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Abstract—The traditional model predictive current control
(MPCC) of permanent magnet synchronous motor (PMSM)
has the advantages of simple control structure and excellent
dynamic performance. However, the performance of the MPCC
is significantly impacted by changes in motor parameters. The
inside and outside unknown disturbance of the motor cause the
parameters mismatch, which negatively affects the performance
of the MPCC controller. To eliminate the effects of the parameters
mismatch, the original parameter-based predictive model is
replaced by an ultra-local model in this paper. An estimator
based on data-driven neural network is designed to quickly and
accurately estimate the total perturbation and control gain of the
established ultra-local model. The proposed design solely utilizes
the input and output information of the controlled system instead
of relying on motor parameters, thus avoiding the negative effects
of model parameters mismatch. In addition, the dual-vector
mechanism and delay compensation are added to improve the
control performance. Finally, the stability analysis is given, and
simulated results show the availability of the proposed method.

Index Terms—permanent magnet synchronous motor (PMSM),
data-driven neural network, dual-vector, parameters mismatch,
ultra-local model

I. INTRODUCTION

The permanent magnet synchronous motor (PMSM) is
widely spreaded because of its superiority of high power
density, compact size and excellent dynamic response [1].
However, the PMSM is a complex system with multiple
variables, strong coupling, nonlinearity and variable param-
eters [2]. To achieve high performance and precision control,
some advanced control methods, such as field-oriented control,
direct torque control, and model predictive control (MPC) are
used in the PMSM control system [3]. Among various control
strategies, the MPC stands out in recent publications because
of its simple structure and excellent control performance [4].

MPC uses the mathematical model of the control object
to discretely obtain the predicted value and then optimizes

the cost function to make the predicted value approach the
expected value along the reference trajectory. MPC used in
PMSM control field is classified into two types depending on
the control variables: model predictive current control (MPCC)
and model predictive torque control [5]. MPCC can improve
dynamic performance by predicting the future current of the
control system [6]. As a model-based method, the high control
quality of the MPCC paradigm relies on the precise prediction
of the controlled variable, i.e., the stator current of the PMSM.
This inherited feature results in the model dependence issues
of the MPC controller, i.e., the implementation of the MPCC
relies on the accurate model parameters [7]. However, during
motor operation, the parameters such as stator resistance,
inductance, and magnetic flux are influenced by the ambient
temperature and operating conditions, and the parameters
mismatch increase the ripple of the torque and the stator
current of the motor, which make the worse performance
of the motor [8], [9]. Compared with the mismatch of the
stator resistance and the magnetic flux, the MPCC is more
significantly affected by the mismatch of the inductance [10].

To tackle the issue of model dependence in the MPCC
method, many solutions are proposed. A Kalman Filter-based
algorithm is proposed to learn motor parameters and decrease
the current ripple due to parameters mismatch in [11]. Addi-
tionally, an online parameter identification strategy is proposed
[12]. Furthermore, the observers are constructed to observe
the disturbances of the current and compensate the model
mismatch [13]. Despite the online identification strategies
and observers can estimate parameters mismatch and provide
feedback to the controller, those approaches exist large errors
in dealing with severe mismatch of multiple parameters.

Apart from parameter identification-based methods, ultra-
local model shows good potential to cope with the effects
of model parameters variations and reduces parameter depen-



dence [14], [15]. So the ultra-local model is widely accepted
to replace the original mathematical model of the motor to
achieve high-performance control. In order to achieve accurate
control, the total perturbation in the ultra-local model needs to
be accurately estimated, thus various methods are developed
[16]. A typical disturbance estimator is extended state observer
(ESO), which is established to estimate system disturbances
and exhibit superior performance [17]. However, the ultra-
local model has an unavoidable dependence on control gain.
The previous strategy has limitations that the impacts of the
input voltage gain impacted by the parameters mismatch and
the external perturbations is ignored and the gain is considered
as a immutable constant [18].

To enhance the anti-interference capability and robustness
of the ultra-local model based predictive current control, a
novel dual-vector model predictive current control strategy
based on ultra-local model by using data-driven neural network
(DDNN-DVMPCC) is proposed in this paper. The proposed
method uses the input and output information of the PMSM to
establish an equivalent model based on ultra-local model, al-
leviating the dependence of MPCC method on accurate model
parameters to address the issue of PMSM model mismatch
arising from the parameters drift and system disturbance.
A data-driven neural network-based disturbance estimator is
established in this paper to estimate the total perturbation and
the input voltage gain of the ultra-local model. This approach
reduces the reliance on the parameters and mitigates the effect
of parameters mismatch. Simultaneously, the proposed control
strategy employs the mechanism of dual-vector and delay com-
pensation to guarantee the precision of the current forecasts
and enhance the current tracking performance. Simulation
demonstrates that the proposed method obtains better control
performance and parameters robustness than traditional control
methods when dealing with parameters mismatch.

This article is structured as follows: The second section
shows the mathematical model of PMSM. The third section
shows the ultra-local model of the PMSM, the data-driven
neural network based estimator and the dual-vector predictive
current control with a delay compensation. In the fourth
section, comparative simulations are conducted under different
operating conditions with parameters mismatch. The simulated
waveforms are provided and explained in detail. Finally, the
conclusions are presented in the fifth section.

II. MATHEMATICAL MODEL OF PMSM
In this research, the controlled motor is the surface per-

manent magnet synchronous motor (SPMSM) with the same
equivalent inductance of the dq-axis, i.e., Ld = Lq = Ls.
Consequently, the mathematical model of stator current in the
rotating reference frame (dq-axis) can be written as{

ud = Rsid + Ls
did
dt − ωeLsiq

uq = Rsiq + Ls
diq
dt + ωeLsid + ωeψf

(1)

where ud and uq are the voltages of the dq-axis stator. id and
iq are the currents of the dq-axis stator. Ls is the equivalent
inductance of the dq-axis stator; Rs is the equivalent resistance

Fig. 1. Circuit digram of 2L-VSI and PMSM.

of the stator; ωe is the electrical speed of the rotor; ψf is the
flux linkage.

In this research, the SPMSM is driven by a two-level voltage
source inverter (2L-VSI), as illustrated in Fig. 1. The switching
states generated by the 2L-VSI can be defined as

S = [Sa, Sb, Sc] (2)

where S = [000, 001, 010, 011, 100, 101, 110, 111].
Accordingly, the voltage can be calculated in accordance

with the various switching states.

Us = 2Udc

(
Sa + Sbe

j 2π
3 + Sce

j 4π
3

)
/3 (3)

where Udc is the voltage of the DC bus.

III. PROPOSED DDNN-DVMPCC ALGORITHM

In the conventional MPCC, the future current prediction is
related to the motor physical parameters. During the operation
of the motor, the motor parameters are influenced by the
operating conditions and environmental factors, resulting in
the parameters mismatch. The parameters mismatch increase
the ripple of the torque and the stator current of the motor,
which make the worse performance of the motor. Therefore, to
enhance the anti-interference capability and robustness of the
PMSM system against parameters mismatch, a control strategy
for dual-vector model predictive current control based on ultra-
local model by using data-driven neural network (DDNN-
DVMPCC) is proposed.

A. Ultra-Local Model

The first-order ultra-local model for the single-input and
single-output system can be written as follows

ẋ = F + αu (4)

where u and x are the system variables of input and output,
respectively; F represents the total disturbance of the control
system; α is the input gain.

Combined (4) with (1), the ultra-local model of SPMSM
can be written as { did

dt = Fd + αud
diq
dt = Fq + αuq

(5)

where α = 1
Ls

, Fq = −Rs

Ls
iq − 1

Ls
(Lsωeid + ωeψf ), Fd =

−Rs

Ls
id + ωeiq .



B. Data-Driven Neural Network

To solve the problems of model uncertainty and unknown
input gain, two estimators based on data-driven neural network
are designed in this subsection.

The unknown functions Fd and Fq can be approximated by
neural networks as follows:{

Fd = ΨT
d σd(χd) + ϵd

Fq = ΨT
q σq(χq) + ϵq

(6)

where χd and χq are inputs of neural networks. σd(χd) and
σq(χq) are known activation functions; ϵd and ϵq are the
approximation errors satisfying ∥ϵd∥ ≤ ϵ∗d and ∥ϵq∥ ≤ ϵ∗q with
ϵ∗d and ϵ∗q being positive constants. Ψd and Ψq are the unknown
weight matrices satisfying ∥Ψd∥ ≤ Ψ∗

d and ∥Ψq∥ ≤ Ψ∗
q with

Ψ∗
d and Ψ∗

d being positive constants.
Let îd and îq be the estimation of id and iq; Ψ̂d and Ψ̂q

be the estimation of Ψd and Ψq; α̂ be the estimation of α.
Then, two data-driven neural network estimators are proposed
as follows: {

˙̂id = Ψ̂T
d σd(χd) + α̂ud − kdĩd

˙̂iq = Ψ̂T
q σq(χq) + α̂uq − kq ĩq

(7)

where ĩd = (̂id− id) and ĩq = (̂iq− iq); kd and kq are positive
constants.

According to the parallel learning method introduced in Ref.
[19]. The update laws for Ψ̂d, Ψ̂q and α̂ are designed by using
historically accumulated data as follows:

[
˙̂
Ψd

˙̂α

]
= −ΓdProj

{[
Ψ̂d

α̂

]
,

[
σd(χd)
ud

]
ĩd − kwdΦd

}
(8)

and[
˙̂
Ψq

˙̂α

]
= −ΓqProj

{[
Ψ̂q

α̂

]
,

[
σq(χq)
uq

]
ĩq − kwqΦq

}
(9)

where

Φd =

k=p∑
k=1

{[
σk
d(χd)
ukd

] [
˙̂id − Ψ̂T

d σ
k
d(χd)− α̂ukd

]}
(10)

and

Φq =

k=p∑
k=1

{[
σk
q (χq)
ukq

] [
˙̂iq − Ψ̂T

q σ
k
q (χq)− α̂ukq

]}
(11)

where Proj denotes the projection operator [20]; Γd, Γq and
kwd, kwq are positive constants; p is a positive integer number
that denotes the length of the memory stack; σk

d(χd), σk
q (χq)

and ukd , ukq are the historical information stored at each k
instant.

Next, the stability of the proposed data-driven neural net-
work is analyzed. The estimation errors are defined as

ĩd = îd − id, ĩq = îq − iq
Ψ̃d = Ψ̂d −Ψd, Ψ̃q = Ψ̂q −Ψq

α̃ = α̂− α

(12)

The error dynamic equation of ĩd and ĩq can be expressed
as follows {

˙̃id = Ψ̃T
d σd(χd) + α̃ud − kdĩd + ϵd

˙̃iq = Ψ̃T
q σq(χq) + α̃uq − kq ĩq + ϵq

(13)

In addition, the error dynamics of Ψ̃d, Ψ̃q and α̃ are given
by[

˙̃Ψd

˙̃α

]
= −ΓdProj

{[
Ψ̃d

α̃

]
,

[
σd(χd)
ud

]
ĩd − kwdΦd

}
(14)

and[
˙̃Ψq

˙̃α

]
= −ΓqProj

{[
Ψ̃q

α̃

]
,

[
σq(χq)
uq

]
ĩq − kwqΦq

}
(15)

The subsystem (13)–(15), are viewed as a system with the
states being ĩd, ĩq , Ψ̃d, Ψ̃q and α̃, the inputs being ϵd and ϵq
is input-to-state stable.

Proof: Construct a Lyapunov function candidate as

V =
1

2
ĩ2d +

1

2
ĩ2q +

1

2

[
Ψ̃d

α̃

]T
Γ−1
d

[
Ψ̃d

α̃

]
+

1

2

[
Ψ̃q

α̃

]T
Γ−1
q

[
Ψ̃q

α̃

] (16)

Then, the derivative of the Lyapunov function (16) can be
written as

V̇ =ĩd
˙̃id + ĩq

˙̃iq +

[
Ψ̃d

α̃

]T
Γ−1
d

[
˙̃Ψd

˙̃α

]

+

[
Ψ̃q

α̃

]T
Γ−1
q

[
˙̃Ψq

˙̃α

]
=ĩd(Ψ̃

T
d σd(χd) + α̃ud − kdĩd + ϵd) + ĩq(Ψ̃

T
q σq(χq)

+ α̃uq − kq ĩq + ϵq)

−
[

Ψ̃d

α̃

]T
Γ−1
d Γd

{[
σd(χd)
ud

]
ĩd − kwdΦd

}
−

[
Ψ̃q

α̃

]T
Γ−1
q Γq

{[
σq(χq)
uq

]
ĩq − kwqΦq

}
=− kdĩ

2
d + ĩdϵd − kq ĩ

2
q + ĩqϵq

− kwd

[
Ψ̃d

α̃

]T
Φd − kwq

[
Ψ̃q

α̃

]T
Φq

=− kdĩ
2
d + ĩdϵd − kq ĩ

2
q + ĩqϵq

− kwd

[
Ψ̃d

α̃

]T
k=p∑
k=1

{[
σk
d(χd)
ukd

] [
˙̂id − Ψ̂T

d σ
k
d(χd)− α̂ukd

]}

− kwq

[
Ψ̃q

α̃

]T
k=p∑
k=1

{[
σk
q (χq)
ukq

] [
˙̂iq − Ψ̂T

q σ
k
q (χq)− α̂ukq

]}

(17)



Since the activation function of the neural network and the
control input are bounded, there exists σ∗

d(χd), σ∗
q (χq), u∗d and

u∗q satisfying that ∥σd(χd)∥ ≤ σ∗
d(χd), ∥σq(χq)∥ ≤ σ∗

q (χq),
∥ud∥ ≤ u∗d and ∥uq∥ ≤ u∗q .

Then it can be obtained that

V̇ ≤− kd
∥∥ĩd∥∥2 + ∥∥ĩd∥∥ ∥ϵd∥ − kq

∥∥ĩq∥∥2 + ∥∥ĩq∥∥ ∥ϵq∥
− pkwdσ

∗
d
2(χd)

∥∥∥Ψ̃d

∥∥∥2 − pkwdu
∗
d
2 ∥α̃∥2

+ pkwdσ
∗
d(χd)

∥∥∥Ψ̃d

∥∥∥ ∥ϵd∥+ pkwdu
∗
d ∥α̃∥ ∥ϵd∥

− pkwqσ
∗
q
2(χq)

∥∥∥Ψ̃q

∥∥∥2 − pkwqu
∗
q
2 ∥α̃∥2

+ pkwqσ
∗
q (χq)

∥∥∥Ψ̃q

∥∥∥ ∥ϵq∥+ pkwqu
∗
q ∥α̃∥ ∥ϵq∥

≤ − h1 ∥S∥2 + h2 ∥S∥ ∥M∥

(18)

where h1 = min(kd, kq, pkwdσ
∗
d
2(χd), pkwqσ

∗
q
2(χq), pkwdu

∗
d
2,

pkwdu
∗
q
2), h2 = max(1, pkwdσ

∗
d(χd), pkwqσ

∗
q (χq), pkwdu

∗
d,

pkwqu
∗
q), S = [

∥∥ĩd∥∥ ,∥∥ĩq∥∥ ,∥∥∥Ψ̃d

∥∥∥ ,∥∥∥Ψ̃q

∥∥∥ , ∥α̃∥]T , M =

[∥ϵd∥ , ∥ϵq∥]T .
If ∥S∥ satisfies the following inequality

∥S∥ ≥ h2 ∥M∥
2h1

(19)

Then the above inequality (18) can be further simplified into
the following form

V̇ ≤ −1

2
h1 ∥S∥2 (20)

It can be concluded that the error system is input-to-state
stable. In addition, there exists an KL function φ(·) and K∞
functions ϕϵd(·) and ϕϵq (·), such that ∥S(t)∥ satisfies the
following inequality

∥S(t)∥ ≤ φ(∥S(t0)∥ , t− t0) + ϕϵd(∥ϵd∥) + ϕϵq (∥ϵq∥) (21)

where the specific forms of ϕϵd(·) and ϕϵq (·) are as follows

ϕϵd(s) = ϕϵq (s) =
sh2

√
λmax(K)

2h1
√
λmin(K)

(22)

where K = diag
{
1,Γ−1

d ,Γ−1
q

}
.

From the above design process, it can be seen that the data-
driven neural network estimators designed in this chapter can
simultaneously obtain the model uncertainty and the unknown
control gain.

C. Dual-Vector MPCC Controller

Fig. 2 illustrates the structure of the PMSM system con-
troller which consists of two main components: ultra-local
model based predictive current control by using data-driven
neural network and dual-vector mechanism.

In this part, we use the data-driven neural network esti-
mator from the previous section to estimate all the necessary
information including the uncertainty of the motor system and
the unknown input gain. And the estimated variables are sent
to the current controller. The predictive current controller is

Fig. 2. The structure of DDNN-DVMPCC.

designed based on the principle of dual vector with a delay
compensation.

The first-order Euler discrete method is used to obtain the
discrete ultra-local model:{

îd(k + 1) = id(k) + Ts[F̂d(k) + α̂ud(k)]

îq(k + 1) = iq(k) + Ts[F̂q(k) + α̂uq(k)]
(23)

where F̂d(k) and F̂q(k) are the observations of the (k)
moment. ud(k) and uq(k) are the input of the (k) moment.

Actually the voltage vector under single-step forecasting
may not be optimal and even make the performance worse
due to the existence of the delay. Consequently, using two-
step forecasting with a delay compensation is necessary to
controller. The predicted dq-axis currents with a delay com-
pensation can be written as


îd(k + 2) =îd(k + 1) + Ts[F̂d(k + 1)

+ α̂ud(k + 1)]

îq(k + 2) =îq(k + 1) + Ts[F̂q(k + 1)

+ α̂uq(k + 1)]

(24)

The principle of selecting the switching state is to traverse
the corresponding voltage vectors in all switching states. Sub-
sequently, the switching state corresponding to the predicted
value closest to the reference is selected according to the
principle of minimum difference. The cost function is as
follows

Cfj = [irefd − îd(k + 2) |j ]2 + [irefq − îq(k + 2) |j ]2 (25)

where the d-axis reference current irefd is configured to zero;
the q-axis reference current irefq is configured by the speed
controller of the outside loop.

The traditional model predictive control make performance
worse due to the single-vector is acted in the entire control
cycle. Therefore, the dual-vector modulation strategy is added
in the proposed DDNN-DVMPCC method for decreasing the
current ripple. Two-vector synthesis as illustrated in Fig. 3.



Fig. 3. Selection and synthesis of voltage vector.

Two optimal voltage vectors are calculated in one sampling
period. According to the synthesis of the vectors, the resultant
vector ud opt and uq opt can be expressed as

ud opt(k + 1) =
topt1
Ts

ud opt1(k + 1)

+
(Ts − topt1)

Ts
udj(k + 1)

uq opt(k + 1) =
topt1
Ts

uq opt1(k + 1)

+
(Ts − topt1)

Ts
uqj(k + 1)

(26)

where topt1 is the action time for the first optimal voltage
vector uopt1; ud opt1 and uq opt1 are the dq-axis voltage
components for uopt1. udj and uqj are the dq-axis voltage
components for uj , where (j = 0, 1, 2, ..., 7).
uopt1 is selected based on the traditional MPCC among eight

voltage vectors. To calculate the second optimal voltage vector
uopt2, uopt1 is combined with each of the eight basic voltage
vectors.

Substituting the synthesised voltage vector into (24), the
predicted current at the (k+2) moment when acting on the
synthesised voltage vector is

îd opt(k + 2) =îd(k + 1) + Ts[F̂d(k + 1)

+ α̂ud opt(k + 1)]

îq opt(k + 2) =îq(k + 1) + Ts[F̂q(k + 1)

+ α̂uq opt(k + 1)]

(27)

The optimal voltage vector combination is selected by using
the cost function shown in (25).

Cfj = [irefd −îd opt(k+2) |j ]2+[irefq −îq opt(k+2) |j ]2 (28)

Therefore, the second optimal voltage vector uopt2 is the
uj in the combination of voltage vectors corresponding to the
current value that minimises the cost function.

In this research, using the q-axis current without differential
beats to obtain the switching time of uopt1 and uj in the
sampling period, which must be satisfied

iq(k + 1) = iq(k) + kopt1topt1 + kj(Ts − topt1) = i∗q (29)

According to (18), the operating time of uopt1 can be
expressed as

topt1 =
(i∗q − iq(k)− kjTs)

kopt1 − kj
(30)

where kopt1 and kj are the slopes of iq under uopt1 and uj .
The duration of action of uj is (Ts − topt1). kopt1 and kj can
be expressed as

kopt1 =
diq
dt

|uq=uq opt1= F̂q + α̂uq opt1 (31)

kj =
diq
dt

|uq=uqj
= F̂q + α̂uqj (32)

If the difference between the adjacent voltage vectors is
small, topt1 may not be within the sampling period Ts,
Therefore, it is necessary to set the limit of the optimal
duration topt1 to ensure the prediction of the future current. 0, topt1 < 0

topt1, 0 ≤ topt1 ≤ Ts
Ts, topt1 > Ts

(33)

Through the dual-vector modulation algorithm, the cost
function selects the switching state corresponding to the pre-
dicted current value closest to the reference value and the
optimal vector switching time to synthesise the optimal voltage
vector. This is equivalent to taking into account the impact of
the operating time in the cost function. Not only the voltage
vector is optimal, but also the operating time is optimal.

IV. SIMULATION VERIFICATION RESULTS

This part establishes a simulation model in order to ver-
ify the effectiveness of the proposed algorithm through the
comparative simulation experiments. The SPMSM model pa-
rameters are given in Table 1.

To demonstrate the superiority of the proposed strategy, a
series of comparative simulations are built. Under the condi-
tion of motor parameters mismatch, the simulation under the
speed step and load step at 1000 r/min is constructed. The
three-phase currents and torque are compared. Furthermore,
the tracking waveform of the total disturbance and the control
gain of the system model estimated by the data-driven neural
network predictor are evaluated.

The impact of various factors and unknown disturbances
during motor operation has resulted in the motor parameters
and the controller parameters mismatch, which makes the
control performance worse. Because of changes in inductance
parameters cause a greater effect on control performance than
changes in resistance and flux. Consequently, the simulation
conditions are created to simulate and compare the two control
strategies under the condition of 0.5 Ls.

The current and torque waveforms of the two strategies
under different operational conditions are indicated below.

TABLE I
SPMSM PARAMETERS

Parameter Symbol Value
DC voltage (V ) Udc 311

Number of pole pairs p 4
Stator resistance (Ω) Rs 0.958

Stator inductance (H) Ls 0.00525
Flux linkage (Wb) ψf 0.1827



Fig. 4. Three-phase current with 50%Ls under speed step. (a) FCS-MPCC.
(b) Proposed DDNN-DVMPCC.

Fig. 5. Te with 50%Ls under speed step. (a) FCS-MPCC. (b) Proposed
DDNN-DVMPCC.

Fig. 6. Observed values of α, Fd and Fq with 50%Ls under speed step.

Fig. 4 shows the three-phase current simulation waveforms
of the two control strategies under speed step 1000 r/min
to 1500 r/min with 50%Ls. According to the waveform, the
proposed DDNN-DVMPCC control strategy is smaller than
that of MPCC in terms of current ripple.

Fig. 5 shows the torque simulation waveforms for the
two control strategies under speed step 1000 r/min to 1500
r/min with 50%Ls. According to the waveform, the proposed
DDNN-DVMPCC control strategy is better than that of MPCC
in terms of torque ripple.

Fig. 6 shows the output values of the data-driven neural
network estimator under speed step 1000 r/min to 1500
r/min with 50%Ls. According to the waveform, the proposed
DDNN-DVMPCC control strategy can accurately estimate the
unknown function and control gain under parameter perturba-
tion.And the estimated value is quickly adjusted and stabilised
to the exact value when the motor operating status changes.

Fig. 7 shows the three-phase current simulation waveforms
of the two control strategies under load step 0 N.m to 5
N.m with 50%Ls. According to the waveform, the proposed
DDNN-DVMPCC control strategy is smaller than that of
MPCC in terms of current ripple.

Fig. 8 shows the torque simulation waveforms for the two
control strategies under load step 0 N.m to 5 N.m with 50%Ls.
According to the waveform, the proposed DDNN-DVMPCC
control strategy is better than that of MPCC in terms of torque
ripple.

Fig. 9 shows the output values of data-driven neural network
estimator under load step 0 N.m to 5 N.m with 50%Ls. It
indicated that the proposed DDNN-DVMPCC can accurately
estimate the unknown function and control gain under param-
eter perturbation. And the estimated value is quickly adjusted
and stabilised to the exact value when the motor operating
status changes.

Fig. 7. Three-phase current with 50%Ls under load step. (a) FCS-MPCC.
(b) Proposed DDNN-DVMPCC.



Fig. 8. Te with 50%Ls under load step. (a) FCS-MPCC. (b) Proposed
DDNN-DVMPCC.

Fig. 9. Observed values of α, Fd and Fq with 50%Ls under Load step.
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