
Open Drug Knowledge Graph

Mark Mann1, Filip Ilievski1, Mohammad Rostami1, Aastha2, and Basel Shbita1

1 Information Sciences Institute, Marina del Rey, CA 90292, USA
{mbmann,ilievski,mrostami,shbita}@isi.edu

2 University of Southern California, Los Angeles CA 90007, USA
aastha@usc.edu

Abstract. Automatic knowledge-based systems can assist medical pro-
fessionals to make more informed recommendations and decisions. Un-
fortunately, as no comprehensive knowledge base (with both medical and
non-medical) knowledge exists today, much manual effort is required to
consolidate knowledge across sources, that are heterogeneous in content
and formats. In this paper, we propose a knowledge-based method that
aims to harmonize four such heterogeneous sources into a single drug-
centric knowledge graph. The graph is based on the drugs found in Wiki-
data, and extended with specialized sources through an extraction and
transformation pipeline, including data acquisition, entity resolution, and
semantic modeling. Our analyses show that the resulting graph and its
embeddings can capture drug similarity through their associated symp-
toms, and thus address common, knowledge-intensive medical search sce-
narios. As such, it holds the promise to be adapted for drug recommenda-
tion in the future. Given the modular setup of our method, new sources
can be included to accommodate healthcare object use cases, relating to
diagnoses and claims. We make the resulting knowledge source available
in both relational database and property graph format.

1 Introduction

Healthcare systems heavily rely on the knowledge and the experiences of the
physicians for drug prescription based on diagnosed symptoms of patients. De-
spite being dominant, this traditional process is limited to the knowledge scope
of one person and faces several challenges.

1. Several different types of drugs may be appropriate to treat the same dis-
ease. In such situations, other (non-medical) factors such as price, accessibil-
ity, and insurance policy may help healthcare professions to reach optimal
decisions.

2. Many healthcare professionals who are not physicians are not supposed to
prescribe drugs in normal situations, yet they may need to act upon symp-
toms that they can diagnose in emergency situations to initiate treatment
before an accurate examination can be performed by a doctor.

3. When a novel disease emerges, clinical data and standard treatment pro-
tocols are limited in the beginning, as in the case of COVID19. Physicians



2 Mann et al.

may want to search for all potential existing drugs which may have positive
effect given the observed symptoms of disease and then repurpose them for
potential early stage treatment options [9].

4. Patients may desire to be more involved in the prescription process, e.g.,
knowing more about particular drugs and their side effect to improve the
prescription process. Patients also may need to find the right drug at a
reasonable price to purchase, in particular in the case of over-the-counter
drugs.

Automated knowledge-based systems could assist with such tasks that involve
intelligent searching of a database with the goal of arriving at a valid conclusion.
We observe that, while a set of very valuable sources is publicly available, no
comprehensive database exist that can accommodate the listed challenges. Exist-
ing medicinal drug databases, e.g., DrugBank3, are helpful but they are mostly
unstructured with abundant amount of thorough information about each entity,
scattered across documents and not tailored to particular use cases. As a result,
these sources are suboptimal for practicing medicine efficiently [11]. As a con-
sequence, the user must spend a considerable amount of time to search across
disjointed databases and narrow down to find the right treatment, but also to
consider non-medical constraints such as price, and avoid adverse interactions
with the current medications. For example, GoodRx4 has structured drug prices
and store availability for each medicine, but it can be only used for shopping
after prescription as it lacks mapping of symptoms to drugs. WebMD5 contains
structured treatment data for each symptom but does not inform what over-the-
counter drugs could help. DrugBank is an open-source database which can help
to find which drugs are safe to consume with the current medications the patient
is taking. However, the average person or even physician is not a computer scien-
tist and cannot query this rich resource. Coming up with structured knowledge
bases that integrate such existing distributed knowledge would help healthcare
professionals to transcendent the above challenges and obtain accurate answers
for their queries in a short time. It can also assist patients to buy drugs with
better prices and improve their shopping experience.

In this paper, we develop a structured database for drugs in terms of a
knowledge graph (KG) [8]. KGs have been found helpful in AI-aided medicine,
in particular for clinical decision support systems for diagnosis and treatment [3,
14]. Building KGs using unstructured medical data helps performing more com-
plex tasks using AI, including adverse drug reactions [2], drug discovery [10],
repropose [9], and predicting drug-drug interaction [5]. Our goal is to construct
a KG such that it can help the user to find potentially helpful drugs that can
serve as potential treatments given a list of symptoms or a disease. Additionally,
information about availability of drugs at nearby stores is provided to the user.
Building upon the existing healthcare literature [17, 16], our goal is to integrate
existing sources to create a comprehensive fast search experience for users who

3 https://go.drugbank.com/releases/latest
4 https://www.goodrx.com/
5 https://www.webmd.com/drugs/2/conditions/index



Open Drug Knowledge Graph 3

manage conditions, budget, and control adverse drug interactions for patients.
By integrating multiple knowledge sources, we enable the users to have more
expressive search results in a short time. Our knowledge graph builds on the
knowledge of symptoms to disease mapping. This helps to find possible drugs
that can be used to treat a symptom. It incorporates information on prices and
drug availability. This helps the user to zero down and research the drugs that
are affordable and available.

We list the contributions of this paper as follows:

1. We present a pipeline for extraction and consolidation of relevant knowl-
edge about symptoms, drugs, and their interaction, as well as non-medical
information, such as drug prices. We apply our pipeline method to four rele-
vant and complementary sources, resulting in an integrated knowledge base.
(Section 2)

2. We make the resulting data publicly available, both in the form of a relational
database and in the form of a knowledge graph.6 The two formats support
complementary use cases.

3. We analyze the contents of the resulting database. We provide statistics of
its constituting nodes and relations, and run graph embedding-based queries
to find similar products or drugs. (Section 3)

4. We assess the applicability of our integrated KG, by designing a user-friendly
web interface and showing its utility on two representative scenarios. (Sec-
tion 4)

2 Approach

The overall architecture of our approach is shown in Figure 1. We start by de-
scribing the data acquisition from the four sources that we will use in this paper:
Wikidata [13], DrugBank, WebMD, and GoodRx (Section 2.1). We next describe
their consolidation through entity linking and resolution between pairs of sources
(Section 2.2). The resulting ontology of our data is described in Section 2.3.

2.1 Sources and data acquisition

We sought to construct a knowledge graph from several drug-centric data sources.
Each source contributes with a particular set of information about drugs, their
prices, and relations to conditions, which can be complimentary. To ease the
effort required in entity linkage, we chose a well-adopted, drug-centric external
id (Drugbank ID) as the primary key of our drug entity. For each data source,
we identified the target features needed, and devised methods for extraction of
the data:

1. Wikidata [13] is one of the largest publicly available knowledge graphs, de-
scribing over 90 million entities with more than a billion statements. To re-
trieve relevant data from Wikidata, we query it for medication (Q12140) enti-
ties with any Drugbank ID (P715) that treats any condition (P2175). We also

6 https://www.kaggle.com/mannbrinson/open-drug-knowledge-graph



4 Mann et al.

Fig. 1: Pipeline for Constructing Open Drug Knowledge Graphs. Each of the
four data sources (Section 2.1) were extracted from the web. Then linked
entities were created to join data sources. A semantic model was then used to
format the data, and subsequently load into a relational and graph database.

retrieve additional, optional features: the medication’s active ingredient in
(P3780), significant drug interaction (P769), and ATCCode (P267). The to-
tal amount of rows extracted from said query was 1,560.

2. Drugbank is a drug-centric database focused on drug-drug interactions and
bioinformatics related features. Its knowledge is provided as data dump in
XML format. We extracted all 2,166 drugs from Drugbank’s XML dump,
each with a maximum of 20 products and 100 interactions.

3. WedMD is a site focused on helping users search for treatments for a given
condition. The site displays an index of all possible conditions, sorted alpha-
betically. From each condition, a list of drug treatments is provided. As the
website provides no public API, we scraped its content programmatically.
The crawler obtained a total of 58,921 condition-drug relations, and 12,857
unique drugs. Features extracted include: condition, product, user reviews,
and prescription type.

4. GoodRx is a healthcare company that tracks prescription drug prices in the
United States and provides free drug coupons for discounts on medications.
As GoodRx does not provide a public API service, we extracted knowledge
on GoodRx’s drug products directly from their website, starting from a
Wikidata-based seed list. The features of drug products that we extracted
were: zipcode, store, price type, price, and price link. An total of 20,688
prices and 23 stores were extracted for the 997 matched drug products.

2.2 Entity resolution

The data extraction step is followed by an entity resolution step. As the entities
across sources are originally disjoint, linking them is essential for the construction
of a well-connected drug knowledge graph. To avoid introducing false positives,
we first perform entity resolution across sources based on their external drug
identifier (Drugbank ID). In this way, the Drugbank ID allowed us to link all



Open Drug Knowledge Graph 5

Metric Value

All Pairs 178,519

Pairs matched 1,701

Pairs found 38

Recall 97.36

Precision 100

True positives 0.973

False positives 0

True Negatives 1

False negatives 0.026

Table 1: Wikidata to WebMD Entity resolution statistics. Entity linkage upon
the ’drug product’ feature between Wikidata and WebMD are reported in
Table 1. A development set of 39 true pairs was used to evaluate the
performance of our entity linkage method. Entity linkage method included
blocking, feature bi-grams, and jaccard similarity threshold.

data sources to Wikidata in a ‘hub-and-spoke’ manner. This design choice en-
riched the information about the entities found in Wikidata, but excludes the
remaining entities in the other three sources, which are not mapped to Wikidata
through the Drugbank ID. For this purpose, we consider further linking on these
entities. Specifically:
Wikidata to Drugbank: Linkage occurred only between Wikidata drugs (con-
taining a Drugbank ID) and the subset of Drugbank drugs with matching Drug-
bank ID. In this case, we did not perform fuzzy matching, as we found it to
decrease the overall quality of matching. Drugbank IDs were found on 787 wiki-
data medications.
Wikidata to GoodRx: We matched Wikidata and GoodRx based on exact
matching query on the GoodRx website. URL requests to GoodRx return a re-
sult if the drug name is exactly matched, and otherwise give an 404 error. Of
all 1560 wikidata drug products, we found 997 matches in GoodRx (recall of
63.9%).
Wikidata to WebMD: Due to absence of shared identifier between Wikidata
and WebMD, we resorted to fuzzy matching between their drug products. A
scoring function was leveraged to create matches for pairs, if the pair had a
Jaccard similarity greater than 0.7. For each search term, bi-gram sets were gen-
erated before Jaccard similarity was calculated. A development set of 50 true
pairs was manually compiled to enable evaluation of this matching approach.
Hash-based blocking upon the entities first two characters was utilized to reduce
candidate pairs from 20M to 178k. Our scoring function obtained 97.3% recall
and 100% precision on these development pairs. Detailed results are shown in
Table 1. We judge this level of error to be acceptable, thus, we proceed with this
linkage strategy.



6 Mann et al.

An overview of the number of entities mapped between Wikidata and each of
the three other sources is shown in Figure 2. We allowed a one-to-one match for
Wiki-Drugbank and Wiki-GoodRx matching tasks. However, we allowed one-to-
many match for Wiki-WebMD drug product matching. This is because WebMD
displayed many suffix variations for a product (ex: Adriamycin vial, Adriamycin-
Pfs Solution) that we wanted to include in our graph. This design choice allowed
for more matches (1701) than products existing in Wikidata (1560).

Fig. 2: Entity linkage metrics by data source. Displays the amount of entity
intersections discovered between data sources. For Wiki-Drugbank linking,
linkage occurred on the ’drug’ entity using the Drugbank ID. For
Wiki-WebMD and Wiki-GoodRx linking, linkage occurred on the ’drug
product’ entity using jaccard similarity and exact match methods, respectively.

2.3 Ontology design

The ontology was designed in a top-down manner, to fit our ultimate goal of en-
abling queries to connect patients with treatment based on their search parame-
ters. We preserved all binary relations: treatment, interaction, active ingredient in,
and drug price, and used them to model information in all their suitable sources.
To contain scope for our proof-of-concept, we selected these relations from Wiki-
data and Drugbank, while using all extracted relations from WebMD and GoodRx.
We decided to categorize drug-like entities into two nodes - drug and product



Open Drug Knowledge Graph 7

- to represent the active ingredient and its name in the market. Our ontology
map is described in figures 2 and 3. It is a simple yet powerful ontology, which
allows us to achieve the project goals, including: (a) Store symptoms to drugs
mapping (b) Capture drug interactions (c) Capture drug prices and variation
across stores/zipcodes.

Figure 3 is a Entity-Relation diagram of the entities in our relational data
model, created after entity linkage was completed. The relational data model was
stored in a MySQL instance, and used as a back-end for our front-end application
(Section 4.1). Figure 4 is composed of the same data, but expressed as a property
graph and stored in Neo4j. The property graph format opened opportunities for
us to leverage Neo4js robust graph-centric libraries for path-finding, centrality,
and computation of embeddings.

Fig. 3: Relational schema. Displays the semantic model in the format of an
Entity-Relation (ER) diagram. In this model, each entity is a relational table
in a MySQL instance.

2.4 Implementation

After extraction, and entity linkage scripts steps, the resulting data model was
loaded to a MySQL instance using another python script. The relational schema
is displayed in Figure 3. The resulting relational database was then exported in
.csv format, and loaded to Neo4j. Neo4j import commands were utilized to load
the data to create nodes and edges corresponding o the data model in Figure 4.



8 Mann et al.

Fig. 4: Property graph schema. Displays the semantic model in the format of
an property graph diagram. In this model, entities are represented as nodes
and properties as edges. The property graph model allows for edge-centric
properties, seen here on the ’AVAIL AT’ property.

3 Analysis

In this section, we analyze the contents of our knowledge base. First, we provide
basic statistics (Section 3.1). Then, we compute drug embeddings and cluster
them to investigate possible emerging patterns in the graph (Section 3.2).

3.1 Statistics

After we loaded the open drug knowledge graph into MySQL, we computed
statistics of the coverage of each class across different sources. The results are
shown in Table 2. Each source contributed a different profile of features, and
some sources contributed unique classes. Specifically, Drugbank distinctly con-
tributed the ‘Manufacturer’ and ‘Interaction’ classes while GoodRx contributed
the ‘Store’ and ‘Price’ classes. Each source was linked back to Wikidata as a
centralized source, based on the linkage methods described above. This shows
the benefit of integrating sources with complementary foci in a single knowledge
source, which is ultimately more than a sum of its parts.

3.2 Graph Embedding Analysis

We sought to further explore the higher-level structure of the extracted knowl-
edge graph via graph embeddings. Our goal was to explore the embedding of
the relation treatment (drug, condition) to confirm whether drugs that treat
similar conditions are clustered together. If drugs are clustered in this fashion,
the graph embeddings could enable drug recommendations, given a source drug,
for providers in the future. Our embedding is built from all 3,654 instances in



Open Drug Knowledge Graph 9

Class WikidataWebMD DrugbankGoodRx

Drug 0 0 13573 0

Product 1560 1701 25637 0

Condition 900 568 0 0

Treatment 3654 977 0 0

Interaction 0 0 356254 0

Manufacturer0 0 4092 0

Store 0 0 0 23

Price 0 0 0 20688

Table 2: Coverage of each class across different sources. Displays the total
amount of instances of each entity within our data model, grouped by data
source. Drugbank uniquely contributed to Interaction and Manufacturer
features. GoodRx uniquely contributed to Store and Price features.

our treatment table, sourced from Wikidata. We then utilized the Ampligraph
[6] and Tensorboard [1] libraries with TransE and [4] Complex [12] models to
project our data into the 150-d embedding space. The training occurred for 200
epochs, with an Adam optimizer. A training set was generated from 90% of the
data, with the remaining 10% set aside as testing data.

In Table 3, Our embedding models are evaluated using the following entity
ranking tasks described by Wang et al [15]: 1) mean reciprocal rank (MRR), and
2) Hits@K. MRR asks the embedding model to rank unseen test triples. A model
that produces higher ranks for known true triples (i.e. test triples) is considered
superior at predicting missing links. The Hits@K metric computes how many
elements of a vector of rankings make it to the top K positions. When visualiz-
ing the embedding vectors, we utilized embeddings from the Complex model as
it performed best on our entity ranking tasks. To visualize the embedding, we
reduced our embeddings into 3-d using T-SNE [7] as our dimensionality reduc-
tion method. We then inspected the result for nearest neighbors based on cosine
similarity in the initial embedding space. In Figures 5 and 6, we selected results
from our embedding visualization. The visualizations are from Tensorboard, and
displayed using the aforementioned model parameters and visualization settings.
In this embedding space, we found that drugs that treat similar conditions are
somewhat clustered, while similar conditions are grouped together. For drugs, in
Figure 5a, we find the 10 nearest cosine neighbors to source drug ”insulin aspart”.
Two of the neighbors are also insulin variants, however, more domain expertise is
required to deem whether this clustering is a meaningful representation of drugs
that treat similar conditions. For conditions, in Figure 5b, the 10 nearest cosine
neighbors are located for ”bipoloar disorder”. Many of the neighbors logically
represent similar conditions such as ”mood disorder”, ”schizophrenia”, and ”anx-
iety”. Further experiments are required to confirm how meaningful these initial
embeddings can be for recommending drug products. Other relations that may
be helpful to include to achieve drug similarity embedding may be ICD-10 codes
of the treatment’s condition or the products of the treatment’s drug. However,



10 Mann et al.

these embeddings show early signs of progress for achieving goals around drug
recommendation via nearest neighbor search within a graph embedding space.

Fig. 5: Graph Embedding Visualization. Visualization of all entities within the
reduced embedding created by the Complex embedding model. In Figure 5a,
the source entity ’insulin aspart’ is selected. We observe clustering for this
entity in the embedding space. In Figure 5b, ’bipolar disorder’ is selected,
which also exists within an observable cluster of similar entities.

4 Applications

In this Section, we present our web interface that allows user exploration of the
relational data model. We also explore the associated property graph to gain
motivation for future hypothesis and functionality Section 1.



Open Drug Knowledge Graph 11

Fig. 6: Embedding Nearest Neighbors by Cosine Distance. Nearest neighbors of
the selected entities ’insulin asapart’ and ’bipolar disorder’. Cosine similarity is
the distance metric, based on entity vectors (d=150) in the original embedding
space. We observe the embedding creates logically similar neighbors.

EmbeddingMRR Hits@1 Hits@3 Hits@10

TransE 0.25 0.50 0.29 0.13
Complex 0.32 0.57 0.36 0.19

Table 3: Evaluation of Embedding Methods. Table 3 displays evaluation results
of graph embedding models - TransE and Complex - using mean reciprocal
rank (MRR) and Hits@k. Embedding models were created upon all 3,654
instances of the treatment(drug, condition) class.

4.1 Web Interface upon relational model

We prepare a web interface for our Intelligent Drug Shopper, shown in Figures 8
and 9. The web interface was developed using the Python Django framework. The
user can input search parameters for a patient’s condition, current medications,
and price range. These parameters are inserted into a SQL query template that
checks our data model for any matching results.

For example, in Figure 8 below, a patient is present with osteoarthritis and
has a budget of 20 dollars to spend on medicine. These parameters are inputted
and the query retrieves matching treatments, it’s active ingredient, and average
price. The user can then navigate to different views of the Active Ingredient or
Product entity via hyperlinks.

To demonstrate further searching capabilities our data model provides, con-
sider Figure 9. Extending the same search from Figure 8, a patient may also
be taking some current medication like Zyvox, an antibiotic. This parameter is
added to the search, and we find many of the previous recommended treatments



12 Mann et al.

from Figure 8 are removed as they interact with this antibiotic. This feature will
enable users to find treatments that avoid adverse drug interactions, while still
treating a condition and adhering to the patient’s budget.

Fig. 7: User Interface: Treatment Search by Price and Condition. In this
example, a user is searching for product that treat the condition ’osteoarthritis’
with a price between 0 and 20 dollars.

4.2 Visualizations upon graph model

In addition to exploration of the relational database via the web application, we
also directed queries to the equivalent property graph stored in Neo4j. In Figure
7, we consider a user search for treatments of “medullary thyroid carcinoma” and
all possible drug interactions with these treatments. The resulting visualization
shows two possible treatments (cluster centers), with drug interactions branching
outward. We can see there is an intersection of six drugs that interact with
either treatment. Therefore, if a patient is currently prescribed a drug in this
intersection, they cannot safely be prescribed either of the two treatments. Neo4j
was utilized to perform this visualization. As the data model is loaded as a
property graph in Neo4j, we can leverage Neo4j’s wide set of graph analytics
tools to compute such paths automatically. We also plan to use Neo4j to compute
centrality metrics over our graph in the future.



Open Drug Knowledge Graph 13

Fig. 8: User Interface: Treatment Search by Current Medication. The data
model enables the user to extend their search if they also input their current
medication. For example, if the user is already taking medication ’Zyvox’, many
of the previous treatments can’t be recommended as they interact with ’Zyvox’.

5 Discussion and future work

Hub graph: While we were able to link data sources with Wikidata, there are
some benefits and drawbacks to the chosen design methodology. In our design,
we link all sources back to Wikidata in a ‘hub-and-spoke’ fashion. No other
sources are permitted to link to each other. This design functions to extend the
Wikidata knowledge graph, enabling new drug features (e.g., drug price) to be
analyzed with all other connected nodes to medication (Q12140). The drawback
to this approach is that Wikidata does not contain nearly as many drugs or drug
product entities as Drugbank, thus bottle-necking the amount of possible entity
links made with other data sources. Depending on the application, the extension
of Wikidata with drug-centric data may be less important. In this case, we would
suggest using Drugbank as a centralized source for entity linkage to maximize
the number of links on drug and drug product entities with other data sources.

Integration of more data sources: To answer even more healthcare-
centric questions, we propose to extend the knowledge graph with additional
healthcare datasets. These datasets could relate to healthcare objects, such as
prescriptions, procedures, diagnoses, claims, providers, payers, and healthcare
facilities. Many of these datasets are made publicly available by government-run
healthcare agencies, such as Food and Drug Administration (FDA7), National
Institutes of Health (NIH8), and Center for Medicare Services (CMS9). Stan-

7 https://www.fda.gov/home
8 https://www.nih.gov/
9 https://www.cms.gov/




