A common strategy is to introduce confusion, e.g., random relabeling
(Golatkar et al., 2020; Graves et al., 2021; Fan et al., 2024) or knowledge distillation from useless
teacher (Chundawat et al., 2023; Kurmanji et al., 2024). However, these approaches suffer from
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several limitations: (i) such confusion causes catastrophe unlearning (Wang et al., 2024b) or over-
forgetting (He et al., 2025), i.e., severe degradation of model utility on the remaining data; (ii) the
degradation in turn necessitates costly maintenance using the remaining data, thereby substantially
undermining MU efficiency; (iii) the remaining data are not always accessible in practice. These
limitations collectively underscore the importance of moving beyond heuristic confusion strategies
and developing more principled unlearning mechanisms to advance MU toward higher utility and
efficiency. Therefore, although quantifying sample contribution is inherently challenging, in this
paper, we make efforts to ground unlearning in a precise characterization of sample’s contribution.

Instead of accumulating the historical contributed gradient update during training, we identify the
clue of contribution directly from the derivative of the training algorithm w.r.t a training sample. The
learning process is a mapping by the training algorithm .4 from the training set D = {(x;,y;)} to
a learned function f: denoted as f = A(D). Therefore, the training sample x, contributes to the
output: 0.A/0x; # 0 while a sample out of the training set does not. A simple yet enlightening
example lies in the support vector machine (Cortes & Vapnik, 1995; Christmann & Steinwart, 2008),
where only the training data can act as support vectors that impact the decision boundary. Thus,
withdrawing the sample contribution can be achieved by suppressing 9.A/Jx;.

The main challenge is that .4 corresponds to a dynamic training process without a closed-form
expression. To address this, we theoretically illustrate that 9.4/0x; could be approximated by the
learned model’s sensitivity to its input , i.e. 0f(x)/0x with f = A(D) in Section 3.2. To derive a
principled and optimization-friendly guideline aligned with the behavior of a retrained model, we
delve deeper into the input sensitivity across different logits. Our empirical investigations under the
machine learning (Section 3.3) and machine unlearning (Section 3.4) scenarios reveal that a sample’s
contribution manifests as disproportionately higher input sensitivity of the target logit relative to
irrelevant logits. In light of this finding, we propose MU-Mis (Machine Unlearning by Minimizing
Input Sensitivity), which suppresses sample contribution by reducing the sensitivity disparity between
the target and non-target logits to the forgetting data.

We evaluate MU-Mis on 3 standard unlearning tasks across 6 datasets, benchmarking against 6 com-
petitive remaining-data-dependent unlearning methods and 4 existing remaining-data-free baselines.
The results demonstrate that MU-Mis achieves effective unlearning while preserving model utility on
the remaining data without utilizing them, performing on par with SoTA remaining-data-dependent
approaches and outperforming all remaining-data-free methods significantly, with the added advan-
tage of notable computational efficiency. Moreover, due to its principled forgetting mechanism,
MU-Mis exhibits stable and effective behavior in sequential unlearning, whereas existing methods
are disclosed to exhibit several deficiencies. Collectively, these results underscore the practicality and
reliability of MU-Mis for real-world deployment.

Our key contributions can be summarized as follows:

® We theoretically and empirically reveal that a sample’s contribution is reflected in the amplified
sensitivity gap between the target logit and irrelevant logits, enabling the identification of sample
contribution with only the pre-trained model.

® Based on the above analysis and findings, we propose MU-Mis, which suppresses the sample’s
contribution by minimizing the sensitivity magnitude gap for the forgetting data.

® Comprehensive experiments demonstrate the effectiveness and efficiency of MU-Mis. To our best
knowledge, it is the first time that a remaining-data-free method can outperform SoTA remaining-
data-dependent methods.

2 RELATED WORK

In Appendix D, we provide a detailed review of existing machine unlearning research, which can be
broadly categorized into three lines: (i) gradient-based methods trace sample contributions through
stored training information but are costly and fragile in DNNSs; (ii) loss-guided re-optimization
methods erase target data through knwoledge confusion or parameter suppression but inevitably hurts
model utility on the remaining data and require access to the remaining data; (iii) remaining-data-free
methods avoid reliance on the remaining data but still suffer from poor utility or auxiliary data
requirements. While existing literatures provide valuable insights, they either fall short in terms
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of utility or practicality. In contrast, we introduce a lightweight and optimizable approximation of
sample contributions that avoids backtracking learning trajectory and minimizes utility degradation,
thereby eliminating additional maintenance with the remaining data. This balance of effectiveness
and efficiency makes our approach more practical for real-world deployment than existing methods.

3  MACHINE LEARNING, MACHINE UNLEARNING AND INPUT SENSITIVITY

3.1 PROBLEM FORMULATION

Machine Learning (ML) is to learn a mapping from the input space X’ to the output space )/, denoted
as the function f(-) : X — ). As we mainly focus on classification models, the output of f is
C-dimensional in a C-category classification model. Learning is performed by a training algorithm
A, which generally takes in a training dataset D and returns the learned function f, i.e., the outcome
of A varies with different training datasets. To investigate sample-wise influence on the learning
process, we consider A in a broader sense and distinguish different training processes by the training
dataset D = {(x;,y;)}™,. That is to say, we have a family of the training algorithm .Ap and each
one is a multivariate function that takes all the samples {x; € X'} as input, regardless of whether
they are in the training dataset D. Therefore, the output of Ap does not vary with each input variable,
but only varies with the change of the training data x; € D, and makes no response to the change of
samples out of the training set.

Machine Unlearning (MU) is to remove the influence of forgetting data Dy C D from the pre-
trained model w,, while preserving model utility on the remaining data D, = D\Djy. The learned
function f is parameterized by parameters w € R? with input variable x, i.e., instantiated as f(z;w).
A good approximate unlearning mechanism should efficiently and effectively transform w,, into a
sanitized model w,,, such that the output distribution of w,, closely matches retrained model w.,..

Remark on notation. To facilitate the understanding of the objectives in our analysis, we only bold
the input variables of the training algorithm Ap and learned function f (), which are respectively
x; and z in the following analysis.

3.2 THEORETICAL ANALYSIS CONNECTING SAMPLE CONTRIBUTION AND INPUT SENSITIVITY

As previously discussed, machine unlearning is to withdraw sample’s contribution to the learning
process, and an efficient unlearning method should explore the contribution directly from the pre-
trained model. To detach per-sample contribution with the pre-trained model, we propose to identify
the clue of contribution from the derivative of training mapping Ap to training sample x;, i.e.
O0Ap/0x;. Recall that Ap is determined by the training dataset D = {(«;, y;)}!", and outputs the
learned function f(x;w,). Then 0.Ap/0x; is to compute O f(x; w,)/Ox;. However, there is no
explicit expression for this derivative. Therefore, in this part, we reflect on the learning dynamics
to seek a surrogate with the pre-trained model. Figure 1 provides an overview of the key objectives
investigated in our following analysis.

Learned function

Sample Contribution £ wp) Input Sensitivity
0A/0x; | of /ox
Train sample X; |>- -| GD update Awy |— - —1 Pre-trained Model wy, | Model input X

Figure 1: A brief overview of the theoretical connection between sample’s contribution and a
pre-trained model’s input sensitivity. The dashed arrows illustrate how the influence of a training
sample propagates through gradient updates to the pre-trained model.

Gradient Descent (GD). After T iterations training updates in the parameter space, we have pre-
trained model parameter w,, = wp + Zle Awy, where wy is randomly initialized model parameters
and Awy, = wy41 — wy, is the k™ parameter update. Specifically, when training loss £ and gradient
descent with step size 7 are used, we have
 OL(x:) ~ Of (i3 w) OL(x:)
Awy = — = — _ .
Wi n aw |w=wk n ; aw |w=wk 8f

i=1
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Function space update induced by GD. Viewing machine learning from the function space with
first-order Taylor expansion on parameters, correspondingly we have f = fo + 2521 A fr, where
fo = f(x,wp) is initial function and A f, is induced by parameter update Awy. The evolution in
function induced by parameter update is:

of (x;w " Of (s w of (x;;w oL(x;
=1

Learned function. To better explain the idea, we make simplifications: (i) Note that éww) — is

the mapping from model input x to the induced backpropagation gradient with parameters wy. We
abbreviate this mapping as g () : X — R%*C and its derivative to input  as gr.» where d is total

number of model parameters. (ii) In classification problem with cross-entropy loss as £, we have

aﬁa(}”’) = e. — p(x;), where e, is a one-hot vector with only ™M element equals to 1, and p is the

probability vector of x;. The final learned function f is

flx;wp) = fa;wo) ZAfk (z,w) = f(x;wo) T]ng Z x;)(e. — p(x;)) .

e @)
Notice that term (1) is related to the forward inference process while term (2) is related to the
machine learning process. Derivative of f w.r.t  indicates how the prediction of f varies with its
input x at inference time, while derivative w.r.t x; indicates how the learned function f varies when
the training sample x; varies. The former implies the learned model’s sensitivity to its input, and
the latter is the training sample’s influence on learning. Next, we take the derivative of f w.r.t
and x; respectively to view their relationship. Note that p is a probability vector determined by x;.
Due to softmax activation, we consider p(x;) hardly changes around x;, and omit its derivative term
w.r.t ;. The difference in mapping gx when x; changes is also omitted.

%{;l‘u}p) =N ZZ:l g;(m’b)gk(m)(er —p(mi)),
=:Cp (z,2;) (1)
af(g;:wp) _ :cmwo _nzk D gi@)gn(@a)(ec — p(@:)).

=:Sg(z,x;)

Input sensitivity of learned function reflects sample contribution. Cj(x,x;) determines the
prediction change on & when «; changes, and Sk (2, ;) stands for the part of model’s sensitivity to

x contributed by training sample «;. Note that mep) is similar to the definition of memorization,

which is framed as self-influence (Feldman, 2020; Feldman & Zhang, 2020). To be more specific,
memorization of a sample is defined as the prediction difference in itself when training with or without
it. Similarly, the self-influence here is the prediction difference on x; when it slightly changes, i.e.

af(:l:,,wp) 6f(wuwp)

Thus we consider as the reflection of sample «;’s contribution. From the

formulatlon we have Si(x;, ;) = Ck(:ci, x;). For a specific training sample & € D, the learned
model’s sensitivity to it can be further decomposed as

af (;w, of a
(gww)}mvpi (g:wwo L "ZZ (&, @)

T

8f(a: wo
U 3 s+ ¥ s
zeD/z
- 0 f (2, wo)
= 77723,@(3:«,:2)+87’°\m:fn2 > Sk(d, ). )
k=1 z k=1z€D/&
Contribution Term Residual Term

The randomly initialized function fj is generally quite insensitive to input change. Thus, the first
term of the above residual term is very small. The second term is related to the correlation between
the gradient on Z and the sensitivity of the gradient on . We use a simple MLP model to illustrate the
insight of S (Z, &) << Sk(Z, ) with & # Z in Appendix E. Therefore, the residual term is relatively
smaller than the contribution term. In summary, the contribution of a training sample to the training
process would be approximately reflected in the pre-trained model’s output sensitivity to the sample.
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Empirical validation. We validate the con-
tribution to learning by comparing ||V f|| 7
of the training data before and after training in
Figure 2. In a randomly initialized model, there
is little response to input changes, only about
10~*. After training, there is a significant or-
der of magnitude growth to 103, indicating an
increased attention of the trained model to the
training data’s variations. This implies that the
training data contribute to model performance,
and such efforts include promoting the model’s
sensitivity to them during training.
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Figure 2: Input sensitivity |V, f| 7 of training
data before and after training. Left: In randomly
initialized model wy. Right: In well-trained model
wy,. After training, the model exhibits significantly
increased sensitivity to the training data, reflecting
their contribution during training.

3.3 INPUT SENSITIVITY OF THE TARGET AND IRRELEVANT CLASS LOGIT

During training, model predictions on samples are driven toward their correct labels, so sample
contributions might differ across logits. To further refine our view of sample contribution, we
examine individual logits of f(x) € R in the following part.

Let f. denotes the logit output of the target

t | 0.06 ||V, fe(wo)llr 0.06 Vi fe(wp)llF
class and f. denotes the logit output of irrel- Wl 3 (FAATE
evant classes. Figure 3 compares distributions £ ** : .u 8004

1 o =
between ||V fellrand o= > [[Vafollr 200 ‘ £ 0.02
1 1 - . L. . . .
(denoted as va fer|| for brevity in the fol- o0 e 000 e 06 0% 10
lowing) of training data before and after train- Norm Norm 1e3
ing. In the randomly initialized model, these Figure 3: Input sensitivity ||V,f:|r and

two quantities are of comparative magni-
tude, but |V f.||r becomes much larger
than ||V fo | r after training. This observa-
tion implies that samples contribute to ampli-
fying ||V fc||F to surpass ||V fo | F during
training, generating a discernible difference in
whether a sample has been learned. A complementary explanation of this finding comes from the
generative view of discriminative models: the softmax-based discriminative classifier is revealed to
be implicitly a density model which learns data distribution (Grathwohl et al.; Srinivas & Fleuret,
2021). From this viewpoint, the logits f(x) of standard classifiers are un-normalized log-densities,
and corresponding input-gradients V, f; (x) are log-gradients of a class-conditional density model.
In other words, we have V logps(x|y = i) = V fi(x) in the classification model, providing a
rationale for the observed discrepancy.

IV fe || before and after training. Left: ran-
domly initialized model wg. Right: well-trained
model w),. After training, the gap between target
and irrelevant class sensitivities enlarges, providing
a clearer signal of the sample’s contribution.

3.4 INPUT SENSITIVITY OF SAMPLES PRESENT AND ABSENT IN TRAINING

For effective unlearning, the optimization objective should accurately steer the pre-trained model
toward the retrained model. To validate that the theoretically grounded sensitivity gap provides
a reliable measure of sample contribution to guide unlearning, we empirically examine the input
sensitivity of forgetting data under MU scenarios (introduced in Section 5.1 and Appendix G.1).

For each forgetting sample, we compute the difference A between the retrained and the pre-trained
model’s sensitivity to it, where the sensitivity including ||V fe|lr, |V fe|lr and ||V fellr —
IVzfellp. Aiming for a light-weight unlearning algorithm, we prefer an optimization direction
rather than modeling a distribution or specifying a target value for each sample. Hence, we focus on
the sign of A and count the ratio of rise and fall of A to examine the overall trend in Figure 4.

From left to right in Figure 4, A is the sample-wise difference between the retrained and pre-trained
model on ||V fellp, | Vafer | and ||V fellp — ||V fer || 7. For each quantity, there is a consistent
trend across different unlearning settings. Generally, f. of the retrained model exhibits lower
sensitivity and f. exhibits higher sensitivity to the forgetting data than the pre-trained model. And
their sensitivity magnitude gap is consistently smaller in the retrained model across different settings.
Therefore, the sensitivity magnitude gap faithfully reflects the behavior of the retrained model and
thus serves as a reliable objective to guide unlearning.



Under review as a conference paper at ICLR 2026

fullclass-Cifar100  pmm A<o0 | ] . A<O mm A<O |
fullclass-PinsFaceRecognition A>0 I — A>0 A>0 I
fullclass-TinyImagenet I I I
subclass-Cifar20-rocket — 1 _
subclass-Cifar20-sea —_— — I
subclass-Cifar20-lamp —_— - I
randomsubset-TinyIlmagenet I — —
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Figure 4: Ratio of input sensitivity difference A rise and fall of the forgetting data under
different unlearning settings. From left to right, A is the sample-wise difference between the
retrained and pre-trained model on ||V fe||r, |Vzfollr and |V fellp — [|Vafe ||p- Sample’s
contribution to input sensitivity includes promoting |V f.||r and suppressing ||V fo ||, thereby
enlarging the magnitude gap |V fellr — |Vafe || F-

4 PROPOSED METHOD

4.1 MU-MIS: MACHINE UNLEARNING BY MINIMIZING INPUT SENSITIVITY

II.l t he abOVf.: section, \fve.theoreticall.y and &M= Algorithm 1 MU-Mis: Machine Unlearning by
pirically derived an optimizable and lightweight Minimizing Input Sensitivity

approximation of sample contributions from the - -
perspective of input sensitivity, showing that they Input: Forgetting data Dy; Pre-trained model
manifest as disproportionately higher sensitivity weights wp; Learning rate 7; Stopping

of the target logit relative to irrelevant logits. threshold ratio 4.
# Initialization

D W 4 Wp, € &= 00
# Iterative optimization
2: repeat

In light of this finding, we propose to withdraw the
sample’s contribution by reducing such enhance-
ment on the sensitivity magnitude gap. Minimiz-
ing this loss guides the pre-trained model to roll

back ||V, fe|[r and pick up ||V, fe||r. Mathe- 3:  for each forgetting sample z € Dy do
matically, our proposed unlearning loss is: 4 R/a;lédomly select an irrelevant class

1 c #c

LDpw) =5 > (IVefelasw)l7- 5. end for
farepy (3) 6: Compute loss £ according to equation 3
vafc'(xf7w)“2F) 7. Update wy+1 ¢ wy —nVL
. ) 8:  Update € + min(e, |V, for (z,wt) | F)

where Ny is number of the forgetting data, crep-  g. yntil |V for (z,w)||p > € and

resents the target class of sample x and ¢’ # ¢ IV for (, wy)||
denotes an irrelevant class. For each forgetting T > )
IV fer (2, wo) || P

sample, a new ¢’ is randomly selected every time Output: Updated model weights w
the loss is computed. put: Up g t

Stopping Guideline. To ensure a practical deployment of MU-Mis, we design a stopping rule
for terminating optimization once the withdrawal is completed. Empirical analysis in Appendix F
reveals a consistent trend of metrics during our optimization: as the MU-Mis loss decreases, forgetting
accuracy (FA) drops steadily, while the accuracies on retained (RA) and test data (TA) initially decline
slightly and then grow with the recovery of irrelevant-class logit sensitivity. Crucially, RA approaches
the retrained model when this sensitivity returns to its initial level. Therefore, we introduce a threshold
ratio § to govern the termination of unlearning. This criterion ensures that optimization halts when
irrelevant-class sensitivity is sufficiently restored. The overall algorithm is outlined in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Tasks, Datasets and Models. We evaluate unlearning across 3 settings: full-class (CIFAR-100
(Krizhevsky et al., 2009), PinsFaceRecognition (Burak, 2020), and Tiny ImageNet (Le & Yang,
2015)), sub-class (CIFAR-20 (Krizhevsky et al., 2009)), and random-subset (CIFAR-10 (Krizhevsky
et al., 2009) and SVHN (Netzer et al., 2011)). ResNet-18 (He et al., 2016) is adopted as the default
backbone, and we additionally evaluate under ViT (Dosovitskiy et al., 2021) to highlight the efficiency
of remaining-data-free methods. Beyond unlearning utility, we assess the resilience of unlearning
methods by executing multiple full-class and sub-class unlearning requests iteratively.
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Evaluation Metrics. MU methods should be assessed from three aspects (Xu et al., 2024): utility,
privacy, and efficiency. For utility, we compute forgetting data accuracy (FA), remaining data accuracy
(RA), and test data accuracy (TA) of the unlearned model. The average gap (Avg. Gap) between
the retrained model and the unlearned model across above 3 accuracy-related metrics are computed
to illustrate the utility disparity. We compute the train (FGTA) and valid (FGVA) accuracy on the
forgotten classes in sequential unlearning. Regarding the privacy guarantee, we use membership
inference attack (MIA) (Chundawat et al., 2023) to probe the remaining information of the forgetting
data. For efficiency, we provide the run time efficiency (RTE) in seconds to indicate timeliness.

Baselines. We compare against 6 remaining-data methods: Bad Teacher(BT) (Chundawat et al.,
2023), Fine-tune(FT) (Warnecke et al., 2023), SCRUB (Kurmanji et al., 2024), SSD (Foster et al.,
2024b), DUCK (Cotogni et al., 2023) and SalUn (Fan et al., 2024) as well as 4 remaining-data-free
methods: RL (Golatkar et al., 2020),NG (Thudi et al., 2022), JiT (Foster et al., 2024a) , SCAR (Bonato
et al., 2025). Notably, unlike SCAR, our method requires no auxiliary OOD data. Further details on
sequential unlearning settings, metrics, and baselines are provided in Appendix G.1.

5.2 UNLEARNING UTILITY

Table 1: Performance overview for full class unlearning task evaluated on CIFAR-100 and Tiny
ImageNet using ResNet-18. This table includes performances of our proposed MU-Mis, 6 remaining-
data-dependent and 4 remaining-data-free methods, which are delineated by a horizontal line. The
result format is given by a1, with mean a and standard deviation b over 5 independent trials. The
metric average gap (Avg. Gap) is calculated by the average of the performance gaps measured in
accuracy-related metrics, including FA, RA and TA. RTE is reported in seconds. Values in terms of
accuracy-related metrics deviating by more than 5% from the retrain model are highlighted in red.

Method CIFAR-100 Tiny ImageNet
RA FA TA Avg. Gap| MIA RTE RA FA TA Avg. Gap| MIA RTE
Pretrain 76.41 79.69 76.47 26.84 95.80 - 65.85 62.00 65.50 21.03 93.59 -
Retrain =~ 76.52:927  0.001000 75.764024 0.00 2.8740.46 - 65361003  0.00s003  64.9040,03 0.00 4.8040.04 -
BT 76.67:003  0.00s000 76.02:003 0.14 0.0040.00 32 6490001 0.00:000 64.53:001 0.28 0.00:000 240
FT 76.67s021 0.28s062  75.88402 0.19 0284000 250  64.16s026 0.00:000 63.87:022 0.74 4404058 262
SCRUB  76.81:004 0.00:000 76.02:004 0.18 5.57s034 124 65.06:004 0.00s000 64.69:003 0.17 14.60s050 860
SSD 76.275000 0.00s000 75.49:000 0.17 0.0040.00 26 65.58:000 0.004000 65.19:000 0.17 0.0040.00 59
DUCK  75.82:018 0.20s045 75.1310.17 0.51 0.00:000 100 64.97:014 0.002000 64.6140.14 0.23 2.6040.46 55
SalUn  76.63:003 1.20:045 75854003 0.47 0.00:000 254  65.21s050 0.00:000 64.884010 0.06 4404040 2630
NG 69.76:001  0.00:000 69.23:0.01 4.43 0.0040.00 2 59.62:000 0.00s000 59.26:0.00 3.79 1.8040.00 3
RL 6598012 5.22:045  65.52:0.11 8.66 0.0040,00 12 534100 0.00:000 53.04:001 7.94 2.0040.00 10
SCAR 71.33:012  5.61i089  70.6640 14 5.29 13.28.067 367  59.98.006 0.00x000 59.62:006 3.55 0.67:0.12 1052
JiT 65444014 3.00s076 64.87.013 8.32 4.444030 15 53.82.000 0.004000 53.164008 7.76 5.29:025 5
MU-Mis  76.42:007 0.00:000 75.641007 0.07 0.0040.00 30 64.95:000 0.00:000 64.85:000 0.15 0.2040.00 83

Table 2: Performance overview for sub-class unlearning task evaluated on ‘Rocket” and ‘Sea’ (where
the retrain model exhibits different degrees of generalization ability on the unlearned sub-class) of
CIFAR-20 using ResNet-18. The content format follows Table 1.

M Rocket Sea
ethod
RA FA TA Avg.Gapl MIA  RTE  RA FA TA Avg.Gap. MIA  RIE
Pretrain 85.26 80.73 85.21 26.53 92.89 - 85.09 97.66 85.21 5.94 91.81 -
Retrain  84.85:000 2.695045  84.07:010 0.00 12062075 - 8460.02 80931220 84.61i010 000  516lug -
BT 85240 280s045 84361000 0.26 0005000 27 8250000 81.00s000 82.63:000 138 15000000 47
FT  8270s019 420s13 81.97.01 1.92 540,00 138 8236020 88.00m141  82.4341 60 3.83 58.08.179 417
SCRUB  84.73.013 5.80+130 83.84:0.13 1.15 13.2840.02 113 84.86s010 88.17.170 84.864013 2.58 57.07171 113
SSD 84.23.00s  2.60:080  83.35:0.06 048 3.76:036 18 84.79:000 78.00:000 84.61:000 1.24 8.00:0.00 7
DUCK  82.09:033 194305 81.434035 7.37 32.844 57 58 80.95:019 66.45:530  80.7710.19 7.34 54.924529 68
SalUn  84.82.005 299125  84.00.005 0.13 0.00:000 1042 82.85.000 81.00s000 83.10:000 L11 1340000 63
NG 6284is¢5  567mos  0248.55 1552 727015 4 8095:00 7500000 80.84u002 445 60002000 3
RL  60.8% 06 652407 60.50m0, 17.11 370.5 5 8048.000 77.00s000 80.344000 411 48700, 3
SCAR 764902 43.8ligas  76.264023 19.09 28.044 67 442 76304015 77404071 76.12.019 6.77 51844108 434
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MU-Mis 84.28.018 2.91s100  83.50:0.19 0.49 0.07:0.25 21 84.35.003 81.00s205 84.33.00s 0.20 1.254185 10

MU-Mis outperforms existing remaining-data-free methods significantly and remains highly
competitive with SoTA remaining-data-dependent methods. Table | and Table 2 correspond to
MU performances on full-class and sub-class unlearning respectively. More experiment results are
referred to Appendix H.1. In terms of unlearnig utility, MU-Mis achieves the smallest Avg. Gap in
full-class-CIFAR-100, full-class-PinsFaceRecognition, sub-class-Sea and sub-class-Lamp unlearning,
outperforming all the baseline methods. From the highlighted values in red in the tables, we could
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see that existing remaining-data-free methods suffer from poor utility preservation. In terms of
privacy, MIA values of MU-Mis remain consistently low across all three tasks, indicating successful
privacy protection. In addition to resolving the issue of constrained access to the remaining data, our
remaining-data-free method also offers a notable advantage in MU efficiency. In unlearning a full
class Tiny ImageNet, MU-Mis is up to 30x faster than SalUn, with only 0.09 higher Avg. Gap.

Efficiency advantage is more pronounced Table 3: Performance overview for full class un-

on larger scale models. Table | shows the Jearning task evaluated on Tiny ImageNet using
performance when unlearning a full class of  ViT. RTE is reported in minute.
Tiny ImageNet under ViT (Dosovitskiy et al.,

. .« . Methods RA FA TA Avg. Gap | MIA RTE (min)
2021). MU-Mis outperforms other remaining- T F Sy ros—ryy R—y
data-free methods ! significantly and performs Remain 8635017 00000 8592014 000 880026
comparably with the most competitive method Saln 89w 00uw BPon 18 00w W
! o N NG 63.12:00 0.00s000 62885000 1528 0.00.000 0.21
SalUn in terms of model utlhty and privacy. RL  67.69.000 000s000 6743:000 1238 000,00 015
MU-Mis 82135024 0.00:000 82.17:023 2.69 0.0040,00 3

The efficiency advantage of MU-Mis becomes
markedly pronounced: the unlearning time is reduced from more than 1 hour to 3 minutes. We
also evaluate subclass-CIFAR20-sea unlearning under ViT and show the results in Table A9, where
MU-Mis exhibits the best Avg.Gap and is 20 faster than SalUn.

5.3 UNLEARNING RESILIENCE: SEQUENTIAL MACHINE UNLEARNING
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Figure 5: Disparities in accuracy-related metrics between the unlearned model and the retrained
model for full class and sub-class sequential unlearning. Left: Iteratively unlearns 5 distinct full
classes of CIFAR-100. Right: Iteratively unlearns 5 sub-classes of the same super-class ‘Flower’.

Sequential unlearning requires principled unlearning mechanisms. In practice, unlearning
requests may arrive sequentially, requiring multiple executions of the unlearning method. Wang et al.
(2024a) point out that sequential unlearning greatly challenges the memorization management ability
of unlearning methods due to underlying associations among unlearned classes. The sequentially
unlearned model might break down due to disordered forgetting operation, exposing its accumulated
effects on model knowledge. Therefore, to highlight the importance of principled forgetting, we
perform sequential unlearning. We examine the impact of subsequent requests on previous unlearning
efforts and present the disparities between the unlearned model and the retrain model at each iteration
in accuracy-related MU metrics in Figure 5. For detailed experiment settings, refer to Appendix G.1.

Dificiencies in existing MU methods. From Figure 5, we can see that there are 3 kinds of deficiencies
in existing SOTA MU methods:

(i) Performance Recovery. The performance on the forgotten classes stages a recovery in BT and
Salun unlearned model, indicated by the above zero FGTA and FGVA. This suggests that retargeting
model’s outputs of the forgetting data does not completely remove associated knowledge, posing a
substantial risk since the concealed information might still be exploited by privacy attackers.

'We failed to identify effective hyper-parameters for JiT and SCAR for this experiment.
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(ii) Knowledge Residue. High disparity of FTA and FVA in sub-class task indicates that FT method,
which relies on “catastrophic forgetting” (Kirkpatrick et al., 2017) to unlearn, fails to unlearn
effectively in sub-class task due to the resemblance between the forgetting and remaining data.

(iii) Utility Breakdown. In sub-class task, SSD exhibits a marked decline in utility after the last
unlearning request, demonstrated by the final RA of 76.33%. In contrast, RA in the retrained model
and MU-Mis unlearned model are respectively 84.83% and 84.59%. Such a plummet implies a
potential risk of model utility breakdowns when the magnitude of parameters is continuously scaled.

Resilient performance of MU-Mis to sequential W Apple mEN Fish W Baby Bear Beaver
unlearning requests. To facilitate an intuitive
assessment in terms of utility and resilience, we
compute the utility Avg. Gap and resilience Avg.
Gap for each iteration in Figure 6. The utility Avg.
Gap is averaged over FTA, FVA, RA and TA, and
the resilience Avg. Gap is averaged over FGTA
and FGVA. From Figure 6, it is evident that MU-
Mis and SSD are significantly better than BT, FT,

and Salun, demonstrating a notably small disparity 2107 1945 s 2 o2
to the retrained model regarding both the utility o = 3 = 0 E p g r o e
and resilience Avg. Gap across the full class and ; . : e
sub-class tasks. Importantly, MU-Mis achieves Figure 6: Qverview of utility Ave.
these results without relying on the remaining data,
which are required by SSD.
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Mis exhibits the lowest KL divergence Iterations

from the retrained model throughout both Figure 7: KL divergence between outputs of un-
the full-class and sub-class sequential un- learned model and retrained model during full class
learning processes. (left) and sub-class (right) sequential unlearning.

Summary. In general, MU-Mis stands out with its comprehensive capabilities in terms of unlearning
utility, unlearning resilience as well as output indistinguishability, while current SOTA MU meth-
ods are disclosed to exhibit limitations and deficiencies in certain aspects. Their inappropriate or
inadequate unlearning approaches undermine their reliability and applicability in practical scenarios.

5.4 SUPPLEMENTARY EXPERIMENTS AND ANALYSES

We provide the following experiments and analyses for completeness in Appendix: (i) an ablation
study of each loss term in MU-Mis in Appendix H.2; (ii) a hyper-parameter sensitivity analysis
showing stability of MU-Mis in Appendix H.3; (iii) visualizations of attention map confirming
effectiveness of MU-Mis in Appendix H.4; (iv) an empirical analysis attributing the effectiveness of
MU-Mis to the orthogonality of input sensitivity gradients among samples in Appendix .

6 CONCLUSION

There are 3 main challenges in machine unlearning: the stochasticity of training, incrementality
of training, and catastrophe of unlearning (Wang et al., 2024b). We address incrementality by
quantifying sample contribution through the lens of input sensitivity. Building on this, our proposed
MU-Mis achieves effective and efficient unlearning without compromising model utility, alleviating
catastrophic unlearning. Experiments validate the superiority of this principled forgetting mechanism.
Overall, MU-Mis is well-grounded, lightweight and remaining-data-free, offering a practical and
competitive alternative to existing unlearning methods. Furthermore, we highlight in Appendix J that
there is a profound connection between input sensitivity view and machine unlearning.
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APPENDIX

A ETHICS STATEMENT

This work studies machine unlearning (MU), motivated by the “right to be forgotten,” with the goal
of enhancing user privacy and data protection. All experiments are conducted on publicly available
datasets and standard benchmark models; no sensitive or personally identifiable information is used.
While unlearning techniques could in principle be misused to manipulate model behavior, our focus
is on strengthening trust and accountability in machine learning systems. We believe this work
contributes positively to the development of privacy-preserving and ethically responsible Al.

B REPRODUCIBILITY STATEMENT

We include anonymized supplementary materials containing the complete algorithm implementations
for executing all experiments. We provide detailed experimental settings, hyperparameters, datasets,
and evaluation metrics in our Appendix to ensure reproducibility.

C THE USE OF LLMS

Large language models (LLMs) were employed solely as auxiliary writing tools. Their usage was
strictly limited to surface-level assistance, including grammar correction, stylistic polishing, clarity
improvement, and formatting consistency. LLMs were not involved in formulating research ideas,
designing methods, conducting analyses, interpreting results, or drawing conclusions. At no stage
were LLMs used to generate original content, experimental designs, or theoretical claims. All text
segments refined with LLM assistance were subsequently reviewed, validated, and, where necessary,
rewritten by the authors to ensure technical accuracy and precision of expression. The authors bear
full responsibility for the final presentation and content of this paper. This disclosure is made in
accordance with conference guidelines on LLM usage to ensure transparency and research integrity.

D RELATED WORK

The primary goal of machine unlearning (MU) (Shaik et al., 2023; Xu et al., 2024; Bourtoule et al.,
2021) is to remove the influence of specific data points on a pre-trained model, protecting data
privacy. MU can be categorized into two types (Shaik et al., 2023): exact MU and approximate MU.
Exact MU approaches parameters of the retrained model and guarantees the privacy risk statistically,
extensively studied within convex settings and linear models (Guo et al., 2020; Suriyakumar &
Wilson, 2022; Neel et al., 2021; Giordano et al., 2019; Koh & Liang, 2017). However, exact MU for
over-parameterized deep models requires retraining the model from scratch, which is impractical.
Therefore, to balance the unlearning completeness and efficiency, approximate MU is proposed to
approach the output distribution of the retrained model. In this paper, we concentrate on approximate
unlearning, as it is more practical in large-scale models and situations with limited time and resources.

MU by Gradient-Based Update. One straightforward way to retrieve sample contribution is to keep
and utilize the historical information (e.g. parameters and gradients) during the training process.
Graves et al. (Graves et al., 2021) withdraw gradient updates of related batches, and Wu et al. (Wu
et al., 2020) utilize intermediate checkpoints and quasi-newton method for rapid retraining. The
requirement of storing historical information raises memory concerns. Another line of work estimates
the contribution of the forgetting data on learned model parameters through influence function (Koh &
Liang, 2017), initially introduced to unlearning by Guo et al. (Guo et al., 2020). However, calculating
the inverse Hessian in influence function is computationally expensive for DNNs and follow-up
studies are devoted to reducing the computation (Mehta et al., 2022; Peste et al., 2021; Meng et al.,
2022). While influence-based unlearning shows potential, the withdrawal still hurts performance
on the remaining data (Wu et al., 2022). Moreover, the influence function is revealed to be fragile
in DNNs (Basu et al., 2020; Bae et al., 2022; Hammoudeh & Lowd, 2024) due to its reliance on
the assumptions of convexity and optimality. Existing data influence estimations for DNNs (Hara
et al., 2019; Pruthi et al., 2020; Chen et al., 2021; Hammoudeh & Lowd, 2024) all require retracing
the training trajectory and cannot be optimized and applied to MU. In this paper, we theoretically
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indicate that sample contributions will be approximately reflected in the sensitivity of the pre-trained
model to input samples, opening up a new perspective to view sample contribution in DNNs.

MU by loss guided re-optimization. Above gradient-based unlearning methods suffer from practical
limitations for DNNs. Generally, practical MU methods unlearn by fine-tuning the model to optimize
a proposed loss. They typically follow two design ideas: one is to make model’s behavior on the
forgetting data similar to that on unseen data through knowledge distillation (Chundawat et al., 2023;
Lin et al., 2023; Kurmanji et al., 2024) or label confusion (Graves et al., 2021; Fan et al., 2024), the
other is to suppress the part of parameters that are responsible for predictions of the forgetting data
(Liu et al., 2024; Foster et al., 2024a; Fan et al., 2024). However, both the confusion and suppression
approaches inadvertently damage the model’s utility on the remaining data. As a result, unlearning is
done either in an “impair-then-repair” regime (Tarun et al., 2023) or through specifically designed
mechanisms (Hoang et al., 2024; Foster et al., 2024b; Fan et al., 2024) to alleviate the damage.
Since additional maintenance with the remaining data undermines the efficiency of MU, we pursue
a more principled forgetting operation by explicitly identifying sample contributions. This enables
unlearning with minimal utility degradation and eliminates the need for compensatory procedures.

Remaining-data-free MU. Developing remaining-data-free methods aligns more closely with the
essence and practical demands of MU, given the limited accessibility of retained data and the need for
efficiency in practice. JiT (Foster et al., 2024a) proposes to smooth the output around the forgetting
data by minimizing local Lipschitz value. While SCAR (Bonato et al., 2025) distills knowledge
from the pre-trained model and utilizes Out-of-distribution (OOD) data as a surrogate to preserve
model utility. However, both approaches have an obvious performance gap to SoTA remaining-data-
dependent methods, and SCAR still relies on additional OOD data. Remaining-data-free unlearning
is essentially about developing a more principled forgetting mechanism. By identifying sample
contribution, we enable a nuanced removal of forgetting data and achieve significant improvements
over existing methods.

E A Toy EXAMPLE COMPLEMENTING SAMPLE CONTRIBUTION DERIVATION

We use a simple MLP model to illustrate the insight of Sy (%, %) << Sk (&, &) with & # Z. Assume
the I layer output of model is 2! = ¢(#'x'~1), where §' refers to I layer parameter and ¢ refers to
activation function. Then,

8fk afk 1—1T

9= Tgr = G (A1)
) )
Ik~ 900x ~ 9(0-Y) oz
ofr 1o Oxl—2
= a(glf:fl)fb’(@l Ll =)0 (A2)

Thereby, the inner-dot g, (2)gx (Z) oc ' ~1¢/(0'~12!=2). If ReLU activation is used, where ¢/ (x) = 1
ifx > Oelse ¢'(x) =0, Sp(&, T) o g;,(Z)gr(Z) will be quite small. The conclusion here is that the
residual term is relatively smaller than the contribution term. Therefore, the contribution of a training
sample to the training process would be approximately reflected in the pre-trained model’s output
sensitivity to the sample.

F STOPPING GUIDANCE

The optimization should cease once the withdrawal is completed, requiring a stopping guideline for
practical use. We monitor both the optimization objective and unlearning metrics during minimizing
the MU-Mis loss Eq.(3) in Figure A1, using the example of unlearning with ResNet-18 on fullclass-
CIFAR100-rocket. In Figure A1, different colors represent different learning rates and the purple
dashed line represents the accuracy of the retrained model. A consistent trend on accuracy change
during unlearning is observed across different learning rates: as the optimization of MU-Mis loss
progresses, the accuracy of the forgetting data (FA) gradually decreases, the accuracy of the remaining
(RA) and test data (TA) first decrease slightly and then grow up with the recovery of |V, fo (z, wp) || -
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G EXPERIMENT DETAILS

G.1 EXPERIMENT SETTING

Tasks, Datasets and Models. We investigate 3 kinds of unlearning tasks in supervised image classifi-
cation scenarios, including forgetting a full class, a sub-class under a super-class, and a random subset.
We evaluate full class unlearning on CIFAR-100 (Krizhevsky et al., 2009), PinsFaceRecognition
(Burak, 2020), and Tiny ImageNet (Le & Yang, 2015), sub-class unlearning on three sub-classes
of CIFAR-20 (Krizhevsky et al., 2009), random subset unlearning on CIFAR-10 (Krizhevsky et al.,
2009) and SVHN (Netzer et al., 2011). We perform sequential unlearning by iteratively unlearning
a full and a sub-class to evaluate the algorithm’s robustness to privacy onion effect (Carlini et al.,
2022). For iterative full class MU, we iteratively unlearn 5 distinct classes (label 0-4, corresponding
to “Apple”, “Fish”, “Baby”, “Bear” and “Beaver”) of CIFAR-100 in line with Wang et al. (Wang
et al., 2024a). For sub-class setting, we iteratively unlearn 5 sub-classes (“orchid”, “poppy”, “rose”,
“sunflower”, “tulip”) under the same superclass “flower” of CIFAR-20. We use ResNet-18 (He
et al., 2016) for all the above experiments. To further indicate the significant efficiency advantage of
our remaining-data-free method, we perform full class unlearning on Tiny-ImageNet and sub-class
unlearning on CIFAR-20 with ViT.

Evaluation Metrics. MU methods should be assessed from three aspects: utility, privacy, and
efficiency(Xu et al., 2024). Beyond that, in practice, where the unlearning requests are made
constantly, the unlearning resilience should be assessed, i.e. subsequent unlearning should not spoil
previous unlearning efforts. For utility, we compute forgetting data accuracy (FA), remaining data
accuracy (RA), and test data accuracy (TA) of the unlearned model. FA and RA are computed on the
valid set in class-wise unlearning and on the train set in random subset unlearning. We compute the
average gap (Avg. Gap) between the retrained model and the unlearned model on accuracy-related
metrics, including FA, RA and TA to illustrate the utility disparity. In terms of resilience, we evaluate
on sequential unlearning tasks. We compute the train (FGTA) and valid (FGVA) accuracy on the
forgotten classes and quantify the unlearning resilience with the average of their disparity to the
retrained model (Resilience Avg. Gap). To further examine the indistinguishability between the
retrained and unlearned model, we compute the KL divergence between their output distributions
over the entire dataset. The retrained model is an oracle of approximate MU, therefore, above disparity
metrics should be as small as possible. Regarding the privacy guarantee, we use membership inference
attack (MIA) (Chundawat et al., 2023) to probe the remaining information of the forgetting data. The
MIA success rate indicates how many samples in D are predicted as membership samples of the
unlearned model. From a privacy perspective, a lower MIA value implies less information leakage
in the unlearned model and is preferred (Liu et al., 2024). For efficiency, we provide the run time
efficiency (RTE) in seconds to indicate timeliness.
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Baselines. We compare our method along with 6 baselines which utilize the remaining data, as well
as 4 remaining-data-free methods. The 6 baselines include Bad Teacher (BT) (Chundawat et al.,
2023),Finetune (FT) (Warnecke et al., 2023), SCalable Remembering and Unlearning unBound
(SCRUB) (Kurmanji et al., 2024), Selective-Synaptic-Dampening (SSD) (Foster et al., 2024b),
Distance-based Unlearning via Centroid Kinematics (DUCK) (Cotogni et al., 2023) and Saliency-
based unlearning (SalUn) (Fan et al., 2024). The 4 remaining-data-free methods include Random
Labeling (RL) (Golatkar et al., 2020), Negative Gradient (NG) (Thudi et al., 2022), Just in Time
unlearning (JiT) (Foster et al., 2024a) and Selective-distillation for Class and Architecture-agnostic
unleaRning (SCAR) (Bonato et al., 2025).

The detailed method of each baseline is as the following:

* BT (Chundawat et al., 2023): Bad Teacher transfers knowledge from useful and useless
teachers for the remaining data and the forgetting data. The code source is https://
github.com/if-loops/selective-synaptic—dampening.

* FT (Warnecke et al., 2023): Finetune optimizes the pre-trained model with the remaining
data, unlearning relying on “catastrohpic forgetting”. The code source is https://
github.com/if-loops/selective—-synaptic—dampening.

* SCRUB (Kurmanji et al., 2024): SCRUB aims to push outputs of the student model (the
unlearned model) away from the teacher model (the pre-trained model) to distill knowledge.
This is achieved by first performing several max-steps (distill the knowledge) and then
perform several min-steps (regain performance on the remaining data with cross-entropy
loss). The code source is https://github.com/meghdadk/SCRUB.

* SSD (Foster et al., 2024b): SSD uses the Fisher information matrix to assess parameter
importance and suppress parameters that are important to the forgetting data while less im-
portant to the remaining data. The code source is https://github.com/if-loops/
selective-synaptic-dampening.

* DUCK (Cotogni et al., 2023): DUCK employs metric learning to guide the removal of
samples matching the nearest incorrect centroid in the embedding space. The code source is
https://github.com/OcraMl7/DUCK.

* SalUn (Fan et al., 2024): SalUn computes weight saliency map to enable the most im-
portant weights for the forgetting data. The code source is https://github.com/
OPTML-Group/Unlearn-Saliency.

* NG (Thudi et al., 2022): Negative gradient computes several steps of gradient ascent with
the forgetting data. The source code is https://github.com/Jjbonatol/scar.

* RL (Golatkar et al., 2020): Random label relabels the forgetting data with randomly
assigned class and fine-tune the model with computed cross-entropy loss. The source code
ishttps://github.com/jbonatol/scar.

* SCAR (Bonato et al., 2025): SCAR utilizes Out-of-distribution (OOD) data as a surrogate for
the remaining data and distills the knowledge of the original model into the unlearned model
to preserve model utility. The source code is https://github.com/jbonatol/
scar.

» JiT (Foster et al., 2024a): JiT smooths the model output around the forgetting data by
minimizing the local Lipschitz constant. The source code is https://github.com/
jwfd40/Information-Theoretic-Unlearning.

G.2 TRAINING DETAILS

For ResNet-18, training uses SGD with a momentum of 0.9, weight decay of 5 x 10, and batch
size of 128 with a learning rate initialized at 0.1. The learning rate decays at 60,120,160 by 0.1 with
a total of 200 epochs.

For ViT, we initialize with model pre-trained on ImageNet provided by torchvision. Then we
randomly initialize the last fully connected layers and train it with SGD with a momentum of 0.9,
weight decay of 5 x 10~*, batch size 64, constant learning rate 7 = 0.1 for 10 epochs. All the
experiments are conducted on a single RTX 4090.
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G.3 HYPER-PARAMETERS

For MU-Mis, we optimize the pretrained model under model.eval() mode with vanilla SGD without
momentum for ResNet-18 and Adam for ViT. For only the forgetting data are used in MU-Mis, we
must freeze the batch norm layers to avoid spoiling the remaining data. We use batch size of 256
for MU-M is across all the experiments with ResNet-18 and batch size of 32 with ViT. We report the
learning rate 7 and stopping threshold § used in different settings in Table A1 for reproducibility.

For each baseline, We perform grid search to find the best hyper-parameters in each setting. The
hyper-parameter sweep range for each method is presented in Table A4. The hyper-parameters used
for all the methods in sequential full class and sub-class tasks are shown in Table A2 and Table A3.
For all the methods, we fix batch size as 256 for ResNet-18 and 64 for ViT unless otherwise stated in
hyper-parameter ranges. For BT, we use constant learning rate. For fine-tune based methods, e.g.
FT, as well as SCRUB and SalUn, we use cosine scheduler. We fix temperature= 1, alpha = 0.5,
gamma = 0.99, weight decay = 5 x 10~* for SCRUB. We fix weight decay = 5 x 10~* for DUCK
and SCAR.

Table A1l: Hyperparameters of MU-Mis h(learning rate 7 and stopping threshold ratio §).

Setting \ n )

fullclass-CIFAR-100 7Tx 1075 145
fullclass-PinsFaceRecognition | 4 x 10™*  0.68
fullclass-Tiny-ImageNet 4x107% 1.1
subclass-CIFAR-20-rocket 3x107° 3.00
subclass-CIFAR-20-sea 2x 1075 0.93
subclass-CIFAR-20-lamp 5x107°% 1.80
fullclass-Tiny-ImageNet-ViT | 5 x 107* 1.03

Table A2: Hyperparameters for full class sequential unlearning in Fig. 5.

Methods \ Hyperparameters
Retrain | epoch = 200, Ir = 0.1, milestones = [60, 120, 160].
BT epoch = 10, Ir = {5,5,5,1,5} x 1075, temperature scalar = {3,1,1,1,5}.
FT epoch = 10, Ir = 10~ for all iterations.
SSD dampening constant A = {1,1,1,1,0.1}, selection weight oo = {95, 70, 50, 70, 80}.
SalUn epoch = 10, Ir = 1073, threshold = 0.6 for all iterations.
MU-Mis epoch = 50, Ir = {2,1,1,0.5,0.8} x 1074

Table A3: Hyperparameters for subclass sequential unlearning in Fig. 5.

Methods \ Hyperparameters
Retrain | epoch = 200, Ir = 0.1, milestones = [60, 120, 160].
BT epoch = {5,10,5,10,5}, Ir = {0.5,0.5,1,1,5} x 10~°, temperature scalar = {5,5,5,3,1}.
FT epoch = 20, Ir = 10! for all iterations.
SSD dampening constant A = {1,0.1,0.1,1, 1}, selection weight o = {71,100, 90, 87,85}.
SalUn epoch = 10, Ir = 1073, threshold = 0.6 for all iterations.

MU-Mis epoch = 30, Ir = {5,1,0.1,3, 3} x 1075, stopping threshold 6§ = {1.4,1.4,0.95,10, 10}.

G.4 KL DIVERGENCE

The KL divergence between two distributions is:

DKL(pZ(wT)HPZ(wu)) = /pZ(wr) log[ z(w,-)/pz(e)}d'D (A3)

We calculate empirical KL divergence with the entire dataset (including both the train and valid set).
We first collect the predicted class probabilities from both the unlearned and retrained models of each
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sample, then we compute the output KL divergence as follows:

N C

1 c ((E s wr)
Dy = — pe(xi;wy) log ———, (A4)
N;; s o) 108 s wa)
where NV is total number of dataset, C' denotes the total number of classes, w,, is the unlearned model
parameter and w,. is the retrained model parameter. p.(z;, w) represents the c-th posterior probability

of i-th sample in model w.

Table A4: Hyper-parameters range overview for different methods in all the experiments.

Methods \ Hyperparameters
epoch € {1,3,5, 10}, . _
BT Ire {1071,1072,1073,1074,107%,5 x 107°,5 x 1076,1076},
temperature scalar € {1,3,5}.
epoch € {5,10,15,20},
FT Ire {1071,1072,107%}.
SSD dampening constant A € {0.1,0.5,0.9,1},
selection weight « € {1, 5, 10, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100}.
epoch = 10,
-1 -2 10-2 -3 10-3 —4 10—4
SCRUB 11r0§5 %95},5 x 1074,107%,5 x 107°,107°,5 x 107%,107%,5 x

max step € {2,3,5,8}.

epoch € {10,20},
SalUn | Ire {1072,107%,5 x 1074,5 x 107°,107°,5 x 1076,1076},
threshold € {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.

Ire {5 x1072,1072,5 x 1073,1073,1074},

DUCK A1, A2 € {0.5,1,1.2,1.5,2,3,5}.
NG epoch € {1, 3, 5,10, 15, 20, 25, 30},
Ire {1071,1072,1073,1074,107°}.
RL epoch € {1, 3, 5,10, 15, 20, 25, 30},
Ir€ {1071,1072,1073,1074,107°}.
dampening constant = 1,
JT Ir € [1073,1079],
lipschitz weight « € [0,1] .
Ire {1072,5x1073,1073,5x 1074,1074,5x 1073,5x 1076,1076},
SCAR | batehsize € {256,512,1024},

temperature € {1,3,5},
A1, A2 € {1, 1.5,3, 5}
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H ADDITIONAL EXPERIMENT RESULTS

H.1 UNLEARNING UTILITY
H.1.1 FULL cLASS MU ON PINSFACERECOGNITION

Results of full class unlearning on PinsFaceRecognition dataset are presented in Table AS5. MU-Mis
exhibits the smallest Avg.Gap to the retrained model, alongside a low MIA susceptibility. SCRUB
and Salun exhibit a notably high MIA score, demonstrating a high risk of privacy leakage.

Table A5: Performance overview for full class unlearning (including MU-Mis and 6 baselines)
evaluated on PinsFaceRecognition with ResNet-18. The content format follows Table 1.

Method RA FA TA Avg. Gap | MIA RTE
Pretrain 93.49 100 93.59 34.54 100.00 -
Retrain 93 .06i0_21 0.0010_00 92.2510_32 0.00 0.001()_()0 -
BT 92.69:001 0.00:000 91.48.001 0.26 0.00+0.00 36
FT 93.99:009  8.784134  92.94.4010 3.47 0.00+000 146
SCRUB  92.82.902 0.001000 91.61:002 0.29 19.63.1028 112
SSD 93414000 0.001000 92.1710.00 0.14 0.00+0.00 8
DUCK 9217011 0.001000 91.0640.11 0.69 0.004+0.00 64
SalUn 93.28i0‘05 0.62i0_00 92~12i0.06 0.34 54224:1,06 154
MU-Mis  92.98.006 0.00:000 92.131004 0.07 0.0040.00 24

H.1.2 SuUB cLASS MU oN CIFAR-20-LAMP

We evaluate sub-class unlearning on CIFAR-20-Lamp as presented in Table A6. The FA of the
retrained model is 11.31, indicating certain generalization capability on the unlearned class. MU-Mis
exhibits the smallest Avg.Gap to the retrained model.

Table A6: Performance overview for sub-class unlearning (including proposed MU-Mis and 6
baselines) evaluated on lamp of CIFAR-20 using ResNet-18. The content format follows Table 1.

Method RA FA TA Avg. Gap | MIA RTE
Pretrain 85.31 74.22 85.21 21.30 92.82 -
Retrain 85. 12¢0‘22 11.3 lil 60 84.40¢0‘20 0.00 7.06¢0.1 1 -
BT 85.52:004 10.001000 84.844004 0.72 0.00+0.00 29
FT 82474015 14.0042.19 81.901018 1.97 2.8040.36 128
SCRUB 821740638 19.001474 81.604070 4.48 26204418 113
SSD 84.561000 15.001000 83.8440.00 1.60 0.60+0.00 18
DUCK  83.25.031 31.024274 82.69:034 7.75 27.6845.15 68
SalUn 84.44ﬂ)_05 1 3~7Oi],66 83.74&0»04 1.24 1 .68i()_17 1007
MU-Mis 84.361051 11.704129 83.664050 0.63 0.0040.00 10

H.1.3 RANDOM SUBSET UNLEARNING

We evaluate random subset unlearning on CIFAR-10 and SVHN as presented in Table A6. MU-Mis
exhibits consistently low MIA value, demonstrating good privacy preservation.

Table A7: Performance overview for random subset (10 %) unlearning task evaluated on forgetting
10% CIFAR-10 and SVHN using ResNet-18. The content format follows Table 1.

Method CIFAR-10 SVHN
RA FA TA  Avg.Gapl  MIA  RIE RA FA TA  Ave.Gapl MIA  RIE
Pretrain 100.00 99.96 94.68 1.84 92.64 - 100.00 100.00 96.48 1.65 83.11
Retrain ~ 100.00:000 94.51s016 94.75:0.11 0.00 847711113 - 100.00:000 95.124012  96.40:0.14 0.00 81.24.11.13
BT 99.64:001  93.06:006 93.01s004 118 7.20+0.00 50 98.73.001  96.71i003  95.0lig0 1.42 22.32.900 215
FT 100.0:000 94731013 93.171025 0.51 68.66.000 395 100.05000  96.384003  96.8710.00 0.54 80.7240.54 805
SCRUB  100.00:000 95.79:050 93.43:0.10 0.87 77.561003 207 95.40s118  94.79:100 94.94:083 1.98 23.15:062 104
SSD 9999000 9998000 94.66:001 186 925410 18  9867sa0 98.63s043 9659011 152 842307 55
DUCK  98.04s005 9790021 92381005  2.57 9059020 21 96.16s020 94.86s030 95.53:025 151 30465005 156
SalUn 100.0z000  94.31:003  93.19:0.03 0.59 26.52.000 247 99.77:000 94.50:005 95.85:001 0.47 19.92:000 409
NG 9646102 96155035 90.52:02  3.03  882li3 25  9898.00 98.98.005 96.56:001 153 84530 25
RL  96.17.008 939905 882905 427 83.11.05 26  98.66w005 98.53s010 96.02:002 1.56 739400 25
JiT 95.45.100  95.46.181  89.63:1.00 3.54 86.00:030 255  96.30s064 96.26.074 95.141080 1.88 62.78:243 333
SCAR 98.63.0.13  98.644008 92.43.03 2.61 48.3640.35 197 96341054 96461060 92.39:070 2.86 55.2042.86 158

MU-Mis ~ 97.76:005 97432004 91.50s003  2.80 33041005 116 9548.000 95.50s005 9422000 236 261100 116
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H.1.4 FuLL cLASS MU COMPARED WITH JIT WITH VGG16

JiT unlearns by regularizing lipshitz constant  Table A8: Performance comparison between MU-
around the forgetting data, which might fail on  Mis and JiT of full class unlearning on CIFAR-100

DNNs with batch norm layers. Following the
architecture used in the original paper, we com-

using VGG-16.

pare with it on CIFAR-100-rocket unlearning — Mewics  RA FA TA  Avz Gapl MIA  RTE
in Table A8. The results show that JiT exhibits Prewain 6472 6675 6476 Bet 8520
: . etrain 196035 .00 3.36.0.2 X 57,15 R
greater efficacy when implemented with VGG- : 0% 0.0 034 156
s JT 60984008 3.73:000 60.45:007 321 8.0202 16
16 as opposed to ResNet-18. However, it still ex-  MU-Mis 6460.00: 000s025 6396004 032 32802 35

hibits a noticeable performance disparity when
compared to MU-Mis.

H.1.5 SuB-CcLASS MU ON CIFAR-20-SEA WITH VIT

We conducted experiments with ViT on subclass-CIFAR20-sea to further demonstrate our effective-
ness across different tasks. MU-Mis exhibits the best RA, FA, and TA, and provides advantages in
unlearning time.

Table A9: Performance overview for sub-class unlearning task evaluated on Cifar20-Sea using ViT.
RTE is reported in minute.

Methods RA FA TA Avg. Gap | MIA RTE (min)
Pretrain 93.65 91.32 93.63 0.93 69.80 -
Retrain = 93.904012 88.98:00s 93.84:0.14 0.00 59.0040.23 -
SalUn  94.15.010 89.29:003 94.134908 0.27 62.10:0.42 10

MU-Mis  93.704002 88.844025 93.67+002 0.17 69.6740.31 0.5

H.2 ABLATION STUDY

We study the role of each term in
our loss through ablation, illustrating
with fullclass-CIFAR100-Rocket on
ResNet-18. We denote the first term

Table A10: Ablation study on each term of our loss in full
class (Rocket) unlearning. TC (Target Class) refers to the
first term and OC (Other Class) refers to the second term.

|V fe(w, z)||% in our loss Eq. (3) as Methods ~ RA FA TA  Avg.Gapl MIA RTE
TC (Target Class) and the second term Pretrain  76.41 79.69 76.47 26.84 95.80
Hvxfc’ (U}, x) H% as OC (Other Class). Retrain ~ 76.52.027  0.001000  75.764024 0.00 2871046 -
: TC  6541s000 000s000 64.73:000 7.3 140:000 44
In Ta.ble Al0, we showcase the un OC 7013w 7462056 7021s0a 2885  0.00m00 25
learning performance of decreasing TC-0OC 7642007 0.00s000 75.64s07  0.07  000:000 30

TC, increasing OC, and decreasing
TC - OC (MU-Mis) respectively. From the ablation study, we observe that minimizing the first
term obliviates information of the forgetting data, but greatly hurts performance on the remaining
data. Solely increasing OC brings a slight accuracy drop on remaining data, but hardly unlearns the
forgetting data. While our MU-Mis loss could unlearn effectively meanwhile preserve model utility
on the remaining data.

H.3 HYPER-PARAMETER SENSITIVITY

We show that there is a clear relationship between the norm ratio and model performance during
unlearning in Figure A1. The stopping threshold ratio § controls the magnitude ratio of final irrelevant
class sensitivity norm ||V, for (z, w)|| r to initial one |V for (@, wp) || r. In this part, we investigate
the sensitivity of unlearning performance to § in Figure A2, taking fullclass-CIFAR100-Rocket with
ResNet-18 as an example. Different colors represent different , ranging from 70% to 100%. The
green dashed line indicates the performance of the retrained model. Notably, under a specific learning
rate, the Avg. Gap exhibits minimal variation with changes in §. Generally, MU-Mis demonstrates
resilience against variations in hyper-parameters . In summary, the hyper-parameter tuning for
MU-Mis is effortless, resilient and well-guided. This advantage in hyper-tuning indirectly enhances
the efficiency of unlearning and facilitates straightforward application of MU-Mis, making it valuable
for practical applications of MU methods.
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Figure A2: MU-Mis unlearning performance with

different stopping threshold ratio under different

learning rates on fullclass-CIFAR100-rocket with ResNet-18. Performance varies little with the

threshold ratio when the learning rate is fixed.

H.4 EFFECTIVENESS VISUALIZATION BY ATTENTION MAP

To further investigate and understand the behavior
of our unlearned model, we showcase the attention
heatmaps (Selvaraju et al., 2017) of models before
and after applying MU-Mis on PinsFaceRecogni-
tion dataset in Figure A3. For the forgetting data,
the original attention concentrates on the faces.
After applying MU-Mis, the attention on the faces
either disappears or significantly weakens, and is
shifted towards the background. For the remain-
ing data, MU-Mis fully maintains previous atten-
tion. Notably, an alternative interpretation of input
sensitivity is the measurement of how changes in
the image influence its model prediction (Smilkov
et al., 2017). Our proposed method reduces the
target class logit sensitivity to the forgetting data
while recovering irrelevant classes’, thereby en-
abling the unlearned model to disregard the seman-
tic information in the forgetting data meanwhile
preserve prediction sensitivity and performance
on the remaining data.

I UNDERLYING REASONS FOR MODEL
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Figure A3: Visualization of attention maps
for the full class unlearning task on PinsFac-
eRecognition. MU-Mis distracts attention from
forgetting data regions while preserving atten-
tion on remaining data.

UTILITY PRESERVATION

We suggest the favorable preservation on model utility might be attributed to two factors:

* Conceptual motivations: The forgetting

operation in MU-Mis differs fundamentally from

previous methods. While previous methods involved relabelling the forgetting data (Liu
et al., 2024; Foster et al., 2024a; Fan et al., 2024) or knowledge distillation from a useless
teacher (Chundawat et al., 2023; Lin et al., 2023; Kurmanji et al., 2024), which unlearn by
introducing incorrect information to spoil original knowledge, MU-Mis unlearns by solely

withdrawing the contribution of forgetting
at a high level throughout the withdrawal

data. In Figure A1, we show that RA and TA stay
process.

Empirical investigation: Current gradient-based unlearning methods (Liu et al., 2024;

Foster et al., 2024a; Fan et al., 2024; Wu et al., 2020; Graves et al., 2021; Neel et al.,
2021; Thudi et al., 2022) all employ cross-entropy loss gradient VoL (w, ) to unlearn.
However, the intra-class gradients in a well-trained model are quite similar (Papyan, 2020;
Papyan et al., 2020). While the gradient of input sensitivity norm w.r.t parameters is double
back-propagation (Drucker & Le Cun, 1992), enhancing sample-specificity by first back-

propagating to the input samples before

reaching the parameters. Our pairwise analysis

of cosine similarity among intra-class and inter-class samples, detailed in the following,
reveals a distinctive orthogonality in input sensitivity gradients, spontaneously reducing the
interference between the forgetting and remaining data.
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In the following part, we empirically demonstrate an inherent orthogonality among samples from the
perspective of input sensitivity.

We calculate the pairwise cosine similarity within a class and between classes of the derivatives of
four metrics w.r.t. parameters in a well-trained model. They are V,L, Vo fe, V|| Ve fellF, and
Vo EC,# |V fellF (denoted as Vo, ||V, for ||  in the following for brevity). The first two metrics
are commonly used in current unlearning methods, and the last two are utilized in MU-Mis. The
pair-wise similarity results are shown in Figure A4. Derivatives of all four metrics are approximately
orthogonal between samples from different classes. However, intra-class similarities differ across
four metrics. We can see that both V,,£ and V,, f. bear a resemblance within a class, with cosine
similarity centering around 0.3 and reaching up to 0.6. On the other hand, V., ||V f.||r centers
around 0.1 with intra-class similarity scarcely exceeding 0.3. Directly taking the derivative of output
w.r.t parameters preserves within-class similarity of the output, but such similarity is reduced when
output first takes the derivative to the input and then back to parameters.

Interestingly, Vi, 3 ... [[Va fer || F seems to be pairwise similar. However, we speculate that there
are two reasons why this portion of our loss function does not significantly harm the performance
of the remaining data. Firstly, as shown in Figure 3, > ., ||V fe || F is significantly smaller than
IV fell 7 on well-trained models. Therefore, in the early stages of optimizing the relative magnitudes
of input sensitivities, the contribution of Vi, 3. [[Va fer || p to the optimization direction can be
neglected. Secondly, ., [|Vzfe | F for the forgetting data actually corresponds to the target
class of the remaining data. The inter-class similarity of Vy, >_ .. [V fer || implies that when we
increase the input sensitivity of the forgetting data for the other irrelevant classes, we also increase
the input sensitivity of the remaining data of the corresponding classes, thus preserving their sample
contributions.
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Figure A4: Inter-class and intra-class cosine similarity of four different metrics w.r.t parameters.
From left to right: VL, Vo, fer V||V fell 7, and Vo, ||V, fo || . Directly taking the derivative of
output w.r.t parameters bears a resemblance across samples, but such similarity is reduced when
output first takes derivative to input and then back to parameters.

J DISCUSSION

Beyond the advantages of input sensitivity for measuring sample contribution, we raise the attention
that the input sensitivity perspective possesses a profound connection to MU. MU emerges from
model’s memorization of the training data and seeks to safeguard the privacy of training data. Recent
studies by Garg et al. (Garg et al., 2024) and Ravikumar et al. (Ravikumar et al., 2024) reveal the
intrinsic relationship between memorization, privacy and sample’s input curvature. Also, Mo et al.
(Mo et al., 2021) demonstrates that the input sensitivity of model gradient is the underlying cause of
information leakage exposed by Model Inversion Attack (MIA) (Zhu et al., 2019; Zhao et al., 2020).
Collectively, these works further underscore the inherent advantages of adopting an input sensitivity
perspective for machine unlearning.
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