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ABSTRACT

Machine unlearning (MU) aims to remove the influence of specific training samples
from a well-trained model, a task of growing importance due to the “right to be
forgotten.” The unlearned model should approach the retrained model, where for-
getting data do not contribute to the training process. Therefore, unlearning should
withdraw their contribution from the pre-trained model. However, quantifying
and disentangling sample’s contribution to overall learning process is highly chal-
lenging, leading most existing MU approaches to adopt other heuristic strategies
such as random labeling or knowledge distillation. These operations inevitably
degrade model utility, requiring additional maintenance with remaining data. To
advance MU towards better utility and efficiency for practical deployment, we
seek to approximate sample contribution with only the pre-trained model. We
theoretically and empirically reveal that sample’s contribution during training man-
ifests in the learned model’s increased sensitivity to it. In light of this, we propose
MU-Mis (Machine Unlearning by Minimizing input sensitivity), which directly
suppresses the contribution of forgetting data. This straightforward suppression
enables MU-Mis to successfully unlearn without degrading model utility on the
remaining data, thereby eliminating the need for access to the remaining data. To
the best of our knowledge, this is the first time that a remaining-data-free method
can perform on par with top performing remaining-data-dependent methods.

1 INTRODUCTION

Deep neural networks (DNNs) are revealed to store information of training data (Feldman, 2020;
Feldman & Zhang, 2020; Tian et al., 2025) and such information could be reproduced by privacy
attacks (Shokri et al., 2017; Zhu et al., 2019), raising data privacy concerns. The “right to be forgotten”
(Regulation, 2018) is introduced to safeguard user privacy, which entails ensuring that the DNN
performs as if the data were never involved in the training.

While retraining from scratch would ideally achieve this, it is often infeasible due to the high cost
of training DNNs. This has motivated the study of “Machine Unlearning” (MU) (Cao & Yang,
2015), which fine-tunes the pre-trained model to approach the retrained model as closely as possible.
The essential distinction in pre-trained and retrained model lies in the contribution of forgetting
data, whose role shift from “contributors” that affect parameter updates in the pre-trained model
to “bystanders” that exert no influence in the retrained model. Therefore, unlearning should aim to
withdraw their contribution to the learning process.

However, identifying such a contribution is highly challenging. Learning is a dynamic process
that gradually remembers and assimilates data, while unlearning, which is the reverse process that
gradually removes data information, is achieved by backtracking the training trajectory to withdraw
historical gradients in early study (Graves et al., 2021; Thudi et al., 2022). Nevertheless, such tracking
not only contradicts the efficiency demands of unlearning but also yields limited effectiveness due to
the incrementality of training (Wang et al., 2024b).

Consequently, most existing MU methods circumvent the difficulty of estimating sample contribution
through other heuristics. A common strategy is to introduce confusion, e.g., random relabeling
(Golatkar et al., 2020; Graves et al., 2021; Fan et al., 2024b) or knowledge distillation from useless
teacher (Chundawat et al., 2023; Kurmanji et al., 2023). However, these approaches suffer from
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several limitations: (i) such confusion causes catastrophe unlearning (Wang et al., 2024b) or over-
forgetting (He et al., 2025), i.e., severe degradation of model utility on the remaining data; (ii) the
degradation in turn necessitates costly maintenance using the remaining data, thereby substantially
undermining MU efficiency; (iii) the remaining data are not always accessible in practice. These
limitations collectively underscore the importance of moving beyond heuristic confusion strategies
and developing more principled unlearning mechanisms to advance MU toward higher utility and
efficiency. Therefore, although quantifying sample contribution is inherently challenging, in this
paper, we make efforts to ground unlearning in a precise characterization of sample’s contribution.

Instead of accumulating the historical contributed gradient update during training, we identify the
clue of contribution directly from the derivative of the training algorithm w.r.t a training sample. The
learning process is a mapping by the training algorithm A from the training set D = {(xi,yi)} to
a learned function f : denoted as f = A(D). Therefore, the training sample xi contributes to the
output: ∂A/∂xi ̸= 0 while a sample out of the training set does not. A simple yet enlightening
example lies in the support vector machine (Cortes & Vapnik, 1995; Christmann & Steinwart, 2008),
where only the training data can act as support vectors that impact the decision boundary. Thus,
withdrawing the sample contribution can be achieved by suppressing ∂A/∂xi.

The main challenge is that A corresponds to a dynamic training process without a closed-form
expression. To address this, we theoretically illustrate that ∂A/∂xi could be approximated by the
learned model’s sensitivity to its input x, i.e. ∂f(x)/∂x with f = A(D) in Section 3.2. To derive a
principled and optimization-friendly guideline aligned with the behavior of a retrained model, we
delve deeper into the input sensitivity across different logits. Our empirical investigations under the
machine learning (Section 3.3) and machine unlearning (Section 3.4) scenarios reveal that a sample’s
contribution manifests as disproportionately higher input sensitivity of the target logit relative to
irrelevant logits. In light of this finding, we propose MU-Mis (Machine Unlearning by Minimizing
Input Sensitivity), which suppresses sample contribution by reducing the sensitivity disparity between
the target and non-target logits to the forgetting data.

We evaluate MU-Mis on 3 standard unlearning tasks across 6 datasets, benchmarking against 6 com-
petitive remaining-data-dependent unlearning methods and 4 existing remaining-data-free baselines.
The results demonstrate that MU-Mis achieves effective unlearning while preserving model utility on
the remaining data without utilizing them, performing on par with SoTA remaining-data-dependent
approaches and outperforming all remaining-data-free methods significantly, with the added advan-
tage of notable computational efficiency. Moreover, due to its principled forgetting mechanism,
MU-Mis exhibits stable and effective behavior in sequential unlearning, whereas existing methods
are disclosed to exhibit several deficiencies. Collectively, these results underscore the practicality and
reliability of MU-Mis for real-world deployment.

Our key contributions can be summarized as follows:

❶ We theoretically and empirically reveal that a sample’s contribution is reflected in the amplified
sensitivity gap between the target logit and irrelevant logits, enabling the identification of sample
contribution with only the pre-trained model.

❷ Based on the above analysis and findings, we propose MU-Mis, which suppresses the sample’s
contribution by minimizing the sensitivity magnitude gap for the forgetting data.

❸ Comprehensive experiments demonstrate the effectiveness and efficiency of MU-Mis. To our
best knowledge, it is the first time that a remaining-data-free method can perform on par with top
performing remaining-data-dependent methods.

2 RELATED WORK

The primary goal of machine unlearning (MU) (Shaik et al., 2023; Xu et al., 2024; Bourtoule et al.,
2021) is to remove the influence of specific data points on a pre-trained model, protecting data privacy.
MU can be categorized into two types (Shaik et al., 2023): exact MU and approximate MU. Exact
MU approaches parameters of the retrained model and guarantees the privacy risk statistically(Guo
et al., 2020; Suriyakumar & Wilson, 2022; Neel et al., 2021; Giordano et al., 2019; Koh & Liang,
2017), while approximate MU is proposed to approach the output distribution of the retrained model.
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In this paper, we concentrate on approximate unlearning, as it is more practical in large-scale models
and situations with limited time and resources.

MU by Gradient-Based Update. One straightforward way to retrieve sample contribution is to keep
and utilize the historical information (e.g. parameters and gradients) during the training process.
Graves et al. (Graves et al., 2021) withdraw gradient updates of related batches, and Wu et al. (Wu
et al., 2020) utilize intermediate checkpoints and quasi-newton method for rapid retraining. The
requirement of storing historical information raises memory concerns. Another line of work estimates
the contribution of the forgetting data on learned model parameters through influence function (Koh &
Liang, 2017), initially introduced to unlearning by Guo et al. (Guo et al., 2020). However, calculating
the inverse Hessian in influence function is computationally expensive for DNNs and follow-up
studies are devoted to reducing the computation (Mehta et al., 2022; Peste et al., 2021; Meng et al.,
2022). While influence-based unlearning shows potential, the withdrawal still hurts performance
on the remaining data (Wu et al., 2022). Moreover, the influence function is revealed to be fragile
in DNNs (Basu et al., 2020; Bae et al., 2022; Hammoudeh & Lowd, 2024) due to its reliance on
the assumptions of convexity and optimality. Existing data influence estimations for DNNs (Hara
et al., 2019; Pruthi et al., 2020; Chen et al., 2021; Hammoudeh & Lowd, 2024) all require retracing
the training trajectory and cannot be optimized and applied to MU. In this paper, we shift sample
contribution from parameter space to function space, i.e., ∆w to ∂A/∂x, and theoretically indicate
that sample contributions will be approximately reflected in the sensitivity of the pre-trained model to
input samples, opening up a new perspective to view sample contribution in DNNs.

MU by loss guided re-optimization. Above gradient-based unlearning methods suffer from practical
limitations for DNNs. Generally, practical MU methods unlearn by fine-tuning the model to optimize
a proposed loss. They typically follow two design ideas: one is to make model’s behavior on the
forgetting data similar to that on unseen data through knowledge distillation (Chundawat et al., 2023;
Lin et al., 2023; Kurmanji et al., 2023) or label confusion (Graves et al., 2021; Fan et al., 2024b),
the other is to suppress the part of parameters that are responsible for predictions of the forgetting
data (Liu et al., 2024; Foster et al., 2024a; Fan et al., 2024b). However, due to the lack of identifying
“what to unlearn”, above removal is done either in an “impair-then-repair” regime (Tarun et al., 2023)
or through specifically designed mechanisms (Hoang et al., 2024; Foster et al., 2024b; Fan et al.,
2024b) to alleviate the damage. In contrast, we pursue a more principled forgetting operation by
explicitly identifying sample contributions, which eliminates the need for compensatory procedures.

Remaining-data-free MU. Developing remaining-data-free methods aligns more closely with the
essence and practical demands of MU, given the limited accessibility of retained data and the need for
efficiency in practice. JiT (Foster et al., 2024a) proposes to smooth the output around the forgetting
data by minimizing local Lipschitz value. While SCAR (Bonato et al., 2024) distills knowledge
from the pre-trained model and utilizes Out-of-distribution (OOD) data as a surrogate to preserve
model utility. However, both approaches have an obvious performance gap to SoTA remaining-data-
dependent methods, and SCAR still relies on additional OOD data. Remaining-data-free unlearning
is essentially about developing a more principled forgetting mechanism, and we achieve a more
nuanced removal by identifying sample contribution.

3 MACHINE LEARNING, MACHINE UNLEARNING AND INPUT SENSITIVITY

3.1 PROBLEM FORMULATION

Machine Learning (ML) is to learn a mapping from the input space X to the output space Y , denoted
as the function f(·) : X → Y . As we mainly focus on classification models, the output of f is
C-dimensional in a C-category classification model. Learning is performed by a training algorithm
A, which generally takes in a training dataset D and returns the learned function f , i.e., the outcome
of A varies with different training datasets. To investigate sample-wise influence on the learning
process, we consider A in a broader sense and distinguish different training processes by the training
dataset D = {(xi,yi)}mi=1. That is to say, we have a family of the training algorithm AD and each
one is a multivariate function that takes all the samples {xj ∈ X} as input, regardless of whether
they are in the training dataset D. Therefore, the output of AD does not vary with each input variable,
but only varies with the change of the training data xi ∈ D, and makes no response to the change of
samples out of the training set.
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Machine Unlearning (MU) is to remove the influence of forgetting data Df ⊂ D from the pre-
trained model wp, while preserving model utility on the remaining data Dr = D\Df . The learned
function f is parameterized by parameters w ∈ Rd with input variable x, i.e., instantiated as f(x;w).
A good approximate unlearning mechanism should efficiently and effectively transform wp into a
sanitized model wu, such that the output distribution of wu closely matches retrained model wr.

Remark on notation. To facilitate the understanding of the objectives in our analysis, we only bold
the input variables of the training algorithm AD and learned function f(x), which are respectively
xi and x in the following analysis.

3.2 THEORETICAL ANALYSIS CONNECTING SAMPLE CONTRIBUTION AND INPUT SENSITIVITY

As previously discussed, machine unlearning is to withdraw sample’s contribution to the learning
process, and an efficient unlearning method should explore the contribution directly from the pre-
trained model. To detach per-sample contribution with the pre-trained model, we propose to identify
the clue of contribution from the derivative of training mapping AD to training sample xi, i.e.
∂AD/∂xi. Recall that AD is determined by the training dataset D = {(xi,yi)}mi=1 and outputs the
learned function f(x;wp). Then ∂AD/∂xi is to compute ∂f(x;wp)/∂xi. However, there is no
explicit expression for this derivative. Therefore, in this part, we reflect on the learning dynamics
to seek a surrogate with the pre-trained model. Figure 1 provides an overview of the key objectives
investigated in our following analysis.

Train sample �� GD update  ∆�� Pre-trained Model ��

Input Sensitivity 
��/��

Sample Contribution 
��/���

Learned function
 �(�; ��)

Model input �

Figure 1: A brief overview of the theoretical connection between sample’s contribution and a
pre-trained model’s input sensitivity. The dashed arrows illustrate how the influence of a training
sample propagates through gradient updates to the pre-trained model.

Gradient Descent (GD). After T iterations training updates in the parameter space, we have pre-
trained model parameter wp = w0+

∑T
k=1 ∆wk, where w0 is randomly initialized model parameters

and ∆wk = wk+1 − wk is the kth parameter update. Specifically, when training loss L and gradient
descent with step size η are used, we have

∆wk = −η
m∑
i=1

∂L(xi)

∂w

∣∣
w=wk

= −η
m∑
i=1

∂f(xi;w)

∂w

∣∣
w=wk

∂L(xi)

∂f
.

Function space update induced by GD. Viewing machine learning from the function space with
first-order Taylor expansion on parameters, correspondingly we have f = f0 +

∑T
k=1 ∆fk, where

f0 = f(x, w0) is initial function and ∆fk is induced by parameter update ∆wk. The evolution in
function induced by parameter update is:

∆fk(x;w) ≈
∂f(x;w)

∂w

∣∣⊤
w=wk

∆wk = −η
m∑
i=1

∂f(x;w)

∂w

∣∣⊤
w=wk

∂f(xi;w)

∂w

∣∣
w=wk

∂L(xi)

∂f
.

Learned function. To better explain the idea, we make simplifications: (i) Note that ∂f(·;w)
∂w

∣∣
w=wk

is
the mapping from model input x to the induced backpropagation gradient with parameters wk. We
abbreviate this mapping as gk(x) : X → Rd×C and its derivative to input x as g′k, where d is total
number of model parameters. (ii) In classification problem with cross-entropy loss as L, we have
∂L(xi)

∂f = ec − p(xi), where ec is a one-hot vector with only cth element equals to 1, and p is the
probability vector of xi. The final learned function f is

f(x;wp) = f(x;w0) +

T∑
k=1

∆fk(x, w) = f(x;w0)− η

T∑
k=1

g⊤k (x)︸ ︷︷ ︸
(1)

m∑
i=1

gk(xi)(ec − p(xi))︸ ︷︷ ︸
(2)

.
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Notice that term (1) is related to the forward inference process while term (2) is related to the
machine learning process. Derivative of f w.r.t x indicates how the prediction of f varies with its
input x at inference time, while derivative w.r.t xi indicates how the learned function f varies when
the training sample xi varies. The former implies the learned model’s sensitivity to its input, and
the latter is the training sample’s influence on learning. Next, we take the derivative of f w.r.t x
and xi respectively to view their relationship. Note that p is a probability vector determined by xi.
Due to softmax activation, we consider p(xi) hardly changes around xi, and omit its derivative term
w.r.t xi. The difference in mapping gk when xi changes is also omitted.

∂f(x;wp)

∂xi
= −η

∑T

k=1
g′k(xi)gk(x)(ec − p(xi))︸ ︷︷ ︸

=:Ck(x,xi)

,

∂f(x;wp)

∂x
=

∂f(x;w0)

∂x
− η

∑T

k=1

∑m

i=1
g′k(x)gk(xi)(ec − p(xi))︸ ︷︷ ︸

=:Sk(x,xi)

.

(1)

Input sensitivity of learned function reflects sample contribution. Ck(x,xi) determines the
prediction change on x when xi changes, and Sk(x,xi) stands for the part of model’s sensitivity to
x contributed by training sample xi. Note that ∂f(xi;wp)

∂xi
is similar to the definition of memorization,

which is framed as self-influence (Feldman, 2020; Feldman & Zhang, 2020). To be more specific,
memorization of a sample is defined as the prediction difference in itself when training with or without
it. Similarly, the self-influence here is the prediction difference on xi when it slightly changes, i.e.
∂f(xi;wp)

∂xi
. Thus we consider ∂f(xi;wp)

∂xi
as the reflection of sample xi’s contribution. From the

formulation, we have Sk(xi,xi) = Ck(xi,xi). For a specific training sample x̂ ∈ D, the learned
model’s sensitivity to it can be further decomposed as

∂f(x;wp)

∂x

∣∣
x=x̂

=
∂f(x;w0)

∂x

∣∣
x=x̂

− η

T∑
k=1

m∑
i=1

Sk(x̂,xi)

=
∂f(x, w0)

∂x

∣∣
x=x̂

− η

T∑
k=1

Sk(x̂, x̂) +
∑

x̃∈D/x̂

Sk(x̂, x̃)


= − η

T∑
k=1

Sk(x̂, x̂)︸ ︷︷ ︸
Contribution Term

+
∂f(x, w0)

∂x

∣∣
x=x̂

− η

T∑
k=1

∑
x̃∈D/x̂

Sk(x̂, x̃)︸ ︷︷ ︸
Residual Term

. (2)

The randomly initialized function f0 is generally quite insensitive to input change. Thus, the first
term of the above residual term is very small. The second term is related to the correlation between
the gradient on x̃ and the sensitivity of the gradient on x̂. We use a simple MLP model to illustrate the
insight of Sk(x̂, x̃) << Sk(x̂, x̂) with x̂ ̸= x̃ in Appendix D. Therefore, the residual term is relatively
smaller than the contribution term. In summary, the contribution of a training sample to the training
process would be approximately reflected in the pre-trained model’s output sensitivity to the sample.
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Figure 2: Input sensitivity ∥∇xf∥F of training
data before and after training. Left: In randomly
initialized model w0. Right: In well-trained model
wp. After training, the model exhibits significantly
increased sensitivity to the training data, reflecting
their contribution during training.

Empirical validation. We validate the con-
tribution to learning by comparing ∥∇xf∥F
of the training data before and after training in
Figure 2. In a randomly initialized model, there
is little response to input changes, only about
10−4. After training, there is a significant or-
der of magnitude growth to 103, indicating an
increased attention of the trained model to the
training data’s variations. This implies that the
training data contribute to model performance,
and such efforts include promoting the model’s
sensitivity to them during training.

3.3 INPUT SENSITIVITY OF THE TARGET AND IRRELEVANT CLASS LOGIT

During training, model predictions on samples are driven toward their correct labels, so sample
contributions might differ across logits. To further refine our view of sample contribution, we
examine individual logits of f(x) ∈ RC in the following part.
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Figure 3: Input sensitivity ∥∇xfc∥F and
∥∇xfc′∥F before and after training. Left: ran-
domly initialized model w0. Right: well-trained
model wp. After training, the gap between target
and irrelevant class sensitivities enlarges, providing
a clearer signal of the sample’s contribution.

Let fc denotes the logit output of the target
class and fc′ denotes the logit output of irrel-
evant classes. Figure 3 compares distributions
between ∥∇xfc∥F and 1

C−1

∑
c′ ̸=c ∥∇xfc′∥F

(denoted as ∥∇xfc′∥F for brevity in the fol-
lowing) of training data before and after train-
ing. In the randomly initialized model, these
two quantities are of comparative magni-
tude, but ∥∇xfc∥F becomes much larger
than ∥∇xfc′∥F after training. This observa-
tion implies that samples contribute to ampli-
fying ∥∇xfc∥F to surpass ∥∇xfc′∥F during
training, generating a discernible difference in
whether a sample has been learned. A complementary explanation of this finding comes from the
generative view of discriminative models: the softmax-based discriminative classifier is revealed to
be implicitly a density model which learns data distribution (Grathwohl et al.; Srinivas & Fleuret,
2021). From this viewpoint, the logits f(x) of standard classifiers are un-normalized log-densities,
and corresponding input-gradients∇xfi(x) are log-gradients of a class-conditional density model.
In other words, we have ∇x log pθ(x|y = i) = ∇xfi(x) in the classification model, providing a
rationale for the observed discrepancy.

3.4 INPUT SENSITIVITY OF SAMPLES PRESENT AND ABSENT IN TRAINING

For effective unlearning, the optimization objective should accurately steer the pre-trained model
toward the retrained model. To validate that the theoretically grounded sensitivity gap provides
a reliable measure of sample contribution to guide unlearning, we empirically examine the input
sensitivity of forgetting data under MU scenarios (introduced in Section 5.1 and Appendix F.1).

For each forgetting sample, we compute the difference ∆ between the retrained and the pre-trained
model’s sensitivity to it, where the sensitivity including ∥∇xfc∥F , ∥∇xfc′∥F and ∥∇xfc∥F −
∥∇xfc′∥F . Aiming for a light-weight unlearning algorithm, we prefer an optimization direction
rather than modeling a distribution or specifying a target value for each sample. Hence, we focus on
the sign of ∆ and count the ratio of rise and fall of ∆ to examine the overall trend in Figure 4.

From left to right in Figure 4, ∆ is the sample-wise difference between the retrained and pre-trained
model on ∥∇xfc∥F , ∥∇xfc′∥F and ∥∇xfc∥F − ∥∇xfc′∥F . For each quantity, there is a consistent
trend across different unlearning settings. Generally, fc of the retrained model exhibits lower
sensitivity and fc′ exhibits higher sensitivity to the forgetting data than the pre-trained model. And
their sensitivity magnitude gap is consistently smaller in the retrained model across different settings.
Therefore, the sensitivity magnitude gap faithfully reflects the behavior of the retrained model and
thus serves as a reliable objective to guide unlearning.

fullclass-Cifar100
fullclass-PinsFaceRecognition

fullclass-TinyImagenet
subclass-Cifar20-rocket

subclass-Cifar20-sea
subclass-Cifar20-lamp

randomsubset-TinyImagenet
1 0.5 0 0.5 1 1 0.5 0 0.5 1 1 0.5 0 0.5 1

Ratio Ratio Ratio

Figure 4: Ratio of input sensitivity difference ∆ rise and fall of the forgetting data under
different unlearning settings. From left to right, ∆ is the sample-wise difference between the
retrained and pre-trained model on ∥∇xfc∥F , ∥∇xfc′∥F and ∥∇xfc∥F − ∥∇xfc′∥F . Sample’s
contribution to input sensitivity includes promoting ∥∇xfc∥F and suppressing ∥∇xfc′∥F , thereby
enlarging the magnitude gap ∥∇xfc∥F − ∥∇xfc′∥F .

4 PROPOSED METHOD

4.1 MU-MIS: MACHINE UNLEARNING BY MINIMIZING INPUT SENSITIVITY
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Algorithm 1 MU-Mis: Machine Unlearning by
Minimizing Input Sensitivity

Input: Forgetting data Df ; Pre-trained model
weights wp; Learning rate η; Stopping
threshold ratio δ.
# Initialization

1: w0 ← wp, ϵ←∞
# Iterative optimization

2: repeat
3: for each forgetting sample x ∈ Df do
4: Randomly select an irrelevant class

c′ ̸= c
5: end for
6: Compute loss L according to equation 3
7: Update wt+1 ← wt − η∇L
8: Update ϵ← min(ϵ, ∥∇xfc′(x,wt)∥F )
9: until ∥∇xfc′(x,wt)∥F > ϵ and
∥∇xfc′(x,wt)∥F
∥∇xfc′(x,w0)∥F

> δ

Output: Updated model weights wt

In the above section, we theoretically and em-
pirically derived an optimizable and lightweight
approximation of sample contributions from the
perspective of input sensitivity, showing that they
manifest as disproportionately higher sensitivity
of the target logit relative to irrelevant logits.

In light of this finding, we propose to withdraw the
sample’s contribution by reducing such enhance-
ment on the sensitivity magnitude gap. Minimiz-
ing this loss guides the pre-trained model to roll
back ∥∇xfc∥F and pick up ∥∇xfc′∥F . Mathe-
matically, our proposed unlearning loss is:

L(Df ;w) =
1

Nf

∑
xf∈Df

(∥∇xfc(xf , w)∥2F−

∥∇xfc′(xf , w)∥2F )
(3)

where Nf is number of the forgetting data, c rep-
resents the target class of sample x and c′ ̸= c
denotes an irrelevant class. For each forgetting
sample, a new c′ is randomly selected every time
the loss is computed.

Stopping Guideline. To ensure a practical deployment of MU-Mis, we design a stopping rule
for terminating optimization once the withdrawal is completed. Empirical analysis in Appendix E
reveals a consistent trend of metrics during our optimization: as the MU-Mis loss decreases, forgetting
accuracy (FA) drops steadily, while the accuracies on retained (RA) and test data (TA) initially decline
slightly and then grow with the recovery of irrelevant-class logit sensitivity. Crucially, RA approaches
the retrained model when this sensitivity returns to its initial level. Therefore, we introduce a threshold
ratio δ to govern the termination of unlearning. This criterion ensures that optimization halts when
irrelevant-class sensitivity is sufficiently restored. The overall algorithm is outlined in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Tasks, Datasets and Models. We evaluate unlearning across 3 settings: full-class (CIFAR-100
(Krizhevsky et al., 2009), PinsFaceRecognition (Burak, 2020), and Tiny ImageNet (Le & Yang,
2015)), sub-class (CIFAR-20 (Krizhevsky et al., 2009)), and random-subset (CIFAR-10 (Krizhevsky
et al., 2009) and SVHN (Netzer et al., 2011)). ResNet-18 (He et al., 2016) is adopted as the default
backbone, and we additionally evaluate under ViT (Dosovitskiy et al., 2021) to highlight the efficiency
of remaining-data-free methods. Beyond unlearning utility, we assess the resilience of unlearning
methods by executing multiple full-class and sub-class unlearning requests iteratively.

Evaluation Metrics. MU methods should be assessed from three aspects (Xu et al., 2024): utility,
privacy, and efficiency. For utility, we compute forgetting data accuracy (FA), remaining data
accuracy (RA), and test data accuracy (TA) of the unlearned model. The average gap (Avg. Gap)
between the retrained model and the unlearned model across above 3 accuracy-related metrics
are computed to illustrate the utility disparity. We compute the train (FGTA) and valid (FGVA)
accuracy on the forgotten classes in sequential unlearning. Regarding the privacy guarantee, we use
2 complementary membership inference attack (MIA) methods, MIA-Entropy (Chundawat et al.,
2023) and MIA-SCRUB (Kurmanji et al., 2023) to probe the remaining information of the forgetting
data. For efficiency, we provide the run time efficiency (RTE) in seconds to indicate timeliness.

Baselines. We compare against 8 remaining-data methods: Bad Teacher(BT) (Chundawat et al.,
2023), Fine-tune(FT) (Warnecke et al., 2023), SCRUB (Kurmanji et al., 2023), SSD (Foster et al.,
2024b), DUCK (Cotogni et al., 2023), SalUn (Fan et al., 2024b), MUNBa (Wu & Harandi, 2025)
and LoTus (Spartalis et al., 2025), as well as 4 remaining-data-free methods: RL (Golatkar et al.,
2020),NG (Thudi et al., 2022), JiT (Foster et al., 2024a) , SCAR (Bonato et al., 2024). Notably,
unlike SCAR, our method requires no auxiliary OOD data. Further details on sequential unlearning
settings, metrics, and baselines are provided in Appendix F.1.
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5.2 UNLEARNING UTILITY

Table 1: Performance overview for full class unlearning task evaluated on CIFAR-100 and Tiny
ImageNet using ResNet-18. This table includes performances of our proposed MU-Mis, 6 remaining-
data-dependent and 4 remaining-data-free methods, which are delineated by a horizontal line. The
result format is given by a±b with mean a and standard deviation b over 5 independent trials. The
metric average gap (Avg. Gap) is calculated by the average of the performance gaps measured in
accuracy-related metrics, including FA, RA and TA. RTE is reported in seconds. Values in terms of
accuracy-related metrics deviating by more than 5% from the retrain model are highlighted in red.

Method CIFAR-100 Tiny ImageNet
RA FA TA Avg. Gap↓ MIA RTE RA FA TA Avg. Gap↓ MIA RTE

Pretrain 76.41 79.69 76.47 26.84 95.80 10880 65.85 62.00 65.50 21.03 93.59 13600
Retrain 76.52±0.27 0.00±0.00 75.76±0.24 0.00 2.87±0.46 7432 65.36±0.03 0.00±0.03 64.90±0.03 0.00 4.80±0.04 10367

BT 76.67±0.03 0.00±0.00 76.02±0.03 0.14 0.00±0.00 32 64.90±0.01 0.00±0.00 64.53±0.01 0.28 0.00±0.00 240
FT 76.67±0.21 0.28±0.62 75.88±0.22 0.19 0.28±0.00 250 64.16±0.26 0.00±0.00 63.87±0.22 0.74 4.40±0.58 262

SCRUB 76.81±0.04 0.00±0.00 76.02±0.04 0.18 5.57±0.34 124 65.06±0.04 0.00±0.00 64.69±0.03 0.17 14.60±0.52 860
SSD 76.27±0.00 0.00±0.00 75.49±0.00 0.17 0.00±0.00 26 65.58±0.00 0.00±0.00 65.19±0.00 0.17 0.00±0.00 59

DUCK 75.82±0.18 0.20±0.45 75.13±0.17 0.51 0.00±0.00 100 64.97±0.14 0.00±0.00 64.61±0.14 0.23 2.60±0.46 55
SalUn 76.63±0.03 1.20±0.45 75.85±0.03 0.47 0.00±0.00 254 65.21±0.10 0.00±0.00 64.88±0.10 0.06 4.40±0.40 2630

MUNBa 74.09±0.11 0.00±0.00 73.40±0.12 1.60±0.03 9.30±0.18 217 64.22±0.14 0.00±0.00 63.88±0.15 0.72±0.02 7.80±0.16 897
LoTus 76.48±0.08 5.00±0.02 75.87±0.08 1.72±0.04 0.00±0.00 140 65.02±0.10 0.00±0.00 64.65±0.11 0.20±0.01 0.00±0.00 182

NG 69.76±0.01 0.00±0.00 69.23±0.01 4.43 0.00±0.00 2 59.62±0.00 0.00±0.00 59.26±0.00 3.79 1.80±0.00 3
RL 65.98±0.12 5.22±0.45 65.52±0.11 8.66 0.00±0.00 12 53.41±0.00 0.00±0.00 53.04±0.01 7.94 2.00±0.00 10

SCAR 71.33±0.12 5.61±0.89 70.66±0.14 5.29 13.28±0.67 367 59.98±0.06 0.00±0.00 59.62±0.06 3.55 0.67±0.12 1052
JiT 65.44±0.14 3.00±0.76 64.87±0.13 8.32 4.44±0.30 15 53.82±0.09 0.00±0.00 53.16±0.08 7.76 5.29±0.25 5

MU-Mis 76.42±0.07 0.00±0.00 75.64±0.07 0.07 0.00±0.00 30 64.95±0.00 0.00±0.00 64.85±0.00 0.15 0.20±0.00 83

Table 2: Performance overview for sub-class unlearning task evaluated on ‘Rocket’ and ‘Sea’ (where
the retrain model exhibits different degrees of generalization ability on the unlearned sub-class) of
CIFAR-20 using ResNet-18. The content format follows Table 1.

Method Rocket Sea
RA FA TA Avg. Gap↓ MIA RTE RA FA TA Avg. Gap↓ MIA RTE

Pretrain 85.26 80.73 85.21 26.53 92.89 6910 85.09 97.66 85.21 5.94 91.81 6910
Retrain 84.85±0.09 2.69±0.45 84.07±0.10 0.00 12.06±0.75 4298 84.60±0.22 80.93±2.20 84.61±0.19 0.00 51.61±3.60 4298

BT 85.24±0.02 2.80±0.45 84.36±0.02 0.26 0.00±0.00 27 82.51±0.00 81.00±0.00 82.63±0.00 1.38 15.00±0.00 47
FT 82.70±0.19 4.20±1.30 81.97±0.12 1.92 5.40±1.04 138 82.36±0.29 88.00±1.41 82.43±1.60 3.83 58.08±1.79 417

SCRUB 84.73±0.13 5.80±1.30 83.84±0.13 1.15 13.28±0.02 113 84.86±0.10 88.17±1.72 84.86±0.13 2.58 57.07±1.71 113
SSD 84.23±0.05 2.60±0.89 83.35±0.06 0.48 3.76±0.36 18 84.79±0.00 78.00±0.00 84.61±0.00 1.24 8.00±0.00 7

DUCK 82.09±0.33 19.4±3.28 81.43±0.35 7.37 32.84±1.57 58 80.95±0.19 66.45±2.30 80.77±0.19 7.34 54.92±2.29 68
SalUn 84.82±0.06 2.99±1.25 84.00±0.05 0.13 0.00±0.00 1042 82.85±0.00 81.00±0.00 83.10±0.00 1.11 13.40±0.00 63

MUNBa 81.43±0.13 7.00±0.05 80.80±0.12 3.67±0.06 7.20±0.14 362 80.64±0.14 84.00±0.15 80.66±0.13 3.66±0.05 60.00±0.20 564
LoTus 35.93±0.21 39.00±0.18 36.04±0.20 44.42±0.35 18.60±0.18 105 73.12±0.15 81.00±0.16 73.39±0.14 7.59±0.08 61.20±0.19 16

NG 62.84±5.66 5.67±4.08 62.48±5.59 15.52 72.70±21.80 4 80.95±0.00 75.00±0.00 80.84±0.02 4.45 60.00±0.00 3
RL 60.89±1.96 6.52±1.07 60.50±2.01 17.11 3.70±6.51 5 80.48±0.02 77.00±0.00 80.34±0.02 4.11 48.70±0.11 3

SCAR 76.49±0.22 43.81±4.44 76.26±0.23 19.09 28.04±1.67 442 76.30±0.15 77.40±2.71 76.12±0.19 6.77 51.84±1.98 434
JiT 59.15±0.05 4.00±0.00 58.60±0.05 17.49 29.03±0.20 4 51.48±0.04 7.20±1.10 51.04±0.04 46.81 32.20±0.24 4

MU-Mis 84.28±0.18 2.91±1.02 83.50±0.19 0.49 0.07±0.25 21 84.35±0.03 81.00±2.95 84.33±0.05 0.20 1.25±1.85 10

MU-Mis outperforms existing remaining-data-free methods significantly and remains highly
competitive with SoTA remaining-data-dependent methods. Table 1 and Table 2 correspond
to MU performances on full-class and sub-class unlearning respectively. More experiment results
are referred to Appendix G.1. In terms of unlearnig utility, MU-Mis achieves the smallest Avg.
Gap in full-class-CIFAR-100, full-class-PinsFaceRecognition, sub-class-Sea and sub-class-Lamp
unlearning, outperforming all the baseline methods. From the highlighted values in red in the tables,
we could see that existing remaining-data-free methods suffer from poor utility preservation. From
Table A8, we could see that there is a clear gap between MU-Mis and RUM in when removing
mixture of different memorization level samples. But surprisingly, MU-Mis indicates a lowest KL
divergence to the retrained model in the forgetting data, indicating a more principled removal than
SalUn and RUM. Overall, MU-Mis surpasses strong remaining-data-dependent methods in full-class
and sub-class unlearning, falls short of the RUM in the particularly challenging random-subset setting.
But importantly, MU-Mis outperforms all existing remaining-data-free methods by a substantial
margin across all scenarios. In terms of privacy, MIA-Entropy indicates the residual membership of
the forgetting data and MIA-SCRUB indicates non-membership of the forgetting data in the unlearned
model. We can see that MIA-Entropy remain consistently low and MIA-SCRUB remain consistently
to the retrained model in Table A11 cross 3 tasks, collectively demonstrating a successful privacy
protection of MU-Mis. In addition to resolving the issue of constrained access to the remaining data,
our remaining-data-free method also offers a notable advantage in MU efficiency. In unlearning a full
class Tiny ImageNet, MU-Mis is up to 30× faster than SalUn, with only 0.09 higher Avg. Gap.
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Table 3: Performance overview for full class un-
learning task evaluated on Tiny ImageNet using
ViT. RTE is reported in minute.

Methods RA FA TA Avg. Gap ↓ MIA RTE (min)

Pretrain 84.21 87.5 84.23 30.44 95.40 -
Retrain 86.35±0.17 0.00±0.00 85.92±0.14 0.00 8.80±0.26 -

Salun 83.94±0.16 0.00±0.00 83.49±0.14 1.88 0.00±0.00 81

NG 63.12±0.00 0.00±0.00 62.88±0.00 15.28 0.00±0.00 0.21
RL 67.69±0.00 0.00±0.00 67.43±0.00 12.38 0.00±0.00 0.15

MU-Mis 82.13±0.24 0.00±0.00 82.17±0.23 2.69 0.00±0.00 3

Efficiency advantage is more pronounced
on larger scale models. Table 1 shows the
performance when unlearning a full class of
Tiny ImageNet under ViT (Dosovitskiy et al.,
2021). MU-Mis outperforms other remaining-
data-free methods 1 significantly and performs
comparably with the most competitive method
SalUn in terms of model utility and privacy.
The efficiency advantage of MU-Mis becomes
markedly pronounced: the unlearning time is reduced from more than 1 hour to 3 minutes. We
also evaluate subclass-CIFAR20-sea unlearning under ViT and show the results in Table A10, where
MU-Mis exhibits the best Avg.Gap and is 20× faster than SalUn.

5.3 UNLEARNING RESILIENCE: SEQUENTIAL MACHINE UNLEARNING
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Figure 5: Disparities in accuracy-related metrics between the unlearned model and the retrained
model for full class and sub-class sequential unlearning. Left: Iteratively unlearns 5 distinct full
classes of CIFAR-100. Right: Iteratively unlearns 5 sub-classes of the same super-class ‘Flower’.

Sequential unlearning requires principled unlearning mechanisms. In practice, unlearning
requests may arrive sequentially, requiring multiple executions of the unlearning method. Wang et al.
(2024a) point out that sequential unlearning greatly challenges the memorization management ability
of unlearning methods due to underlying associations among unlearned classes. The sequentially
unlearned model might break down due to disordered forgetting operation, exposing its accumulated
effects on model knowledge. Therefore, to highlight the importance of principled forgetting, we
perform sequential unlearning. We examine the impact of subsequent requests on previous unlearning
efforts and present the disparities between the unlearned model and the retrain model at each iteration
in accuracy-related MU metrics in Figure 5. For detailed experiment settings, refer to Appendix F.1.

Dificiencies in existing MU methods. From Figure 5, we can see that there are 3 kinds of deficiencies
in existing SoTA MU methods:

(i) Performance Recovery. The performance on the forgotten classes stages a recovery in BT and
Salun unlearned model, indicated by the above zero FGTA and FGVA. This suggests that retargeting
model’s outputs of the forgetting data does not completely remove associated knowledge, posing a
substantial risk since the concealed information might still be exploited by privacy attackers.

(ii) Knowledge Residue. High disparity of FTA and FVA in sub-class task indicates that FT method,
which relies on “catastrophic forgetting” (Kirkpatrick et al., 2017) to unlearn, fails to unlearn
effectively in sub-class task due to the resemblance between the forgetting and remaining data.

(iii) Utility Breakdown. In sub-class task, SSD exhibits a marked decline in utility after the last
unlearning request, demonstrated by the final RA of 76.33%. In contrast, RA in the retrained model

1We failed to identify effective hyper-parameters for JiT and SCAR for this experiment.
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and MU-Mis unlearned model are respectively 84.83% and 84.59%. Such a plummet implies a
potential risk of model utility breakdowns when the magnitude of parameters is continuously scaled.
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Figure 6: Overview of utility Avg. Gap and
resilience Avg. Gap during full class (upper)
and sub-class (bottom) sequential unlearning.

Resilient performance of MU-Mis to sequential
unlearning requests. To facilitate an intuitive
assessment in terms of utility and resilience, we
compute the utility Avg. Gap and resilience Avg.
Gap for each iteration in Figure 6. The utility Avg.
Gap is averaged over FTA, FVA, RA and TA, and
the resilience Avg. Gap is averaged over FGTA
and FGVA. From Figure 6, it is evident that MU-
Mis and SSD are significantly better than BT, FT,
and Salun, demonstrating a notably small disparity
to the retrained model regarding both the utility
and resilience Avg. Gap across the full class and
sub-class tasks. Importantly, MU-Mis achieves
these results without relying on the remaining data,
which are required by SSD.
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Figure 7: KL divergence between outputs of un-
learned model and retrained model during full class
(left) and sub-class (right) sequential unlearning.

Minimal KL divergence of MU-Mis from
retrain model during sequential unlearn.
Beyond model predictions, we further pro-
vide the empirical KL divergence (intro-
duced in Appendix F.2) between the un-
learned model and the retrained model’s
output distributions during sequential re-
quests in Figure 7. It is evident that MU-
Mis exhibits the lowest KL divergence
from the retrained model throughout both
the full-class and sub-class sequential un-
learning processes.

Summary. In general, MU-Mis stands out with its comprehensive capabilities in terms of unlearning
utility, unlearning resilience as well as output indistinguishability, while current SoTA MU meth-
ods are disclosed to exhibit limitations and deficiencies in certain aspects. Their inappropriate or
inadequate unlearning approaches undermine their reliability and applicability in practical scenarios.

5.4 SUPPLEMENTARY EXPERIMENTS AND ANALYSES

We provide the following experiments and analyses for completeness in Appendix: (i) ablation
study of MU-Mis in Appendix G.3; (ii) a hyper-parameter sensitivity analysis showing stability of
MU-Mis in Appendix G.4; (iii) visualizations of attention map confirming effectiveness of MU-Mis in
Appendix G.5; (iv) an empirical analysis attributing the effectiveness of MU-Mis to the orthogonality
of input sensitivity gradients among samples in Appendix H; (vi) A comprehensive analysis covering
the theoretical link between sensitivity gaps and loss curvature, empirical signatures of sensitivity
across memorization and influence levels, and the broader role of unlearning in shaping memorization,
generalization, and sample contribution in Appendix I.

6 CONCLUSION

There are 3 main challenges in machine unlearning: the stochasticity of training, incrementality
of training, and catastrophe of unlearning (Wang et al., 2024b). We address incrementality by
quantifying sample contribution through the lens of input sensitivity. Building on this, our proposed
MU-Mis achieves effective and efficient unlearning without compromising model utility, alleviating
catastrophic unlearning. Experiments validate the superiority of this principled forgetting mechanism.
Overall, MU-Mis is well-grounded, lightweight and remaining-data-free, offering a practical and
competitive alternative to existing unlearning methods. Furthermore, we highlight in Appendix I
that there is a profound connection between input sensitivity view and machine unlearning, which
we believe is an interesting direction to further improve remaining-data-free unlearning in the most
challenging random subset scenario.
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APPENDIX

A ETHICS STATEMENT

This work studies machine unlearning (MU), motivated by the “right to be forgotten,” with the goal
of enhancing user privacy and data protection. All experiments are conducted on publicly available
datasets and standard benchmark models; no sensitive or personally identifiable information is used.
While unlearning techniques could in principle be misused to manipulate model behavior, our focus
is on strengthening trust and accountability in machine learning systems. We believe this work
contributes positively to the development of privacy-preserving and ethically responsible AI.

B REPRODUCIBILITY STATEMENT

We include anonymized supplementary materials containing the complete algorithm implementations
for executing all experiments. We provide detailed experimental settings, hyperparameters, datasets,
and evaluation metrics in our Appendix to ensure reproducibility.

C THE USE OF LLMS

Large language models (LLMs) were employed solely as auxiliary writing tools. Their usage was
strictly limited to surface-level assistance, including grammar correction, stylistic polishing, clarity
improvement, and formatting consistency. LLMs were not involved in formulating research ideas,
designing methods, conducting analyses, interpreting results, or drawing conclusions. At no stage
were LLMs used to generate original content, experimental designs, or theoretical claims. All text
segments refined with LLM assistance were subsequently reviewed, validated, and, where necessary,
rewritten by the authors to ensure technical accuracy and precision of expression. The authors bear
full responsibility for the final presentation and content of this paper. This disclosure is made in
accordance with conference guidelines on LLM usage to ensure transparency and research integrity.

D A TOY EXAMPLE COMPLEMENTING SAMPLE CONTRIBUTION DERIVATION

We use a simple MLP model to illustrate the insight of Sk(x̂, x̃) << Sk(x̂, x̂) with x̂ ̸= x̃. Assume
the lth layer output of model is xl = ϕ(θlxl−1), where θl refers to lth layer parameter and ϕ refers to
activation function. Then,

gk =
∂fk
∂θl

=
∂fk

∂(θlxl−1)
xl−1T , (A1)

g′k =
∂fk
∂θl∂x

=
∂fk

∂(θlxl−1)

∂xl−1T

∂x

=
∂fk

∂(θlxl−1)
ϕ′(θl−1xl−2)θl

T ∂xl−2

∂x
. (A2)

Thereby, the inner-dot g′k(x̂)gk(x̃) ∝ x̃l−1ϕ′(θl−1x̂l−2). If ReLU activation is used, where ϕ′(x) = 1
if x > 0 else ϕ′(x) = 0, Sk(x̂, x̃) ∝ g′k(x̂)gk(x̃) will be quite small. The conclusion here is that the
residual term is relatively smaller than the contribution term. Therefore, the contribution of a training
sample to the training process would be approximately reflected in the pre-trained model’s output
sensitivity to the sample.

Additionally, we investigate sensitivity signatures across different samples (i.e., different memoriza-
tion levels and influence scores) in Appendix I.2. We find that highly memorized samples exhibit
smaller sensitivity gap than low and middle memorized sample, and more influencial samples exhibit
higher sensitivity gap. This empirical evidence further confirms that our proposed sensitivity gap
successfully reflect sample contribution and the residual term is not that crucial to some extent.
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E STOPPING GUIDANCE

The optimization should cease once the withdrawal is completed, requiring a stopping guideline
for practical use. We monitor both the optimization objective and unlearning metrics during mini-
mizing the MU-Mis loss Eq.(3) in Figure A1, using the example of unlearning with ResNet-18 on
fullclass-CIFAR100-rocket. In Figure A1, different colors represent different learning rates and the
purple dashed line represents the accuracy of the retrained model. A consistent trend on accuracy
change during unlearning is observed across different learning rates: as the optimization of MU-Mis
loss progresses, the accuracy of the forgetting data (FA) gradually decreases, the accuracy of the
remaining (RA) and test data (TA) first decrease slightly and then grow up with the recovery of
∥∇xfc′(x,wp)∥F .

0 10 20
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0 10 20
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70

75
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0 10 20
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Figure A1: Accuracy and optimization objective during
fullclass-CIFAR100-rocket unlearning with different learn-
ing rates on ResNet-18. FA decreases gradually, RA and
TA first drop slightly and then rise with the recovery of
∥∇xfc′(x,w)∥F . The endpoint of each curve corresponds
to the time when ∥∇xfc′∥F exceeds 90% of its initial value.

Notably, when ∥∇xfc′(x,w)∥F re-
covers close to the level of its ini-
tial value ∥∇xfc′(x,wp)∥F , RA ap-
proaches the retrained model across
different learning rates. There exists a
clear relationship between the unlearn-
ing progress and model performance,
allowing for effective unlearning by
stopping the optimization timely. To
this end, we introduce a stopping
threshold ratio δ to regulate the time
of stopping. We record the minimal
value of irrelevant class logit sensi-
tivity as ϵ and terminate unlearning
process when ∥∇xfc′(Df , w)∥F > ϵ

and ∥∇xfc′ (Df ,w)∥F

∥∇xfc′ (Df ,wp)∥F
> δ.

F EXPERIMENT DETAILS

F.1 EXPERIMENT SETTING

Tasks, Datasets and Models. We in-
vestigate 3 kinds of unlearning tasks in supervised image classification scenarios, including forgetting
a full class, a sub-class under a super-class, and a random subset. We evaluate full class unlearning
on CIFAR-100 (Krizhevsky et al., 2009), PinsFaceRecognition (Burak, 2020), and Tiny ImageNet
(Le & Yang, 2015), sub-class unlearning on three sub-classes of CIFAR-20 (Krizhevsky et al., 2009),
random subset unlearning on CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011).
We perform sequential unlearning by iteratively unlearning a full and a sub-class to evaluate the
algorithm’s robustness to privacy onion effect (Carlini et al., 2022). For iterative full class MU, we
iteratively unlearn 5 distinct classes (label 0-4, corresponding to “Apple”, “Fish”, “Baby”, “Bear”
and “Beaver”) of CIFAR-100 in line with Wang et al. (Wang et al., 2024a). For sub-class setting, we
iteratively unlearn 5 sub-classes (“orchid”, “poppy”, “rose”, “sunflower”, “tulip”) under the same
superclass “flower” of CIFAR-20. We use ResNet-18 (He et al., 2016) for all the above experiments.
To further indicate the significant efficiency advantage of our remaining-data-free method, we perform
full class unlearning on Tiny-ImageNet and sub-class unlearning on CIFAR-20 with ViT.

Evaluation Metrics. MU methods should be assessed from three aspects: utility, privacy, and
efficiency(Xu et al., 2024). Beyond that, in practice, where the unlearning requests are made
constantly, the unlearning resilience should be assessed, i.e. subsequent unlearning should not spoil
previous unlearning efforts. For utility, we compute forgetting data accuracy (FA), remaining data
accuracy (RA), and test data accuracy (TA) of the unlearned model. FA and RA are computed on the
valid set in class-wise unlearning and on the train set in random subset unlearning. We compute the
average gap (Avg. Gap) between the retrained model and the unlearned model on accuracy-related
metrics, including FA, RA and TA to illustrate the utility disparity. In terms of resilience, we evaluate
on sequential unlearning tasks. We compute the train (FGTA) and valid (FGVA) accuracy on the
forgotten classes and quantify the unlearning resilience with the average of their disparity to the
retrained model (Resilience Avg. Gap). To further examine the indistinguishability between the
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retrained and unlearned model, we compute the KL divergence between their output distributions
over the entire dataset. The retrained model is an oracle of approximate MU, therefore, above disparity
metrics should be as small as possible. Regarding the privacy guarantee, we use membership inference
attack (MIA) (Chundawat et al., 2023) to probe the remaining information of the forgetting data. The
MIA success rate indicates how many samples in Df are predicted as membership samples of the
unlearned model. From a privacy perspective, a lower MIA value implies less information leakage
in the unlearned model and is preferred (Liu et al., 2024). For efficiency, we provide the run time
efficiency (RTE) in seconds to indicate timeliness.

Baselines. We compare our method along with 6 baselines which utilize the remaining data, as well
as 4 remaining-data-free methods. The 6 baselines include Bad Teacher (BT) (Chundawat et al.,
2023),Finetune (FT) (Warnecke et al., 2023), SCalable Remembering and Unlearning unBound
(SCRUB) (Kurmanji et al., 2023), Selective-Synaptic-Dampening (SSD) (Foster et al., 2024b),
Distance-based Unlearning via Centroid Kinematics (DUCK) (Cotogni et al., 2023), Saliency-based
unlearning (SalUn) (Fan et al., 2024b), Large-Scale Machine Unlearning with a Taste of Uncertainty
(LoTUS) (Spartalis et al., 2025), Machine Unlearning via Nash Bargaining (MUNBa) (Wu & Harandi,
2025). We also add a strong remaining-data-dependent method Refined-Unlearning Meta-algorithm
(RUM) (Zhao et al., 2024) for the most challenging random subset setting. The 4 remaining-data-free
methods include Random Labeling (RL) (Golatkar et al., 2020), Negative Gradient (NG) (Thudi
et al., 2022), Just in Time unlearning (JiT) (Foster et al., 2024a) and Selective-distillation for Class
and Architecture-agnostic unleaRning (SCAR) (Bonato et al., 2024).

The detailed method of each baseline is as the following:

• BT (Chundawat et al., 2023): Bad Teacher transfers knowledge from useful and useless
teachers for the remaining data and the forgetting data. The code source is https://
github.com/if-loops/selective-synaptic-dampening.

• FT (Warnecke et al., 2023): Finetune optimizes the pre-trained model with the remaining
data, unlearning relying on “catastrohpic forgetting”. The code source is https://
github.com/if-loops/selective-synaptic-dampening.

• SCRUB (Kurmanji et al., 2023): SCRUB aims to push outputs of the student model (the
unlearned model) away from the teacher model (the pre-trained model) to distill knowledge.
This is achieved by first performing several max-steps (distill the knowledge) and then
perform several min-steps (regain performance on the remaining data with cross-entropy
loss). The code source is https://github.com/meghdadk/SCRUB.

• SSD (Foster et al., 2024b): SSD uses the Fisher information matrix to assess parameter
importance and suppress parameters that are important to the forgetting data while less im-
portant to the remaining data. The code source is https://github.com/if-loops/
selective-synaptic-dampening.

• DUCK (Cotogni et al., 2023): DUCK employs metric learning to guide the removal of
samples matching the nearest incorrect centroid in the embedding space. The code source is
https://github.com/OcraM17/DUCK.

• SalUn (Fan et al., 2024b): SalUn computes weight saliency map to enable the most im-
portant weights for the forgetting data. The code source is https://github.com/
OPTML-Group/Unlearn-Saliency.

• LoTUS (Spartalis et al., 2025):LoTUS performs large-scale machine unlearning by es-
timating and propagating uncertainty to guide parameter update suppression, enabling
scalable forgetting without relying on remaining data. The source code is https:
//github.com/sohomghosh/LoTUS.

• MUNBa (Wu & Harandi, 2025): MUNBa formulates machine unlearning as a Nash bar-
gaining problem and jointly optimizes forgetting and retention objectives to balance util-
ity preservation and effective removal. The source code is https://github.com/
OPTML-Group/MUNBa.

• RUM (Zhao et al., 2024): RUM analyzes fundamental factors that impact unlearning
difficulty (e.g., embedding-space entanglement between forgotten and retained data, and
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memorization levels), and proposes a meta-algorithm that partitions the forget set into
homogeneous subsets and applies per-subset unlearning to improve performance. The
source code is https://github.com/kairanzhao/RUM.

• NG (Thudi et al., 2022): Negative gradient computes several steps of gradient ascent with
the forgetting data. The source code is https://github.com/jbonato1/scar.

• RL (Golatkar et al., 2020): Random label relabels the forgetting data with randomly
assigned class and fine-tune the model with computed cross-entropy loss. The source code
is https://github.com/jbonato1/scar.

• SCAR (Bonato et al., 2024): SCAR utilizes Out-of-distribution (OOD) data as a surrogate for
the remaining data and distills the knowledge of the original model into the unlearned model
to preserve model utility. The source code is https://github.com/jbonato1/
scar.

• JiT (Foster et al., 2024a): JiT smooths the model output around the forgetting data by
minimizing the local Lipschitz constant. The source code is https://github.com/
jwf40/Information-Theoretic-Unlearning.

F.2 KL DIVERGENCE

The KL divergence between two distributions is:

DKL(pz(wr)||pz(wu)) =

∫
pz(wr) log[pz(wr)/pz(θ)]dD (A3)

We calculate empirical KL divergence with the entire dataset (including both the train and valid set).
We first collect the predicted class probabilities from both the unlearned and retrained models of each
sample, then we compute the output KL divergence as follows:

DKL =
1

N

N∑
i=1

C∑
c=1

pc(xi;wr) log
pc(xi;wr)

pc(xi;wu)
, (A4)

where N is total number of dataset, C denotes the total number of classes, wu is the unlearned model
parameter and wr is the retrained model parameter. pc(xi, w) represents the c-th posterior probability
of i-th sample in model w.

F.3 TRAINING DETAILS

For ResNet-18, training uses SGD with a momentum of 0.9, weight decay of 5× 10−4, and batch
size of 128 with a learning rate initialized at 0.1. The learning rate decays at 60,120,160 by 0.1 with
a total of 200 epochs.

For ViT, we initialize with model pre-trained on ImageNet provided by torchvision. Then we
randomly initialize the last fully connected layers and train it with SGD with a momentum of 0.9,
weight decay of 5 × 10−4, batch size 64, constant learning rate η = 0.1 for 10 epochs. All the
experiments are conducted on a single RTX 4090.

F.4 HYPER-PARAMETERS

For MU-Mis, we optimize the pretrained model under model.eval() mode with vanilla SGD without
momentum for ResNet-18 and Adam for ViT. For only the forgetting data are used in MU-Mis, we
must freeze the batch norm layers to avoid spoiling the remaining data. We use batch size of 256
for MU-Mis across all the experiments with ResNet-18 and batch size of 32 with ViT. We report the
learning rate η and stopping threshold δ used in different settings in Table A4 for reproducibility.

For each baseline, We perform grid search to find the best hyper-parameters in each setting. The
hyper-parameter sweep range for each method is presented in Table A3. The hyper-parameters used
for all the methods in sequential full class and sub-class tasks are shown in Table A1 and Table A2.
For all the methods, we fix batch size as 256 for ResNet-18 and 64 for ViT unless otherwise stated in
hyper-parameter ranges. For BT, we use constant learning rate. For fine-tune based methods, e.g.
FT, as well as SCRUB and SalUn, we use cosine scheduler. We fix temperature= 1, alpha = 0.5,
gamma = 0.99, weight decay = 5× 10−4 for SCRUB. We fix weight decay = 5× 10−4 for DUCK
and SCAR.
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Table A1: Hyperparameters for full class sequential unlearning in Fig. 5.

Methods Hyperparameters
Retrain epoch = 200, lr = 0.1, milestones = [60, 120, 160].

BT epoch = 10, lr = {5, 5, 5, 1, 5} × 10−5, temperature scalar = {3, 1, 1, 1, 5}.
FT epoch = 10, lr = 10−1 for all iterations.

SSD dampening constant λ = {1, 1, 1, 1, 0.1}, selection weight α = {95, 70, 50, 70, 80}.
SalUn epoch = 10, lr = 10−3, threshold = 0.6 for all iterations.

MU-Mis epoch = 50, lr = {2, 1, 1, 0.5, 0.8} × 10−4

Table A2: Hyperparameters for subclass sequential unlearning in Fig. 5.

Methods Hyperparameters
Retrain epoch = 200, lr = 0.1, milestones = [60, 120, 160].

BT epoch = {5, 10, 5, 10, 5}, lr = {0.5, 0.5, 1, 1, 5} × 10−5, temperature scalar = {5, 5, 5, 3, 1}.
FT epoch = 20, lr = 10−1 for all iterations.

SSD dampening constant λ = {1, 0.1, 0.1, 1, 1}, selection weight α = {71, 100, 90, 87, 85}.
SalUn epoch = 10, lr = 10−3, threshold = 0.6 for all iterations.

MU-Mis epoch = 30, lr = {5, 1, 0.1, 3, 3} × 10−6, stopping threshold δ = {1.4, 1.4, 0.95, 10, 10}.

Table A3: Hyper-parameters range overview for different methods in all the experiments.

Methods Hyperparameters

BT
epoch ∈ {1, 3, 5, 10},
lr ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 5× 10−5, 5× 10−6, 10−6},
temperature scalar ∈ {1, 3, 5}.

FT epoch ∈ {5, 10, 15, 20},
lr ∈ {10−1, 10−2, 10−3}.

SSD dampening constant λ ∈ {0.1, 0.5, 0.9, 1},
selection weight α ∈ {1, 5, 10, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100}.

SCRUB

epoch = 10,
lr ∈ {10−1, 5 × 10−2, 10−2, 5 × 10−3, 10−3, 5 × 10−4, 10−4, 5 ×
10−5, 10−5},
max step ∈ {2, 3, 5, 8}.

SalUn
epoch ∈ {10, 20},
lr ∈ {10−2, 10−3, 5× 10−4, 5× 10−5, 10−5, 5× 10−6, 10−6},
threshold ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

DUCK lr ∈ {5× 10−2, 10−2, 5× 10−3, 10−3, 10−4},
λ1, λ2 ∈ {0.5, 1, 1.2, 1.5, 2, 3, 5}.

NG epoch ∈ {1, 3, 5, 10, 15, 20, 25, 30},
lr ∈ {10−1, 10−2, 10−3, 10−4, 10−5}.

RL epoch ∈ {1, 3, 5, 10, 15, 20, 25, 30},
lr ∈ {10−1, 10−2, 10−3, 10−4, 10−5}.

JiT
dampening constant = 1,
lr ∈ [10−3, 10−6],
lipschitz weight α ∈ [0, 1] .

SCAR

lr ∈ {10−2, 5×10−3, 10−3, 5×10−4, 10−4, 5×10−5, 5×10−6, 10−6},
batch size ∈ {256, 512, 1024},
temperature ∈ {1, 3, 5},
λ1, λ2 ∈ {1, 1.5, 3, 5}.

LoTUS

lr ∈ {10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2, 5 ×
10−2, 10−1},
epochs ∈ {5, 10, 15, 20},
α ∈ {2, 4, 6, 8, 16}.

MUNBa
lr ∈ {10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2, 5 ×
10−2, 10−1},
epochs ∈ {5, 10, 15, 20, 25, 30, 40}.
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Table A4: Hyperparameters of MU-Mis h(learning rate η and stopping threshold ratio δ).

Setting η δ

fullclass-CIFAR-100 7× 10−5 1.45
fullclass-PinsFaceRecognition 4× 10−4 0.68

fullclass-Tiny-ImageNet 4× 10−6 1.1
subclass-CIFAR-20-rocket 3× 10−5 3.00

subclass-CIFAR-20-sea 2× 10−5 0.93
subclass-CIFAR-20-lamp 5× 10−5 1.80

fullclass-Tiny-ImageNet-ViT 5× 10−4 1.03
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G ADDITIONAL EXPERIMENT RESULTS

G.1 UNLEARNING UTILITY

G.1.1 FULL CLASS MU ON PINSFACERECOGNITION

Results of full class unlearning on PinsFaceRecognition dataset are presented in Table A5. MU-Mis
exhibits the smallest Avg.Gap to the retrained model, alongside a low MIA susceptibility. SCRUB
and Salun exhibit a notably high MIA score, demonstrating a high risk of privacy leakage.

Table A5: Performance overview for full class unlearning (including MU-Mis and 6 baselines)
evaluated on PinsFaceRecognition with ResNet-18. The content format follows Table 1.

Method RA FA TA Avg. Gap ↓ MIA RTE

Pretrain 93.49 100 93.59 34.54 100.00 13144
Retrain 93.06±0.21 0.00±0.00 92.25±0.32 0.00 0.00±0.00 11400

BT 92.69±0.01 0.00±0.00 91.48±0.01 0.26 0.00±0.00 36
FT 93.99±0.09 8.78±1.34 92.94±0.10 3.47 0.00±0.00 146

SCRUB 92.82±0.02 0.00±0.00 91.61±0.02 0.29 19.63±0.28 112
SSD 93.41±0.00 0.00±0.00 92.17±0.00 0.14 0.00±0.00 8

DUCK 92.17±0.11 0.00±0.00 91.06±0.11 0.69 0.00±0.00 64
SalUn 93.28±0.05 0.62±0.00 92.12±0.06 0.34 54.22±1.06 154

MunBa 91.44±0.12 1.63±0.02 90.27±0.11 1.74 0.00±0.00 522
LoTus 92.87±0.08 0.00±0.00 91.75±0.09 0.23 0.00±0.00 374

MU-Mis 92.98±0.06 0.00±0.00 92.13±0.04 0.07 0.00±0.00 24

G.1.2 SUB CLASS MU ON CIFAR-20-LAMP

We evaluate sub-class unlearning on CIFAR-20-Lamp as presented in Table A6. The FA of the
retrained model is 11.31, indicating certain generalization capability on the unlearned class. MU-Mis
exhibits the smallest Avg.Gap to the retrained model.

Table A6: Performance overview for sub-class unlearning (including proposed MU-Mis and 6
baselines) evaluated on lamp of CIFAR-20 using ResNet-18. The content format follows Table 1.

Method RA FA TA Avg. Gap ↓ MIA RTE

Pretrain 85.31 74.22 85.21 21.30 92.82 6910
Retrain 85.12±0.22 11.31±1.60 84.40±0.20 0.00 7.06±0.11 4298

BT 85.52±0.04 10.00±0.00 84.84±0.04 0.72 0.00±0.00 29
FT 82.47±0.15 14.00±2.19 81.90±0.18 1.97 2.80±0.36 128

SCRUB 82.17±0.68 19.00±4.74 81.60±0.70 4.48 26.20±4.18 113
SSD 84.56±0.00 15.00±0.00 83.84±0.00 1.60 0.60±0.00 18

DUCK 83.25±0.31 31.02±2.74 82.69±0.34 7.75 27.68±5.15 68
SalUn 84.44±0.05 13.70±1.66 83.74±0.04 1.24 1.68±0.17 1007

MunBa 81.17±0.15 17.00±0.10 80.69±0.14 4.45 5.00±0.12 676
LoTus 27.44±0.22 12.00±0.08 27.40±0.20 38.45 33.60±0.18 14

MU-Mis 84.36±0.51 11.70±1.29 83.66±0.50 0.63 0.00±0.00 10

G.1.3 RANDOM SUBSET UNLEARNING

We evaluate random subset unlearning on CIFAR-10 and SVHN as presented in Table A6. We could
see that it is much more challenging for remaining-data-free methods to preserve model utility in this
setting, for forgetting and remaining data are highly entangled in this scenario. Across CIFAR-10 and
SVHN, MU-Mis exhibits consistently low MIA value, demonstrating a good privacy preservation.

Comparison with RUM in random subset setting. RUM(Zhao et al., 2024) provides a careful
analysis of what makes unlearning hard and applies tailored unlearning strategies to each group of
homogeneous subsets (i.e., by memorization level), achieving excellent performance in especially
challenging random-subset setting. Therefore, we follow the experiment of RUM (i.e., Table 1 in its
original paper, where random subset is consist of 3000 samples of high, middle, low memorization
levels in CIFAR-10.) We compare performances of RUM, SalUn and MU-Mis in the following Table
A8. We could see that MU-Mis still outperforms GA, but there is a clear performance gap between
MU-Mis and RUM, indicating a room for further improvement.
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Table A7: Performance overview for random subset (10%) unlearning task evaluated on forgetting
10% CIFAR-10 and SVHN using ResNet-18. The content format follows Table 1.

Method CIFAR-10 SVHN
RA FA TA Avg. Gap↓ MIA RTE RA FA TA Avg. Gap↓ MIA RTE

Pretrain 100.00 99.96 94.68 1.84 92.64 14322 100.00 100.00 96.48 1.65 83.11 16904
Retrain 100.00±0.00 94.51±0.16 94.75±0.11 0.00 84.77±11.13 12800 100.00±0.00 95.12±0.12 96.40±0.14 0.00 81.24±11.13 13890

BT 99.64±0.01 93.06±0.06 93.01±0.04 1.18 7.20±0.00 50 98.73±0.01 96.71±0.03 95.01±0.01 1.42 22.32±0.00 215
FT 100.0±0.00 94.73±0.13 93.17±0.25 0.51 68.66±0.00 395 100.0±0.00 96.38±0.03 96.87±0.09 0.54 80.72±0.54 805

SCRUB 100.00±0.00 95.79±0.50 93.43±0.10 0.87 77.56±0.93 207 95.40±1.18 94.79±1.00 94.94±0.83 1.98 23.15±2.62 104
SSD 99.99±0.00 99.98±0.02 94.66±0.01 1.86 92.54±0.00 18 98.67±0.39 98.63±0.43 96.59±0.11 1.52 84.23±0.77 55

DUCK 98.04±0.05 97.90±0.21 92.38±0.06 2.57 90.59±0.29 21 96.16±0.20 94.86±0.39 95.53±0.25 1.51 30.46±9.28 156
SalUn 100.0±0.00 94.31±0.03 93.19±0.03 0.59 26.52±0.00 247 99.77±0.00 94.50±0.05 95.85±0.01 0.47 19.92±0.00 409

MunBa 100.00±0.09 94.57±0.10 93.19±0.08 0.54 58.20±0.18 420 99.73±0.05 96.46±0.06 96.84±0.05 0.68 66.70±0.20 583
LoTus 96.90±0.12 96.73±0.08 90.55±0.11 3.17 56.10±0.19 172 94.48±0.14 94.31±0.10 86.65±0.13 5.36 78.80±0.15 35

NG 96.46±0.23 96.15±0.35 90.52±0.22 3.13 88.21±0.32 25 98.98±0.02 98.98±0.05 96.56±0.01 1.53 84.53±0.26 25
RL 96.17±0.28 93.99±0.51 88.29±0.34 4.27 83.11±0.50 26 98.66±0.08 98.53±0.10 96.02±0.02 1.56 73.94±0.28 25
JiT 95.45±1.92 95.46±1.81 89.63±1.90 3.54 86.00±0.32 255 96.30±0.64 96.26±0.74 95.14±0.89 1.88 62.78±24.32 333

SCAR 98.63±0.13 98.64±0.08 92.43±0.13 2.61 48.36±0.35 197 96.34±0.54 96.46±0.69 92.39±0.70 2.86 55.20±2.86 158
MU-Mis 97.76±0.03 97.43±0.04 91.50±0.03 2.80 33.04±0.28 116 95.48±0.00 95.50±0.03 94.22±0.00 2.36 26.11±0.00 116

The complementary roles of RUM, SalUn, and MU-Mis. Nonetheless, it is worth noting that
RUM, SalUn, and our MU-MIS focus on different aspects: RUM answers how samples (low→
middle→ high memorization) should be scheduled and treated during unlearning, SalUn identifies
which parameters (gradient-based saliency map) should be updated, and MU-Mis figures out what
information (sample contribution) should be removed. The three aspects are all important and
numerically has their own advantages, e.g., RUM is perfect in random subset unlearning and MU-Mis
work well without using remaining data. Therefore, RUM, SalUn and MU-Mis are not competing
in the same design space, and are naturally complementary and can be combined. And we are very
happy to see performance of RUM and especially the combination of RUM and MU-Mis. Combining
RUM could improve performance of MU-Mis to some extent, but it still under-perform RUM by a
noticeable margin on model utility.

MU-Mis exhibit lowest KL-divergence on forget set to the retrain model than SalUn and RUM.
Furthermore, we examine the KL divergence between MU-Mis and retrained model in Table A8.
Surprisingly, we find that MU-Mis achieves the smallest KL-divergence to the retrain model in
forget set across different methods. We attribute this to their fundamentally different unlearning
mechanisms: RUM (inherited from fine-tuning and SalUn) relies on random relabeling or catastrophic
forgetting. As discussed in our paper, random relabeling might not provide a principled way to
align the output distribution of the retrain model on forgetting data, leading to a sub-optimal output
distribution. Also, compared with RL, MU-Mis does improve existing RDF method in random subset
unlearning. The overall KL divergence of RL is 4.3, while that of MU-Mis is 0.65, which is an
substantial improvement, indicating that MU-Mis produces an output distribution much closer than
other RDF methods. Consequently, although MU-Mis still underperforms remaining-data-dependent
methods such as RUM+SalUn in terms of model utility, we think its lower KL divergence on the
forgetting data is a meaningful step that advances unlearning towards a more faithful/reasonable
unlearning.

Challenges of remainig-data-free methods in random subset removal. As is investigated in Figure
A4 in Appendix H, we could see that intra-class samples assemble highly similar gradients. Moreover,
many existing remaining-data-dependent approaches are still suffering from utility degradation in
this setting. Therefore, it is important to acknowledge the daunting challenges such a vision of
remaining-data-free method in random subset setting faces. Although not perfect, but MU-Mis has
advanced remaining-data-free method in this challenging scenario. Therefore, we remain hopeful
about the vision of a perfectly RDF method that preserves model utility under random subset settings
and we believe a better location of sample contribution might offer a promising path.

Table A8: Unlearning performance and KL divergence metrics of SalUn, RUM and MU-Mis on
CIFAR-10 with ResNet-18 following Zhao et al. (2024).

Method FA RA TA Avg. Gap↓ ToW MIA MIA.GAP ToW_MIA KL_Forget KL_Test KL_Retain KL_All

Pretrain 100.00 100.00±0.00 85.10±0.12 12.24 0.64 0.03 0.45 0.44 2.7131 0.3040 0.0018 0.1826
Retrain 63.93±0.15 100.00±0.00 84.45±0.11 0.00 1.00 ±0.07 0.47±0.05 0.00 1.00±0.08 0.0000 0.0000 0.0000 0.0000
SalUn 73.63±0.21 99.99±0.01 81.64±0.18 4.17 0.88±0.06 0.79±0.04 0.31 0.64±0.07 0.9941 0.3601 0.0548 0.1175
RUM 66.40±0.14 100.00±0.00 84.41±0.13 0.84 0.97±0.05 0.99±0.03 0.52 0.48±0.09 1.4462 0.2770 0.0057 0.0675
RL 58.40±0.24 62.32±0.20 47.81±0.15 26.62 0.37±0.04 0.49±0.08 0.02 0.34±0.06 5.9854 4.5657 4.1801 4.3005

MU-Mis 66.90±0.19 70.48±0.22 57.37±0.16 19.85 0.50±0.03 0.42±0.06 0.06 0.40±0.04 0.6525 1.1091 1.2391 0.7509
RUM+MU-Mis 60.70±0.23 77.45±0.19 61.18±0.14 16.35 0.58±0.08 0.41±0.07 0.06 0.56±0.05 2.7765 1.0060 0.6421 0.7005
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G.1.4 FULL CLASS MU COMPARED WITH JIT WITH VGG16

Table A9: Performance comparison between MU-
Mis and JiT of full class unlearning on CIFAR-100
using VGG-16.

Metrics RA FA TA Avg. Gap↓ MIA RTE

Pretrain 64.72 66.75 64.76 23.64 85.20 -
Retrain 64.96±0.35 0.00±0.00 63.36±0.34 0.00 15.7±1.56 -

JiT 60.98±0.08 3.73±0.00 60.45±0.07 3.21 8.02±0.24 16
MU-Mis 64.60 ±0.04 0.00±0.28 63.96±0.04 0.32 3.28±0.22 35

JiT unlearns by regularizing lipshitz constant
around the forgetting data, which might fail on
DNNs with batch norm layers. Following the
architecture used in the original paper, we com-
pare with it on CIFAR-100-rocket unlearning
in Table A9. The results show that JiT exhibits
greater efficacy when implemented with VGG-
16 as opposed to ResNet-18. However, it still ex-
hibits a noticeable performance disparity when
compared to MU-Mis.

G.1.5 SUB-CLASS MU ON CIFAR-20-SEA WITH VIT

We conducted experiments with ViT on subclass-CIFAR20-sea to further demonstrate our effective-
ness across different tasks. MU-Mis exhibits the best RA, FA, and TA, and provides advantages in
unlearning time.

Table A10: Performance overview for sub-class unlearning task evaluated on Cifar20-Sea using ViT.
RTE is reported in minute.

Methods RA FA TA Avg. Gap ↓ MIA RTE (min)

Pretrain 93.65 91.32 93.63 0.93 69.80 -
Retrain 93.90±0.12 88.98±0.08 93.84±0.14 0.00 59.00±0.23 -

SalUn 94.15±0.10 89.29±0.03 94.13±0.08 0.27 62.10±0.42 10

MU-Mis 93.70±0.02 88.84±0.25 93.67±0.02 0.17 69.67±0.31 0.5

G.2 MEMBERSHIP INFERENCE ATTACK

We examine our privacy leakage with a comparably good unlearning-adapted LiRA proposed by
SCRUB Kurmanji et al. (2023). We report SCRUB-LiRA examined results across 3 unlearning
settings in Table A11. We could see that in MU-Mis unlearned model, SCRUB-LiRA is quite close
to random guessing, indicating that the forgetting data in MU-Mis unlearned model is similar to
non-members.

LiRA-SCRUB and MIA-Entropy is complementary. The goal of the adversary in LiRA-based MIA
is to distinguish “forgotten samples” from unseen (non-member) samples. Therefore, their criteria
of successful unlearning is that in the unlearned model, the adversary could not well distinguish
forgotten samples from unseen samples, i.e., MIA collapse to random guessing (50%) for random
subset unlearning. LiRA-based MIA examines how indistinguishable the forgetting data to the
non-members, thereby the closer of SCRUB-MIA value to 50% in random subset setting is the better.
While MIA in our paper examines how much forgotten samples are predicted as members, thereby
the lower is the better. That is to say, LiRA-based MIA examines the extent of non-membership
of forgetting data, while our MIA-Entropy examines the extent of membership, i.e., the residual
membership signals of forgetting data. Therefore, these 2 MIAs are not contradictory or competing,
but complementary, which all support our conclusions.

Table A11: SCRUB-LiRA scores across different unlearning settings.

Setting Model FA (%) RA (%) TA (%) MIA-Entropy MIA-SCRUB

Fullclass-CIFAR100-Rocket
Pretrain 86.00 76.37 76.56 95.40 73.40±2.60
Retrain 0.00 76.86 76.07 6.60 96.40±1.60

MU-Mis 0.00 76.37 75.71 0.00 90.40±2.00

Subclass-CIFAR20-Sea
Pretrain 97.00 85.10 85.14 91.80 64.40±2.40
Retrain 80.00 84.85 85.00 53.00 47.40±6.40

MU-Mis 80.00 84.26 84.15 0.60 53.00±4.60

Random-CIFAR10-10%
Pretrain 99.96 100.00 94.68 92.64 56.64±0.60
Retrain 94.51 100.00 94.75 84.77 49.68±0.30

MU-Mis 97.43 97.42 91.50 83.34 52.66±0.40
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G.3 ABLATION STUDY

G.3.1 ABLATION STUDY ON EACH TERM OF MU-MIS

Table A12: Ablation study on each term of our loss in full
class (Rocket) unlearning. TC (Target Class) refers to the
first term and OC (Other Class) refers to the second term.

Methods RA FA TA Avg. Gap ↓ MIA RTE

Pretrain 76.41 79.69 76.47 26.84 95.80 -
Retrain 76.52±0.27 0.00±0.00 75.76±0.24 0.00 2.87±0.46 -

TC 65.41±0.00 0.00±0.00 64.73±0.00 7.38 1.40±0.00 44
OC 70.13±0.41 74.62±1.56 70.21±0.42 28.85 0.00±0.00 25

TC-OC.detach() 70.24±0.01 17.35±0.04 69.45±0.03 9.98 0.016±0.045
TC - OC 76.42±0.07 0.00±0.00 75.64±0.07 0.07 0.00±0.00 30

We study the role of each term in
our loss through ablation, illustrating
with fullclass-CIFAR100-Rocket on
ResNet-18. We denote the first term
∥∇xfc(w, x)∥2F in our loss Eq. (3) as
TC (Target Class) and the second term
∥∇xfc′(w, x)∥2F as OC (Other Class).
In Table A12, we showcase the un-
learning performance of decreasing
TC, increasing OC, and decreasing
TC - OC (MU-Mis) respectively. We also investigate another variant of MU-Mis: regressing
sensitivity norm of TC(target class) term to OC(other class) term. During unlearning, we observe
that as ∥∇xfc∥F decreases, FA decreases gradually. We find that although the gradient of ∥∇xfc′∥F
is detached, its norm exhibits slight decrease as well when minimizing. As the sensitivity norm
of fc approaches fc′ , i.e., the loss approaches 0, FA gradually stops to decrease and converges at
17.35%. Therefore, this variant could unlearn successfully but failed to preserve model utility by
regressing sensitivity magnitude of fc to fc’. As demonstrated by Figure A1, when minimizing
∥∇xfc∥F , ∥∇xfc′∥F and retain accuracy (RA) will drop slightly as well, then RA will recover to
its original level as the picking up of ∥∇xfc′∥F in our loss. Therefore, the magnitude of ∥∇xfc′∥F
is essential for preserving model utility on remaining data (which is also supported by the ablation
study in our Table A10). Thus, when regressing ∥∇xfc∥F to ∥∇xfc′∥F , the norm of ∥∇xfc′∥F is
not explicitly preserved, and drops during minimizing. Therefore, this regressing variant is a useful
diagnose and it confirms that the joint-term optimization in MU-Mis is necessary.

From the ablation study, we know that minimizing the first term obliviates information of the
forgetting data, but greatly hurts performance on the remaining data. Solely increasing OC brings a
slight accuracy drop on remaining data, but hardly unlearns the forgetting data. While our MU-Mis
loss could unlearn effectively meanwhile preserve model utility on the remaining data.

G.3.2 PERFORMANCE UNDER SENSITIVITY REGULARIZATION TECHNIQUE

We employed Jacobian regularization Hoffman et al. (2019) to our pre-training and re-training.
Jacobian regularization penalizes model’s input-output sensitivity around training sample x, i.e.,
∥J(x)∥ = ∥∂f(x)∂x ∥F to encourage a smoother decision boundary for better robustness and general-
ization. We evaluated the unlearning of an full class on the CIFAR-10 dataset by training ResNet18
for 30 epochs with lr = 0.1, bs = 256, regularization coefficient =0.01. The unlearning performance is
shown in Table A14, where the first 3 rows are performances on vanilla model (with data augmenta-
tion but without Jacobian regularization). In Jacobian regularized model, it seems to be more difficult
to fully forget a class by MU-Mis, but it still preserves model utility well without remaining data.

G.3.3 ROBUSTNESS OF PERFORMANCE TO SENSITIVITY METRIC.

Table A13: Performances of MU-Mis under different sensi-
tivity norm choices.

Methods RA FA TA Avg. Gap ↓ MIA

Pretrain 76.41 79.69 76.47 26.84 95.80
Retrain 76.52±0.27 0.00±0.00 75.76±0.24 0.00 2.87±0.46

L2 75.53±0.05 1.95±0.02 74.89±0.11 1.27 0.000±0.00

Inf 50.34±0.12 1.95±0.04 50.11±0.14 17.93 0.710±0.02

Frobenius 76.42±0.07 0.00±0.00 75.64±0.07 0.07 0.000±0.00

We investigate performances of MU-
Mis with different sensitivity norm
choices in Table A13. We can see
that the L2 norm yields similar perfor-
mance to the Frobenius norm (origi-
nal MU-Mis) and retrain, suggesting
that the method is robust as long as
the norm aggregates all components
of the sensitivity vector. In contrast,
norms that emphasize only extreme
coordinates (e.g., infinity norm) tend to over-penalize the worst-case direction, which empirically
hurts model utility. We observed that the model tends to break down even under a very small learning
rate (1e-8) for L1 norm, which we attribute this to its non-smooth optimization, which induces abrupt
and sparse updates in model outputs.
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Table A14: Unlearning performance w/o Jacobian regularization on CIFAR-100-full-class-rocket.

Method No Jacob Regularization Jacob Regularization = 0.01
FA RA TA Avg. Gap↓ MIA FA RA TA Avg. Gap↓ MIA

Pretrain 88.54 83.59 84.03 32.54 0.9498 88.53 83.33 83.11 32.58 0.9436
Retrain 0.00±0.00 86.11±0.11 77.56±0.15 0.00 9.56±0.08 0.00±0.00 85.77±0.23 77.35±0.07 0.00 0.11±0.09

MU-Mis 1.40±0.35 84.13±0.28 75.98±0.52 1.62 0.98±0.12 5.67±0.32 82.37±0.14 75.12±0.07 3.77 0.21±0.09

G.4 HYPER-PARAMETER SENSITIVITY

We show that there is a clear relationship between the norm ratio and model performance during
unlearning in Figure A1. The stopping threshold ratio δ controls the magnitude ratio of final irrelevant
class sensitivity norm ∥∇xfc′(x,w)∥F to initial one ∥∇xfc′(x,wp)∥F . In this part, we investigate
the sensitivity of unlearning performance to δ in Figure A2, taking fullclass-CIFAR100-Rocket with
ResNet-18 as an example. Different colors represent different δ, ranging from 70% to 100%. The
green dashed line indicates the performance of the retrained model. Notably, under a specific learning
rate, the Avg. Gap exhibits minimal variation with changes in δ. Generally, MU-Mis demonstrates
resilience against variations in hyper-parameters δ. In summary, the hyper-parameter tuning for
MU-Mis is effortless, resilient and well-guided. This advantage in hyper-tuning indirectly enhances
the efficiency of unlearning and facilitates straightforward application of MU-Mis, making it valuable
for practical applications of MU methods.
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Figure A2: MU-Mis unlearning performance with different stopping threshold ratio under different
learning rates on fullclass-CIFAR100-rocket with ResNet-18. Performance varies little with the
threshold ratio when the learning rate is fixed.

G.5 EFFECTIVENESS VISUALIZATION BY ATTENTION MAP
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Figure A3: Visualization of attention maps
for the full class unlearning task on PinsFac-
eRecognition. MU-Mis distracts attention from
forgetting data regions while preserving atten-
tion on remaining data.

To further investigate and understand the behavior
of our unlearned model, we showcase the attention
heatmaps (Selvaraju et al., 2017) of models before
and after applying MU-Mis on PinsFaceRecogni-
tion dataset in Figure A3. For the forgetting data,
the original attention concentrates on the faces.
After applying MU-Mis, the attention on the faces
either disappears or significantly weakens, and is
shifted towards the background. For the remain-
ing data, MU-Mis fully maintains previous atten-
tion. Notably, an alternative interpretation of input
sensitivity is the measurement of how changes in
the image influence its model prediction (Smilkov
et al., 2017). Our proposed method reduces the
target class logit sensitivity to the forgetting data
while recovering irrelevant classes’, thereby en-
abling the unlearned model to disregard the seman-
tic information in the forgetting data meanwhile
preserve prediction sensitivity and performance
on the remaining data.
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H UNDERLYING REASONS FOR MODEL UTILITY PRESERVATION

We suggest the favorable preservation on model utility might be attributed to two factors:

• Conceptual motivations: The forgetting operation in MU-Mis differs fundamentally from
previous methods. While previous methods involved relabelling the forgetting data (Liu
et al., 2024; Foster et al., 2024a; Fan et al., 2024b) or knowledge distillation from a useless
teacher (Chundawat et al., 2023; Lin et al., 2023; Kurmanji et al., 2023), which unlearn by
introducing incorrect information to spoil original knowledge, MU-Mis unlearns by solely
withdrawing the contribution of forgetting data. In Figure A1, we show that RA and TA stay
at a high level throughout the withdrawal process.

• Empirical investigation: Current gradient-based unlearning methods (Liu et al., 2024;
Foster et al., 2024a; Fan et al., 2024b; Wu et al., 2020; Graves et al., 2021; Neel et al.,
2021; Thudi et al., 2022) all employ cross-entropy loss gradient ∇θL(w, x) to unlearn.
However, the intra-class gradients in a well-trained model are quite similar (Papyan, 2020;
Papyan et al., 2020). While the gradient of input sensitivity norm w.r.t parameters is double
back-propagation (Drucker & Le Cun, 1992), enhancing sample-specificity by first back-
propagating to the input samples before reaching the parameters. Our pairwise analysis
of cosine similarity among intra-class and inter-class samples, detailed in the following,
reveals a distinctive orthogonality in input sensitivity gradients, spontaneously reducing the
interference between the forgetting and remaining data.

We calculate the pairwise cosine similarity within a class and between classes of the derivatives
of four metrics w.r.t. parameters in a well-trained model in Figure A4 to demonstrate an inherent
orthogonality input sensitivity view. They are∇wL,∇wfc,∇w∥∇xfc∥F , and∇w

∑
c′ ̸=c ∥∇xfc′∥F

(denoted as ∇w∥∇xfc′∥F in the following for brevity). The first two metrics are commonly used
in current unlearning methods, and the last two are utilized in MU-Mis. Derivatives of all four
metrics are approximately orthogonal between samples from different classes. However, intra-class
similarities differ across four metrics. We can see that both∇wL and∇wfc bear a resemblance within
a class, with cosine similarity centering around 0.3 and reaching up to 0.6. While ∇w∥∇xfc∥F
centers around 0.1 with intra-class similarity scarcely exceeding 0.3. Directly taking the derivative
of output w.r.t parameters preserves within-class similarity of the output, but such similarity is
reduced when output first takes the derivative to the input and then back to parameters.

Interestingly, ∇w

∑
c′ ̸=c ∥∇xfc′∥F seems to be pairwise similar. We speculate that there are two

reasons why this portion of our loss function does not significantly harm the performance of the
remaining data. Firstly, as shown in Figure 3,

∑
c′ ̸=c ∥∇xfc′∥F is significantly smaller than ∥∇xfc∥F

on well-trained models. Therefore, in the early stages of optimizing the relative magnitudes of input
sensitivities, the contribution of ∇w

∑
c′ ̸=c ∥∇xfc′∥F to the optimization direction can be neglected.

Secondly,
∑

c′ ̸=c ∥∇xfc′∥F for the forgetting data actually corresponds to the target class of the
remaining data. The inter-class similarity of∇w

∑
c′ ̸=c ∥∇xfc′∥F implies that when sensitivity of

other irrelevant classes increases, the input sensitivity of the remaining data of the corresponding
classes increases as well, thereby preserving their sample contributions.
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Figure A4: Inter-class and intra-class cosine similarity of four different metrics w.r.t parameters.
From left to right: ∇wL, ∇wfc, ∇w∥∇xfc∥F , and ∇w∥∇xfc′∥F . Directly taking the derivative of
output w.r.t parameters bears a resemblance across samples, but such similarity is reduced when
output first takes derivative to input and then back to parameters.
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I DISCUSSION

Beyond the advantages of input sensitivity for measuring sample contribution, we raise the attention
that the input sensitivity perspective possesses a profound connection to MU. MU emerges from
model’s memorization of the training data and seeks to safeguard the privacy of training data. Recent
studies by Garg et al. (Garg et al., 2024) and Ravikumar et al. (Ravikumar et al., 2024) reveal the
intrinsic relationship between memorization, privacy and sample’s input curvature. Also, Mo et al.
(Mo et al., 2021) demonstrates that the input sensitivity of model gradient is the underlying cause of
information leakage exposed by Model Inversion Attack (MIA) (Zhu et al., 2019; Zhao et al., 2020).
Collectively, these works further underscore the inherent advantages of adopting an input sensitivity
perspective for machine unlearning.

I.1 CORRELATIONS BETWEEN SENSTIVITY GAP AND LOSS CURVATURE IN FORMULA

The loss curvature for memorization proxy used in Zhao et al. (2024); Zhao & Triantafillou (2024) is
Curvature(x) ∝ tr

(
∇2

xL(x)
)

. For input sensitivity of loss, we have

∇xL(x) = (p− ec)
⊤∇xf(x) = (1− pc)∇xfc(x)−

∑
c′ ̸=c

pc′∇xfc′(x)

= (

C∑
c′=1

pc′)∇xfc(x)−
C∑

c′=1

pc′∇xfc′(x) =

C∑
c=1

pc′
(
∇xfc(x)−∇xfc′(x)

)
.

(A5)

By comparing the formula of loss curvature and sensitivity gap used in MU-Mis, we could see that:

tr
(
∇2

xL(x)
)
=

C∑
c=1

pc′tr
(
∇2

x

(
fc(x)− fc′(x)

))
v.s.∥∇xfc(x)∥2F − ∥∇xfc′(x)∥2F (A6)

While both terms reflects sensitivity gap between target class and irrelevant classes, they refers to
different order of gradient. Specifically, loss curvature primarily aims at second-order sensitivity,
while sensitivity gap in MU-Mis refers to the first-order sensitivity. Mathematically, it seems that
there is no straightforward equality or conserved bound that could directly links this two metrics.
Therefore, we’re afraid that we could not provide a general deterministic bound or functional
equivalence without further assumptions.

I.2 INPUT SENSITIVITY SIGNATURES ACROSS DIFFERENT SAMPLES

Although there is few clue of mathematical relationship for analysis, we further investigate their
correlations by examining the sensitivity signatures across different samples empirically, i.e, samples
of different memorization/influence levels.

We partition training samples of CIFAR-10 dataset according to their sample-wise memorization
score (provided by Feldman (2020); Feldman & Zhang (2020) through training many models on
different held-out subsets to measure each sample’s self-influence on its own prediction) into low,
middle, high memorization levels (following Zhao et al. (2024)). We partition training samples of
CIFAR-100 dataset according to their influence score (provided by Feldman (2020); Feldman &
Zhang (2020) through training many models on different held-out subsets to quantify each sample’s
cross-influence on test data) into the same 3 levels. The scores are available at https://github.
com/google-research/heldout-influence-estimation..

Interstingly, the distributions of sensitivity gap of different sample groups are shown in Table A15. For
memorization level, highly memorized samples exhibit smaller sensitivity gap than low and middle
memorized sample. For influence score, more influencial samples exhibit higher sensitivity gap.
Importantly, we think this empirical findings provide meaningful support for our use of sensitivity
gap as a proxy for sample contribution.

We evaluate MU-Mis when respectively unlearning samples with low, medium, and high memoriza-
tion levels in Table A16. We could see that removing those highly-memorized samples causes a
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Table A15: Sensitivity gaps across memorization and influence levels on CIFAR-10 and CIFAR-100.

Level CIFAR-10 (Memorization Level) CIFAR-100 (Influence Level)
Mean Std 10th 50th 90th Mean Std 10th 50th 90th

Low 10.7632 4.2386 6.0814 10.0681 16.4851 36.1209 14.7241 19.3663 34.3506 56.0993
Mid 10.5156 5.5244 3.9959 10.0496 17.6092 39.3604 16.7700 21.3345 36.4983 61.0855
High 6.7922 6.0817 -0.7257 6.6459 14.5839 42.5803 17.1963 23.9295 39.5377 65.7531

more substantial utility drop in the remaining data, indicating that the performance of MU-Mis is not
uniform across samples of different memorization levels. But maybe this is understandable, to some
extent, expected, as unlearning highly entangled and influential samples is intrinsically difficult for
any unlearning method Fan et al. (2024a); Zhao et al. (2024). We acknowledge this is an important
limitation and a promising direction for future work, where more fine-grained unlearning mechanisms
could be developed to further improve remaining-data-free unlearning.

Table A16: Performance of MU-Mis when unlearning low, middle, high levels of samples.

Memorization Method FA RA TA Avg. Gap MIA

Low
Original 100.00 100.00 85.10 0.45 0.013
Retrain 99.83 100.00 83.93 0.00 0.049

MU-Mis 100.00 99.96 83.32 0.27 0.041

Mid
Original 100.00 100.00 85.10 9.02 0.019
Retrain 74.40 100.00 83.63 0.00 0.539

MU-Mis 93.63 87.09 69.29 15.49 0.194

High
Original 100.00 100.00 85.10 26.83 0.055
Retrain 21.63 100.00 82.99 0.00 0.811

MU-Mis 46.10 66.79 57.03 27.88 0.607

I.3 ESSENTIAL GOAL OF MU IN TERMS OF MEMORIZATION, GENERALIZATION AND SAMPLE
CONTRIBUTION

There is an important question that might connect core idea of MU-Mis and RUM:

Q1. What’s the correlation between sample contribution and memorization?

Q2. Is unlearning equivalent to alleviating sample’s memorization level?

Brief clarification between memorization, sample influence and sample contribution.

1. Memorization is defined as the change in its own prediction when a sample leaves the
training set, i.e., self-influence.

2. Sample influence is the change on prediction of other data (test data), thereby more
lies in cross-influence.

3. Sample contribution is the contribution of a training sample to all the model predictions,
thereby comprising both the memorization (self-influence) and sample influence (cross-
influence).

RQ1. Memorization level is not proportional to sample contribution. On the one hand, high
memorization can coincide with large contribution, e.g., long-tail but but genuinely informative
examples, the model may need to “memorize” them to support generalization. On the other hand, high
memorization does not guarantee substantial contribution: a model might over-fit noise, duplicates,
or outliers, thereby exhibiting strong memory for those examples even though they contribute little or
may harm the remaining data’s performance. Conversely, a training example may exert substantial
influence on the model’s remaining predictions (high contribution) without having been deeply
memorized (low memorization).

RQ2. Minimizing sample contribution is more essential for unlearning than reducing mem-
orization. Generally, in random subset case, to unlearn an instance, we would aim to alleviate
model’s memorization of it to prevent privacy leakage exploited by MIA. However, as discussed
above, memorization (self-influence) and influence (cross-influence) consist sample contribution
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together. Therefore, in a broader sense, de-memorization is not that enough for a complete removal,
while withdrawing sample contribution is more fundamental.

In light of the effectiveness of MU-Mis in full/sub-class unlearning, where removal is beyond merely
reducing memorization, we think MU-Mis is not limited to directly alleviate memorization by
optimizing certain curvature-based measures. Rather, we prefer to view MU-Mis as a practical and
efficient proxy that could implicitly reduce memorization by suppressing a sample’s contribution.
Additionally, given the less satisfactory results of MU-Mis in the random-subset unlearning setting,
we suspect that a direct optimization of loss curvature (i.e., explicitly minimizing loss curvature
around a speicific sample) might be sufficient to prevent privacy leakage and yield better model-utility
trade-offs in this scenario.

J LIMITATION

Although MU-Mis could achieve comparable performance to SoTA remaining-data-dependent meth-
ods, there is a clear room for further improvement in the most challenging unlearning scenario,
random subset unlearning. We fully acknowledge that our investigation is quite preliminary, but
we believe that the input sensitivity might be a valuable and beneficial perspective for developing
remaining-data-free unlearning, which is collectively demonstrated by MU-Mis and RUM, leaving a
good starting point for future study.
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