
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CUSTOM GRADIENT ESTIMATORS ARE STRAIGHT-
THROUGH ESTIMATORS IN DISGUISE

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization-aware training comes with a fundamental challenge: the derivative of
quantization functions such as rounding are zero almost everywhere and nonexistent
elsewhere. Various differentiable approximations of quantization functions have
been proposed to address this issue. In this paper, we prove that a large class of
weight gradient estimators is approximately equivalent with the straight through
estimator (STE). Specifically, after swapping in the STE and adjusting both the
weight initialization and the learning rate in SGD, the model will train in almost
exactly the same way as it did with the original gradient estimator. Moreover, we
show that for adaptive learning rate algorithms like Adam, the same result can be
seen without any modifications to the weight initialization and learning rate. These
results reduce the burden of hyperparameter tuning for practitioners of QAT, as
they can now confidently choose the STE for gradient estimation and ignore more
complex gradient estimators. We experimentally show that these results hold for
both a small convolutional model trained on the MNIST dataset and for a ResNet50
model trained on ImageNet.

1 INTRODUCTION

The importance of quantized deep learning. Quantized deep learning has gained significant at-
tention as a means to address the demand for efficient deployment of deep neural networks on
resource-constrained devices. Traditional deep learning models typically employ high-precision
representations, consuming substantial computational resources and memory. Quantized deep learn-
ing techniques offer a compelling solution by reducing the precision of network parameters and
activations. Although the Post-Training Quantization technique is easier to use to quantize any given
model, Quantization-Aware Training (QAT) has been shown to provide higher quality results since
quantized weights are updated throughout the training process (Nagel et al., 2021).

Gradient estimators are needed in QAT. QAT encounters a problem where the derivatives of
quantization functions are zero or nonexistent everywhere. To sidestep this problem, practitioners use
approximations of the quantization functions (known as gradient estimators) for backpropagation.
The straight-through estimator is a common choice for this, but many believe it is better for a gradient
estimator to more closely approximate the rounding function. We show that this belief is misguided.

Our main contributions are as follows:

1. A proof under minimal assumptions that all nonzero weight gradient estimators lead to
approximately equivalent weight movement for non-adaptive learning rate optimizers (SGD,
SGD + Momentum, etc.) when the learning rate is sufficiently small, after a change to
weight initialization and learning rates has been applied.

2. A proof that for adaptive learning rate optimizers (Adam, RMSProp, etc.) the same result
holds without any need for adjustment to the learning rate and weight initialization.

3. Empirical evidence demonstrating this result on both a small deep neural networked train on
MNIST and a larger ResNet50 model trained on ImageNet.

Value for practitioners: Our findings reduce the burden of hyperparameter tuning for QAT. When
learning rates are low, practitioners can now confidently choose the Straight Through Estimator

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(Bengio et al., 2013) for weight gradient estimation and allocate their attention on problems like
choosing the weight initialization scheme, learning rate, and optimization method.

2 BACKGROUND AND RELATED WORK

The standard quantizer function. The core operation in QAT is the application of a quantizer
function to weights and activations, which transforms continuous, high-precision values into discrete,
lower-precision representations. Quantization functions act elementwise on weight tensors w, and
can therefore be described by scalar functions on weights w. While there are many options for the
arrangement of quantized values (Dettmers et al., 2023; Jung et al., 2019; Przewlocka-Rus et al.,
2022; Oh et al., 2021; Liu et al., 2022), we will be focused on the most popular formulation, uniform
quantization functions, which are defined by

Q(x) := ∆ · round
(

clip
(x

∆
, l, u

))
where clip(x, l, u) =

l if x < l,

x if l ≤ x ≤ u,
u if x > u.

(1)

The problem of choosing ∆, l, and u is well-researched, and we cover common approaches in
Appendix A.

Boundary points. We will refer to the sets of quantizer input values that map to a single output value
as quantization bins. The boundaries of these bins are known as boundary points. We will use w+

and w− to refer to the lower and upper boundary points for the bin containing weight w. One of these
points must exist for each w, but outside of the representable range (see Appendix A) of the quantizer
only one of the two will exist. Note that w+ − w− = ∆ for all weights in the representable range.

The Straight Through Estimator. Because Q′(x) = dQ/dx is zero almost everywhere and nonex-
istent elsewhere, vanilla gradient descent would never update the weights of a quantized model. The
standard approach for addressing this issue is to approximate Q(x) by a differentiable surrogate
function Q̂ and use its gradient Q̂′(x) for backpropagation. The derivative Q̂′ is known as a gradient
estimator (or gradient approximation). The earliest popular choice of gradient estimator is known
as the straight-through estimator (Hinton, 2012; Bengio et al., 2013) or STE, defined by Q̂(x) = x,
Q̂′(x) = 1. A strong theoretical justification for use of the STE is given in Yin et al. (2019).

Piecewise linear estimators. Piecewise linear (PWL) estimators have derivative I[wmin,wmax], where
I is the indicator function. They make Q̂ more closely resemble Q (Rastegari et al., 2016; Hubara
et al., 2016; Zhang et al., 2022). The simplest way to define a PWL estimator for a multi-bit quantizer
is to simply use Equation 1 with the round step removed, and in this case [wmin, wmax] is exactly the
representable range. This way, the behavior of PWL estimators more closely relate to the quantization
function. In general, we will use PWLwmin,wmax(x) = clip(x,wmin, wmax) to denote a PWL
gradient estimator.

STE and PWL lead to "gradient error". The simple STE and PWL gradient estimators described
above still leave a significant gap between the behavior of the forward pass and the surrogate forward
pass. For this reason, researchers have proposed a large number of custom gradient estimators, often
citing a high "gradient error" in the simpler choices of gradient estimators as motivation for their
work. Gradient error is often described as the difference between Q and Q̂.

An abundance of custom gradient estimators. In order to solve the perceived problem of gradient
error, many researchers have proposed gradient estimators that carry more complexity than the STE
or PWL estimators. In Appendix B, we cite and describe 17 examples of custom gradient estimators
in the quantization literature. Plots of some prominent examples are given in Figure 1.

3 GRADIENT DESCENT TERMINOLOGY FOR QAT

For a quantized model with gradient estimator Q̂, the gradient value at step t is∇f(Q(w(t)))Q̂′(w(t)),
where f is the loss function of the model. Of course f depends on the dataset and all other
network weights, but we suppress this for notational convenience. Going forward, we will abbreviate

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Gradient Estimators from left to right: STE (Hinton, 2012), PWL (Hubara et al., 2016),
MAD (Sakr et al., 2022), HTGE (Pei et al., 2023), EDE (Qin et al., 2020). The EDE is for binary
quantization, and the others are for multi-bit quantization.

∇f(Q(w(t))) as ∇f (t). The weight update is expressed as

w(t+1) = w(t) + g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η). (2)

where η is the learning rate. The notation for g(t) is borrowed from Andrychowicz et al. (2016).
By defining g(t), we can recover all of the standard gradient descent algorithms, i.e. SGD, Adam,
RMSProp, etc. In the simplest case, we have g(t)(∇f (t)Q̂′(w(t)), η) = −η∇f (t)Q̂′(w(t)), which
gives us the common SGD learning rule

w(t+1) = w(t) − η∇f (t)Q̂′(w(t)). (3)

The definition of g(t) for SGD with momentum is given in Appendix D. A more complex but highly
popular learning rule is the Adam (Kingma and Ba, 2014) optimizer, which is defined with the above
notation in Appendix E.

Adaptive and non-adaptive algorithms. Adam is an example of an adaptive learning rate algorithm,
since the weight update steps are normalized by a computation on past gradient values. Other examples
of adaptive learning rate methods are RMSprop (Hinton, 2012), Adadelta (Zeiler, 2012), AdaMax
(Kingma and Ba, 2014), and AdamW (Loshchilov and Hutter, 2017), We refer to all other update
rules, such SGD and SGD with momentum (Qian, 1999), as non-adaptive learning rate algorithms.

4 INTUITION

To aid the reader in developing intuition about our main results, we tell a brief story below.

The Mirror Room story. Imagine you are in a room with a glass wall. On the other side of the glass
wall, there is a person in another room, larger than yours. You are standing at different positions in
your respective rooms. Any time you take a step, this other person takes a step in the same direction,
albeit with a different step length. You continue to move around, and you are rarely exactly across
from this person, but any time you try to leave, this person leaves the room on the same side at the
same time.

You realize that the glass wall is not a wall, it’s a funhouse mirror. The person on the other side is
you, but the picture is "warped" by the mirror.

The Mirror Room is the quantization bin for two equivalent models. The scenario described
above is similar to the relationship between the motion of weights in a model (Q̂-net) that uses a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

complex gradient estimator Q̂ and another (STE-net) that uses the STE with the proper reconfigu-
rations to match Q̂-net. In the analogy, you are a weight in STE-net, your reflection is the weight
in Q̂-net. The room is a quantization bin, and the doors are the boundary points. The simultaneous
exit of you and your reflection from the room parallels the synchronized quantized weights in both
models, leading to identical gradients and training outcomes.

Figure 2: The funhouse mirror. The blue figure
represents you (a weight in STE-net), and the red
figure represents your reflection (a weight in Q̂-
net) on the other side. The reflections line up at the
edge of the room.

The "Funhouse Mirror" effect of M and Q̂.
In Section 5, we define a map M that acts as a
"funhouse mirror" mapping the weights of Q̂-net
to those of STE-net. Any initial weight w(0) in
Q̂-net is re-initialized to M(w(0)) in STE-net,
and the relationship M(wQ̂) = wSTE approxi-
mately holds throughout training, where wQ̂ is a
weight in Q̂-net, and wSTE is the corresponding
weight in STE-net. Thus after the Q̂-net weight
takes a step, the STE-net weight moves in near
lockstep after passing through the "funhouse
mirror" of M . The fidelity of this approxima-
tion is given by E(t) (defined in Equation 5) at
each step, which we show is small whenever
the learning rate is small. Furthermore, since
M(w) = w whenever w is a boundary point,
these two weights will cross the quantization
boudaries at nearly the same time. The bisim-
ulation of the two models is justified by this
property.

5 MAIN RESULTS

In this section we formalize the realizations of Section 4 and provide our main mathematical results
(1 and 2). Furthermore, this will show that much of the concern about "gradient error" is unfounded.
We provide Theorem statements for both the SGD update rule and the Adam update rule, with proofs
and generalizations in the Appendices. Note that all of the below results apply to weight quantizers.
We do not address activation quantizers in this work.

5.1 DEFINITIONS AND NOTATION

Cyclical gradient estimators. We say that a gradient estimator Q̂ for a uniform quantizer Q is
cyclical if Q̂ is identical on each finite-length quantization bin, i.e. Q̂′(w) = Q̂′(w + ∆) whenever
w and w + ∆ are inside a finite-length quantization bin (i.e. within the representable range). Most
multi-bit gradient estimators proposed in the literature are cyclical. Binary gradient estimators are
cyclical by default, since they have no finite quantization bins. Unless otherwise specified, we will
assume that all gradient estimators are cyclical.

Definitions of α and M . We give two more definitions before presenting the details of the models
we are comparing. These objects (α and M) will allow us to succinctly express the learning rate
update and weight initialization update needed to mimic the behavior of a positive gradient estimator
Q̂ using only the STE. If Q is a uniform multi-bit quantizer and Q̂ is cyclical, we define the learning
rate adjustment factor α and weight readjustment map M :

α :=
∆∫ w+

w−
ds

Q̂′(s)

M(w) := wb + α

∫ w

wb

ds

Q̂′(s)
(4)

Here w+ and w− are adjacent boundary points, and wb is any standalone boundary point. Since Q is
uniform and Q̂ is cyclical, the definition of α is independent of the choice of boundary points. If Q is
a binary quantizer, then Q has only one boundary point, and we define α := 1. Note that α is defined
entirely by Q̂, and can be computed at the outset of training. It may vary per-layer if the parameters

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of Q̂ do so. Intuitively it can be thought of as the ratio between the quantization bin size (∆) and the
"effective bin size" of a gradient estimator Q̂ (the denominator of Equation 4). The definition of M is
independent of the choice of wb. We can think of M as a function that maps a weight w to a new
point M(w) whose relative distance from its left and right boundaries matches the relative "effective
distance" (under Q̂) between the boundary points and the original weight w.

Definition of Q̂-net and STE-net. For both optimization techniques we consider (SGD and Adam)
we will study two models, Q̂-net and STE-net. The models can have any architecture, as long as
they are equivalent. We will focus on corresponding weights w(t)

Q̂
and w(t)

STE , respectively, at iteration

t. We will denote the gradients of the loss function f with respect to Q(w
(t)

Q̂
) and Q(w

(t)
STE) as

∇f (t)
Q̂

and ∇f (t)STE , respectively. The differences in gradient estimators, learning rates and weight
initialization for both SGD and Adam are given in Tables 1 and 2, respectively.

Table 1: Q̂ and STE Models for SGD

Model Q̂-net STE-net

Gradient Estimators Q̂ STE

Learning Rates η αη

Initial Weights w
(0)

Q̂
M(w

(0)

Q̂
)

Table 2: Q̂ and STE Models for Adam

Model Q̂-net STE-net

Gradient Estimators Q̂ STE

Learning Rates η η

Initial Weights w
(0)

Q̂
w

(0)

Q̂

Comparison Metric. We can quantify how the weights between Q̂-net and STE-net differ using
weight alignment error, which is defined as

E(t) :=
∣∣∣M (

w
(t)

Q̂

)
− w(t)

STE

∣∣∣ for SGD, and E(t) :=
∣∣∣w(t)

Q̂
− w(t)

STE

∣∣∣ for Adam. (5)

E(t) measures how far off the weights are between the two models at iteration t, and starts atE(0) = 0
due to our choice of initial weights in Tables 1 and 2. Furthermore, since M preserves quantization
bins, we have that Q(w

(t)

Q̂
) = Q(w

(t)
STE) whenever E(t) is small.

5.2 THEOREM STATEMENTS

Theorem 5.1 rigorously states contribution 1 for the SGD update rule (Equation 3). It states that
after adjusting the learning rate of a model by α and re-initializing the weights by applying M(w), a
positive gradient estimator Q̂ can be replaced by the STE with minimal differences in training.

Theorem 5.1. Suppose that E(t) is the alignment error for Q̂-net and STE-net with SGD (Table 1).
Assume that the following hold:

5.1.1 0 < L− ≤ Q̂′(w) ≤ L+ for all w. (Bounded, positive gradient estimator)

5.1.2 Q̂′(w) is L′-Lipschitz. (Well-behaved gradient estimator)

Then we have

E(t+1) ≤ E(t) + ηα
∣∣∣∇f (t)

Q̂
−∇f (t)STE

∣∣∣︸ ︷︷ ︸
gradient error

+
L′

2
·

ηL+∇f (t)Q̂
L−

2

︸ ︷︷ ︸
convexity error

(6)

See Appendix C for a rigorous proof. The theorem only considers the standard gradient descent
process. For a similar statement for a more general class of non-adaptive learning rate optimizers, see
Appendix C. See Appendix D for a more specific result for SGD with momentum.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 5.2 rigorously proves contribution 2 for the Adam update rule (Equations 57-61). The result
here is stronger than Theorem 5.1. When using the Adam update rule, the gradient estimator Q̂ can
be replaced by the STE without any update to the learning rate or weight initialization.

Theorem 5.2. Suppose that E(t) is the alignment error for Q̂-net and STE-net with Adam (Table 2).
Assume that the following hold:

5.2.1 0 < L− ≤ Q̂′(w) for all w. (Lower bounded positive gradient estimator)

5.2.2 Q̂′(w) is L′-Lipschitz. (Well-behaved gradient estimator)

Then we have

E(t+1) ≤ E(t) +
∣∣∣g(t)(∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η)− g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , η)

∣∣∣︸ ︷︷ ︸
gradient error

+ O(η2)︸ ︷︷ ︸
convexity error

, (7)

where g(t) is the gradient update rule for Adam (see Equation 2 and Equations 57-61).

See Appendix E for a rigorous proof. In Theorem 5.2, the exact definition of the O(η2) term is
omitted due to its complexity. For a similar statement for a more general class of non-adaptive
learning rate optimizers (not just the Adam optimizer), see Appendix E. For a discussion of Theorems
5.1 and 5.2 for learning rate schedules, see Appendix F.

5.3 ON THE ASSUMPTIONS AND IMPLICATIONS OF THEOREMS 5.1 AND 5.2

Theorems 5.1 and 5.2 rely on specific assumptions about the gradient estimator Q̂. In this section,
we break down these assumptions clearly. Furthermore, we describe how these theorems imply
contributions 1 and 2.

The assumptions are reasonable: The upper bound on Q̂′ in Assumption 5.1.1 is very mild.
Gradient estimators with an unbounded derivative would likely cause training instability, and are not
used in practice. Similarly, the authors are not aware of a gradient estimator that breaks Assumptions
5.1.2 and 5.2.2. In addition, the constants L−, L+, and L′ are usually quite small in practice (see
Appendix H for calculations). The lower bound on Q̂′ in Assumptions 5.1.1 and 5.2.1, however, is
often broken in practice. In Appendix G, we describe how the Theorems still support contributions 1
and 2 in these cases.

The bounds in Equations 6 and 7 are small: In order to see how Theorems 5.1 and 5.2 provide
contributions 1 and 2, we can closely examine each term in Equations 6 and 7. The gradient and
convexity error in each equation together give a worst-case increase to E(t) at each training step.
That is, as long as these terms are small, Q̂-net and STE-net will train in a very similar manner.
The convexity error terms are unavoidable errors, and are extremely small (O(η2)) in practice. The
gradient error terms, however, are O(η), so they can be large if the gradients of the two models are
misaligned. However, since the gradient terms∇f (t)

Q̂
and∇f (t)STE only depend on quantized weights,

these terms will be zero at the beginning of training and remain small as long as E(t) remains small.

The claim is nontrivial: Note that these theorems do not simply say that when the learning rate
is small, the models change very little, and therefore Q̂-net and STE-net are aligned. Since the
irreducible error term is quadratic in η, the misalignment at each step is small relative to the learning
rate itself.

The claim applies to networks of any size: The Theorems only give bounds for the error in a single
network weight, but can be applied to each weight independently in a multi-weight network. Of
course, the trajectories of weights in a neural network are not independent, but luckily in our case
the weight trajectories only depend on the quantized versions of the other network weights. To see
this, note that the only terms in Equations 6 and 7 that depend on other network weights are the
gradient error terms. As stated earlier, these gradient terms only depend on quantized weights, so we
do not need perfect alignment in other latent network weights in order to keep the error terms in these
Equations small. Since the gradient error terms can depend on all other quantized weights in the
network, larger models are at a greater risk of weight misalignment. However, this is more a property

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

of large models than of gradient estimators: any two large models that have only a small difference in
hyperparameter configurations but otherwise equivalent training setups will have potentially large
step-by-step divergences in weight alignment. And the fundamental difference in training induced by
a gradient estimator is indeed small, since in Equations 6 and 7, the true source of all misalignment is
an O(η2) term. This is supported by our experiments in Section 6.

The claim applies to the entire trajectory. While the Theorems give a bound for E(t+1) at each
step in terms of E(t), we can apply out results to get absolute bounds on E(t+1) throughout the
entire trajectory. For example, if the assumptions of Theorem 5.1 hold, then we can repeatedly apply
Equation 6 for decreasing values of t to obtain

E(t+1) ≤ ηα
t∑
i=1

∣∣∣∇f (i)
Q̂
−∇f (i)STE

∣∣∣+
L′η2L2

+

2L2
−
·

t∑
i=1

(
∇f (t−1)

Q̂

)2
.

A similar statement holds for Theorem 5.2. While this bound grows linearly with t in the worst case,
the same can be said about an E(t) metric comparing weights for two models that differ only by a
very small factor in the learning rate. This motivates the "lr-tweak" experiments in Section 6.

5.4 THEOREM 5.1 PROOF SKETCH

The proof of Theorem 5.1 in its full generality requires heavy notation and somewhat obscures the
simple point of the Theorem. Because of this, we provide a sketch of proof below.

Sketch of Theorem 5.1 proof. We have for all t,

E(t+1) =
∣∣∣M (

w
(t+1)

Q̂

)
− w(t+1)

STE

∣∣∣ (8)

(Expand terms) =
∣∣∣M (

w
(t)

Q̂
− η∇f (t)

Q̂
Q̂′
(
w

(t)

Q̂

))
−
(
w

(t)
STE − ηα∇f

(t)
STE

)∣∣∣ (9)

(Taylor’s Thm.) =
∣∣∣M (

w
(t)

Q̂

)
− η∇f (t)

Q̂
Q̂′
(
w

(t)

Q̂

)
M ′
(
w

(t)

Q̂

)
−
(
w

(t)
STE − ηα∇f

(t)
STE

)
+O(η2)

∣∣∣
(10)

(Apply Eq. 13) =
∣∣∣M (

w
(t)

Q̂

)
− ηα∇f (t)

Q̂
−
(
w

(t)
STE − ηα∇f

(t)
STE

)
+O(η2)

∣∣∣ (11)

(Triangle Ineq.) ≤E(t) + ηα
∣∣∣∇f (t)

Q̂
− f (t)STE

∣∣∣+O(η)2 (12)

Here Equation 10 follows from Taylor’s Theorem. Equation 11 follows from Equation 13 below

∂M

∂w
(w) = α · 1

Q̂′(w)
, (13)

and Equation 12 follows from the triangle inequality. The complete proof simply requires writing out
an explicit form for the O(η2) term, and is given in detail in Appendix C.

6 EXPERIMENTAL RESULTS

Here we demonstrate our main results on practical models. The general strategy we will take is to
implement Q̂-net and STE-net for a specific model architecture and compare on a variety of metrics
to demonstrate the following:

A. Q̂-net and STE-net train in almost exactly the same way.

B. If we do not apply the weight re-initialization of Theorem 5.1, we do not see the same
results.

6.1 MODELS AND TRAINING SETUP

Models and Datasets. We use two model architecture/dataset pairs:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1. A simple three-layer quantized convoluational archicture proposed in Chollet (2021) for
image classification on the MNIST dataset, which gives a uniform weight distribution with
the variance recommended in He et al. (2015) trained on a CPU.

2. ResNet50 (He et al., 2016) on the ILSVRC 2012 ImageNet dataset (Deng et al., 2009),
which showcases generality to a more complex model and dataset trained on a TPU. We
used a fully deterministic version of the Flax example library (Flax contributors, 2024).

Weight Initialization and Quantizers: We initialize the weights of Q̂-net using He Uniform Initial-
ization1. For quantization, we use a uniform weight quantizer with representable range limits given
by bounds of the weight initialization distribution. We do not quantize activations. We focus primarily
on two-bit weight quantization, and note that results are similar for 1-bit and 4-bit quantization. For
gradient estimation, we use the Q̂ given by the HTGE (Pei et al., 2023) gradient estimator formula
with shape parameter t set to 5.5 times the maximum value from the weight initialization distribution.
This value was chosen so that Q̂ differs significantly from the STE, but not so significantly that parts
of Q̂ become essentially flat.

Optimization techniques. For optimization techniques on both models, we consider both SGD
with momentum= 0.9 and Adam with β1 = 0.9 and β2 = 0.95. For all experiments, we use a
cosine decay learning rate schedule (Loshchilov and Hutter, 2016) with a linear learning rate warmup
(Goyal et al., 2017) for 2% of training epochs. The reported learning rate for each model is the initial
learning rate for the cosine decay. We use a learning rate of 0.001 for our default MNIST SGD with
momentum model, and 0.0001 for our default MNIST Adam model. For the ResNet50 on ImageNet
model we apply the standard learning rate schedule implemented in Flax contributors (2024) with a
configured learning rate of 0.0001, for Adam and 0.001 for SGD and otherwise default parameters.

Identical Initial Training period. For the ImageNet-ResNet setup, we ensured that the first 10%
of training for Q̂-net and STE-net were identical. To do this, we trained STE-net by first training
Q̂-net for the first 10 of 100 epochs, and then applied M to the weights and optimizer state and
switched the model’s quantizer for the STE before continuing training. This was applied for all model
comparisons.

6.2 METRICS.

We use two metrics in order to establish Points A and B. Both of these compare STE-net weights to
Q̂-net weights. In addition to the metrics below, we also report accuracy and loss statistics for all
models.

Quantized Weight Agreement. At the end of training the complete set of quantized weights is
calculated for both models and compared. We report the proportion of quantized weights that are the
same for both models.

Normalized Weight Alignment Error (Ē). For each pair of models, we compute the average value
of E(T) for the final training step T over all weights. Note that Equation 5 gives two definitions of E,
and for each model pair we use the version that matches the weight initialization setup, which gives
E(0) = 0 for all model pairs. Each E(T) is normalized by the length of the representable range, so
that a value of 100% indicates that the two models’ weights are on opposite sides of the representable
range. We denote the average as Ē for all model pairs.

6.3 RESULTS

Tables for Points A and B: We provide all metrics for both the default SGD and Adam models
described in Section 6.1 within in Table 4, with detailed interpretations for the Ē metric in Table 3.
Note that Adam does not have an "unadjusted" case, since there is no need for weight initialization
adjustment when Adam is used.

Point A is validated. The standard comparison between Q̂-net and STE-net is labeled as "baseline".
We compute metrics between a Q̂-net model and the same model with a learning rate increase of 1%

1https://www.tensorflow.org/api_docs/python/tf/keras/initializers/
HeNormal

8

https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeNormal
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeNormal

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Normalized weight alignment metric Ē for MNIST model with SGD + Momentum, including
descriptions and interpretations for all four experiment types. This table serves as a guide for
interpreting Table 4.

Experiment
Name

Experiment Descrip-
tion Ē Interpretation/Comparison to Baseline

baseline Q̂ vs. STE 0.515% Baseline

lr-tweak Q̂ vs. Q̂ with 1%
learning rate increase

0.572% Replacing STE-net with Q̂-net is about as
impactful as a small change to η (A).

unadjusted Q̂ vs. STE without
reinitializing weights

2.52%
The two models only see the same weight
movement if weights are re-initialized ac-
cording to M (B).

Table 4: Alignment metrics for SGD (S) and Adam (A). Results for the MNIST model are shown on
the left, and results for ResNet50 trained on ImageNet are shown on the right.

Experiment
Name Ē

Quantized
Weight
Agreement

baseline (S) 0.515% 98.31%
lr-tweak (S) 0.572% 98.66%
unadjusted (S) 2.52% 96.53%

baseline (A) 2.81% 94.42%
lr-tweak (A) 1.74% 95.4%

Experiment
Name Ē

Quantized
Weight
Agreement

baseline (S) 5.42% 68.94%
lr-tweak (S) 5.46% 75.64%
unadjusted (S) 7.88% 67.53%

baseline (A) 7.18% 72.22%
lr-tweak (A) 4.99% 76.32%

(chosen arbitrarily and only once), reported with the label "lr-tweak". This serves as an example of a
"small change" to a model that the reader may be more familiar with, providing additional context
about the scale of the metric results and supporting Point A. For both the MNIST and ImageNet
models, the alignment between Q̂-net and STE-net is similar to the alignment expected from a 1%
learning rate change.

Point B is validated. We report alignment measurements between Q̂-net and STE-net without the
weight and learning rate adjustments described in Theorem 5.1 using the label "unadjusted". The
alignment worsens for both the MNIST model and the ResNet model when removing the weight
reinitialization by M .

Weight Alignment. For a visual of the weight alignment phenomenon, see Figure 3 in Appendix J.

There is almost no difference in training accuracy. Standard training metrics for both Q̂-net and
STE-net are given in Table 5 for both optimizers and both models we consider. This table shows that
the two models have very similar train and test metrics, indicating that replacing Q̂ with the STE is
of minimal impact after applying the appropriate weight initialization and learning rate adjustments.
As expected, the alignment is stronger for the smaller model.

7 IMPLICATIONS

Here we discuss the implications of this work on the existing literature and future practice and
research.

For practitioners. The main message for practitioners is simple, and depends on the optimization
strategy used as follows:

• SGD and other non-adaptive optimizers: In this case, if the learning rate is sufficiently
small and you wish to tweak the gradient estimator, you can instead apply a corresponding
weight re-initialization and learning rate adjustment to a model with the STE or PWL
estimator and see nearly the same training procedure. The proof and related assumptions are
given in Theorem C.1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Loss and Accuracy differences between Q̂-net and STE-net with SGD (S) and Adam (A).
Results for the MNIST model are shown on the left, and results for ResNet50 trained on ImageNet
are shown on the right. For both SGD (S) and Adam (A) and both models, differences are small.

Train acc Train loss Val acc Val loss

STE (S) 97.05% 0.1439 97.08% 0.1417
Q̂ (S) 96.98% 0.1483 97.14% 0.1468
Diff -0.06% 0.0044 0.06% 0.0051
STE (A) 97.56% 0.1270 97.66% 0.1257
Q̂ (A) 97.63% 0.1254 97.58% 0.1245
Diff 0.07% -0.0016 -0.08% -0.0013

Train acc Train loss Val acc Val loss

STE (S) 68.94% 1.3370 69.83% 1.2227
Q̂ (S) 68.51% 1.3365 68.77% 1.2793
Diff 0.43% 0.0005 -1.06% -0.0566
STE (A) 69.78% 1.2876 70.01% 1.2209
Q̂ (A) 69.02% 1.3153 69.37% 1.2490
Diff -0.77% 0.0277 -0.65% 0.0281

• Adam and other adaptive optimizers: In this case, when the learning rate is sufficiently
small, the only gradient estimators you need consider are the STE and PWL estimators. The
proof and related assumptions are given in Theorem E.1.

For researchers. For future research, we hope that this work will inspire further study on processes
for updating quantized model parameters that are fundamentally different from the use of gradient
estimators, and therefore immune to the arguments of this paper. This may include novel computations
on gradients that diverge from the standard chain rule (Lee et al., 2021; Wangl et al., 2023), optimizers
specially designed for QAT (Helwegen et al., 2019), or even methods that do not involve gradient
computations at all (Takemoto et al., 2023). As for the existing literature, our message is that the
concern about "gradient error" should not be considered in the future. For discussions about potential
avenues for future work, see Appendix I.

8 DISCUSSION: WHY ARE SO MANY GRADIENT ESTIMATORS PUBLISHED?

A natural question that a reader may have concerning past research is this: If the choice of gradient
estimator is so irrelevant, why is there so much research that proposes new gradient estimators and
demonstrates improved performance with their aid? There are several potential answers to this.

Performance differences are due to implicit weight initialization and learning rate differences.
The simplest explanation is that their gradient estimation techniques happen to have implictly
uncovered a superior weight re-initialization and learning rate adjustment, as indicated by Theorem
5.1.

Activation gradient estimators make a difference. Another answer could be that the performance
improvements were due to changes in quantized activation gradient estimators, which cannot be
equated to the STE.

Learning rates are too high to see the equivalence. It is possible that the learning rates in these
experiments were too high to see an equivalence between their gradient estimators and the STE. This
is a limitation of our main argument, but we expect that this counter-argument will not stand the test
of time, since by our main results, the higher learning rate masks the fact that models with novel Q̂
and the STE are still approximating the same process.

Gradient estimators are proposed alongside other innovations, making them hard to evaluate
in isolation. The most common situation is that novel gradient estimators Q̂ are introduced simul-
taneously with further changes to the learning recipe. Some allow the parameters of Q and Q̂ to
be learnable through gradient descent or explicit computations on the weights, or adjust them on a
schedule (See Appendix A). Others, such as DSQ (Gong et al., 2019), use Q̂ on the forward pass
and gradually update Q̂ to more closely approximate Q. Lin et al. (2020) contributes a process for
rotating the entire weight vector to align with the binarized weight vector. Bi-Real Net Liu et al.
(2018) also includes a trick with network activations to increase the representational capacity of the
model. In addition to the Error Decay Estimator, Qin et al. (2020) describes a method for maximizing
the entropy of quantized parameters to ensure higher parameter diversity.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan,
and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks.
arXiv preprint arXiv:1805.06085, 2018.

Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, and Vahid Partovi Nia. Regularized binary
network training. arXiv preprint arXiv:1812.11800, 2018.

Christian Darken, Joseph Chang, John Moody, et al. Learning rate schedules for faster stochastic
gradient search. In Neural networks for signal processing, volume 2, pages 3–12. Citeseer, 1992.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

The Flax contributors. Flax imagenet example. https://github.com/google/flax/
tree/main/examples/imagenet, 2024. Original implementation of ImageNet example in
Flax.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. CoRR, abs/2103.13630,
2021. URL https://arxiv.org/abs/2103.13630.

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and
Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural networks. In
2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019, pages 4851–4860. IEEE, 2019. doi: 10.1109/ICCV.2019.00495.
URL https://doi.org/10.1109/ICCV.2019.00495.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting Cheng, and Roe-
land Nusselder. Latent weights do not exist: Rethinking binarized neural network optimization.
Advances in neural information processing systems, 32, 2019.

Geoffrey Hinton. COURSERA: Neural networks for machine learning, 2012.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

11

https://github.com/google/flax/tree/main/examples/imagenet
https://github.com/google/flax/tree/main/examples/imagenet
https://arxiv.org/abs/2103.13630
https://doi.org/10.1109/ICCV.2019.00495

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju
Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing quantization
intervals with task loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4350–4359, 2019.

Dohyung Kim, Junghyup Lee, and Bumsub Ham. Distance-aware quantization. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 5271–5280, 2021.

Jangho Kim, KiYoon Yoo, and Nojun Kwak. Position-based scaled gradient for model quantization
and pruning. Advances in neural information processing systems, 33:20415–20426, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Junghyup Lee, Dohyung Kim, and Bumsub Ham. Network quantization with element-
wise gradient scaling. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, June 19-25, 2021, pages 6448–6457. Computer Vision Foundation
/ IEEE, 2021. doi: 10.1109/CVPR46437.2021.00638. URL https://openaccess.
thecvf.com/content/CVPR2021/html/Lee_Network_Quantization_With_
Element-Wise_Gradient_Scaling_CVPR_2021_paper.html.

Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning. arXiv
preprint arXiv:1910.07454, 2019.

Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan Wang, Yongjian Wu, Feiyue Huang,
and Chia-Wen Lin. Rotated binary neural network. Advances in neural information processing
systems, 33:7474–7485, 2020.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In Proceedings of the European conference on computer vision (ECCV), pages
722–737, 2018.

Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric P Xing, and Zhiqiang Shen. Nonuniform-to-
uniform quantization: Towards accurate quantization via generalized straight-through estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4942–4952, 2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen, and Tij-
men Blankevoort. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295,
2021.

Sangyun Oh, Hyeonuk Sim, Sugil Lee, and Jongeun Lee. Automated log-scale quantization for
low-cost deep neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 742–751, 2021.

Zehua Pei, Xufeng Yao, Wenqian Zhao, and Bei Yu. Quantization via distillation and contrastive
learning. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Dominika Przewlocka-Rus, Syed Shakib Sarwar, H Ekin Sumbul, Yuecheng Li, and Barbara De Salvo.
Power-of-two quantization for low bitwidth and hardware compliant neural networks. arXiv
preprint arXiv:2203.05025, 2022.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):
145–151, 1999.

12

https://openaccess.thecvf.com/content/CVPR2021/html/Lee_Network_Quantization_With_Element-Wise_Gradient_Scaling_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Lee_Network_Quantization_With_Element-Wise_Gradient_Scaling_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Lee_Network_Quantization_With_Element-Wise_Gradient_Scaling_CVPR_2021_paper.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu, and Jingkuan
Song. Forward and backward information retention for accurate binary neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pages 525–542. Springer, 2016.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

Babak Rokh, Ali Azarpeyvand, and Alireza Khanteymoori. A comprehensive survey on model
quantization for deep neural networks. arXiv preprint arXiv:2205.07877, 2022.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Charbel Sakr, Jungwook Choi, Zhuo Wang, Kailash Gopalakrishnan, and Naresh Shanbhag. True
gradient-based training of deep binary activated neural networks via continuous binarization. In
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
2346–2350. IEEE, 2018.

Charbel Sakr, Steve Dai, Rangharajan Venkatesan, Brian Zimmer, William J. Dally, and Brucek
Khailany. Optimal clipping and magnitude-aware differentiation for improved quantization-aware
training. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and
Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July
2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research,
pages 19123–19138. PMLR, 2022. URL https://proceedings.mlr.press/v162/
sakr22a.html.

Ratshih Sayed, Haytham Azmi, Heba A. Shawkey, A. H. Khalil, and Mohamed Refky. A systematic
literature review on binary neural networks. IEEE Access, 11:27546–27578, 2023. doi: 10.1109/
ACCESS.2023.3258360. URL https://doi.org/10.1109/ACCESS.2023.3258360.

Clemens JS Schaefer, Siddharth Joshi, Shan Li, and Raul Blazquez. Edge inference with fully
differentiable quantized mixed precision neural networks. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pages 8460–8469, January 2024.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pages 464–472. IEEE, 2017.

Masashi Takemoto, Yasutake Masuda, Jingyong Cai, and Hironori Nakajo. Learning algorithm for
lesserdnn, a dnn with quantized weights. In Proceedings of the 12th International Symposium on
Information and Communication Technology, pages 1–7, 2023.

Xuanhong Wangl, Yuan Zhong, and Jiawei Dong. A new low-bit quantization algorithm for neural
networks. In 2023 42nd Chinese Control Conference (CCC), pages 8509–8514. IEEE, 2023.

Yixing Xu, Kai Han, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe Wang. Learning frequency
domain approximation for binary neural networks. Advances in Neural Information Processing
Systems, 34:25553–25565, 2021.

Zhe Xu and Ray CC Cheung. Accurate and compact convolutional neural networks with trained
binarization. arXiv preprint arXiv:1909.11366, 2019.

Gene-Ping Yang, Yue Gu, Sashank Macha, Qingming Tang, and Yuzong Liu. On-device constrained
self-supervised learning for keyword spotting via quantization aware pre-training and fine-tuning.
In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 10951–10955. IEEE, 2024.

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, and Xian-
sheng Hua. Quantization networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7308–7316, 2019.

13

https://proceedings.mlr.press/v162/sakr22a.html
https://proceedings.mlr.press/v162/sakr22a.html
https://doi.org/10.1109/ACCESS.2023.3258360

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

Chunyu Yuan and Sos S. Agaian. A comprehensive review of binary neural network. CoRR,
abs/2110.06804, 2021. URL https://arxiv.org/abs/2110.06804.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Luoming Zhang, Yefei He, Zhenyu Lou, Xin Ye, Yuxing Wang, and Hong Zhou. Root quantization:
a self-adaptive supplement ste. Applied Intelligence, 53(6):6266–6275, 2023.

Xiangxiong Zhang. Notes for optimization algorithms spring 2023. 2023.

Yichi Zhang, Zhiru Zhang, and Lukasz Lew. Pokebnn: A binary pursuit of lightweight accuracy. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12475–12485, 2022.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

14

https://arxiv.org/abs/2110.06804

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A CHOOSING QUANTIZATION PARAMETERS

The clipping bounds l and u are determined by the number of bits b in the quantized representation
and the desired number of representable values in the positive and negative range of the quantizer.
This range of weight values is referred to as the representable range (or quantization range) of the
quantizer, and can be computed as [∆ · l,∆ · u]. Large ∆ values allow for large w values to avoid the
clip step, whereas small values give small w values a more granular representation. These parameters
are either learned (Esser et al., 2019; Choi et al., 2018; Gong et al., 2019) or set by the user. For
b > 1, l and u are often chosen as l = −2b−1, u = 2b−1 − 1 for symmetric quantization and l = 0,
u = 2b − 1 for asymmetric quatization. ∆ is often chosen uniformly per-channel or per-token, based
off of latent weight data W . It is sometimes set as max(|W |)/(2b − 1), or is chosen to minimize
a loss function (such as MSE or cross entropy (Nagel et al., 2021)) comparing W and Q(W). For
binary quantization (b = 1), Q(w) is typically a sign function (Nagel et al., 2021; Gholami et al.,
2021; Rokh et al., 2022), and there is no representable range. For binary PWL estimators,a common
choice is to use Equation 1 and simply set ∆ = 1 and [wmin, wmax] = [−1, 1] (Sayed et al., 2023).

B DETAILED OVERVIEW OF CUSTOM GRADIENT ESTIMATORS

Custom binary gradient estimators. A substantial amount of research has gone into custom
gradient estimators. Many choices (Sakr et al., 2018; Darabi et al., 2018; Liu et al., 2018; Xu and
Cheung, 2019; Qin et al., 2020; Lin et al., 2020; Xu et al., 2021) for binary gradient estimators are
described in (Yuan and Agaian, 2021). A popular estimator is the "Error Decay Estimator" (EDE) of
(Qin et al., 2020), which uses an evolving tanh function to approximate the sign function.

Custom gradient estimators. The hyperbolic tangent gradient estimator (HTGE) (Pei et al., 2023)
gives a piecewise function locally described by tanh functions. Its definition is given by the standard
quantization function 1, where the round operation is replaced with

H(x) =
a+ b

2
+

tanh
(
t
(
x− a+b

2

))
2

where a = floor(x) and b = ceil(x). Here t is the sharpness parameter. This approximation is used
for both the forward and backward pass of Q in Differentiable Soft Quantization (DSQ) (Gong et al.,
2019). Similar approaches to the HTGE use a sum of sigmoid functions (Yang et al., 2019) and a
distance-weighted piecewise linear combination of the outputs of Q (Kim et al., 2021) to approximate
Q. These techniques make up the most common choices of gradient estimators, which justifies our
choice of HTGE for our experiments. The gradient computation in Kim et al. (2020) leverages a
special choice of Q̂ based on the distance between the full-precision weight and its quantized version.
Zhang et al. (2023) proposes a gradient estimator that includes an extra parameter that attempts to
allow the quantization strategy to work well for both low-bit and high-bit quantization. Zhou et al.
(2016) uses the STE for the round function, but replaces the clip function in the forward pass with a
modified tanh function, which affects the gradient calculations as well. Sakr et al. (2022) introduces
a choice for Q̂ known as "Magnitude Aware Differentiation" (MAD) that matches the STE on the
representable range of the quantizer and a reciprocal function outside of this range. More recently,
Schaefer et al. (2024) proposed a gradient estimation method based on the inverse tanh function,
and Yang et al. (2024) described a gradient estimator based on the cosine function. See Figure 1 for
examples of several gradient estimators.

Implications of our main results. In light of our results 1 and 2, we can sometimes equate these
addition algorithms with more well-known training strategies. For example, Qin et al. (2020) proposes
a schedule for a tanh-based gradient estimator to gradually approach a sign function throughout
training. Since they use SGD in their experiments, we can think of each update to sharpen the gradient
estimator as an effective "shifting" of the weights according to the function defined in Equation 4.
This particular shift will push most weights away from 0, which has an effect similar to slowing down
the learning rate. Thus this adaptive gradient estimation technique is similar to a standard learning
rate decay schedule.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PROOF OF THEOREM 5.1

Proving Theorem 5.1 will require several steps. First, in Theorem C.1 we prove a general statement
that allows us to bound the increase in weight alignment error at each training step for any non-
adaptive learning rate optimization strategy. This will allow us to quickly prove Theorem 5.1, and
will also simplify the proof of a similar statement for SGD with momentum, which will be given in
Appendix D.

Theorem C.1 applies to gradient update rules that satisfy a special property in Assumption C.1.3. We
will show later in this section that this holds for the SGD formula defined in 3, and in Appendix D for
SGD with momentum. Similar proofs show that it holds for a large class of non-adaptive learning
rate gradient update rules.

Theorem C.1. Suppose that

E(t) :=
∣∣∣M (

w
(t)

Q̂

)
− w(t)

STE

∣∣∣ (14)

is the alignment error for Q̂-net and STE-net with gradient estimators, learning rates, and initial
weights given by Table 1. Suppose that Assumptions 5.1.1 and 5.1.2 hold and the model weights are
updated according to Equation 2 for some function g(t). In addition, suppose that

C.1.3 For each t, the quantity∣∣∣∣∣∣
g(t)(∇f (0)

Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
Q̂′(w(t)), η)

Q̂′(w(t))
− g(t)(∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η)

∣∣∣∣∣∣ = O(c(η)).

(15)

Then we have

E(t+1) ≤E(t) +
∣∣∣αg(t)(α∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η)− g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , αη)

∣∣∣+ (16)

L′

2
·

g(t)(∇f (0)Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
Q̂′(w(t)), η)

L−

2

+O(c(η)) (17)

Proof. By Equation 2, we have

E(t+1) =
∣∣∣M (

w
(t+1)

Q̂

)
− w(t+1)

STE

∣∣∣ (18)

=
∣∣∣M (

w
(t)

Q̂
+ g(t)(∇f (0)

Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
Q̂′(w(t)), η)

)
− (19)(

w
(t)
STE + g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , αη)

) ∣∣∣ (20)

=
∣∣∣M (

w
(t)

Q̂

)
+ g(t)(∇f (0)

Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
Q̂′(w(t)), η)M ′

(
w

(t)

Q̂

)
− (21)(

w
(t)
STE + g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , αη)

)
+R

∣∣∣ (22)

=
∣∣∣M (

w
(t)

Q̂

)
+ αg(t)(∇f (0)

Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
Q̂′(w(t)), η)/Q̂′

(
w

(t)

Q̂

)
− (23)(

w
(t)
STE + g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , αη)

)
+R

∣∣∣ (24)

=
∣∣∣M (

w
(t)

Q̂

)
+ αg(t)(∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η) +O(c(η))− (25)(

w
(t)
STE + g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , αη)

)
+R

∣∣∣ (26)

≤E(t) +
∣∣∣αg(t)(∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η)− g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , αη)

∣∣∣+ (27)

|R|+O(c(η)) (28)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Here Equation 22 follows from Taylor’s Theorem, where R is the remainder term. Equation 24
follows from Equation 13, and Equation 26 follows from Assumption C.1.3. Equation 28 follows
from the triangle inequality. By Lemma 2.1 of Zhang (2023), we can bound R by

|R| ≤ L′

2L2
−

(
g(t)(∇f (0)

Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
Q̂′(w(t)), η)

)2
, (29)

To see this, we need to show that M ′ is Lipschitz continuous with Lipschitz constant L′/L2
−. This

holds since for any w, v ∈ R,

|M ′(w)−M ′(v)| =
∣∣∣∣ 1

Q′(w)
− 1

Q′(w)

∣∣∣∣ =

∣∣∣∣Q′(v)−Q′(w)

Q′(w)Q′(v)

∣∣∣∣ ≤ L′

L2
−
|w − v|.

In the last step we use both Assumptions 5.1.1 and 5.1.2. Putting this all together, we have Equation
17.

We can now apply Theorem C.1 for the SGD update rule (Equation 3) to give a proof of Theorem 5.1.

Proof of Theorem 5.1. To prove Theorem 5.1, we first show that Assumption C.1.3 holds for the
SGD update rule with c(η) = 0. We have∣∣∣∣∣∣

g(t)(∇f (0)
Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
Q̂′(w(t)), η)

Q̂′(w(t))
− g(t)(∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η)

∣∣∣∣∣∣ = (30)

∣∣∣∣∣∣
η∇f (t)

Q̂
Q̂′(w(t))

Q̂′(w(t))
− η∇f (t)

Q̂

∣∣∣∣∣∣ =0. (31)

Now we can apply Theorem C.1. We have

E(t+1) ≤E(t) +
∣∣∣αg(t)(α∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η)− g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , αη)

∣∣∣+ (32)

L′

2
·

g(t)(∇f (0)Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
Q̂′(w(t)), η)

L−

2

+O(c(η)) (33)

=E(t) + ηα
∣∣∣∇f (t)

Q̂
−∇f (t)STE

∣∣∣+
L′

2
·

η∇f (t)Q̂ Q̂′(w(t))

L−

2

+ 0 (34)

≤E(t) + ηα
∣∣∣∇f (t)

Q̂
−∇f (t)STE

∣∣∣+
L′

2
·

ηL+∇f (t)Q̂
L−

2

(35)

This gives us Equation 6, as desired.

D THEOREM 5.1 FOR SGD WITH MOMENTUM

Here we give a version of Theorem 5.1 for stochastic gradient descent with momentum. The weight
update rule for this learning algorithm is given by

g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η) = −ηmt (36)

where mt is defined recursively as

mt = βmt−1 + (1− β)∇f (t)Q̂′(w(t)) (37)

for a hyperparameter β ∈ [0, 1), which is often set to 0.9 or a similar value (Ruder, 2016). We can
expand this recursive definition, and obtain the single rule

g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η) = −η(1− β)

t∑
i=0

βt−i∇f (i)Q̂′(w(i)) (38)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Theorems D.1 and D.2 show that Assumption C.1.3 holds for this update rule under mild conditions.
From this we can apply Theorem C.1 for SGD with momentum to obtain Theorem D.3, a result
similar to Theorem 5.1.

Theorem D.1. Define g(t) by Equation 38. Suppose that Assumption 5.1.1 holds. Further suppose
that each ∇f (t) is bounded by

|∇f (t)| < g+
L+(1− βt+1)

. (39)

Then
|g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η)| < ηg+

Proof. By the triangle inequality and Assumption 5.1.1, we have

|g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η)| < ηL+(1− β)

t∑
i=0

βt−i|∇f (i)|.

Now applying the bound given in Equation 39, we have

|g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η)| < ηg+
1− β

1− βt+1

t∑
i=0

βt−i.

Since
t∑
i=0

βt−i =
1− βt+1

1− β

for all β < 1, we have

|g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η)| < ηg+ (40)

as desired.

Theorem D.2. Define g(t) by Equation 38. Suppose that

D.2.1 0 < L− ≤ Q̂′(w) for all w

D.2.2 Q̂′(w) is L′-Lipschitz

D.2.3 For each t, Each g(t) is bounded by |w(t+1) − w(t)| < ηg+.

Then for each t, we have∣∣∣∣∣g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η)

Q̂′(w(t))
− g(t)(∇f (0), . . . ,∇f (t), η)

∣∣∣∣∣ = O(η2). (41)

so that Assumption C.1.3 holds with c(η) = η2.

Proof. We have by Equation 38

g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η)

Q̂′(w(t))
= −η(1− β)

t∑
i=0

βt−i∇f (i) Q̂
′(w(i))

Q̂′(w(t))
. (42)

We would like to show that for each i,

βt−i
Q̂′(w(i))

Q̂′(w(t))
= βt−i(1 +O(η))

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

since then we would have∣∣∣∣∣g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η)

Q̂′(w(t))
− g(t)(∇f (0), . . . ,∇f (t), η)

∣∣∣∣∣ = (43)∣∣∣∣∣−η(1− β)

t∑
i=0

βt−i∇f (i) Q̂
′(w(i))

Q̂′(w(t))
+ η(1− β)

t∑
i=0

βt−i∇f (i)
∣∣∣∣∣ = (44)∣∣∣∣∣−η(1− β)

t∑
i=0

βt−i∇f (i)(1 +O(η)) + η(1− β)

t∑
i=0

βt−i∇f (i)
∣∣∣∣∣ =O(η2) (45)

(46)

The first step is to note that log(Q̂′) is Lipschitz with Lipschitz constant L′/L−. To see this, first
note that log(x) is 1/L−-Lipschitz on the range [L−,∞]. Then by Assumptions D.2.1 and D.2.2 and
the fact that the composition of Lipschitz functions is Lipschitz with the product constant, we have

| log(Q̂′(w))− log(Q̂′(v))| ≤ L′

L−
|w − v|

which is our desired Lipschitz property. Making use of this property, Assumption D.2.3, and Equation
2, we have

| log(Q̂′(w(i)))− log(Q̂′(w(t)))| ≤ L′

L−
|w(i) − w(t)| (47)

=
L′

L−

∣∣∣∣∣∣
t−1∑
j=i

w(i) − w(i+1)

∣∣∣∣∣∣ (48)

≤ L′

L−

t−1∑
j=i

∣∣∣w(i) − w(i+1)
∣∣∣ (49)

≤η L
′

L−
(t− i)g+. (50)

Solving for the quotient Q̂′(w(i))/Q̂′(w(t)), we have

−ηL′(t− i)g+/L− ≤ log(Q̂′(w(i)))− log(Q̂′(w(t))) ≤ ηL′(t− i)g+/L−

exp(−ηL′(t− i)g+/L−) ≤ Q̂′(w(i))

Q̂′(w(t))
≤ exp(ηL′(t− i)g+/L−)

β−ηL
′(t−i)g+/(log(β)L−) ≤ Q̂′(w(i))

Q̂′(w(t))
≤ βηL

′(t−i)g+/(log(β)L−)

Thus we have shown that
Q̂′(w(i))

Q̂′(w(t))
=

(
βt,i
β

)t−i
where

βt,i = β +O(η).

Therefore we have

βt−i
Q̂′(w(i))

Q̂′(w(t))
= βt−it,i = (β +O(η))t−i = βt−i(1 +O(η)),

as desired. The final equality holds since (β+O(η))t−i is a polynomial in β and O(η), which can be
computed by expanding the product. Each term in the resulting sum is either βt−i, O(η), or o(η).

We now have all that we need to the following analog of Theorem 5.1 for gradient descent with
momentum.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Theorem D.3. Suppose that E(t) is defined by Equation 14, for Q̂-net and STE-net with gradient
estimators, learning rates, and initial weights given by Table 1. Suppose that Assumptions 5.1.1
and 5.1.2 hold and the model weights are updated according to Equation 2, where g(t) is defined by
Equation 38. In addition, suppose that each∇f (t)

Q̂
is bounded by Equation 39. Then we have

E(t+1) ≤ E(t) + αη

∣∣∣∣∣(1− β)

t∑
i=0

βt−i(∇f (i)
Q̂
−∇f (t)STE)

∣∣∣∣∣+
L′

2
·
(
ηg+
L−

)2

+O(η2) (51)

Proof. Assumption C.1.3 holds by Theorem D.2 with c(η) = η2, so that Theorem C.1 holds. Note
that Assumption D.2.3 holds by a combination of Theorem D.1 and Equation 2. We can now obtain
Equation 51 from Equation 17 by simplifying terms and applying the appropriate bounds:

E(t+1) ≤E(t) +
∣∣∣αg(t)(α∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η)− g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , αη)

∣∣∣+ (52)

L′

2
·

g(t)(∇f (0)Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
Q̂′(w(t)), η)

L−

2

+O(c(η)) (53)

≤E(t) +

∣∣∣∣∣−αη(1− β)

t∑
i=0

βt−i∇f (i)
Q̂

+ αη(1− β)

t∑
i=0

βt−i∇f (i)STE

∣∣∣∣∣+ (54)

L′

2
·
(
ηg+
L−

)2

+O(η2) (55)

=E(t) + αη

∣∣∣∣∣(1− β)

t∑
i=0

βt−i(∇f (i)
Q̂
−∇f (t)STE)

∣∣∣∣∣+
L′

2
·
(
ηg+
L−

)2

+O(η2). (56)

E ADAM

In this Appendix we prove Theorem 5.2 in a manner similar to the proofs given in Appendix C. The
weight update function for the Adam optimizer is defined by

mt =β1mt−1 + (1− β1)∇f (t)Q̂′(w(t)) (57)

vt =β2vt−1 + (1− β2)(∇f (t)Q̂′(w(t)))2 (58)

m̂t =mt/(1− βt1) (59)

v̂t =vt/(1− βt2) (60)

g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η) =− ηm̂t/
(√

v̂t + ε
)

(61)

where β1, β2 ∈ [0, 1) are hyperparameters and ε is a small constant.

We will first state and prove Theorem E.1, ageneral-purpose precursor to Theorem 5.2 that applies
to a large class of adaptive learning rate optimizers. Then we will borrow work from the proof of
Theorem D.2 to specify this result for the Adam optimizer and prove Theorem 5.2.

Throughout this section, we will follow Kingma and Ba (2014) and assume for the sake of mathemat-
ical argument that the constant ε in Equation 61 is zero.

Theorem E.1. Suppose that

E(t) :=
∣∣∣w(t)

Q̂
− w(t)

STE

∣∣∣ (62)

is the alignment error for Q̂-net and STE-net with gradient estimators, learning rates, and initial
weights given by Table 2. Suppose that the model weights are updated according to Equation 2 for
some function g(t). In addition, suppose that

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.1.3 For each t, the quantity∣∣∣g(t)(∇f (0)
Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
Q̂′(w(t)), η)− g(t)(∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η)
∣∣∣ = O(c(η)).

(63)

Then we have

E(t+1) ≤E(t) +
∣∣∣g(t)(∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η)− g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , η)

∣∣∣+O(c(η)) (64)

Proof. By Equation 2, we have

E(t+1) =
∣∣∣w(t+1)

Q̂
− w(t+1)

STE

∣∣∣ (65)

=
∣∣∣w(t)

Q̂
+ g(t)(∇f (0)

Q̂
Q̂′(w(0)), . . . ,∇f (t)

Q̂
, η)− (66)(

w
(t)
STE + g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , η

) ∣∣∣ (67)

=
∣∣∣w(t)

Q̂
+ g(t)(∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η) +O(c(η))− (68)(

w
(t)
STE + g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , η)

) ∣∣∣ (69)

≤E(t) +
∣∣∣g(t)(∇f (0)

Q̂
, . . . ,∇f (t)

Q̂
, η)− g(t)(∇f (0)STE , . . . ,∇f

(t)
STE , η)

∣∣∣+O(c(η)) (70)

Here Equation 70 follows from the triangle inequality, and Equation 69 follows from Assumption
C.1.3.

Now we can prove Theorem 5.2.

Proof of Theorem 5.2. To prove Theorem 5.2, we need to show that the assumptions of Theorem 5.2
imply the Assumption E.1.3 of Theorem E.1 with the Adam update rule defined in Equations 57-61
and c(η) = η2.

We first expand Equations 57 and 58, which will allow us to express g(t) more explicitly as a function
of the∇f (i)

Q̂
Q̂′(w(i)):

mt =(1− β1)

t∑
i=0

βt−i1 ∇f
(i)

Q̂
Q̂′(w(i)) (71)

vt =(1− β2)

t∑
i=0

βt−i2 (∇f (i)
Q̂
Q̂′(w(i)))2 (72)

g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η) =− 1− β1
1− βt1

·

√
1− βt2
1− β2

· (73)

η
∑t
i=0 β

t−i
1 ∇f

(i)

Q̂
Q̂′(w(i))√∑t

i=0 β
t−i
2 (∇f (i)

Q̂
Q̂′(w(i)))2 + ε

(74)

Clearly the two fraction terms of Equation 73 are not dependent on Q̂′ in any way, so we need only
concern ourselves with the final fraction term in Equation 74. As stated earlier, we are ignoring the ε
term, which allows us to write the final fraction as∑t

i=0 β
t−i
1 ∇f

(i)

Q̂
Q̂′(w(i))√∑t

i=0 β
t−i
2 (∇f (i)

Q̂
Q̂′(w(i)))2

=
Q̂′(w(t))

Q̂′(w(t))
·

η
∑t
i=0 β

t−i
1 ∇f

(i)

Q̂
Q̂′(w(i))√∑t

i=0 β
t−i
2 (∇f (i)

Q̂
Q̂′(w(i)))2

(75)

=
η
∑t
i=0 β

t−i
1 ∇f

(i)

Q̂
Q̂′(w(i))/Q̂′(w(t))√∑t

i=0 β
t−i
2 (∇f (i)

Q̂
Q̂′(w(i))/Q̂′(w(t)))2

(76)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We would like to apply Theorem D.2 to both the numerator and denominator of the final term
in the above Equation. Assumptions D.2.1 and D.2.2 are the same as Assumptions 5.2.1 and
5.2.2, respectively. By Equation 2, we can see that Assumption D.2.3 with g+ = max{1, (1 −
β1)/

√
(1− β2} is an inherent property of the Adam optimizer (Kingma and Ba, 2014). Now by

applying Theorem D.2 to the numerator, we have

η

t∑
i=0

βt−i1 ∇f
(i)

Q̂
Q̂′(w(i))/Q̂′(w(t)) = η

t∑
i=0

βt−i1 ∇f (i) +O(η2).

we see that the numerator limits to
∑t
i=0 β

t−i∇f (i) as η → 0. We can show via a very similar proof
that the denominator can be approximated as√√√√ t∑

i=0

βt−i2 (∇f (i))2 +O(η).

The only notable differences are that we are removing an η term, and the exponent in the bound for
Q̂′(w(i))/Q̂′(w(t)) has an extra 2 in it, which does not affect the result. Therefore we have

g(t)(∇f (0)Q̂′(w(0)), . . . ,∇f (t)Q̂′(w(t)), η) =− 1− β1
1− βt1

·

√
1− βt2
1− β2

· (77)

η
∑t
i=0 β

t−i
1 ∇f

(i)

Q̂
Q̂′(w(i))√∑t

i=0 β
t−i
2 (∇f (i)

Q̂
Q̂′(w(i)))2

(78)

=− 1− β1
1− βt1

·

√
1− βt2
1− β2

· (79)

η
∑t
i=0 β

t−i
1 ∇f

(i)

Q̂
Q̂′(w(i)) +O(η2)√∑t

i=0 β
t−i
2 (∇f (i))2 +O(η)

(80)

η
∑t
i=0 β

t−i
1 ∇f

(i)

Q̂
Q̂′(w(i))√∑t

i=0 β
t−i
2 (∇f (i)

Q̂
Q̂′(w(i)))2

(81)

=− 1− β1
1− βt1

·

√
1− βt2
1− β2

· (82)

η
∑t
i=0 β

t−i
1 ∇f

(i)

Q̂
Q̂′(w(i))√∑t

i=0 β
t−i
2 (∇f (i))2

+O(η2) (83)

=g(t)(∇f (0), . . . ,∇f (t), η) +O(η2) (84)

so that Assumption E.1.3 holds with c(η) = η2. The only potential issue with this derivation is
in the removal of the denominator O(η) term in Equation 83. In order for this to work, we need
the denominator to be nonzero. However, if the denominator is zero, then Assumption E.1.3 holds
trivially. This concludes the proof.

Note: The reader may be concerned as to why the Q̂′(w(i)) terms disappeared from g(t) but the
∇f (i) terms did not. The reason is that the Q̂′(w(i)) terms vary continuously with the latent weight,
whereas the∇f (i) terms are stochastic.

F LEARNING RATE SCHEDULES

Learning rate schedules. All of the learning algorithms described in Section 3 can make use of a
learning rate schedule (Robbins and Monro, 1951; Darken et al., 1992; Li and Arora, 2019; Loshchilov

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

and Hutter, 2016; Smith, 2017). A learning rate schedule essentially amounts to scaling each the
gradient update steps g(t) by a pre-determined positive number ηt. In this case, the initial learning
rate η acts as a scale on the entire learning rate schedule.

Theorems C.1 and E.1 are general-purpose tools for proving results like Theorems 5.1 and 5.2 for
non-adaptive learning rate optimizers and adaptive learning rate optimizers, respectively. Up until this
point, we have only focused on fixed learning rate schedules, and here we describe how the theorems
be applied to general learning rate schedules.

As stated in Section 3, a learning rate schedule applies a pre-determined scale ηt to each of the
gradient update steps g(t), which can effectively be absored into the ∇f (t) terms for non-adaptive
optimizers. This does not affect Assumptions 5.1.1, 5.1.2, 5.2.1, or 5.2.2 in any way. It may affect
the bounds on ∇f (t)

Q̂
in Theorem D.3, but this would simply require a different value of g+.

Thus we can confidently generalize our main results to gradient update rules that take advantage of
learning rate schedules.

G ON NONPOSITIVE GRADIENT ESTIMATORS

Here we describe the statements we can make that bear relation to Theorems 5.1 and 5.2 for gradient
estimators that break the lower bound conditions in Assumptions 5.1.1 and 5.2.1.

The common case for nonpositive gradient estimators. Assumptions 5.1.1 and 5.2.1 are most
commonly broken when Q̂′, like the PWL estimator (See Section 2), is positive on some range
[wmin, wmax] and zero outside of this range. The behavior of these gradient estimators cannot be
mimicked by any model that uses the STE, since the latent weight can reach a point where it no
longer receives updates from gradients. However, this behavior can be mimicked by a model that
uses PWL estimator. If we set

w̃min :=M(wmin) (85)
w̃max :=M(wmax), (86)

then Theorems 5.1 and 5.2 clearly apply after replacing the STE with PWLw̃min,w̃max
(for SGD),

PWLwmin,wmax
(for Adam), whenever w(t)

Q̂
and w(t)

STE are in the representable range. Technically,

M(w
(0)

Q̂
) is only defined when w(0)

Q̂
∈ [wmin, wmax], but we can ignore this case under the assump-

tion that no practitioner would initialize a weight to be untrainable. There are two remaining cases to
consider. The first is where w(t)

Q̂
and w(t)

STE both lay outside of the representable range, in which case

neither weight can move and there is no risk of increasing E(t). The second is where only one lies in
this range, and one weight is "trapped" while the other is "free". This is unlikely to happen due to the
bounds on E(t), but it could technically lead to high weight alignment errors.

Negative gradient estimators. The other way that the lower bound in Assumption 5.1.1 can be
broken is if Q̂(w) is actually negative for some range of values of w. There is some work (Darabi
et al., 2018; Xu et al., 2021) that proposes gradient estimators with negative derivatives, but most
choose a nonnegative derivative to align with the nondecreasing behavior of the quantizer function.
In the cases with negative Q̂′ values, slightly modified versions of Theorems 5.1 and 5.2 apply on the
negative ranges, where the gradient estimator of STE-net is the negative of the STE. Since this is a
rare choice for QAT, we do not provide the details here.

Thus almost all common gradient estimators can be replaced with the STE or a PWL estimator.

H CALCULATING CONSTANTS IN THEOREM 5.1

Many gradient estimators take the form

Q̂(w) = tanh(k · (w − a) + a

for w in the representable range, and a is the center of the quantization bin w is in. This is the case
for Gong et al. (2019) and Pei et al. (2023), hence our choice of the gradient estimator from Pei et al.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(2023) for the experiments. This is also very similar to the gradient estimator used in Yang et al.
(2019).

Given this definition of Q̂(w), we want to provide lower and upper bounds on the first and second
derivatives of Q on the interval [−∆/2,∆/2] with a = 0. First note that we have

Q̂′(w) =
k

cosh2(kw)

This obtains a maximum value at w = 1, and a minimum value at ±∆/2, so that L+ = k and
L− = k/ cosh2(k∆/2).

Q̂′′(w) = −2k2
tanh(kw)

cosh2(kw)

This obtains its maximum values at

w = ± 1

2k
log(2 +

√
3)

and is strictly decreasing on the interval between these points. Since a bound on |Q̂′′(w)| is a
Lipschitz constant for Q̂′, L′ is given by

2k2
tanh(kw)

cosh2(kw)

where

w = min

(
∆/2,

1

2k
log(2 +

√
3)

)
In Pei et al. (2023), k is set to to 8, 6, 4, and 2 for 8, 4, 3, and 2-bit quantization. They initialize ∆ to
2/(2b − 1) where b is the number of bits used for quantization. This gives us the following values for
L′L+/2L

2
−: 0.25 (8 bits), 2.66 (4 bits), 2.82 (3 bits), 1.77 (2 bits). These values are small relative to

standard values of 1/η, where η is the learning rate.

For Gong et al. (2019), the quantizer is parametrized by a value α defined by

α = 1− tanh(k∆/2).

This gives us convenient formulas:

tanh(k∆/2) = 1− α

1

cosh(k∆/2)2
= 1− (1− α)2 = 2α− α2

tanh(k∆/2)

cosh(k∆/2)2
= (1− α)(2α− α2)

L+

L−
=

1

2α− α2

L′L+

L2
−
≤ 1− α

2α− α2

The constant of interest is then given by

L′L+

L2
−
≤ 1− α

2α− α2

During training in Gong et al. (2019), α is varied for weight quantizers between 0.11 and 0.25, giving
us

L′L+

L2
−
∈ [1.71, 4.28].

These values are again small relative to 1/η.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

I FUTURE WORK

Extension to other gradient estimators: Our results can be adapted to noncyclical and nonuniform
gradient estimators. We addressed the common case here, and avoided the more general case due to
the notational complexity required.

Extensive study of learning rate and weight alignment error throughout training: Our experi-
ments could be extended to give more detailed empirical data on the relationship between learning
rates and weight alignment error. For example, weight alignment error could be collected throughout
training, for many different models/datasets and for many different learning rates.

J VISUAL FOR WEIGHT ALIGNMENT

(a) Q̂-net weights vs STE-net weights for MNIST
convolutional model at the conclusion of training for
default SGD.

(b) Q̂-net weights vs STE-net weights at the con-
clusion of training without re-initializing STE-net
weights.

Figure 3: Comparison of model weights at the end of training for MNIST model.

We visualize the alignment of weights between STE-net and Q̂-net in Figure 3a. We can see that
after applying M , the weights of the two models are very closely aligned at the end of training.
Furthermore, if we do not apply the appropriate weight initialization to STE-net, the weights are no
longer aligned at the end of training. This is shown in Figure 3b.

25

	Introduction
	Background and Related Work
	Gradient Descent Terminology for QAT
	Intuition
	Main Results
	Definitions and Notation
	Theorem Statements
	On the Assumptions and Implications of Theorems 5.1 and 5.2
	Theorem 5.1 Proof Sketch

	Experimental Results
	Models and Training Setup
	Metrics.
	Results

	Implications
	Discussion: Why are so many gradient estimators published?
	Choosing Quantization Parameters
	Detailed Overview of Custom Gradient Estimators
	Proof of Theorem 5.1
	Theorem 5.1 for SGD with momentum
	Adam
	Learning Rate Schedules
	On nonpositive gradient estimators
	Calculating constants in Theorem 5.1
	Future Work
	Visual for weight alignment

