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Abstract. The angle of progression (AoP) in intrapartum ultrasound is
critical for evaluating fetal head descent and rotation during labor, and
the angle formed by these three points (PS1, PS2, and FH1). Manual
AoP measurement is time-consuming, labor-intensive, and lacks stan-
dardization—limitations, automated methods with incomplete labels can
improve the efficiency. However, automated methods encounter two sig-
nificant challenges: firstly, the scarcity of landmark annotations provided
by experienced obstetricians may lead to network overfitting and poor
generalization; secondly, the anatomical landmarks in ultrasound im-
ages are often too small, resulting in insufficient information and fea-
ture learning for algorithms. To address these challenges, inspired by
the clinical workflow of manual AoP assessment, we propose a progres-
sive semi-supervised landmark detection algorithm, which first locates
and identifies the pubic symphysis (PS) and the fetal head (FH) region,
and then detects the landmarks of three keypoints to calculate the AoP.
Specifically, in the first stage, we utilize the spatial information of land-
marks to generate scribbles of the foreground and background of the PS
and the FH region. These scribbles are fed to a frozen segmentation foun-
dation model named ScribblePrompt to get coarse segmentation and de-
tection results as pseudo labels, which can help the network concentrate
on PS and FH regions. After the first stage of pseudo-label pre-training,
the following fine-tuning utilizes pre-trained models to learn landmarks
with confidence-guided weight loss to train on labeled and unlabeled
data, improving the robustness and generalization of the algorithm. The
experimental results show that our algorithm achieved good landmark
detection results.

Keywords: Landmark detection · Semi-supervised learning · Intrapartum
ultrasound.

1 Introduction

Labor is a dynamic process that requires continuous monitoring to ensure the
safety of both mother and fetus [9,4]. A fundamental component of ultrasound-
based intrapartum assessment lies in the accurate identification of anatomical
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landmarks within intrapartum ultrasound images, as these landmarks serve as
the basis for calculating critical clinical parameters such as the angle of progres-
sion (AoP) [23,7]. The AoP offers pivotal insights into fetal head descent and
rotation during labor, and its measurement directly informs clinical decision-
making regarding obstetric interventions. However, current clinical workflows
rely on time-intensive manual landmark identification and AoP calculation by
experienced obstetricians, and inherent intra- and inter-observer variability in
these manual processes undermines the reliability and consistency of measure-
ment results. In contrast, automated landmark detection algorithms for ultra-
sound images enable the rapid acquisition of standardized assessment outcomes,
significantly reducing the time burden on clinical practitioners and thereby fa-
cilitating the efficient management of labor processes [28,13,3]. Consequently, an
efficient and accurate automated ultrasound landmark detection algorithm holds
substantial clinical application value [2,29].

Existing landmark detection approaches can be categorized into two paradigms:
1) Regression methods based on directly comparing landmark coordinates of
prediction and landmarks. 2) Methods that treated landmark detection as a
classification task based on landmark heatmaps, which typically transform the
prediction of landmark locations into a heatmap classification problem. For in-
stance, Sofka et al. [19] proposed a Fully Convolutional Neural Network (FCN)
for the accurate automatic detection of measurement points in ultrasound video
sequences, utilizing Long Short-Term Memory cells to ensure temporal consis-
tency. YOLOv11 Pose [11] extends the original YOLO framework by integrating
a keypoint detection module that enables simultaneous real-time object detec-
tion and human pose estimation, leveraging a single neural network to predict
both bounding boxes and pose keypoints effectively. Alternatively, certain ap-
proaches [16,26] generate a Gaussian heatmap for each landmark and take the
location with the maximum value as the ultimate prediction. However, these au-
tomated methods face two key challenges in intrapartum Ultrasound Measure-
ment: 1) Landmark annotation relies on experienced obstetricians to manually
label ultrasound images, a process that is both tedious and time-consuming. The
scarcity of landmark annotations provided by experienced obstetricians can lead
to network overfitting and poor generalization; 2) the anatomical landmarks in
ultrasound images are often too small, providing limited information per point,
resulting in insufficient information and feature learning for algorithms.

In this study, inspired by the clinical workflow of manual AoP assessment [14,12,1],
we propose a progressive semi-supervised landmark detection algorithm based
on the state-of-the-art YOLOv11 Pose framework for intrapartum ultrasound
measurement. Adopting a coarse-to-fine strategy, the algorithm first locates and
identifies the pubic symphysis (PS) and the fetal head (FH) region, and then
detects the landmarks of three keypoints to calculate the AoP. In the first stage,
spatial information of landmarks is leveraged to generate scribble annotations
for the foreground and background regions corresponding to the pubic symphysis
(PS) and fetal head (FH). These scribbles are input to a frozen segmentation
foundation model, ScribblePrompt [24], to obtain coarse segmentation results
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and detection outputs as pseudo-labels, thereby guiding the network to focus
on these critical anatomical regions [30,10]. Following the first-stage pseudo-
label pre-training, the network incorporates anatomical priors, after which the
second stage employs a confidence-weighted strategy for labeled and unlabeled
data training to fine-tune the pre-trained model, yielding precise landmark de-
tection results. Experimental findings demonstrate that the proposed algorithm
achieves promising performance in landmark detection tasks. In summary, the
contributions of our work are as follows:

1. We proposed a progressive learning strategy for intrapartum ultrasound mea-
surement learning landmark from coarse to fine.

2. We proposed a scribble generation strategy based on prior anatomical struc-
ture, which extracts anatomical prior information of ultrasound images from
landmarks, expanding prior knowledge from point range to region range.

3. We proposed a confidence-weighted learning strategy to utilize unlabeled
images to enhance the generalization and robustness of the algorithm.

2 Related work

2.1 Self-supervised learning

2.2 Semi-supervised learning

2.3 Landmark detection

3 Method

Motivation The main process for measuring the Angle of Progression (AoP)
involves obstetricians first identifying the two farthest points (PS1 and PS2)
along the contour of the pubic symphysis (PS) [17,5,6]. Then, a tangent line is
drawn from the rightmost point (PS1) such that it just touches the fetal head
(FH), with the intersection point marked as the third point (FH1). The AoP is
defined as the angle formed by these three points (PS1, PS2, and FH1).

Fig. 1: The main process for measuring the Angle of Progression (AoP)
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We observe that these landmarks are derived from the spatial relationships
between distinct meaningful regions in ultrasound images, rather than from the
direct features of individual points. However, in the task of the IUGC2025 chal-
lenge, the limited labeled data only provides the coordinates of PS1, PS2, and
FH1. Since these three points are respectively located in two separate regions of
interest (ROIs)—the pubic symphysis (PS) and the fetal head (FH)—it is not
feasible to directly obtain the prior anatomical information of the PS and FH re-
gions using only these landmarks. To address this limitation, we propose leverag-
ing foundation models with high generalization ability to generate coarse region
indications, thereby providing the network with the necessary prior anatomical
information.

3.1 Overall Framework

As shown in Figure 6, the proposed network progressively learns to detect coarse-
to-fine landmarks in fetal ultrasound images for aortic pressure (Aop) measure-
ment. The training process consists of two stages: In the first stage, we generate
high-confidence scribbles based on anatomical spatial relationships as prompts
for ScribblePrompt [24] to produce coarse segmentation results and the region
of interest (ROI) pseudo-labels. In the second stage, the pre-training backbone
network YOLOv11 is utilized to learn landmarks from labeled images and then
generate pseudo labels for unlabeled images. The unlabeled images are used
to help improve the generalization and robustness of the network through a
confidence-weighted strategy.

3.2 Coarse Prior Anatomical Area Learning

Generation of Scribble Prompts The ScribblePrompt [24] proposed by
Hallee E. Wong et al. is a flexible neural network-based interactive segmentation
tool for biomedical imaging. It allows human annotators to segment previously
unseen structures using scribbles [15]. Therefore, we propose a method of spatial
information computation: by extracting the spatial relationships between la-
beled coordinates and ROI regions, we generate scribbles that serve as prompts
for input into ScribblePrompt. For the pubic symphysis (PS) region: since PS1
and PS2 are the two farthest points along the PS contour, the line connect-
ing them must lie within the PS contour and thus can be used as a foreground
scribble. Mathematically, let the pixel coordinates of PS1 and PS2 be denoted as
PS1 = (xps1, yps1) and PS2 = (xps2, yps2) respectively. The line segment LPS1-PS2
(serving as the foreground scribble) can be expressed in two-point form as:

y − yps1

yps2 − yps1
=

x− xps1

xps2 − xps1
, (1)

In contrast, the extended parts at both ends of this line can be used as back-
ground scribbles. The rays extending LPS1-PS2 beyond PS2 (denoted as L+

PS1-PS2)
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Fig. 2: Overall framework of proposed methods. In stage one, the network
learns the coarse prior anatomical area through ScribblePrompt results, which
prompted spatial information. In stage two, the network learns landmarks from
labeled images and is further refined by unlabeled images with a confidence-
weighted loss strategy.

Fig. 3: The main process for measuring the Angle of Progression (AoP)
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and beyond PS1 (denoted as L−
PS1-PS2) are given by:

L+
PS1-PS2 :

y − yps2

yps2 − yps1
=

x− xps2

xps2 − xps1
, (2)

L−
PS1-PS2 :

y − yps1

yps2 − yps1
=

x− xps1

xps2 − xps1
, (3)

Additionally, in most cases, the contour of a normal pubic symphysis appears
convex rather than concave in radiographic images [15]. Therefore, we first draw
an auxiliary line perpendicular to the x-axis through PS2, which is expressed as
x = xps2. Then, drawing a line perpendicular to this auxiliary line (one above and
one below the auxiliary line) as foreground scribbles will introduce little or no
noise, which can enhance the foreground segmentation result of ScribblePrompt.

Fetal Head (FH) Area For the fetal head (FH) area, the labeled data only in-
cludes the third point (FH1), which is located at the tangent position of the FH
area. Let the pixel coordinate of FH1 be FH1 = (xfh1, yfh1). After connecting
PS1 and FH1, the line segment LPS1-FH1 (and its extended parts) all lie within
the background region, so this line can be designated as a background scribble.
The equation of LPS1-FH1 in two-point form is:

y − yps1

yfh1 − yps1
=

x− xps1

xfh1 − xps1
, (4)

Moreover, the FH area occupies a relatively large proportion of ultrasound im-
ages. When a perpendicular line is drawn from FH1 to the aforementioned aux-
iliary line x = xps2, the segment of this perpendicular line (within the FH area)
will lie entirely within the FH area with minimal error. Additionally, the lines
parallel to the line connecting PS2 and PS1 also lie within the FH area. To make
the segmentation result more consistent with the ground truth, we further adopt
lines with included angles of 10◦ and 30◦ (relative to the reference line) as scrib-
bles for the foreground region of the FH area. Let the perpendicular line from
FH1 to x = xps2 have a foot of perpendicular H = (xps2, yfh1). The lines forming
10◦ and 30◦ with the perpendicular line FH1 −H (serving as foreground scrib-
bles) have slopes tan(10◦) ≈ 0.1763, tan(170◦) ≈ −0.1763, tan(30◦) ≈ 0.577,
tan(150◦) ≈ −0.577 respectively. Their equations are:

y − yfh1 = ±0.1763(x− xfh1) (for 10◦ included angle) (5)

y − yfh1 = ±0.577 · (x− xfh1) (for 30◦ included angle) (6)

We take the segments of these lines within the FH area as the foreground scrib-
bles.

Generation of Pseudo Labels After generating scribble prompts from land-
marks, we input these prompts into the parameter-frozen ScribblePrompt model
to obtain segmentation results for the two target regions. Although the foun-
dation model produces coarse segmentation outputs, direct utilization of these
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results would introduce substantial noise due to the dense classification nature of
segmentation tasks. However, since our algorithm’s core goal is to obtain point
labels, only the anatomical positional relationships of each region in ultrasound
images are required. Thus, we extract roughly constrained bounding boxes from
the segmentation results to train the YOLOv11 backbone network, facilitating
regional feature extraction.

Prior Information Learning To extract prior object detection information,
we optimize YOLOv11 during the model learning process by integrating multi-
ple loss components. These components jointly address the core tasks of object
classification, bounding box regression, and object confidence estimation. The
total loss function for object detection training is a weighted combination of
three key loss terms: classification loss, bounding box regression loss, and object
confidence loss, as defined in Eq. 7.

Ldetect = λcls · Lcls + λreg · Lreg + λconf · Lconf (7)

where λcls, λreg, and λconf are cross-validated hyperparameters used to bal-
ance the contributions of each loss component. Lcls is the classification loss,
which employs Cross-Entropy (CE) loss to ensure accurate classification of dif-
ferent types of landmarks:

Lcls(y, ŷ) = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c) (8)

Lconf denotes the object existence confidence loss, which uses Binary Cross-
Entropy (BCE) loss to distinguish between valid bounding boxes and background
regions:

Lconf = − 1

Nobj +Nnoobj

 ∑
i∈obj

Ci log(Ĉi) +
∑

i∈noobj

(1− Ci) log(1− Ĉi)

 (9)

Lreg represents the bounding box regression loss, which utilizes Mean Squared
Error (MSE) loss to optimize the spatial alignment between predicted and ground-
truth bounding boxes:

Lreg =

Nobj∑
i=1

⊮obj

[
(xi − x̂i)

2 + (yi − ŷi)
2 + (wi − ŵi)

2 + (hi − ĥi)
2
]

(10)

In the above formulas: N denotes the total number of bounding boxes; C = 2
represents the total number of box categories; yi = (xi, yi, wi, hi) and ŷi =

(x̂i, ŷi, ŵi, ĥi) are the ground-truth and predicted coordinates (center (x, y) and
dimensions (w, h)) of the i-th bounding box, respectively; yi,c and ŷi,c denote
the one-hot pseudo labels and predicted probability that the i-th box belongs
to the c-th category, respectively; Nobj and Nnoobj are the counts of positive



8 Li et al.

(object-containing) and negative (background) boxes; Ci and Ĉi represent the
ground-truth (1 for positive, 0 for negative) and predicted confidence scores of
the i-th box; ⊮obj is an indicator function (1 for positive boxes, 0 otherwise);

3.3 Precise Landmark Detection Refine

Labeled Images Learning After generating ROI detection pseudo labels, the
backbone network YOLOv11 can extract anatomical prior information from ul-
trasound images, which makes it possible that during the refinement process,
implicit associations between key points and anatomical structures are added,
accelerating the training of the network.

In the landmark detection phase, we use a multi-task joint loss function, in-
corporating an auxiliary ROI object detection loss into the specialized regression
loss for keypoint detection, which enables the network to simultaneously learn
both tasks effectively, and the ROI detection can help the network concentrate
on the spatial and semantic relationship of landmarks. For the landmarks l and
the predicted landmarks l̂, the specific formula is as follows:

Llabel = Lreg(l, l̂) + α · Ldetect(y, ŷ) (11)

where α are the weight coefficients used to balance the loss components,
Lreg represents the regression loss of landmarks, which can be calculated using
the Mean Squared Error (MSE) to measure the spatial deviation between the
predicted and ground-truth key points:

Lloc(l, l̂) =
1

N

N∑
i=1

∥∥∥li − l̂i

∥∥∥2 (12)

where N represents the number of key points.

Unlabeled Image Learning After training the network on labeled data, the
trained model was used to generate landmark pseudo-labels for the unlabeled
dataset. By setting a threshold for the output confidence score, we excluded
images where the network failed to make valid predictions, leaving only high-
confidence pseudo-labeled data for subsequent training.

To further enhance the model’s learning efficiency on pseudo-labeled data, we
introduce information entropy to quantify the confidence of the model’s predic-
tions and incorporate this confidence into the loss function as a dynamic weight.
During training, the confidence is incorporated into the loss function as a weight
coefficient:

Lunlabel = Lreg(l, l̂) + C(p, p̂) · Lreg(p, p̂) (13)

For the prediction result p output by the pre-trained network and the network
prediction p̂ obtained after introducing noise, the confidence C(p, p̂) is defined
as:
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C(p, p̂) = 1

4

(
p · p̂

∥p∥ · ∥p̂∥
+ 1

)
(14)

where p·p̂ denotes the dot product of the two prediction vectors, and ∥p∥, ∥p̂∥
represent the L2 norms of p and p̂, respectively. The confidence C(p, p̂) ranges
from [0, 0.5], with values closer to 0.5 indicating higher consistency between the
predictions before and after noise injection, thus reflecting a higher confidence in
the predictions of the model on unlabeled data. This weighted loss mechanism
allows the model to adaptively allocate learning resources during training using
unlabeled data, thereby improving the robustness of landmark detection.

4 Experiments

4.1 Experimental Materials

Dataset The experiment utilizes a transperineal ultrasound dataset provided
by the Intrapartum Ultrasound Grand Challenge 2025 (IUGC 2025) [8], which
contains 31,421 images with 300 labeled images. During training, the labeled
data was randomly split into training and testing sets at a 9:1 ratio. Due to the
test phase was already closed, we use metrics from the validation phase online
as ablation and comparison experiment results.

Evaluation Metrics We conducted a quantitative comparison using two stan-
dard landmark localization and parameter estimation evaluation metrics: Mean
Radial Error (MRE) and Absolute Parameter Difference (APD) [22]. The former
assesses the spatial localization accuracy of predicted landmark points relative
to ground truth, while the latter evaluates the deviation between the estimated
Angle of Polarization (AoP) (derived from predicted landmarks) and the ground
truth AoP. The definitions of each metric are as follows:

MRE =
1

N

N∑
i=1

√
(xpred

i − xgt
i )2 + (ypredi − ygti )2 (15)

where (xpred
i , ypredi ) and (xgt

i , ygti ) are the predicted and ground truth coordinates
of the i-th landmark, and N is the total number of landmarks.

APD = |AoPpred − AoPgt| (16)

where AoPpred and AoPgt are the predicted and ground truth Angle of Pose,
respectively.

Parameter Setting and Implementation In the first training stage, we set
a learning rate of 0.001, a batch size of 8, and trained for 100 epochs with images
resized to 640×640. In the second training stage, we set a learning rate of 0.001,
a total batch size of 8, a labeled batch size of 4, a unlabeled batch size of 4,
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and trained for 100 epochs with images resized to 640 × 640. The network was
optimized using the SGD optimizer. For comparative experiments, we adhered
to the same parameters. All experiments were carried out using PyTorch on an
Nvidia 3090 GPU equipped with 24GB of memory.

4.2 Ablation Study

Ablation studies were conducted to verify the effectiveness of each component
in the proposed framework. Table 1 summarizes the performance of models with
different design configurations, where Model A (Baseline) uses only YOLOv11,
trained exclusively on labeled images for landmark detection; Model B incorpo-
rates a pre-training stage for coarse anatomical region prior learning, followed
by fine-tuning the pre-trained YOLOv11 on labeled images for landmark detec-
tion; Model C builds on Model B by adding a confidence-weighted loss term for
unlabeled images during the training process.

Table 1: Quantitative ablation results of models with different network learn-
ing strategies. The baseline used is YOLOv11 with only the labeled images for
training.

Model Strategy Metrics
Baseline + Coarse Prior + Unlabeled Learning MRE (pixel) ↓ APD (degree) ↓

A ✓ 31.8969 13.5713
B ✓ ✓ 21.2317 9.4166
C ✓ ✓ ✓ 17.7447 7.6243

Fig. 4: Landmark detection results of different ablation models, green represents
ground truth, red represents prediction results.
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Effectiveness of Coarse Prior Anatomical Area Learning As shown in
Table 1, by comparing Model A and Model B, it can be observed that the integra-
tion of the Coarse Prior Anatomical Area Learning module enables the network
to capture the correlations between different regions in ultrasound images, lead-
ing to a significant improvement in the detection accuracy of key landmarks.
Specifically, the MRE decreases substantially from 31.8969 to 21.2317, and the
APD also reduces from 13.5713 to 9.4166.

The visualization results in Fig. 4 further confirm that after incorporating
anatomical prior learning, each landmark predicted by the network is closer to
the ground truth. In particular, the detection performance for the FH1 landmark
has been remarkably enhanced.

Effectiveness of Precise Landmark Detection Refine As shown in Table 1,
by comparing Model B and Model C, it can be seen that after incorporating un-
labeled images into the network training via the confidence-weighted loss during
the refinement stage, the network’s key landmark detection performance is fur-
ther improved. Specifically, the MRE decreases from 21.2317 to 17.7447, and the
APD reduces from 9.4166 to 7.6243. These results verify the effectiveness of the
semi-supervised strategy proposed in this study.

The visualization results in Fig. 4 demonstrate that after introducing the
confidence-weighted loss, the AoP predicted by the network is more consistent
with the ground truth.

4.3 Comparison Study

We evaluated the AoP measurement performance of our proposed framework and
compared it with several fully-supervised methods and semi-supervised methods:
1) Unet [18]; 2) Cenet [20]; 3) YOLOv11 [11]; 4) Mean Teacher [21] ; 5) Adver-
sarial Network [27]; 6)DFGC [25].

Table 2: Quantitative results of different Comparison networks.
Supervision Model Task type MRE (pixel) ↓ APD (degree) ↓

Fully-supervised

UNet Regression 26.7731 10.4903
UNet Classification 24.2149 10.1297
CENet Regression 27.6230 9.8838
CENet Classification 20.7143 8.4383

YOLOv11 Regression 31.8969 13.5713

Semi-supervised
Mean Teacher Classification 27.7819 10.3221

Adversarial Network Classification 32.6527 14.2298
DFGC Classification 24.7469 9.1388
ours Regression 17.7447 7.6243

As presented in Table 2, different algorithms exhibit varying landmark de-
tection performances when adopting distinct learning strategies. For the Unet
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Fig. 5: Landmark detection results of different comparison methods, green rep-
resents ground truth, red represents prediction results.

and CENet algorithms, compared with direct coordinate regression tasks (which
directly obtain landmark coordinates), using heatmaps for image classification
tasks achieves a reduction in MRE by 2.5582 and 6.9087, respectively, with the
APD also decreasing by more than 0.3. The nnUNet algorithm, which employs
heatmaps for classification, yields better metrics than CENet. When used inde-
pendently, YOLOv11 shows slightly inferior performance compared to other fully
supervised algorithms. For the Mean Teacher algorithm and Adversarial Network
applied to landmark detection with UNet as its backbone, the extremely limited
information in heatmaps generated from key points prevents the algorithm from
learning effective features, resulting in excessively large MRE and APD values
that render it unable to detect target points effectively. The DFGC algorithm,
specifically designed for ultrasound images, can learn target-related features ef-
fectively (achieving an MRE of 24.7469 and an APD of 9.1388) but still performs
less favorably than the algorithm proposed in this study.

Fig. 5 further confirms that the proposed algorithm achieves significant im-
provements in detecting the PS1 and PS2 landmarks compared to other al-
gorithms. For FH1 detection, the algorithm substantially enhances positional
accuracy, ensuring that FH1 is located as close as possible on the fetal head con-
tour—avoiding mislocalization within the FH region—and thus enabling more
accurate calculation of the AoP.

5 Discussion

During the competition, our experiments revealed notable findings: combin-
ing a semi-supervised framework with the standard UNet drastically degrades
landmark detection performance, as evidenced by substantial worsening of met-
rics like MRE and angular offset mean absolute error (APD) (exceeding 100).
This underscores the limitations of generic encoder-decoder architectures for
semi-supervised intrapartum ultrasound measurements. The core issue likely
stems from the sparsity and ambiguity of ultrasound keypoints—semi-supervised
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pseudo-labels generated from unlabeled data tend to propagate noise when learn-
ing from isolated, context-poor points. While UNet excels at dense pixel-wise seg-
mentation, it fails to capture sparse, high-resolution spatial cues critical for key-
point localization, instead overfitting irrelevant background textures or blurred
boundaries and amplifying distance/angle estimation errors.

In contrast, integrating a regional background (e.g., the PS1-PS2-FH1 tri-
angle) defined by three key landmarks with a conventional encoder-decoder ar-
chitecture significantly improves detection accuracy. This method incorporates
spatial priors, framing the task as regional feature extraction rather than iso-
lated point regression. This approach provides richer contextual information,
such as relative positional relationships and boundary transitions between the
pubic symphysis and fetal head. The proposed encoder-decoder architecture is
optimized for hierarchical feature aggregation, enabling more effective regional
pattern learning, reducing keypoint ambiguity, and enhancing the robustness of
distance and angle estimation.

Fig. 6: Schematic diagram of learning landmark detection from the triangular
region composed of landmarks.

Based on the advantages of introducing regional background information,
future work can further optimize models based on regional feature extraction.
Explore how to combine multi-level spatial prior knowledge, utilize geometric
relationships and semantic information between key points, not limited to the
connection of three landmark points, but also consider more complex regional
constraints, thereby further improving detection accuracy and model robustness.

6 Conclusion

This study focuses on addressing the limitations of manual Angle of Progres-
sion measurement in intrapartum ultrasound and tackles the core challenges
faced by automated AoP landmark measurement methods: the reliance on mas-
sive manual landmark annotations and the difficulty of detecting minute fe-
tal head anatomical landmarks. To resolve these issues, a progressive semi-
supervised landmark detection algorithm for automated AoP measurement is
proposed, which aligns with the clinical workflow of manual AoP assessment.
In the first stage, spatial information of key landmarks is leveraged to generate
foreground/background scribbles for the pubic symphysis and fetal head. These
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scribbles are input to the frozen ScribblePrompt segmentation foundation model
to obtain coarse segmentation results, which serve as pseudo-labels to guide the
network in focusing on key anatomical regions. In the second stage, the network
extracts anatomical priors from ultrasound images. It undergoes fine-tuning via
weight-allocated learning on both labeled and unlabeled data—effectively re-
ducing the demand for annotated data while enhancing the model’s ability to
learn discriminative features of minute landmarks. Experimental results confirm
that the proposed algorithm achieves favorable performance in key anatomical
landmark detection, laying a solid foundation for accurate automated AoP mea-
surement. By integrating anatomical prior learning and semi-supervised learning,
the algorithm not only mitigates the dependency on manual annotation but also
improves the robustness of landmark detection against tissue confusion, thereby
providing a clinically valuable tool for objective, standardized, and efficient AoP
assessment during labor.
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