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Abstract

In the realm of graph learning, there is a category of methods that conceptual-
ize graphs as hierarchical structures, utilizing node clustering to capture broader
structural information. While generally effective, these methods often rely on
a fixed graph coarsening routine, leading to overly homogeneous cluster repre-
sentations and loss of node-level information. In this paper, we envision the
graph as a network of interconnected node sets without compressing each clus-
ter into a single embedding. To enable effective information transfer among
these node sets, we propose the Node-to-Cluster Attention (N2C-Attn) mecha-
nism. N2C-Attn incorporates techniques from Multiple Kernel Learning into the
kernelized attention framework, effectively capturing information at both node
and cluster levels. We then devise an efficient form for N2C-Attn using the
cluster-wise message-passing framework, achieving linear time complexity. We
further analyze how N2C-Attn combines bi-level feature maps of queries and
keys, demonstrating its capability to merge dual-granularity information. The
resulting architecture, Cluster-wise Graph Transformer (Cluster-GT), which uses
node clusters as tokens and employs our proposed N2C-Attn module, shows su-
perior performance on various graph-level tasks. Code is available at https:
//github.com/LUMIA-Group/Cluster-wise-Graph-Transformer.

1 Introduction

Graph learning represents a rapidly evolving field. Techniques like Graph Neural Networks (GNNs)
and Graph Transformers (GT) demonstrate impressive performance across a range of tasks [27, 36,
51], such as social networks [39, 37], time series [22, 30], traffic flow [54, 6] and drug discovery [15,
45]. These methods enhance performance by promoting message propagation at the node level and
calculating attention between node pairs, thereby concentrating on node-level interactions.

Recent advancements have extended beyond node-level message propagation, adopting approaches
that treat the graph as a hierarchical structure [53, 4, 20], capturing information at multiple levels of the
graph [55]. For instance, node clustering pooling segments the graph into multiple clusters [17, 50].
Each cluster is then independently pooled, preserving the structural information of the hierarchical
graph. Drawing inspiration from Vision Transformers [7], GraphViT [18] treats subgraphs as tokens
and computes attention among them, which enables the model to capture long-distance dependencies
and reduces the overall computational complexity compared to node-level Graph Transformers.

However, existing methods based on node clustering rely on a fixed graph coarsening routine [32].
This routine involves partitioning the graph into several clusters and subsequently pooling each
cluster into a single node to generate a coarsened version of the original graph. While generally
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effective, research has shown that compressing each cluster into a single embedding can lead to overly
uniform cluster representations, which may not accurately reflect the diversity within each cluster [34].
Furthermore, these methods typically simplify the interactions between clusters to basic vertex-level
interactions on the coarsened graph. This oversimplification overlooks the rich node-level information
contained within each cluster, thereby limiting the potential for richer cluster-wise interactions.

In this work, we propose a different strategy for enhancing cluster-wise interaction. Instead of
reducing each cluster to a single node through coarsening, we envision the graph as a network of
interconnected node sets. To enable message propagation among these node sets, we develop a
method termed Node-to-Cluster Attention (N2C-Attn). N2C-Attn incorporates techniques from
Multiple Kernel Learning (MKL) [16] into the kernelized attention framework [46]. By combining
kernels at two different granularity levels, N2C-Attn effectively captures hierarchical graph structural
information at the cluster level while also preserving node-level details within each cluster.

We propose treating the graph as interconnected node clusters without coarsening, which inherently
increases computational complexity. To mitigate this issue, we employ the technique of kernelized
softmax [24] to reduce the computational complexity to linear. Consequently, the computation
process of N2C-Attn can be viewed as a cluster-wise message propagation: each cluster gathers
internal keys and values, then propagates them along weighted edges to the queries of other clusters.

We present a further analysis of how N2C-Attn synthesizes new queries and keys by merging inputs
from both node and cluster levels. We consider two scenarios: 1) using the product of kernels and 2)
using the convex sum of kernels. The former implicitly conducts a tensor product of the feature maps
from both the node-level and cluster-level queries (and keys), adopting this product as the new query
(or key) for N2C-Attn. The latter concatenates node and cluster-level feature maps with learnable
weights, maintaining their independence and allowing the model to adjust their relative significance.
We also demonstrate that cluster-level attention can be regarded as a special case of N2C-Attn.

Our resulting architecture, Cluster-wise Graph Transformer (Cluster-GT), leverages our proposed
N2C-Attn module in conjunction with a simple graph partitioning algorithm, Metis [23]. We conduct
extensive evaluations of Cluster-GT across eight graph-level datasets, varying in size and domain.
Cluster-GT outperforms existing Graph Transformers and graph pooling methods that employ more
intricate graph partitioning algorithms, which highlights the effectiveness of enhancing inter-cluster
interactions and preserving information at both granular levels. We further analyze the relative weights
of the combined kernel, finding that Cluster-GT pays more attention to cluster-level information
when handling graphs in the social network domain compared to graphs in the biological domain.

2 Background

Consider a graph G represented by the multi-tuple (N , E ,X,A). N denotes the set of n nodes, E
denotes the set of m edges. X ∈ Rn×d is the feature matrix and A ∈ Rn×n is the adjacency matrix.
We use the superscript P to indicate the cluster-level (coarsened) graph: (NP , EP ,XP ,AP ), where
NP represents clusters of nodes, and EP denotes the edges connecting these clusters.

Node Clustering Pooling and Cluster Assignment Matrix Node clustering pooling captures
hierarchical structural information by partitioning and iteratively coarsening the graph to a smaller
size [32, 1, 33]. This process involves two main steps. Initially, a Cluster Assignment Matrix (CAM)
C ∈ Rn×m is generated using a carefully designed strategy, where n represents the number of
original nodes, and m indicates the number of clusters. Once the Cluster Assignment Matrix is
obtained, it is used to perform graph coarsening, i.e., pooling each cluster into a single node:

XP = CTX; AP = CTAC (1)

where XP ∈ Rm×d and AP ∈ Rm×m are the new node features and adjacency matrix, defining the
post-coarsening graph structure. Csj thus represents the weight of the s-th node in the j-th cluster.

Beyond node clustering pooling, methods exist that leverage node clusters to enhance graph atten-
tion [18, 3]. GraphViT [18] utilizes Metis [23] to partition the graph into multiple subgraphs. It then
applies mean pooling to each subgraph, treating the pooled clusters as tokens for further attention
computation. Despite promising results, GraphViT still adheres to the graph coarsening pipeline,
which leads to overly similar cluster representations [34] and the loss of node-level information.
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Generalized Self-attention and Kernelized Softmax Numerous studies suggest reevaluating the
attention mechanism through the lens of kernel methods [46, 24]. The generalized formulation
of self-attention utilizes a non-negative kernel function κ(·, ·) : Rdk × Rdk → R+, which can be
represented with a corresponding feature map ϕ. The self-attention mechanism can be expressed as:

Attn(X)i =

N∑
j=1

κ(qi, kj)∑N
j′=1 κ(qi, kj′)

vj (2)

where kj , qi, and vj are the corresponding keys, queries, and values. By expressing κ with feature
map κ(qi, kj) = ϕ(qi)

Tϕ(kj), the computation simplifies to:

Attn(X)i =
ϕ(qi)

∑N
j=1 ϕ(kj)

T vj

ϕ(qi)
∑N

j=1 ϕ(kj)
T

(3)

where the sums
∑N

j=1 ϕ(kj)
T vj and

∑N
j=1 ϕ(kj)

T are shared across all nodes and need to be
computed only once, thus reducing computational complexity to O(N) [21]. Various choices of
feature maps are shown effective, such as the RBF kernel [46] and Positive Random Features [5].

Multiple Kernel Learning The selection of an optimal kernel function κ(·, ·) is critical for en-
hancing the performance of kernel-based learning methods. Multiple Kernel Learning (MKL)
methods [56, 44] leverage a combination of kernel functions to integrate various features from
different perspectives. The resultant kernel, κη , is mathematically defined as:

κη({xm}Mm=1, {ym}Mm=1) = fη({κm(xm,ym)}Mm=1) (4)

where fη : RM → R can be either a linear or nonlinear function. Each κm : RDm × RDm → R is a
valid kernel for vectors xm,ym ∈ RDm , with Dm representing the dimensionality of each feature.
There are various strategies for combining kernels, which represent a dynamic area of research. [16]

In this work, we concentrate on the pairwise scenario, where M = 2. We note the two input spaces
as X and X ′. For constructing pairwise kernels when elements of each pair belong to different input
spaces, we select two fundamental strategies: the tensor product of kernels and the convex linear
combination of kernels, which are commonly used on the product space X × X ′.

Given two kernels κ1 : X ×X → R and κ2 : X ′ ×X ′ → R, the tensor product method is defined as:

κη((x, x
′), (y, y′)) = κ1(x, y) · κ2(x′, y′) (5)

where (x, x′), (y, y′) are pairs of objects from X ×X ′. While the convex linear combination method
is defined as:

κη((x, x
′), (y, y′)) = ακ1(x, y) + βκ2(x

′, y′) (6)

where α, β ≥ 0 and α+β = 1. α and β are coefficients that balance the contribution of each kernel.

3 Node-to-Cluster Attention

In this section, we present the Node-to-Cluster Attention (N2C-Attn) mechanism. We begin in
Section 3.1 by defining the concept of N2C-Attn. We then proceed to Section 3.2, where we devise
an efficient form of N2C-Attn with the message-passing framework. In Section 3.3, we re-examine
N2C-Attn, focusing on the integration of feature maps of queries and keys across two granularities.

3.1 Definition of Node-to-Cluster Attention

Node-to-Cluster Attention marks a departure from the graph coarsening pipeline that typically
coarsens each cluster into a single embedding. Instead, as shown in Figure 1, we maintain the clusters
uncompressed and use N2C-Attn to propagate messages among the inter-connected node clusters.
The definition of N2C-Attn is based on the Cluster Assignment Matrix C, which can be obtained
through various graph partitioning methods [32]. N2C-Attn focuses on the "post-clustering" phase.
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Graph Coarsening Pipeline: 

1. Approximately homogenous cluster representations

2. Loss of fine-grained node-level information

Our Method:

1. Adaptive fusion of cluster-level and node-level information (subsection 3.3)

2. Maintain linear computational complexity (subsection 3.2)

Cluster Assignment Matrix 

Graph Coarsening Pipeline

Existing node clustering based methods:

Our method:

View the graph as interconnected node sets

Node-wise interaction: 
GNN, Graph Transformer...

Cluster-wise interation:
Node-to-Cluster Attention

Input Graph Node Clustering

Queries of clusters

Keys of nodes

Cluster-level Node-level Bi-level Q & K

where  is a bi-level kernel on 

Sum the key and value within every cluster
according to the Cluster Assignment Matrix 

Step 1: 

Calculate the cluster-wise similarity as the Edge
Gate for message propagation among clusters

Step 2: 

Cluster-wise propagation with Message in Step
1 and Edge Gate in Step 2

Step 3: 

Finally each cluster unpacking the aggregated
keys and values with its own query.

Step 4: 

Figure 1: Definition of Node-to-Cluster Attention (N2C-Attn). N2C-Attn perceives the graph as
interconnected node sets instead of coarsening each cluster into a single node. It integrates multiple
kernel learning methods into the kernelized attention framework to facilitate message propagation
among node clusters, simultaneously capturing both the node-level and cluster-level information.

Bi-level Query and Key A key observation is that after node clustering, each node possesses two
tiers of information: 1) its individual node feature and 2) the collective feature of its cluster. An
effective attention mechanism needs to accommodate these two distinct levels of information. Thus,
the t-th node in the j-th cluster is characterized by a bi-level pair of keys: {Kj , kt} ∈ XC ×XN :

kt = Wkht, Kj = W′
k

(∑
s

Csjhs

)
(7)

where ht is the feature of the t-th node. kt ∈ XN is the node-level key, which is solely derived from
the embedding of t-th node, and Kj ∈ XC represents the cluster-level key, which depends on all
nodes within the j-th cluster. Wk and W′

k are two different projections to XN and XC , respectively.

Since we are considering the attention between clusters and nodes, each cluster needs to provide a
corresponding bi-level query. Thus, the i-th cluster is characterized by a bi-level pair of queries:

qi = Wv

(∑
s

Csihs

)
, Qi = W′

v

(∑
s

Csihs

)
(8)

where Qi denotes the cluster-level query, qi denotes the node-level query. Wv and W′
v are two

different projections to XN and XC , respectively. The bi-level query is thus {Qi, qi} ∈ XC ×XN .

Note that we use uppercase letters to represent cluster-level queries and keys, e.g., {Qi,Kj}, and
lowercase letters to represent node-level queries and keys, e.g., {qi, kt}.

General Definition of Node-to-Cluster Attention Having obtained the bi-level queries and keys,
we consider how to use kernels to measure their similarity. We denote a valid kernel in the cluster-
level space XC as κC , and a valid kernel in the node-level space XN as κN . We now consider how to
construct a kernel κB on the tensor product space XC ×XN . κB stands for Bi-level kernel.

Given {Qi, qi}, the bi-level query for the i-th node cluster, and {Kj , kt}, the bi-level key for the t-th
node in the j-th node cluster, the general Node-to-Cluster Attention for the i-th cluster is defined as:

N2C-Attn(X)i =

∑
j A

P
i,j

∑
t CtjκB({Qi, qi}, {Kj , kt})∑

j A
P
i,j

∑
t CtjκB({Qi, qi}, {Kj , kt})

(9)

Equation 9 depicts the process of the i-th cluster gathering information from nodes of all con-
nected clusters. The attention score between the i-th cluster and the t-th node in the j-th cluster is

AP
i,jCtjκB({Qi,qi},{Kj ,kt})∑

j AP
i,j

∑
t CtjκB({Qi,qi},{Kj ,kt})

. κB plays a pivotal role in integrating information across cluster
and node levels. As described in Section 2, we mainly consider two options for κB: the tensor product
method and the linear combination method. Next, we introduce these two different implementations.
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Graph Coarsening Pipeline: 

1. Approximately homogenous cluster representations

2. Loss of fine-grained node-level information

Our Method:

1. Adaptive fusion of cluster-level and node-level information (subsection 3.3)

2. Maintain linear computational complexity (subsection 3.2)
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Figure 2: An efficient implementation of N2C-Attn-T with the message-passing framework. |NP |
denotes the number of clusters and |EP | denotes the number of edges between clusters. The com-
putation can be decomposed into 4 steps: 1) aggregation of node-level keys and values within each
cluster, 2) computation of gate on each edge with the cluster-level kernel, 3) message propagation
among clusters, 4) dot product of aggregated value with the node-level query of each cluster.

Node-to-Cluster Attention with Tensor Product of Kernels (N2C-Attn-T) With the help of
Equation 5, we can define the bi-level kernel κB as:

κB({Qi, qi}, {Kj , kt}) = κC(Qi,Kj)κN (qi, kt) (10)

We can thus rewrite the Node-to-Cluster Attention defined in Equation 9 as:

N2C-Attn-T(X)i =

∑
j A

P
i,j

∑
t CtjκC(Qi,Kj)κN (qi, kt)vt∑

j A
P
i,j

∑
t CtjκC(Qi,Kj)κN (qi, kt)

(11)

N2C-Attn-T stands for Node-to-Cluster Attention with Tensor Product of Kernels. By performing
the product between κC and κN , this construction enables interaction across all dimensions of the
feature vectors at different granular levels, thereby capturing the dependencies within the combined
feature space. We offer a more detailed explanation in subsection 3.3.

Node-to-Cluster Attention with Convex Linear Combination of Kernels (N2C-Attn-L) With
the help of Equation 6, we can also define the bi-level kernel κB as:

κB({Qi, qi}, {Kj , kt}) = ακC(Qi,Kj) + βκN (qi, kt) (12)

where α, β ≥ 0 are learnable parameters and α+ β = 1. We can thus rewrite Equation 9 as:

N2C-Attn-L(X)i =

∑
j A

P
i,j

∑
t Ctj(ακC(Qi,Kj) + βκN (qi, kt))vt∑

j A
P
i,j

∑
t Ctj(ακC(Qi,Kj) + βκN (qi, kt))

(13)

N2C-Attn-L stands for Node-to-Cluster Attention with Convex Linear Combination of Kernels. By
combining the kernels κC and κN with coefficients α and β, this construction allows for flexible
integration of the similarities measured in XC and XN , letting the combined kernel adaptively scale
the influence of the cluster-level and node-level information on the overall similarity measure.

3.2 Efficient Implementation of Node-to-Cluster Attention

N2C-Attn requires the computation of similarity between queries and keys at two different levels
of granularity. Normally, this necessitates a computational complexity of O(|N ||NP |), where |N |
denotes the number of nodes and |NP | denotes the number of clusters. To speed up this process,
we devise a linear algorithm using the feature map and the message-passing framework. In this
subsection, we focus on the efficient implementation of N2C-Attn-T. Following a similar method, we
can also develop an efficient implementation for N2C-Attn-L, which is detailed in Appendix A.

To accelerate Equation 11, a key observation is that κC is correlated to the edges between clusters,
serving as the gates on the edges. While κN involves queries of clusters and keys of nodes. Therefore,
we propose separating the node-level and cluster-level computation of κN , and then turning the
computation of N2C-Attn-T into a cluster-wise message propagation. We represent κN using the
corresponding feature map: κN (qi, kt) = ψ(qi)

Tψ(kt). Thus, Equation 11 can be rewritten as:

N2C-Attn-T(X)i =
ψ(qi)

T
∑

j A
P
i,jκC(Qi,Kj)

∑
t Ctjψ(kt)vt

ψ(qi)T
∑

j A
P
i,jκC(Qi,Kj)

∑
t Ctjψ(kt)

(14)
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With Equation 14, we observe that the computation of N2C-Attn-T can be encompassed within the
message-passing framework. Figure 2 shows the complete process, which contains four steps: 1)
aggregating node-level keys and values within each cluster, 2) calculating the gate on each edge using
the cluster-level kernel, 3) propagating messages among clusters, and 4) computing the dot product
of the aggregated value with the node-level query for each cluster. N2C-Attn-T can thus be seen as a
form of cluster-wise message propagation. Each cluster acts as a sender, propagating the packaged
keys and values of its internal nodes; it also acts as a receiver, using its own query to interpret the
information from the received keys and values. The overall time complexity is thus reduced to linear.

3.3 Equivalent Feature Maps of Bi-level Kernels

In this subsection, we delve into how the Node-to-Cluster Attention mechanism integrates information
across cluster and node levels through the lens of feature maps. We note ΦB as the feature map of κB:
κB({Qi, qi}, {Kj , kt}) = ⟨ΦB({Qi, qi}),ΦB({Kj , kt})⟩ where ⟨·, ·⟩ represents the inner product
in the corresponding feature space. Equation 9 can thus be expressed as:

N2C-Attn(X)i =

∑
j A

P
i,j

∑
t Ctj⟨ΦB({Qi, qi}),ΦB({Kj , kt})⟩vt∑

j A
P
i,j

∑
t Ctj⟨ΦB({Qi, qi}),ΦB({Kj , kt})⟩

(15)

ΦB(Qi, qi) represents the feature vector of the newly formulated bi-level query, while ΦB(Kj , kt) rep-
resents the feature vector of the newly formulated bi-level key. We are interested in their relationship
with the original queries and keys {Qi, qi,Kj , kt}. We establish the following relationships:

Proposition 1 If κC(Qi,Kj) = ⟨ϕ(Qi), ϕ(Kj)⟩ and κN (qi, kt) = ⟨ψ(qi), ψ(kt)⟩, where ϕ and ψ
are feature maps for the respective kernels, then the Node-to-Cluster Attention with the tensor product
kernel implies the following equivalent feature map:

ΦB({Qi, qi}) = ϕ(Qi)⊗ ψ(qi); ΦB({Kj , kt}) = ϕ(Kj)⊗ ψ(kt) (16)

where ⊗ represents the outer product of the node-level and cluster-level feature maps. Conversely,
the Node-to-Cluster Attention with the convex sum implies the following equivalent feature map:

ΦB({Qi, qi}) =
√
αϕ(Qi)⊕

√
βψ(qi); ΦB({Kj , kt}) =

√
αϕ(Kj)⊕

√
βψ(kt) (17)

where ⊕ represents the concatenation of the weighted node-level and cluster-level feature maps.

This proposition provides an intuitive understanding of N2C-Attn: by integrating queries and keys
from both node-level and cluster-level, N2C-Attn synthesizes new queries and keys enriched with
bi-level information. Specifically, using the product of kernels, as detailed in Equation 16, N2C-Attn-
T implicitly performs a tensor product between the feature maps of the node-level query (key) and
the cluster-level query (key), and finally using the product as the new query (key). This resulting
equivalent feature map thus extends into a higher-dimensional space, offering a feature fusion of
bi-level information. It’s worth noting that we do not need to actually compute the tensor product
between the cluster-level and node-level queries or keys, which requires high spatial complexity.

While employing the convex sum of kernels, as detailed in Equation 17, can be regarded as a
concatenation of the feature maps of the original node-level and cluster-level queries (keys), appending
learnable weights. This approach preserves the independence of queries (keys) at different levels,
empowering the model to adjust their relative significance. Besides, we can leverage this point to
design an efficient implementation method for N2C-Attn-L. We introduce it in detail in Appendix A.

We offer a further analysis by comparing the assigned attention scores between N2C-Attn and previous
cluster-level attention methods. We prove that the attention mechanism used in GraphViT [18], which
is based on the graph coarsening pipeline and serves as a cluster-level attention mechanism, can be
seen as a special case of our proposed N2C-Attn. More details can be found in Appendix B.

4 Cluster-wise Graph Transformer

In this section, we introduce a simple yet performant architecture named Cluster-wise Graph Trans-
former (Cluster-GT) which takes node clusters as tokens and utilizes N2C-Attn defined in Section 3
to propagate information among clusters. Cluster-GT can be divided into three main modules: 1) a
node-level convolution module, 2) a graph partition module, and 3) a cluster-wise interaction module.
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Figure 3: Architecture of Cluster-wise Graph Transformer (Cluster-GT), which can be decomposed
into three main modules: 1) a node-wise convolution module with GNN, 2) a graph partition module
with Metis, and 3) a cluster-wise interaction module with N2C-Attn.

Figure 3 presents the overall architecture of our proposed Cluster-GT. We begin with a node-level con-
volution module to capture the local structural information. We try two common options, GCN [27]
and GIN [49], during our implementation. We also utilize two graph positional encoding strategies,
random-walk structural encoding (RWSE) [9] and Laplacian eigenvector encodings [8], to enhance
the perception of the graph structure. More details can be found in Appendix D. For the graph
partition module, we use a relatively simple graph partition algorithm, Metis [23], to assign nodes
to different clusters. After node clustering assignment, we introduce our proposed N2C-Attn as
the cluster-wise interaction module, which propagates information among clusters. This process
is divided into two steps: we first calculate the corresponding bi-level keys and queries, and then
execute the efficient algorithm of N2C-Attn introduced in subsection 3.2, which outputs a single
embedding for each cluster. We finally perform average pooling to obtain the graph-level embedding.

The choice of kernel and feature map is not the main focus of our work. In our implementation, we
use the common exp-dot-product exp

(
QTK√

dk

)
as κC . For the feature map of κN , we try two basic

options: ψ(x) = Elu(x) + 1 [40] and ψ(x) = Relu(x) [24], which we set as a hyperparameter.

Cluster-GT, in conjunction with N2C-Attn, is designed to enhance information exchange between
node clusters after the graph partitioning. This process can be viewed as a "post-partitioning" phase,
which is a key distinction from many other node-clustering-based methods that primarily focus on
optimizing the graph partition itself. In our implementation, we utilize a non-learnable and rigid graph
partitioning algorithm, Metis. Notably, the Graph Partition module in Cluster-GT can be replaced
with other learnable or flexible graph partitioning strategies, allowing for potential enhancements.

5 Evaluation

To evaluate the performance of Cluster-GT, we compare it against two categories of methods: Graph
Pooling and Graph Transformers. We conduct experiments on eight graph classification datasets from
different domains, including social networks and biology. We further visualize the weight coefficients
of the cluster-level and node-level kernels in N2C-Attn-L to observe how the model focuses on
different information granularities across different datasets. Additionally, we perform an ablation
study, restricting the attention mechanism to different granularities, to demonstrate the benefits of
integrating both levels of information. We finally carry out an efficiency study of Cluster-GT. All
experiments are conducted on NVIDIA RTX 3090s with 24GB of RAM. Detailed dataset information
is available in Appendix E, and more details of the implementation are provided in Appendix F.

5.1 Comparison with Graph Pooling Methods

Given the close relationship between Cluster-GT and node clustering methods, we compare Cluster-
GT with mainstream Graph Pooling methods:two well-known GNN baselines: GCN [27], GIN [49],
six hierarchical pooling approaches: DiffPool [53], SAGPool(H) [29], TopKPool [13], ASAP [42],
MinCutPool [4], SEP [50] and five global pooling techniques: Set2Set [48], SortPool [57], SAG-
Pool(G) [29], StructPool [55], GMT [2] We test Cluster-GT on six TU datasets [38]: IMDB-BINARY,
IMDB-MULTI, COLLAB, MUTAG, PROTEINS, and D&D. The first three datasets are in the field
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Table 1: Comparison with Graph Pooling Methods on six TU datasets. The shown accuracies (%) are
mean and standard deviation over 10 different runs. We highlight the best results.

Model IMDB-BINARY IMDB-MULTI COLLAB MUTAG PROTEINS D&D

GCN 73.26±0.46 50.39±0.41 80.59±0.27 69.50±1.78 73.24±0.73 72.05±0.55

GIN 72.78±0.86 48.13±1.36 78.19±0.63 81.39±1.53 71.46±1.66 70.79±1.17

Set2Set 72.90±0.75 50.19±0.39 79.55±0.39 69.89±1.94 73.27±0.85 71.94±0.56

SortPool 72.12±1.12 48.18±0.83 77.87±0.47 71.94±3.55 73.17±0.88 75.58±0.72

SAGPool(G) 72.16±0.88 49.47±0.56 78.85±0.56 76.78±2.12 72.02±1.01 71.54±0.91

StructPool 72.06±0.64 50.23±0.53 77.27±0.51 79.50±0.75 75.16±0.86 78.45±0.40

GMT 73.48±0.76 50.66±0.82 80.74±0.54 83.44±1.33 75.09±0.59 78.72±0.59

DiffPool 73.14±0.70 51.31±0.72 78.68±0.43 79.22±1.02 73.03±1.00 77.56±0.64

SAGPool(H) 72.55±1.28 50.23±0.44 78.03±0.31 73.67±4.28 71.56±1.49 74.72±0.82

TopKPool 71.58±0.95 48.59±0.72 77.58±0.85 67.61±3.36 70.48±1.01 73.63±0.55

ASAP 72.81±0.50 50.78±0.75 78.64±0.50 77.83±1.49 73.92±0.63 76.58±1.04

MinCutPool 72.65±0.75 51.04±0.70 80.87±0.34 79.17±1.64 74.72±0.48 78.22±0.54

SEP-G 74.12±0.56 51.53±0.65 81.28±0.15 85.56±1.09 76.42±0.39 77.98±0.57

Cluster-GT 75.10±0.84 52.13±0.78 80.43±0.52 87.11±1.37 76.48±0.86 79.15±0.63

Table 2: Comparison with Graph Transformers
on ZINC and MolHIV over 4 different runs of
4 different seeds. We highlight the best results.
Missing values from literature are indicated as ’-’.

Model ZINC (MAE ↓) MolHIV (ROCAUC ↑)

GT 0.226±0.014 —
GraphiT 0.202±0.011 —
Graphormer 0.122±0.006 —
GPS 0.070±0.004 0.7880±0.0101

SAN+LapPE 0.139±0.006 0.7775±0.0061

Graph MLP-Mixer 0.073±0.001 0.7997±0.0102

Graph ViT 0.085±0.005 0.7792±0.0149

Cluster-GT 0.071±0.004 0.8093±0.0136
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Figure 4: Visualization of α (weight of the cluster-
level kernel) during the training process. N2C-Attn
learns to pay more attention to cluster-level infor-
mation in social networks than in bioinformatics.

of social networks, while the latter three are in the field of biology. For a fair comparison, we
strictly follow the experimental setup of [50]. Table 1 shows the results, indicating that Cluster-GT
outperforms all baselines on most datasets, even though it employs a relatively simple graph par-
titioning algorithm compared to other node clustering pooling methods. This result highlights the
effectiveness of the N2C-Attn module and shows the importance of the interaction between clusters in
the "post-partitioning" phase, which is often oversimplified by other node clustering pooling methods.

5.2 Comparison with Graph Transformers

To assess the effectiveness of Cluster-GT within the context of Graph Transformers, we com-
pare Cluster-GT with a range of existing Graph Transformers, including GT [8], GraphiT [35],
Graphormer [52], GPS [41], SAN+LapPE [28], SAN+RWSE [28], Graph MLP-Mixer [18] and
Graph ViT [18]. We conduct the experiment on two datasets: ZINC from Benchmarking GNNs [8]
and Mol-HIV from OGB [19]. For a fair comparison, we strictly follow the experimental setup
of [18]. The result shown in Figure 2 demonstrates that Cluster-GT surpasses most existing Graph
Transformers, underscoring the importance of integrating information at both the cluster and node
levels and showcasing the potential of using node clusters as tokens in attention mechanisms.

5.3 Visualization of α in N2C-Attn-L

In this subsection, we present the dynamic changes in the weight coefficient α during the training
process of N2C-Attn-L. α quantifies the contribution of cluster-level information in the combined
kernel, whereas β = 1 − α quantifies the node-level information. By enabling the model to
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Figure 5: Comparison of different attention strategies. We restrict the attention module in Cluster-GT
to focus on different granularities. N2C-Attn-T and N2C-Attn-L represent schemes that integrate
information at both the node and cluster granularities. Cluster-Level-Attn focuses solely on cluster-
level information, i.e., α = 1, while Node-Level-Attn focuses solely on node-level information, i.e.,
α = 0. We provide a detailed description of the methods compared here in subsection F.3.

autonomously learn these coefficients, it dynamically adjusts to the varying importance of information
at different granularities. We plot the evolution of α across training steps for six diverse datasets,
as shown in Figure 4. We observe that the model automatically adjusts the weights assigned to
the two levels of granularity. Notably, for social network datasets, Cluster-GT shows a preference
for cluster-level information, whereas, for biology datasets, Cluster-GT balances its attention more
equally between both granularities. This result indicates that N2C-Attn has a stronger inclination
towards cluster-level information in the social networks domain compared to the biology domain.

5.4 Necessity of Combining Cluster-level and Node-level Information

In this subsection, we explore the necessity of fusing kernels of dual granularities within the N2C-Attn
module. We analyze four variants: the first two are N2C-Attn-T and N2C-Attn-L, which are the
attention schemes utilized in Cluster-GT. N2C-Attn-T deeply integrates cluster-level and node-level
information, whereas N2C-Attn-L autonomously adjusts the balance between these two granularities.
Then, we create two additional variants that specifically focus on the node level or the cluster level
by setting α in N2C-Attn-L to 0 (exclusively focusing on the node-level kernel) and 1 (exclusively
focusing on the cluster-level kernel). We provide a detailed description of the methods compared here
in subsection F.3. Figure 5 shows the experimental results. We find that the variants that combine
attention from both levels significantly surpass those that do not, with N2C-Attn-T leading marginally.
This highlights the effectiveness of N2C-Attn’s multiple kernel learning approach in integrating
diverse levels of information. We reference the performance of GCN from Table 1 as a baseline.

6 Other Methods Involving Graph Coarsening

In this section, we will briefly introduce some existing research on GNNs with graph coarsening to
capture broader structural information, aside from the node clustering pooling introduced in section 2.

[12] utilizes a dual-graph structure, employing a hierarchical message passing strategy between a
molecular graph and its junction tree to facilitate a bidirectional flow of information. This concept
of interaction between the coarsened graph (clusters) and the original graph (nodes) is similar to
our N2C-Attn. However, the difference lies in [12]’s approach to propagating messages between
clusters and nodes, whereas N2C-Attn integrates cluster and node information directly in the attention
calculation using a multiple-kernel method. [58] introduces a novel node sampling strategy as an
adversarial bandit problem and implements a hierarchical attention mechanism with graph coarsening
to efficiently address long-range dependencies. [31] uses graph pooling to coarsen nodes into fewer
representatives, focusing attention on these pooled nodes to manage scalability and computational
efficiency. [25] introduces the Subgraph-To-Node (S2N) translation method, coarsening subgraphs
into nodes to improve subgraph representation learning. [14] introduces HIGH-PPI, a double-viewed
hierarchical graph learning model that uses a hierarchical graph combining protein-protein interaction
networks and chemically described protein graphs to accurately predict PPIs and interpret their
molecular mechanisms. Despite achieving good results in their respective downstream tasks, these
methods still follow the graph coarsening pipeline, whereas our work attempts to break this limitation
and has demonstrated effectiveness on various graph-level tasks.
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7 Conclusion

Our Node-to-Cluster Attention mechanism leverages the strengths of both node-level and cluster-level
information processing without succumbing to the limitations of the graph coarsening pipeline. By
conceptualizing the graph as interconnected node sets and integrating kernelized attention with
multiple kernel learning, we effectively bridge the gap between cluster-level and node-level spaces,
capturing the hierarchical structure of graphs as well as the node-level information. We develop
an efficient form of N2C-Attn using the message-passing framework and techniques of kernelized
softmax. Our Cluster-wise Graph Transformer, empowered by a straightforward partitioning strategy
and the N2C-Attn module, demonstrates robust performance across diverse graph datasets. Extensive
experiments have demonstrated the effectiveness of our Cluster-GT and N2C-Attn modules. We offer
a further discussion on the current limitation and potential impact in Appendix H and Appendix I.
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A Efficient implementation of Node-to-Cluster Attention with Convex Linear
Combination of Kernels

In this section, we will devise an efficient form for the Node-to-Cluster Attention with Convex Linear
Combination of Kernels:

N2C-Attn-L(X)i =

∑
j A

P
i,j

∑
t Ctj(ακC(Qi,Kj) + βκN (qi, kt))vt∑

j A
P
i,j

∑
t Ctj(ακC(Qi,Kj) + βκN (qi, kt))

(18)

We introduce the corresponding feature map: κC(Qi,Kj) = ⟨ϕ(Qi), ϕ(Kj)⟩ and
κN (qi, kt) = ⟨ψ(qi), ψ(kt)⟩. According to Prop.1 , we have ΦB({Qi, qi}) =

√
αϕ(Qi) ⊕√

βψ(qi); ΦB({Kj , kt}) =
√
αϕ(Kj)⊕

√
βψ(kt). Thus we can rewrite Equation 18 as:

N2C-Attn-L(X)i =

∑
j A

P
i,j

∑
t Ctj

[√
αϕ(Qi)⊕

√
βψ(qi)

]T [√
αϕ(Kj)⊕

√
βψ(kt)

]
vt∑

j A
P
i,j

∑
t Ctj

[√
αϕ(Qi)⊕

√
βψ(qi)

]T [√
αϕ(Kj)⊕

√
βψ(kt)

]
=

[√
αϕ(Qi)⊕

√
βψ(qi)

]T ∑
j A

P
i,j

∑
t Ctj

[√
αϕ(Kj)⊕

√
βψ(kt)

]
vt[√

αϕ(Qi)⊕
√
βψ(qi)

]T ∑
j A

P
i,j

∑
t Ctj

[√
αϕ(Kj)⊕

√
βψ(kt)

]
(19)

where
[√
αϕ(Qi)⊕

√
βψ(qi)

]
is the weighted concatenation of the feature map of bi-level queries,

while
[√
αϕ(Kj)⊕

√
βψ(kt)

]
is the weighted concatenation of the feature map of bi-level keys.

Equation 19 allows us to implement N2C-Attn-L with message-passing framework, which is similar
to the implementation that we have devised in subsection 3.2. We can first calculate the equiv-
alent feature map of the bi-level query

[√
αϕ(Qi)⊕

√
βψ(qi)

]
for each cluster, and the equiva-

lent feature map of the bi-level key
[√
αϕ(Kj)⊕

√
βψ(kt)

]
for each node. Then we aggregate

the keys of nodes within every cluster respectively to get
∑

t Ctj

[√
αϕ(Kj)⊕

√
βψ(kt)

]
vt and∑

t Ctj

[√
αϕ(Kj)⊕

√
βψ(kt)

]
. After getting these two aggregated "messages", we perform a

message passing according to the adjacency matrix of the coarsened graph AP . And finally, we
unpack the aggregated information by calculating the dot product with the feature map of the bi-level
query

[√
αϕ(Qi)⊕

√
βψ(qi)

]T
. In summary, by using the corresponding feature map and this

cluster-level message propagation, we can achieve an implementation method for N2C-Attn-L with
linear computational complexity.

B Relationship between GraphViT and N2C-Attn mechanism

In this subsection, we present a detailed justification for why the attention mechanism used in
GraphViT [18] can be regarded as a special case of our proposed N2C-Attn. Please note that in
this section, we mainly focus on the similarities and differences in attention computation between
GraphViT and N2C-Attn. While GraphViT also enhances its performance and expressive power
through the use of various positional encodings, residual connections, and normalization techniques,
these modules are not the primary focus of this section and therefore will not be discussed.

GraphViT first uses Metis to partition the graph (with overlapping nodes), and then performs average
pooling within each partition. We denote the embedding of the clusters as XP , GraphViT then per-
forms the Graph-based Hadamard Attention: G-Hadamard-Attn(XP ) to capture the dependencies
between the clusters, where G-Hadamard-Attn is defined as

(
AP ⊙ softmax

(
QKT

√
d

))
V .

We denote the node set if the p-th cluster as Vp, then the average pooling process can be written as:
xp = 1

|Vp|
∑

i∈Vp
xi,p, where xi,p is the embedding of the i-th node within the p-th cluster, and xp is

the embedding of the p-th cluster. And we denote the connected clusters (cluster-wise neighbors) of
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the i-th cluster as Ni. Then the Hadamard Attention used in GraphViT can be written as:

G-Hadamard-Attn(X)i =

∑
j:VjNi

AP
i,j κ (Qi,Kj)Vj∑

j:VjNi
AP

i,j κ (Qi,Kj)

=

∑
j:Vj∈Ni

AP
i,j κ (Qi,Kj)

∑
t∈Vj

1
|Vj |vt∑

j:Vj∈Ni
AP

i,j κ (Qi,Kj)
∑

t∈Vj

1
|Vj |

=

∑
j:Vj∈Ni

AP
i,j

∑
t∈Vj

κ (Qi,Kj)
1

|Vj |vt∑
j:Vj∈Ni

AP
i,j

∑
t∈Vj

κ (Qi,Kj)
1

|Vj |

(20)

where κ (Qi,Kj) = exp (
QT

i Kj√
d

). Q and K can be seen as cluster-level queries and keys.

Now, we check the corresponding form of N2C-Attn in this case. Since we use the Metis graph
partitioning algorithm, which divides the graph into several separate subgraphs and produces a hard
cluster Assignment Matrix:

CMetis
nm =

{
1

|Vm| if the n-th node is in the m-th cluster
0 otherwise

(21)

With the help of Equation 21, we can rewrite Equation 11 as:

N2C-Attn-T(X)i =

∑
j:Vj∈Ni

AP
i,j

∑
t∈Vj

κC(Qi,Kj)κN (qi, kt)vt∑
j:Vj∈Ni

AP
i,j

∑
t∈Vj

κC(Qi,Kj)κN (qi, kt)
(22)

Comparing Equation 20 and Equation 22, if we set κC(Qi,Kj) = κ (Qi,Kj) = exp (
QT

i Kj√
d

), then
the only difference between these two formulas lies in the coefficient before vt. In fact, Equation 20
can be seen as a special case of Equation 22 where κN (qi, kt) =

1
|Vj | .

From our analysis above, the difference between the cluster-level attention used in GraphViT and
N2C-Attn is as follows: the former assigns the same weight to all nodes within each cluster = 1

|Vj | ,
while the latter allows different attention weights for the nodes within each cluster and uses a
node-level kernel κN to learn these weights.

For simplicity, we only prove that the cluster-level attention used in GraphViT can be considered
a special case of Node-to-Cluster Attention with Tensor Product of Kernels (N2C-Attn-T) in this
section. In fact, we can similarly argue that the cluster-level attention used in GraphViT is a special
case of Node-to-Cluster Attention with Convex Linear Combination of Kernels (N2C-Attn-L). Their
most important difference is that GraphViT still follows the graph coarsening pipeline and only uses
cluster-level kernels for attention calculation, whereas N2C-Attn integrates both cluster-level and
node-level kernels to perform the attention computation.

C Proof of Proposition 1

C.1 Proof of Equation 16

In this subsection, we offer a detailed proof for Equation 16.

If Qi,Kj are dC -dimensional vectors from the cluster-level space XC and qi, kt are dN -dimensional
vectors from the node-level space XN . Consider two kernel functions κC , κN from the cluster-
level space XC and the node-level space XN respectively, with the corresponding feature map:
κC(Qi,Kj) = ⟨ϕ(Qi), ϕ(Kj)⟩ and κN (qi, kt) = ⟨ψ(qi), ψ(kt)⟩.
Now we consider the case of Node-to-Cluster Attention with Tensor Product of Kernels, where we
use the product of the kernels κC , κN to construct the bi-level kernel: κB({Qi, qi}, {Kj , kt}) =
κC(Qi,Kj)κN (qi, kt) where κB is the bi-level kernel from the tensor product of two original spaces
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XC ×XN . Then, for all (Qi,Kj) ∈ X 2
C and (qi, kt) ∈ X 2

N , we have:
κB({Qi, qi}, {Kj , kt}) = κC(Qi,Kj)κN (qi, kt)

= ⟨ϕ(Qi), ϕ(Kj)⟩ · ⟨ψ(qi), ψ(kt)⟩

=

 dC∑
m

ϕm(Qi)ϕm(Kj)

 ·

 dN∑
n

ψn(qi)ψn(kt)


=

dC∑
m

dN∑
n

(ϕm(Qi)ψn(qi)) · (ϕm(Kj)ψn(kt))

(23)

Thus, we can construct the following feature map:

ΦB(u, v) =


ϕ1(u)ψ1(v)
ϕ1(u)ψ2(v)
ϕ2(u)ψ1(v)

...

 = ϕ(u)⊗ ψ(v) (24)

where ΦB is a dCdN × 1 feature map. For each pair (i, j), ΦB,(i,j)(u, v) = ϕi(u)ψj(v), where
1 ≤ i ≤ dC and 1 ≤ j ≤ dN . This composite feature map ΦB corresponds to the kernel κB.

With the composite feature map ΦB, we can rewrite Equation 23 as:

κB({Qi, qi}, {Kj , kt}) =
dC∑
m

dN∑
n

ΦB(m,n)(Qi, qi) · ΦB(m,n)(Kj , kt)

= ⟨ΦB(Qi, qi),ΦB(Kj , kt)⟩

(25)

which proves Equation 16.

C.2 Proof of Equation 17

In this subsection, we offer a detailed proof for the Equation 17.

Again, we use κC , κN to denote the two kernel functions from the cluster-level space XC and the node-
level space XN respectively, with the corresponding feature map: κC(Qi,Kj) = ⟨ϕ(Qi), ϕ(Kj)⟩
and κN (qi, kt) = ⟨ψ(qi), ψ(kt)⟩.
Now we consider the case of Node-to-Cluster Attention with Convex Linear Combination of Kernels,
where we use the convex linear combination of kernels κC , κN to construct the bi-level kernel:
κB({Qi, qi}, {Kj , kt}) = ακC(Qi,Kj) + βκN (qi, kt) where α, β ≥ 0 and α + β = 1. α and
β are coefficients that balance the contribution of each kernel. Then, for all (Qi,Kj) ∈ X 2

C and
(qi, kt) ∈ X 2

N , we have:
κB({Qi, qi}, {Kj , kt}) = ακC(Qi,Kj) + βκN (qi, kt)

= α⟨ϕ(Qi), ϕ(Kj)⟩+ β⟨ψ(qi), ψ(kt)⟩

= ⟨
√
αϕ(Qi),

√
αϕ(Kj)⟩+ ⟨

√
βψ(qi),

√
βψ(kt)⟩

=

 dC∑
m

√
αϕm(Qi)

√
αϕm(Kj)

+

 dN∑
n

√
βψn(qi)

√
βψn(kt)


(26)

Thus, we can construct the following feature map:

ΦB(u, v) =
√
αϕ(u)⊕

√
βψ(v) (27)

where ΦB is a weighted concatenation of the feature maps ϕ and ψ. In other words, if the feature maps
ϕ and ψ have dC and dN coordinates respectively, then ΦB has dC + dN coordinates; for any pair
(u, v) ∈ XC × XN , the first dC coordinates of ΦB(u, v) are

√
αϕ1(u),

√
αϕ2(u), . . . ,

√
αϕdC (u)

and the remaining dN coordinates of ΦB(u, v) are
√
βψ1(v),

√
βψ2(v), . . . ,

√
βψdN (v).

With the composite feature map ΦB, we can rewrite Equation 26 as:

κB({Qi, qi}, {Kj , kt}) = ⟨ΦB(Qi, qi),ΦB(Kj , kt)⟩ (28)

which proves Equation 17.
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Table 3: Summary statistics of datasets
Dataset #Graphs Avg. #Nodes Avg. #Edges Task Metric

IMDB-BINARY 1000 19.8 96.5 binary classif. Accuracy
IMDB-MULTI 1500 13.0 66.0 3-class classif. Accuracy
COLLAB 5000 74.49 2457.8 3-class classif. Accuracy
MUTAG 188 17.93 19.8 binary classif. Accuracy
PROTEINS 1113 39.1 72.8 binary classif. Accuracy
D&D 1178 284.3 715.7 binary classif. Accuracy

ZINC 12,000 23.2 24.9 regression MAE
MolHIV 41,127 25.5 54.9 binary classif. ROCAUC

D More Details of Cluster-GT

Positinal Encoding Positional encoding in graphs plays a crucial role in providing spatial context
to nodes. Following [18], we adopt two different strategies: random-walk structural encoding
(RWSE) [9] and Laplacian eigenvector encodings [8]. We concatenate the positional encoding with
node features as the model input. Additionally, we have tried the patch-wise positional encoding
proposed by [18] and set it as a hyperparameter for the Cluster-GT architecture.

Node-wise Convolution In our Cluster-GT framework, we have experimented with incorporating
GCN [27] and GIN [49] as the node-wise convolution modules, setting the choice between them as a
hyperparameter to optimize performance. GIN is particularly notable for its ability to improve model
expressiveness, which is crucial in distinguishing different graph structures. Moreover, the design
of our Cluster-GT framework is modular, allowing the node-wise convolution module to be freely
replaced by any other method.

Bi-level Queries and Keys After the node clustering assignment, we obtain various node clusters.
When generating cluster-level queries or keys, we have tried two options: 1) using DeepSets, 2)
aggregating the queries and keys within a cluster. We set these two options as a hyperparameter for
the model architecture. In our experiments, we find that these two options have similar performance.
Additionally, we find that having the same cluster-level and node-level queries does not affect the
model’s performance, as long as the bi-level keys remain different. Therefore, we treat whether the
queries at the two levels are identical as an optional hyperparameter.

Other details Just like other Transformer structures [47], we incorporate residual connections
between the attention layers and MLP, along with layer normalization to enhance training stability. In
N2C-Attn, after outputting representations at each cluster level, we ultimately obtain a graph-level
representation through average pooling. For N2C-Attn-T and N2C-Attn-L, we use the efficient
algorithms introduced in subsection 3.2 and Appendix A in our implementation, respectively.

E Dataset Information

Our experiments employ a variety of benchmark datasets commonly used in graph learning research.
These datasets are chosen for their distinct characteristics and relevance in testing graph classification
algorithms. The summary statistics of datasets are shown in Table 3.

E.1 Datasets used in subsection 5.1

We organize the datasets into categories based on their application domains. • Social Networks:
IMDB-BINARY and IMDB-MULTI are derived from the Internet Movie Database (IMDB) and
include graphs representing the ego-networks of different movie genres. In IMDB-BINARY, each
graph is labeled as either Action or Romance. IMDB-MULTI includes three genres: Comedy,
Romance, or Sci-Fi. Nodes represent actors, and edges are placed between nodes if the actors have
co-starred in a movie. These datasets are used to evaluate the capability of graph classification
models in social network analysis. • Scientific Collaboration Networks: COLLAB represents the
ego-collaboration networks of researchers from three fields: High Energy Physics, Condensed Matter
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Physics, or Astrophysics. Nodes represent scientists, and edges are drawn between scientists who
have co-authored papers. COLLAB tests the model’s ability to recognize different collaborative
patterns in scientific domains. • Biochemical Molecules: For the biochemical domain, we have
chosen three datasets: MUTAG, PROTEINS and D&D. MUTAG comprises 188 chemical compounds
represented as graphs, where nodes symbolize atoms and edges denote chemical bonds. Each graph
is labeled based on its mutagenic effect on bacteria, serving as a benchmark for bioinformatics
applications in predicting chemical properties. PROTEINS consists of protein structures, where each
graph corresponds to a protein, nodes to secondary structure elements (SSEs), and edges connect
nodes if they are adjacent either in the amino acid sequence or in 3D space. Proteins are classified into
enzymes or non-enzymes, providing a basis for studying complex biological structures. D&D includes
protein structures with nodes representing amino acids and edges based on spatial closeness. Graphs
are labeled according to whether the protein is associated with a disease, challenging the algorithms
to decode intricate biological interactions. These datasets collectively provide a comprehensive suite
for evaluating across different real-world scenarios.

E.2 Datasets used in subsection 5.2

Here, we select two datasets used in biochemical molecule and drug discovery research: • Biochem-
ical Molecules: The ZINC dataset is a collection of chemical compounds that are representative
of real-world molecular data. This dataset is utilized predominantly for regression tasks such as
predicting the scalar measure of molecular solubility. Each compound is represented as a graph where
nodes are atoms and edges are chemical bonds, making it crucial for testing the accuracy of models in
predicting molecular attributes. • Drug Discovery: The MolHIV dataset is part of the MoleculeNet
suite, specifically designed for binary classification tasks related to HIV drug activity. Graphs in
this dataset represent molecular structures where nodes are atoms and edges correspond to bonds.
The task is to predict whether a molecule inhibits the HIV virus, which is vital for speeding up the
discovery of potential therapeutic agents.

F Implementation Details

F.1 Introduction of baselines

Baselines for subsection 5.1 Initially, we utilize two well-known GNN architectures for compar-
ison: GCN [27] and GIN [49]. Subsequently, we incorporate six hierarchical pooling approaches
as baselines: DiffPool [53], SAGPool(H) [29], TopKPool [13], ASAP [42], MinCutPool [4] and
SEP [50]. In addition to these hierarchical pooling methods, considerable attention has been given to
global pooling strategies for graph classification. Therefore, we also evaluate five global pooling tech-
niques: Set2Se [48], SortPool [57], SAGPool(G) [29], StructPool [55], and GMT [2] for comparative
analysis.

Baselines for subsection 5.2 Next, we compare Cluster-GT against popular Graph Transformers
with SOTA results, including GT [8], GraphiT [35], Graphormer [52], GPS [41], SAN+LapPE [28],
SAN+RWSE [28]. These models represent cutting-edge advancements in graph neural network
technology, each introducing unique methods to handle graph-structured data effectively.

F.2 Experimental Details

The model is implemented using PyTorch and PyG [11]. Experiments are conducted on NVIDIA
RTX 3090 GPUs. For optimization, the Adam [26] optimizer is utilized, adhering to the default
settings of β1 = 0.9, β2 = 0.999, and ε = 1e−8.

Experimental Details of subsection 5.1 The model’s performance is assessed using a 10-fold
cross-validation approach, with dataset splits adhering to the standard established training/test
partitions [50]. Moreover, 10 percent of the training data is allocated as validation data to ensure a fair
comparison, as per [10]. The initial feature inputs are aligned with the fair comparison setting [10].
An early stopping criterion is implemented, halting training if there is no improvement in validation
loss over 50 epochs. The training process is capped at a maximum of 500 epochs. The average
performance on the test sets is reported after conducting the experiments 10 times.
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Experimental Details of subsection 5.2 Each experiment is run with four different seeds, and the
averaged results are reported from the epoch that achieved the best validation metric. We use a batch
size of 64. We utilize a standard train/validation/test dataset split following [18].

F.3 Attention strtegies compared in subsection 5.4

In this section, we provide a detailed introduction to the four different node-to-clustering attention
strategies: ’N2C-Attn-T’,’N2C-Attn-L’,’Cluster-Level-Attn’,’Node-Level-Attn’, compared in the
ablation study. Note that for these four variants, we simply replaced the attention mechanism in
Cluster-GT without modifying any other parts of the model.

• N2C-Attn-T:

N2C-Attn-T(X)i =

∑
j A

P
i,j

∑
t CtjκC(Qi,Kj)κN (qi, kt)vt∑

j A
P
i,j

∑
t CtjκC(Qi,Kj)κN (qi, kt)

(29)

• N2C-Attn-L:

N2C-Attn-L(X)i =

∑
j A

P
i,j

∑
t Ctj(ακC(Qi,Kj) + βκN (qi, kt))vt∑

j A
P
i,j

∑
t Ctj(ακC(Qi,Kj) + βκN (qi, kt))

(30)

• Cluster-Level-Attn:

Cluster-Level-Attn(X)i =

∑
j A

P
i,j

∑
t CtjκC(Qi,Kj)vt∑

j A
P
i,j

∑
t CtjκC(Qi,Kj)

(31)

• Node-Level-Attn:

Node-Level-Attn(X)i =

∑
j A

P
i,j

∑
t CtjκN (qi, kt)vt∑

j A
P
i,j

∑
t CtjκN (qi, kt)

(32)

It is worth noting that Cluster-Level-Attn is a special case of N2C-Attn-L when the cluster-level
coefficient α = 1, while Node-Level-Attn is also a special case of N2C-Attn-L when the node-level
coefficient β = 1− α = 1.

G On the Naming Issue Between RWSE and RWPE

We use the term "Random Walk Positional Encoding (RWPE)" in this work. In this section, we will
briefly discuss the naming issue between RWSE and RWPE. In the original paper that introduced
RWPE [9], the term "Random Walk Positional Encoding (RWPE)" was proposed. This paper utilized
the self-landing probability of nodes in a random walk to capture neighborhood structural information.

Subsequently, an influential work in the graph transformer domain [41] made a clear distinction
between two types of encodings for structure and position, naming them Positional Encoding (PE)
and Structural Encoding (SE). Positional encodings are intended to provide an understanding of a
node’s position within the graph, while structural encodings aim to embed the structure of graphs or
subgraphs, enhancing the expressivity and generalizability of GNNs.

Interestingly, [41] argues that the Random Walk Positional Encoding (RWPE) proposed in [9] actually
serves as a Structural Encoding (SE). Based on our investigation, it is likely that [41] began using the
term RWSE instead of RWPE. Many subsequent studies, likely influenced by [41], such as [43, 18],
have also adopted RWSE over RWPE. In our work, we also use RWSE, the widely accepted term.

In conclusion, both RWSE and RWPE are widely recognized and used interchangeably in the
academic community to refer to the same PE method (diagonal of the k-steps random-walk matrix).

H Limitations

We employ Metis in conjunction with the N2C-Attn module for Cluster-GT. However, Metis is
a non-learnable graph partitioning algorithm that provides hard assignments for node clustering.

19



This poses a limitation as it restricts the flexibility of node groupings, potentially impacting the
adaptability of the model in dynamic or complex network scenarios. For future enhancements,
exploring combinations of N2C-Attn with other learnable graph partitioning algorithms capable of
generating soft assignments may be an interesting direction. Additionally, aspects such as robustness
and explainability also warrant further investigation to ensure reliability in real-world settings.

I Potential Impacts

The proposed Node-to-Cluster Attention mechanism introduces a novel approach to information
exchange between node clusters. Our research underscores the importance of incorporating diverse
strategies for interactions at both the node and cluster levels. This perspective can be integrated
with many existing node clustering-based graph learning methods, enhancing their efficacy and
adaptability. Moreover, our experimental validations reveal that the method of interaction between
clusters significantly impacts model performance. While current research primarily focuses on how to
partition clusters within graphs, our findings suggest a promising direction for future work: optimizing
the methods of interaction between clusters. Such advancements could unlock new possibilities for
cluster-level graph learning, potentially leading to more robust and sophisticated models that better
capture the complexities of large-scale networks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims mentioned in the abstract and introduction are further explained
and proved in the main text.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of current limitations in Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the proof of our claims in Appendix B and Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the architecture clearly and fully and provide the corresponding
code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the corresponding code for our proposed model and the reproduc-
tion of experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide a detailed description of the experimental settings in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We repeated the experiments multiple times with different seeds and reported
the standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We offer an introduction of the computational resource used in our experiment
in section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research has no adverse societal impact and strictly adheres to the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We offer a discussion on the potential impacts in Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The graph learning scenarios we study do not involve such risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In our experiments, we used datasets that are all open-source and widely
utilized.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not involve any Human Subjects in our experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not involve any Human Subjects in our experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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