
000 IS FINER BETTER? THE LIMITS OF MICROSCALING 001 002 FORMATS IN LARGE LANGUAGE MODELS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Microscaling data formats leverage per-block tensor quantization to enable ag-
011 gressive model compression with limited loss in accuracy. Unlocking their poten-
012 tial for efficient training and inference necessitates hardware-friendly implemen-
013 tations that handle matrix multiplications in a native format and adopt efficient
014 error-mitigation strategies. Herein, we reported the emergence of a surprising
015 behavior associated with microscaling quantization, whereas the output of a quan-
016 tized model degrades as block size is decreased below a given threshold. This
017 behavior clashes with the expectation that a smaller block size should allow for a
018 better representation of the tensor elements. We investigate this phenomenon both
019 experimentally and theoretically, decoupling the sources of quantization error be-
020 hind it. Experimentally, we analyze the distributions of several Large Language
021 Models and identify the conditions driving the anomalous behavior. Theoretically,
022 we lay down a framework showing remarkable agreement with experimental data
023 from pretrained model distributions and ideal ones. Overall, we show that the
024 anomaly is driven by the interplay between narrow tensor distributions and the
025 limited dynamic range of the quantized scales. Based on these insights, we pro-
026 pose the use of FP8 unsigned E5M3 as a novel hardware-friendly format for the
027 scales in FP4 microscaling data types. We demonstrate that UE5M3 achieves
028 comparable performance to the conventional FP8 unsigned E4M3 scales while
029 obviating the need of global scaling operations on weights and activations.

030 031 1 INTRODUCTION 032

033 The unprecedented growth of large language models (LLMs) has brought dramatic improvements
034 in natural language processing, but at the expense of escalating compute, memory, and energy de-
035 demands (Kaplan et al. (2020), Hoffmann et al. (2022), Samsi et al. (2023)). With model sizes reaching
036 hundreds of billions of parameters and context windows extending to hundreds of thousands of to-
037 kens, reducing numerical precision has emerged as a cornerstone for enabling efficient training and
038 inference (Gupta et al. (2015), Kuzmin et al. (2022), Xiao et al. (2023)). Hardware vendors have
039 progressively shifted from FP16 to FP8, and now to FP4, in order to increase throughput and en-
040 ergy efficiency. Yet, pushing precision below 8 bits often leads to substantial accuracy degradation,
041 particularly when both weights and activations are quantized (Dettmers & Zettlemoyer (2023), Ashk-
042 boos et al. (2024), Li et al. (2025)).

043 Over the past few years, quantization techniques for LLMs have steadily evolved towards finer-
044 grained control in order to balance accuracy and efficiency. Early approaches primarily employed
045 tensor-wide quantization, assigning a single scale factor to an entire weight or activation tensor.
046 However, this often introduced large quantization errors in regions with high dynamic range (Lin
047 et al. (2020), Dettmers et al. (2022)). To address this limitation, per-channel and per-token quanti-
048 zation were introduced, assigning independent scales to individual output channels or tokens, and
049 thereby achieving significant accuracy improvements at modest storage and compute costs (Dai et al.
050 (2021), Yao et al. (2022)). More recently, per-group quantization has gained traction, wherein small
051 groups of elements (e.g., 128) share scaling factors, offering a compromise between reduced quan-
052 tization error and the increased overhead due to the proliferation of quantization parameters (Shen
053 et al. (2020), Frantar et al. (2022), Xiao et al. (2023)).

054 Microscaling formats (Rouhani et al. (2023a)) push this trend towards even finer quantization reso-
055 lutions: by means of efficient hardware implementations coupled with scaling factor quantization,
056 these formats enable grouping elements in smaller blocks, while limiting data transfer overheads.
057 The benefits of this strategy has motivated rapid industry adoption, with microscaling formats now
058 supported in commercial AI accelerators (NVIDIA (2025a); AMD (2025)). Despite these successes,
059 the robustness of microscaling, particularly at sub-8-bit precision, remains an open question that is
060 still subject of investigations due to the recentness of its introduction.

061 In light of this trend from coarse to highly localized quantization, whereas aggressive quantization
062 of progressively smaller blocks is being pursued, herein we examine the dynamics of quantization
063 errors across a range of block sizes, uncover a potential pitfall emerging in existing formats and
064 exacerbated by smaller blocks, and propose an efficient hardware design solution to avoid it.

065 Our contributions are threefold:
066

- 067 • Discovery and analysis of a quantization anomaly in microscaling formats, whereas *de-*
068 *creasing* block size paradoxically *increases* quantization error.
- 069 • A theoretical framework that decouples sources of quantization errors and explains their
070 interaction with LLM tensor statistics, allowing us to pinpoint the origin of the anomalous
071 behavior to the quantization of the microscaling scales **which hinders the representation**
072 **of low magnitude blocks**. The framework applicability extends beyond the case of FP4
073 elements and FP8 unsigned E4M3 scales.
- 074 • A hardware-friendly design proposals to support FP8 unsigned E5M3 scales to effectively
075 mitigate these issues at minimal hardware cost.

077 2 BACKGROUND

079 2.1 MICROSCALING FORMATS

081 Microscaling, as defined by the Open Compute Project (OCP, Rouhani et al. (2023a)), refers to a
082 group of numbers sharing a scale and represented as elements with lower precision. **The original**
083 **OCP specification requires elements in either FP4, FP6, INT8, or FP8 format, block size 32, and**
084 **scales as E8M0, i.e., a biased Power-of-Two (PoT) scale, covering a very wide dynamic range,**
085 2^{-127} to 2^{128} , with limited precision.

086 Since its conception, multiple commercial vendors have added native hardware support for MXFP8 and MXFP4 formats (NVIDIA (2025a); AMD (2025)).
087 In addition, NVIDIA GPUs with Compute Capability 10.0+ support NVFP4, which refers to 16 FP4
088 elements sharing an FP8 unsigned E4M3 (UE4M3) scale (4 exponent bits, 3 mantissa bits). The
089 selection of a floating point scale in lieu of PoT is motivated by accuracy considerations (Lee et al.
090 (2024); NVIDIA (2025b)), making NVFP4 a strong contender as quantization format of choice for
091 microscaling FP4.

092 In a typical formulation, microscaling quantization is applied to weights and activations by parti-
093 tioning each tensor in blocks of size N . For each block j with elements $x_i^{(j)}$, a scaling factor $s^{(j)}$
094 is derived as $s^{(j)} = \mathbb{Q}_{\text{scale}}(x_{\max}^{(j)}/C)$, where $x_{\max}^{(j)} = \max_{i=1,\dots,N} |x_i^{(j)}|$, $\mathbb{Q}_{\text{scale}}$ defines the scales quan-
095 tization, and C is a constant. Each element is normalized by its block scale and mapped into the
096 nearest discrete level as $q_i^{(j)} = \mathbb{Q}_{\text{elem}}(x_i^{(j)}/s^{(j)})$, where \mathbb{Q}_{elem} defines the elements quantization
097 mapping. Values can be reconstructed (i.e., dequantized) by rescaling: $\hat{x}_i^{(j)} = s^{(j)} \cdot q_i^{(j)}$.
098

100 2.2 RECENT WORK ON MICROSCALING

102 A Power-of-Two scale simplifies the arithmetic complexity of hardware implementations, but sig-
103 nificantly degrades accuracy when applied to FP4 elements (Rouhani et al. (2023b)). Recent works
104 have addressed this issue by proposing techniques that can largely be classified as enhancing the
105 element range for better outliers representation, or improving the scale precision. Lee et al. (2024)
106 use asymmetric FP8 E5M2 scales to mitigate the impact of outliers in 32-element blocks. Chen
107 et al. (2025) propose BitMoD, where the redundant zero representation in the elements is exploited
for an additional quantization level. BlockDialect (Jang & Tambe (2025)) uses a 16-way codebook

Figure 1: (a) FP4 microscaling quantization using BF16 scales. (b) Impact of FP8 UE4M3 scales. Anomalous data points showcasing perplexity inversion have been circled.

where the two largest elements in a block can be set to 16 configurable pairs. Lo et al. (2024) present Nanoscale floating point, where both the scale format and the element format are adapted based on the distribution of the elements in a block. Collectively, these approaches demonstrate a broader trend toward hardware-efficient quantization, where mixed-format representations, block-level adaptability, and fine-grained floating-point encoding jointly push the limits of low-bit inference while preserving model quality.

3 MICROSCALING WITH FINER GRANULARITY

3.1 EXPECTED ERROR DEPENDENCY ON BLOCK SIZE

We begin our investigation by monitoring the difference in perplexity (herein, *perplexity gap*) between models quantized with FP4 microscaling formats and their 16-bit precision baseline, as a function of block size. Fig. 1(a) shows the perplexity gap upon FP4 quantization when the scaling factors of each block are kept as BF16, thus *not quantized*. Notably, all models follow a similar trend: as block size is reduced from 256 to 8, the perplexity gap decreases monotonically. This is the generally expected behavior: reducing block size allows for a finer-grain representation of the quantized elements, hence lower quantization error.

To strengthen this intuition, consider for example the quantization of a block j of N elements x_i : a single scale $s_0^{(j)}$ is derived from the block maximum $x_{\max}^{(j)}$ (as per Sec. 2.1). If the elements in this block are instead quantized into B separate blocks of size $L = N/B$, each sub-block is assigned a scale $s_b \leq s_0^{(j)}$, for $b = 1, \dots, B$. Therefore, every element belonging to a sub-block where $s_b < s_0^{(j)}$ is quantized using a scale which, unlike $s_0^{(j)}$, by definition does not exceed the maximum of the sub-block. The smaller scale would typically, although not strictly, enable a better representation of the sub-block elements, resulting in lower error.

The behavior showcased in Fig. 1(a) underpins the motivation to drive per-block quantization towards ever smaller blocks. However, reduced block size comes at a cost, associated with the increased number of quantization scales, which limits the gains in memory storage and data transfer bandwidth provided by the compressed representation. Specifically, memory requirements for a format with N 4-bit elements per block and 16-bit scales, are $1/2 + 2/N$ bytes and every halving of block size increases storage by a factor of $4/(N + 4)$. Moreover, for a scale format with M bits of mantissa (including the implied 1), the complexity of multiplication in a microscaling multiply-and-accumulate operation grows by $M^2 * K$ where K is the width of the partial sum. Therefore, irrespective of the block size, the arithmetic complexity of handling 16-bit scale (BF16 or FP16) increases the hardware complexity, compared to an 8-bit scale. Due to these limitations, 8-bit scales have been the de-facto standard since the introduction of FP4 microscaling formats. Scales quanti-

Figure 2: (a) Per-block MSE of the first Query weight tensor, block size (bs) 8 vs 16. (b) Per-tensor MSE vs standard deviation σ of each weight tensor of granite-3.3-8b and llama-2-7b. Tensors quantized as FP4 using FP8 UE4M3 scales, with bs 8 or 16. (c) MSE vs σ using BF16 scales instead.

zation as FP8 UE4M3, however, brings about unexpected behaviors hinting at a fundamental limit to the block size reduction trend.

3.2 ANOMALOUS ERROR DEPENDENCY ON BLOCK SIZE

Figure 1(b) shows the relation between perplexity gap and microscaling block size using FP8 E4M3 scales. Going from large to small values of block size, a monotonic decrease in perplexity gap is initially observed, as in Fig. 1(a), in line with the general expectation outlined in the previous Section. Surprisingly, Fig. 1(b) shows that **a further decrease in block size can lead to an increased perplexity gap**. We refer to this behavior as *perplexity inversion*, or simply inversion. Perplexity inversion is model dependent: granite-3.3-8b shows a clear upswing at block size 16; llama-3.1-8b and mixtral-8x7b-instruct present it at block size 8; on the other hand, llama-2-7b has a strictly monotonic dependence, with no inversion down to block size 8. Inversion (or lack thereof) in additional model architectures is presented in Appendix A.

Although perplexity evaluates performance at the model level, the appearance of perplexity inversion may suggest an increase in the quantization error of each individual weight tensor. To verify this hypothesis, we quantize the same tensor twice with different block sizes, and compute the Mean Squared Error (MSE) *in terms of the larger block* to enable a direct block-to-block comparison. The expectation is that blocks quantized using finer granularity would predominantly show lower MSE. Fig. 2(a) shows the 2D density plots for one weight tensor of granite-3.3-8b, quantized with FP4 elements and FP8 UE4M3 scales using block size 8 and 16. Data points on the diagonal correspond to blocks having the same MSE in both conditions. Strikingly, a large number of data points, about 25% in Fig. 2(a), sit *above the diagonal*, indication that larger quantization error at smaller block size is a frequent occurrence. As the magnitude of the weights never exceeds 1.0 in granite-3.3-8b, this behavior cannot be driven by large outliers truncation. The pattern seen in Fig. 2(a) is consistent across weight tensors and models, as shown in Appendix B. These results provide experimental validation to the counterintuitive hypothesis that quantization error per-block can often increase as block size decreases.

To understand the root causes for the error increase, and why it is differently expressed by different models, in Figs. 2(b,c) we look at the MSE of each weight tensor, computed on a per-tensor basis under a given quantization scheme, as a function of the standard deviation σ of the same tensor, pre-quantization. In Fig. 2(b), we quantize with FP4 elements and FP8 UE4M3 scales all weights tensors of granite-3.3-8b and llama-2-7b. The plot shows a distinct dependence of MSE on σ , in common between the two models. In Appendix C, we demonstrate that this behavior is maintained across a variety of models, from attention-based LLM, to State-Space Models (SSM), to hybrid SSM. Hence, a range of weight distributions, potentially with different tails and outliers incidence, express the same dependence. We emphasize that a relation between MSE and σ is not necessarily surprising: a larger σ is representative of a distribution with larger weight magnitudes, and given that

216 the maximum block value determines the normalization factor, it is conceivable that non-maximum
 217 elements could incur higher error for a large maximum. In Sec. 4.3 we explore this relation further.
 218

219 Irrespective of a general dependence, a striking feature emerges from Fig. 2(b) when comparing
 220 block size 8 to 16: **the two curves overlap, with a crossover at $\sigma \approx 2 \cdot 10^{-2}$** . Under this em-
 221 pirical threshold, the MSE of weights quantized with block size 8 is larger than their block size 16
 222 counterpart. Granite-3.3-8b, which showed pronounced inversion in Fig. 1(b), is characterized by
 223 having most weights below this threshold. On the contrary, llama-2-7b, which showed no inversion
 224 in Fig. 1(b), has a large fraction of weights above $\sigma \approx 2 \cdot 10^{-2}$. The crucial role played by the
 225 quantized scales in this phenomenon is confirmed in Fig. 2(c), which shows the same curves for
 226 non-quantized scales. A monotonic dependence of MSE vs σ is still observed, but the error associ-
 227 ated with block size 16 quantization is consistently larger than the error using block size 8. These
 228 observations provide a first set of insights helping us understand the model-dependent perplexity
 229 inversion shown in Fig. 1(b) and guiding towards a solution: models presenting narrow weight dis-
 230 tributions quantized using microscaling formats are prone to larger quantization errors when a finer
 231 granularity is employed. This behavior is driven by the quantization of the scaling factors.

232 4 THEORETICAL FRAMEWORK

234 4.1 MSE OF IDEAL DISTRIBUTIONS

248 Figure 3: (a) MSE - σ dependency for weights of 3 pre-trained models (dots) against a Normal dis-
 249 tribution (black line). (b) Behavior of several ideal distributions. (c) Normal distribution compared
 250 to theoretical results, and decomposition of 3 contributions to the theoretical error.

252 To elucidate the mechanisms by which scales quantization drives up the error at smaller block sizes,
 253 we investigate the phenomenon from first principles. As a first step towards setting up a theoretical
 254 framework, we establish what distribution is appropriate to model. To this extent, we recreate the
 255 MSE vs σ plot using tensors randomly drawn from various ideal distributions. Tensors are quantized
 256 using FP4 elements and FP8 UE4M3 scales. Fig. 3(a) demonstrates an excellent agreement between
 257 experimental data from real models and the curve associated with a Normal distribution with mean
 258 $\mu = 0$ and variable σ . At the lowest end of the range of σ , previously unexplored, for $\sigma < 0.5$ a new
 259 feature emerges: as σ decreases, the MSE increases dramatically, before dropping again towards
 260 zero. To verify this behavior arises in pretrained models as well, we also plot the distribution of
 261 weights of mamba-codestral-7b in Fig. 3(a) (yellow dots), which is especially narrow compared to
 262 other models. These data also agree with the results from the Normal distribution.

263 Fig. 3(b) shows the results across multiple ideal distributions. We sweep σ by drawing elements
 264 with a given distribution and scaling them in magnitude using a range of constants. The parameters
 265 determining the shape of each distribution were chosen arbitrarily, aiming at spanning a similar
 266 range of σ given the same range of scaling factors applied to the drawn tensors. The shape of
 267 each distribution (prior scaling) is presented in Appendix D, showing a variety of tail behaviors.
 268 Fig. 3(b) highlights that all distributions show qualitatively similar trends, but some deviation from
 269 the Normal distribution curve is also present. Hence, although a Normal distribution appears to be a
 270 good approximation of the behavior of pretrained model weights, significant deviations can results

270 in some scattering around the main trend line. The pattern is consistent across block sizes, as shown
 271 in Appendix D. Given these observations, we will use a Normal distribution to theoretically model
 272 the main trends of the MSE vs σ .
 273

274 4.2 MICROSCALING FP4 WITH NON-QUANTIZED SCALES 275

276 We begin by analyzing the case of microscaling quantization using *non-quantized scaling factors*.
 277 We examine this simplified scenario to introduce key concepts and methodologies that will serve as
 278 foundation to the more complex case of FP8 UE4M3 scales. We stress that although herein we are
 279 focusing on FP4 E2M1 quantization, the framework is readily adaptable to reproduce the behavior
 280 of other quantization formats, both floating point and integer. We present key details of this process
 281 below, and provide the full derivations in Appendix E.
 282

283 Consider a random variable X that follows a Normal distribution with mean $\mu = 0$ and standard
 284 deviation σ . We draw N elements x_i from X and define $x_{\max} = \max_{i=1}^N |x_i|$. We introduce a
 285 second variable Y , representing a scaled version of X , where the scaling factor s depends on x_{\max} :
 $Y = X/s = 6X/x_{\max}$. The factor 6 is the maximum representable value in the FP4 E2M1 format.
 286

287 The Probability Density Function (PDF) of Y conditioned on x_{\max} is:
 288

$$289 f(y | x_{\max}) = \frac{\alpha \cdot \phi(\alpha y)}{2\Phi(6\alpha) - 1} \quad \text{for } y \in [-6, 6] \quad (1)$$

290 with ϕ being the PDF of the standard Normal distribution ($\mu = 0, \sigma = 1$), Φ its Cumulative Density
 291 Function (CDF), and $\alpha = x_{\max}/(6\sigma) = s/\sigma$.
 292

293 To derive the MSE conditioned on x_{\max} , we consider each FP4 E2M1 quantization level q_j with
 294 Voronoi boundaries $[a_j, b_j]$, and compute the conditional MSE of Y for the bin j :
 295

$$296 \text{MSE}_{Y,j}(q_j | x_{\max}) = \int_{a_j}^{b_j} (y - q_j)^2 \cdot f(y | x_{\max}) dy \quad (2)$$

297 To obtain the MSE as used in Fig. 2(b) and Fig. 3(a,b), we need to express $\text{MSE}_{Y,j}$ with respect to
 298 the random variable $Z = s \cdot \mathbb{Q}_{\text{FP4}}(Y)$, which described the elements distribution after discretization
 \mathbb{Q}_{FP4} and dequantization. This error, still conditioned on x_{\max} is:
 299

$$301 \text{MSE}_{Z,j}(q_j | x_{\max}) = \frac{\sigma^2}{2\Phi(6\alpha) - 1} \frac{N-1}{N} \int_{v_j(\alpha)}^{w_j(\alpha)} (u - q_j \alpha)^2 \cdot \phi(u) du \quad (3)$$

302 with $u = \alpha y$, $w_j = a_j \alpha$, and $v_j = b_j \alpha$. In this equation, all terms in α contain the x_{\max} condition-
 303 ality. To remove the conditioning and obtain the total MSE_Z , we compute the expected value with
 304 respect to x_{\max} :
 305

$$306 \text{MSE}_Z = \mathbb{E}_{x_{\max}} \left[\sum_j \text{MSE}_{Z,j}(q_j | x_{\max}) \right] = \int_0^\infty \sum_j \text{MSE}_{Z,j}(q_j | x_{\max}) \cdot f_{x_{\max}}(x) dx \quad (4)$$

307 where $f_{x_{\max}}$ is the PDF of x_{\max} , derived as the derivative of the CDF of N i.i.d. variables drawn
 308 from a half-Normal distribution:
 309

$$310 f_{x_{\max}}(\theta) = \frac{2N}{\sigma} \left[2\Phi\left(\frac{\theta}{\sigma}\right) - 1 \right]^{N-1} \phi\left(\frac{\theta}{\sigma}\right) \quad (5)$$

311 We combine eq. 3-5, and integrate numerically over x_{\max} while varying σ , to obtain an MSE vs
 312 σ theoretically-derived from first principles, when scales are not quantized. As shown in Fig. 10
 313 (Appendix E), **the agreement with the experimental results from an ideal distribution, and**
 314 **hence with the experimental data from pretrained models, is extremely good** ($\chi^2 \approx 2 \cdot 10^{-9}$).
 315

316 4.3 MICROSCALING FP4 WITH FP8 UE4M3 SCALES 317

318 We now introduce into the framework the quantization of the scales as FP8 UE4M3. Full derivation
 319 is provided in Appendix F. This condition breaks several previous assumptions. First, the scales
 320 discretization requires us to compute all the contributions to the error of each possible scale value,
 321

324 weighted by the respective probability mass. Second, it is no longer the case that $x_i = x_{\max}$ has
 325 zero error. Third, we will have to separately account for the edge case where all the values within a
 326 block are rounded to zero.

327 When $x_i \neq x_{\max}$ and $s \neq 0$, the error on the dequantized variable Z can be expressed as:
 328

$$329 \quad \text{MSE}_{Z,x_i \neq x_{\max}} = \sum_k p_k^{\text{FP8}} \cdot \text{MSE}_{Z,k}(s_k) = \sum_k \int_{a_k}^{b_k} f_S(s) ds \cdot \sum_j \text{MSE}_{Z,k,j}(q_j | s_k) \quad (6)$$

332 Here, the index i refers to N elements of a block, j to the quantization levels of the elements, and
 333 k to the quantization levels of the scales. p_k^{FP8} is the probability mass of a scale quantization bin,
 334 a_k and b_k its Voronoi boundaries, $f_S(s)$ the PDF of the random variable S associated to the scales.
 335 The error of a quantized element $\text{MSE}_{Z,k,j}$ has a similar expression as eq. 3, but conditioned on the
 336 scale s_k instead of x_{\max} .

337 When $x_i = x_{\max}$ and $s \neq 0$, the error on a single element at a given scale s_k can be computed
 338 directly as:
 339

$$340 \quad \text{Err}_{x_i=x_{\max}}(x, s_k) = \left(\mathbb{Q}_{\text{FP4}}\left(\frac{x}{s_k}\right) \cdot s_k - x \right)^2 \quad (7)$$

342 and incorporated in the computation of the MSE by summing over all possible k quantization levels
 343 of the non-zero scales:
 344

$$345 \quad \text{MSE}_{Z,x_i=x_{\max}} = \frac{1}{N} \sum_k \int_{6a}^{6b} \text{Err}_{x_i=x_{\max}}(x, s_k) \cdot f_{x_{\max}}(x) dx \quad (8)$$

348 The third contribution to the MSE relates to the lowest FP8 scale bin, associated to $s = 0$, for which
 349 eqs. 6 and 8 are ill-defined. In a round-to-nearest process this is the interval $[0, \frac{s_{\min}}{2}]$, where s_{\min} is
 350 the lowest non-zero representable FP8 value (subnormal S-0000-001_b = 2^{-9}). If the maximum of
 351 N values of X falls within this bin, all values in the block are rounded to zero. This error is then:
 352

$$353 \quad \text{MSE}_{Z,s=0} = P(s = 0) \cdot \mathbb{E}[X^2 | s = 0] = P\left(x_{\max} < \frac{s_{\min}}{2}\right) \cdot \mathbb{E}\left[X^2 | |X| < \frac{s_{\min}}{2}\right] \quad (9)$$

354 The total MSE is the sum of these 3 separate contributions:
 355

$$356 \quad \text{MSE}_Z = \text{MSE}_{Z,x_i \neq x_{\max}} + \text{MSE}_{Z,x_i=x_{\max}} + \text{MSE}_{Z,s=0} \quad (10)$$

357 and can be integrated numerically, as in the non-quantized scenario.
 358

359 Fig. 3(c) compares the estimates for MSE obtained from the theoretical framework (thick black
 360 line) against the experimental data derived from a Normal distribution (red dots), under FP4 mi-
 361 croscaling quantization with FP8 UE4M3 scales. **The curves are found to be in perfect agree-
 362 ment ($\chi^2 \approx 4 \cdot 10^{-8}$) with the experimental data derived from a Normal distribution** (as per
 363 Sec. 4.1), across the full interval of σ , providing strong validation of the theoretical model. Fig. 11
 364 in Appendix F further supports this conclusion by demonstrating that the agreement with the ex-
 365 perimental data carries across block sizes and leads to the emergence of crossovers between curves.
 366 Fig. 13 in Appendix G demonstrates that the applicability of our theoretical formulation extends
 367 across data types, as the modeling of INT4 microscaling quantization also shows very close agree-
 368 ment ($\chi^2 \approx 1.3 \cdot 10^{-6}$) with the experimental data. **Similarly, modeling of microscaling FP4 with
 369 FP6 scales provides MSE estimates that are consistent with corresponding perplexity measurements
 370 (see Appendix H).** Hence, in the context of new data format exploration, this framework can play a
 371 role in analyzing the impact on the quantization error of scaling down precision, to sub-4-bit element
 372 formats, sub-8-bit scales, and smaller block sizes.

372 Fig. 3(c) also plots the three separate contributions to MSE along with the total MSE. We find
 373 that for sufficiently large σ , the error for all elements $x_i \neq x_{\max}$ dominates the total MSE. The
 374 main dependence of MSE on σ , first highlighted in Fig. 2(b), is therefore due to the superlinear
 375 dependence of $\text{MSE}_{Z,j}$ when $x_i \neq x_{\max}$, the quantization error of each FP4 bin at a given scale s_k ,
 376 on σ , as seen in eq. 3 and 6. However, in narrower distributions the error on the representation of
 377 the maximum value of each block ($x_i = x_{\max}$), which is zero if scales are not quantized, assumes a
 378 larger relative importance, and can even dominate the total error. As expected, the smaller the block

size, the more the weight of this factor (see Fig. 12 in Appendix F). Finally, at the lowest end of the range of σ , the error is entirely dominated by the zero rounding of all block elements. **The relative importance of these three separate factors provides direct explanation of the dependence of MSE on block size** (additional commentary in Appendix F.4).

5 ERROR MITIGATION STRATEGIES

As demonstrated in Sec. 4, the width of a weight distribution determines the relative importance of different contributions to the total MSE. In particular, narrow distributions appear to be unfavorable, with a large MSE compared to the magnitude of the elements. This behavior would materialize a large relative error and be detrimental to model accuracy. Similar considerations equally apply to activation distributions. Several solutions can be proposed to tackle this problem.

5.1 PER-TENSOR SCALING

A recent implementation of FP4 microscaling on GPU (NVIDIA (2025a)) applies a *per-tensor scaling factor* to weight and activations, prior to the FP4 microscaling quantization step with FP8 UE4M3 scales. Such scaling extends the range of narrowly distributed tensors T using the combined maximum representable value of FP4 E2M1 and FP8 UE4M3:

$$s_T = \frac{\max(\text{E2M1}) \cdot \max(\text{UE4M3})}{\max(\text{abs}(T))} \quad (11)$$

The matmul output is then scaled back replacing the denominator of s_T with an estimate of the full precision matmul output, to account for the scaling of both the weight and activation tensors. As shown in Figs. 4(b,c) and Table 1 (as well as Appendix I), this strategy can be effective in improving perplexity and accuracy across a variety of models. However, it also rises two potential concerns. First, per-tensor scaling is susceptible to outliers: a single element of large magnitude hinders the effective scaling of the whole distribution. In this context, when exploring microscaling FP4 applied to attention, in an effort to limit degradation, Zhang et al. (2025) have already empirically resorted to pre-matmul *per-channel* scaling. Second, while the scaling factors associated to weights can generally be precomputed, scaling of activations necessitates to either perform an on-the-fly absmax operation, increasing the computational cost of running the model, or to use pre-calibrated estimates, which may not reflect the actual distribution of the tensor being quantized and introduce errors in the computation. For these reasons, it would be desirable to develop a hardware-friendly strategy to mitigate error while not resorting to the use of a global scale.

5.2 FP8 UE5M3

Figure 4: (a) Details of UE5M3 hardware implementation. (b,c) Perplexity vs block size using microscaling FP4 with FP8 UE5M3 scales.

As mentioned in Sec. 2.1, existing hardware formats utilize *unsigned* FP8 scales (UE4M3). This choice allows the major hardware vendors to leverage support for existing 8-bit FP8 formats, but

432
 433 Table 1: Accuracy under the proposed FP4 microscaling quantization schemes, at block size 8.
 434 Notation: UE4M3-S: per-tensor scaling + UE4M3; Hsw = HellaSwag; Wng = Winogrande.

Model	Format	Wiki ↓	PIQA ↑	Hsw ↑	Wng ↑	GSM8K ↑	MMLU ↑
granite-3.3-8b	BF16	4.72	80.41	61.49	72.38	62.47	60.55
	UE4M3	7.43	76.50	55.98	67.88	32.37	48.82
	UE4M3-S	5.39	78.84	58.86	71.27	44.88	55.23
	UE5M3 (ours)	5.04	79.98	60.26	73.01	56.17	57.51
llama-3.1-8b	BF16	6.24	79.87	60.05	73.48	50.49	63.28
	UE4M3	7.23	78.29	57.72	72.06	32.30	56.18
	UE4M3-S	6.76	78.84	58.71	72.61	43.21	60.99
	UE5M3 (ours)	6.79	78.84	58.94	72.14	42.15	60.97
nemotron-nano-9b-v2	BF16	8.08	80.30	58.22	73.24	79.61	73.86
	UE4M3	8.92	79.32	57.57	70.56	72.71	71.12
	UE4M3-S	8.42	79.54	57.62	72.53	78.92	72.03
	UE5M3 (ours)	8.39	80.03	57.57	71.19	77.71	72.29
bamba-9b-v2	BF16	6.21	80.96	62.18	73.95	42.15	64.96
	UE4M3	21.25	76.44	45.90	57.85	2.65	36.36
	UE4M3-S	6.53	80.41	61.64	71.90	40.41	63.80
	UE5M3 (ours)	6.53	80.52	61.51	72.61	39.42	64.11

449
 450
 451
 452
 453
 454 leaves one scale bit unused. As an alternative to per-tensor scaling, we propose to repurpose this bit
 455 as an exponent and extend the FP8 scale range. The new scale format, unsigned E5M3 (UE5M3)
 456 offers greatly increased dynamic range compared to UE4M3, while maintaining its precision. In the
 457 context of narrow distributions, this allows a better representation of the scale associated with blocks
 458 containing exclusively small magnitude elements: the minimum non-zero representable absolute
 459 value drops from 2^{-9} for UE4M3 to 2^{-17} for UE5M3. Naturally, the extended range would also
 460 provide a better representation of large outliers in any given block. **An alternative repurposing for**
 461 **the unused bit leading to an UE4M4 format is explored in Appendix J, but is less hardware friendly**
 462 **and found to be less robust than UE5M3.**

463 A UE5M3 scale requires hardware modifications in two key areas: (1) within each microscaling
 464 instruction, where scales are fused with elements, and (2) in the quantization operation, where acti-
 465 vation outputs are quantized per block to generate scales and elements for the subsequent operation.

466 **Scale Processing:** Figure 4(a) illustrates the typical floating-point processing steps in AI processors.
 467 The UE5M3 format retains the mantissa processing logic of the scale unchanged, while extending
 468 the exponent logic by one additional bit. Since mantissa processing primarily determines hardware
 469 complexity, this modification introduces only a negligible increase in hardware cost.

470 **Scale Generation:** AI processors commonly support both E4M3 and E5M2 formats for standard
 471 FP8 quantization, and may reuse the same hardware features for generating scales in MX-FP4 quan-
 472 tization. To support E4M3 and E5M2, existing hardware must include logic to cast an 8-bit exponent
 473 (from a FP32 value) to either a 4-bit or 5-bit exponent. Similarly, it must be capable of rounding
 474 a 23-bit mantissa to either 3-bit or 2-bit precision. Consequently, UE5M3 scale generation can be
 475 achieved with minimal hardware changes.

476 **Hardware Design:** to demonstrate the feasibility of the UE5M3 format at hardware level, the solu-
 477 tion was incorporated into the design of a systolic array processing engine with a microarchitecture
 478 similar to that described in Agrawal et al. (2021). Additional details and overhead estimates are
 479 provided in Appendix K.

480 Fig. 4(b,c) and Table 1 show that applying FP8 UE5M3 scale to FP4 weights and activations *without*
 481 *per-tensor scaling* achieves better or comparable performance as using FP8 UE4M3 scales with
 482 per-tensor scaling (UE4M3-S). We emphasize we computed the per-tensor scaling *dynamically* for
 483 UE4M3-S, thus the results reflect the best accuracy that can be achieved with this format. Fig. 16
 484 and Table 3 in Appendix I show the UE5M3 results hold across block sizes and for a variety of
 485 models, from attention-based LLM, to SSM, to hybrid SSM+attention models.

486 6 CONCLUSIONS 487

488 Microscaling formats are poised to become in the near future the format of choice for model quan-
489 tization. Proper understanding of the sources of error associated with these formats is critical to
490 avoid potentially costly pitfalls at training and inference. In this paper, we analyzed the unexpected
491 trends that quantization errors can present when quantizing narrow distributions with microscaling
492 formats. We demonstrated that such anomalous behavior is a direct consequence of the quantization
493 of the scaling factors, and introduced a theoretical framework to identify the separate contributions
494 driving this effect. Theoretical results are in remarkable agreement with experimental observations.
495 On the basis of this understanding, we have proposed a hardware-friendly implementations, FP4
496 microscaling with FP8-UE5M3 scales, that effectively and efficiently mitigates these errors.
497

498 7 REPRODUCIBILITY STATEMENT 499

500 We share our UE5M3 implementation and our theoretical model at <https://github.com/clr2016codeshare/microscaling>. Full derivation of the theoretical model is provided in
501 Appendices E and F.
502

504 REFERENCES 505

506 Ankur Agrawal, Sae Kyu Lee, Joel Silberman, Matthew Ziegler, Mingu Kang, Swagath Venkatara-
507 mani, Nianzheng Cao, Bruce Fleischer, Michael Guillorn, Matthew Cohen, et al. 9.1 a 7nm
508 4-core ai chip with 25.6 tflops hybrid fp8 training, 102.4 tops int4 inference and workload-aware
509 throttling. In *2021 IEEE International Solid-State Circuits Conference (ISSCC)*, volume 64, pp.
510 144–146. IEEE, 2021.

511 AMD. Hip: Low precision floating point types. https://rocm.docs.amd.com/projects/HIP/en/docs-develop/reference/low_fp_types.html, 2025. Accessed:
512 September 6, 2025.
513

514 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
515 Jaggi, Dan Alistarh, Torsten Hoefer, and James Hensman. Quarot: Outlier-free 4-bit inference in
516 rotated llms. *Advances in Neural Information Processing Systems*, 37:100213–100240, 2024.
517

518 Yuzong Chen, Ahmed F. AbouElhamayed, Xilai Dai, Yang Wang, Marta Andronic, George A. Con-
519 stantinides, and Mohamed S. Abdelfattah. Bitmod: Bit-serial mixture-of-datatype llm accelera-
520 tion. *arXiv:2411.11745*, 4 2025.
521

522 Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer, William Dally, and Brucek Khailany.
523 Vs-quant: Per-vector scaled quantization for accurate low-precision neural network inference.
524 In A. Smola, A. Dimakis, and I. Stoica (eds.), *Proceedings of Machine Learning and Systems*,
525 volume 3, pp. 873–884, 2021.
526

527 Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
528 *International Conference on Machine Learning*, pp. 7750–7774. PMLR, 2023.
529

530 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
531 multiplication for transformers at scale. *Advances in neural information processing systems*, 35:
30318–30332, 2022.
532

533 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
534 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.
535

536 Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
537 limited numerical precision. In *International conference on machine learning*, pp. 1737–1746.
538 PMLR, 2015.
539

540 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
541 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
542 ing compute-optimal large language models. *arXiv:2203.15556*, 2022.
543

540 Wonsuk Jang and Thierry Tambe. Blockdialect: Block-wise fine-grained mixed format quantization
541 for energy-efficient llm inference. *arXiv:2501.01144*, 1 2025.
542

543 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
544 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
545 models. *arXiv:2001.08361*, 2020.

546 Andrey Kuzmin, Mart Van Baalen, Yuwei Ren, Markus Nagel, Jorn Peters, and Tijmen Blankevoort.
547 Fp8 quantization: The power of the exponent. *Advances in Neural Information Processing Sys-
548 tems*, 35:14651–14662, 2022.
549

550 Janghwan Lee, Jiwoong Park, Jinseok Kim, Yongjik Kim, Jungju Oh, Jinwook Oh, and Jungwook
551 Choi. Amxfp4: Taming activation outliers with asymmetric microscaling floating-point for 4-bit
552 llm inference. *arXiv:2411.09909*, 11 2024.

553 Zhen Li, Yupeng Su, Runming Yang, Congkai Xie, Zheng Wang, Zhongwei Xie, Ngai Wong, and
554 Hongxia Yang. Quantization meets reasoning: Exploring llm low-bit quantization degradation for
555 mathematical reasoning. *arXiv:2501.03035*, 2025.
556

557 Ye Lin, Yanyang Li, Tengbo Liu, Tong Xiao, Tongran Liu, and Jingbo Zhu. Towards fully 8-bit
558 integer inference for the transformer model. *arXiv preprint arXiv:2009.08034*, 2020.
559

560 Yun-Chen Lo, Gu-Yeon Wei, and David Brooksknown. Nanoscaling floating-point (nxfp):
561 Nanomantissa, adaptive microexponents, and code recycling for direct-cast compression of large
562 language models. *arXiv:2412.19821*, 12 2024.

563 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
564 models. *arXiv:1609.07843*, 2016.
565

566 NVIDIA. cublas: D-block quantization. <https://docs.nvidia.com/cuda/cublas/#d-block-quantization>, 2025a. Accessed: September 6, 2025.
567

568 NVIDIA. Fine-tuning gpt-oss for accuracy and performance with quantization aware training. <https://developer.nvidia.com/blog/fine-tuning-gpt-oss-for-accuracy-and-performance-with-quantization-aware-training>, 2025b. Accessed:
569 November 17, 2025.
570

571 Bita Darvish Rouhani, Nitin Garegrat, Tom Savell, Ankit More, Kyung-Nam Han, Ritchie Zhao,
572 Mathew Hall, Jasmine Klar, Eric Chung, Yuan Yu, Microsoft Author, Michael Schulte, Ralph
573 Wittig, Amd Author, Ian Bratt, Nigel Stephens, Jelena Milanovic, John Brothers, Arm Author,
574 Pradeep Dubey, Marius Cornea, Alexander Heinecke, Andres Rodriguez, Martin Langhammer,
575 Intel Author, Summer Deng, Maxim Naumov, Meta Author, Paulius Micikevicius, Michael Siu,
576 Nvidia Author, and Colin Verrilli. Ocp microscaling formats (mx) specification ocp microscaling
577 formats (mx) specification version 1.0. Technical report, Open Compute Project OCP, 2023a.
578

579 Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
580 Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, Stosic Dusan, Ven-
581 mugil Elango, Maximilian Golub, Alexander Heinecke, Phil James-Roxby, Dharmesh Jani, Gau-
582 rav Kolhe, Martin Langhammer, Ada Li, Levi Melnick, Maral Mesmakhosroshahi, Andres Ro-
583 driguez, Michael Schulte, Rasoul Shafipour, Lei Shao, Michael Siu, Pradeep Dubey, Paulius Mi-
584 cikevicius, Maxim Naumov, Colin Verrilli, Ralph Wittig, Doug Burger, and Eric Chung. Mi-
585 croscaling data formats for deep learning. *arXiv:2310.10537*, 10 2023b.
586

587 Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
588 William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts:
589 Benchmarking the energy costs of large language model inference. In *2023 IEEE High Perfor-
590 mance Extreme Computing Conference (HPEC)*, pp. 1–9. IEEE, 2023.
591

592 Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney,
593 and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In *Proceedings
of the AAAI conference on artificial intelligence*, volume 34, pp. 8815–8821, 2020.

594 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
595 Accurate and efficient post-training quantization for large language models. In *International
596 conference on machine learning*, pp. 38087–38099. PMLR, 2023.
597
598 Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
599 He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
600 *Advances in neural information processing systems*, 35:27168–27183, 2022.
601
602 Jintao Zhang, Jia Wei, Pangle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang,
603 Jun Zhu, and Jianfei Chen. Sageattention3: Microscaling fp4 attention for inference and an
604 exploration of 8-bit training. *arXiv:2505.11594*, 5 2025.
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A PERPLEXITY GAP ACROSS VARIOUS MODELS AND LOW BLOCK SIZE

649
650 In our experiments to measure perplexity, we quantize both weights and activations of all linear
651 layers except the last one (model head), with the selected microscaling quantization format. Atten-
652 tion matmul are not quantized. Perplexity is computed based on a next-token prediction task on the
653 Wikitext2 dataset (Merity et al. (2016)), using the test split, with samples of sequence length 2048
654 tokens. We use perplexity as a proxy metric for accuracy, as a starting point to highlight potential
655 issues associated with the quantization process. We provide a comprehensive analysis of accuracy
656 across multiple benchmarks in Sec. 5.2 and in Appendix I.

B PER-BLOCK MSE: BLOCK SIZE 8 VS 16

Figure 6: Comparison of per-block MSE for block size 8 vs 16 microscaling quantization, using FP4 elements with FP8-UE4M3 scales. As shown by the prevalence of data points above the diagonal, errors using the smaller block size routinely exceed errors with larger block size, across different weight tensors and models. This pattern holds even for models not showing perplexity inversion at block size 8.

756 C MSE VS σ OF MODELS AND BLOCK SIZES

771 Figure 7: Per-tensor MSE vs standard deviation σ of each weight tensor of various LLMs, highlighting
 772 a common dependence across models. Very narrow weights may appear to be deviating from
 773 the predominant trend, but this behavior is also present in ideal distributions and captured by our
 774 theoretical framework (see Fig. 3).

775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 D MSE VS σ ACROSS IDEAL DISTRIBUTIONS

836 Figure 8: Shape of the ideal distributions used to compute the MSE vs σ curve in Fig. 3(b), show-
 837 casing different tails and asymmetries. We stress that the selected parameters are arbitrary and were
 838 only chosen such that the corresponding σ for each distribution type would cover a similar interval,
 839 upon application of the same vector of scaling factors.

840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

```

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

```


Figure 9: (left column) MSE vs σ comparison of experimental data from 3 models and a Normal distribution of mean 0 and variable σ . Across multiple block sizes, the data point from the pre-trained models are in excellent agreement with their Normal counterpart. Notice the sharp increase towards very narrow distributions is observed at any block size. (right column) MSE vs σ from experimental data drawn from different distributions.

918 E THEORETICAL FRAMEWORK: NON-QUANTIZED SCALES

920 In this appendix, we present the full derivation of the theoretical framework in the case microscaling
 921 quantization with scales not quantized (i.e., infinite precision is assumed), and a comparison of
 922 theoretically-derived MSE- σ curves against experimental data from a Normal distribution (Fig. 10).

923 As mentioned in Sec. 4.2, we model the drawing of N elements x_i from a random variable X
 924 with probability density $P(X)$. $P(X)$ is a Normal distribution of mean 0 and standard deviation
 925 σ : $X \sim \mathcal{N}(0, \sigma^2)$. We use X to mimic weight distribution. We quantize these elements using a
 926 symmetric block-wise FP4 E2M1 quantization scheme, with non-quantized scale defined as
 927

$$928 \quad s = \frac{x_{\max}}{m} \quad (12)$$

930 with $x_{\max} = \max_{i=0}^{N-1} |x_i|$. The factor m is the maximum representable value for the data format
 931 used for element quantization. For example, $m = 6.0$ for FP4 E2M1. The scale s is used to derive
 932 the scaled elements prior quantization, y_i , as

$$933 \quad y_i = \frac{x_i}{s} = \frac{mx_i}{x_{\max}} \quad (13)$$

936 Accordingly, the scaled elements y_i to be quantized are drawn from a random variable Y with *scaled*
 937 and *truncated* gaussian distribution:

$$938 \quad Y = \frac{mX}{x_{\max}} \quad (14)$$

941 The distribution of Y is truncated to $[-m, m]$ because $x_i \leq x_{\max} \forall i$. Post-quantization, the de-
 942 quantized elements z_i belong to the random variable Z :

$$943 \quad Z = \frac{x_{\max}}{m} \mathbb{Q}(Y) = \frac{x_{\max}}{m} \mathbb{Q}\left(\frac{mX}{x_{\max}}\right) = s \cdot \mathbb{Q}\left(\frac{X}{s}\right) \quad (15)$$

946 with \mathbb{Q} being the mapping function to the quantized levels defined by the selected element format
 947 (e.g., FP4 E2M1).

948 The first step towards deriving the MSE of Z is to compute the PDF of Y conditioned to x_{\max} .
 949 As the MSE associated with $x_i = x_{\max}$ is zero, we will only derive an expression for the PDF
 950 associated with the $N - 1$ elements satisfying $x_i \neq x_{\max}$. For $x_i = x_{\max}$, the PDF is in the form of
 951 two Dirac functions located at $\pm x_{\max}$ but as it does not contribute to the MSE, we will leave it out
 952 of the derivation.

953 We define $\tilde{f}_Y(y)$ as the distribution of Y prior normalization. We derive $\tilde{f}_Y(y)$ by applying the
 954 change of variable formula for the transformation of a continuous random variable, from X to $Y =$
 955 $g(X)$. With $y = g(x) = \frac{mx}{x_{\max}} \Rightarrow g^{-1}(y) = \frac{x_{\max}y}{m}$, we get:

$$957 \quad \begin{aligned} \tilde{f}_{Y, x_i \neq x_{\max}}(y, x_{\max}) &= f_X(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right| \\ 958 &= f_X\left(\frac{x_{\max}y}{m}\right) \cdot \left| \frac{x_{\max}}{m} \right| \\ 959 &= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \cdot \left(\frac{x_{\max}y}{m}\right)^2\right) \cdot \frac{x_{\max}}{m} \\ 960 &= \frac{x_{\max}}{m\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \cdot \left(\frac{x_{\max}y}{m\sigma}\right)^2\right) \\ 961 &= \frac{\alpha}{\sqrt{2\pi}} \exp\left(-\frac{(y\alpha)^2}{2}\right) \\ 962 &= \alpha \cdot \phi(\alpha y) \quad \text{for } y \in [-m, m] \end{aligned} \quad (16)$$

963 with

$$964 \quad \alpha = \frac{x_{\max}}{m\sigma} = \frac{s}{\sigma} \quad (17)$$

972 and ϕ the Probability Density Function (PDF) of the *standard* ($\mu = 0, \sigma = 1$) Normal distribution:
973

$$974 \quad 975 \quad \phi(y) = \frac{1}{\sqrt{2\pi}} \exp(-y^2/2) \quad (18)$$

976 To obtain $f_Y(y)$, the PDF of Y , we normalize $\tilde{f}_Y(y)$ considering that the probability density is zero
977 outside $[-m, m]$:
978

$$979 \quad 980 \quad f_{Y, x_i \neq x_{\max}}(y, x_{\max}) = \frac{\tilde{f}_Y(y \mid x_{\max})}{\int_{-m}^m \alpha \phi(\alpha y) dy} = \frac{\tilde{f}_Y(y \mid x_{\max})}{\int_{-m\alpha}^{m\alpha} \phi(u) du} = \frac{\alpha \cdot \phi(\alpha y)}{2\Phi(m\alpha) - 1} \quad (19)$$

982 Here, Φ is the Cumulative Density Function (CDF) of the standard Normal distribution.
983

984 Next, we compute the conditional expected square error on Z , the distribution after dequantization.
985 We focus on the error on Z , instead of $\mathbb{Q}(Y)$, for a direct comparison with the experimental data in
986 Fig. 2(b,c) and Fig. 3(a-c). This error is the sum of the errors associated to each quantization bin
987 $MSE_{Y,j}(q_j \mid x_{\max})$. Each quantization bin comprises one of the quantization levels q_j (with $j =$
988 $1, \dots, N_Q$ and N_Q the number of quantization levels of the format used to quantize the elements)
989 and is defined by the Voronoi boundaries $[a_j, b_j]$. The bin error is:
990

$$991 \quad \begin{aligned} 992 \quad 993 \quad MSE_{Y,j}(q_j \mid x_{\max}) &= \frac{N-1}{N} \int_{-m}^m (y - q_j)^2 f_{Y \mid x_{\max}}(y) dy \\ 994 \quad &= \frac{N-1}{N} \int_{-m}^m (y - q_j)^2 \frac{\alpha \cdot \phi(\alpha y)}{2\Phi(m\alpha) - 1} dy \end{aligned} \quad (20)$$

995 where the $(N-1)/N$ factor takes into account that only $N-1$ elements x_i contribute to the error.
996

997 The square error with respect to Z is related to the square error on Y via the scaling factors $s =$
998 x_{\max}/m as:
999

$$1000 \quad X - Z = \frac{x_{\max}}{m} (Y - \mathbb{Q}(Y)) \Rightarrow (X - Z)^2 = \left(\frac{x_{\max}}{m}\right)^2 (Y - \mathbb{Q}(Y))^2 \quad (21)$$

1001 Therefore, the error becomes:
1002

$$1003 \quad \begin{aligned} 1004 \quad MSE_{Z,j}(q_j \mid x_{\max}) &= s^2 MSE_{Y,j} \\ 1005 \quad &= s^2 \int_{a_j}^{b_j} (y - q_j)^2 \cdot f(y \mid x_{\max}) dy \\ 1006 \quad &= (\alpha\sigma)^2 \frac{N-1}{N} \int_{a_j}^{b_j} (y - q_j)^2 \frac{\alpha \cdot \phi(\alpha y)}{2\Phi(m\alpha) - 1} dy \\ 1007 \quad &= \frac{\sigma^2}{2\Phi(6\alpha) - 1} \frac{N-1}{N} \int_{v_j(\alpha)}^{w_j(\alpha)} (u - q_j\alpha)^2 \cdot \phi(u) du \end{aligned} \quad (22)$$

1012 We remove the conditioning on x_{\max} by computing its expected value:
1013

$$1014 \quad 1015 \quad MSE_Z = \mathbb{E}_{x_{\max}} \left[\sum_j MSE_{Z,j}(q_j \mid x_{\max}) \right] = \int_0^\infty \sum_j MSE_{Z,j}(q_j \mid x_{\max}) \cdot f_{x_{\max}}(x) dx \quad (23)$$

1018 As we use `absmax` to determine x_{\max} , the distribution of x_{\max} is the maximum of N i.i.d. variables
1019 from the *half-Normal distribution* Θ :
1020

$$1021 \quad \Theta = |X|, \quad \Theta \sim \text{HalfNormal}(\sigma) \quad (24)$$

1022 The half-Normal CDF with θ_i drawn from Θ is the known formula:
1023

$$1024 \quad 1025 \quad F_{x_{\max}}(\theta) = 2\Phi\left(\frac{\theta}{\sigma}\right) - 1 \quad (25)$$

1026 and since $|\theta_i|$ are i.i.d. the probability of drawing N variables with $P(|X| \leq x_{\max})$ is the product
 1027 of each individual probability:
 1028

$$1029 \quad \mathbb{P}(|X| \leq x_{\max}) = \mathbb{P}(|x_i| \leq x \ \forall i = 1, \dots, N) = [\mathbb{P}(|x_i| \leq x)]^N \quad (26)$$

1030 This is expressed by the product of N CDF:
 1031

$$1032 \quad F_{x_{\max}}(\theta) = \left[2\Phi\left(\frac{\theta}{\sigma}\right) - 1 \right]^N \quad (27)$$

1033 The PDF is obtained by differentiating this CDF:
 1034

$$1035 \quad f_{x_{\max}}(\theta) = \frac{d}{d\theta} F_{x_{\max}}(\theta) = N \left[2\Phi\left(\frac{\theta}{\sigma}\right) - 1 \right]^{N-1} \frac{d}{d\theta} \left(2\Phi\left(\frac{\theta}{\sigma}\right) - 1 \right) \\ 1036 \quad = 2N \left[2\Phi\left(\frac{\theta}{\sigma}\right) - 1 \right]^{N-1} \frac{d}{du} \Phi(u) \frac{du}{d\theta} \\ 1037 \quad = 2N \left[2\Phi\left(\frac{\theta}{\sigma}\right) - 1 \right]^{N-1} \phi\left(\frac{\theta}{\sigma}\right) \frac{1}{\sigma} \\ 1038 \quad = \frac{2N}{\sigma} \left[2\Phi\left(\frac{\theta}{\sigma}\right) - 1 \right]^{N-1} \phi\left(\frac{\theta}{\sigma}\right) \quad (28)$$

1039 As the integral from 0 to ∞ of $f_{x_{\max}}$ is 1, this is already a PDF, no additional normalization is
 1040 needed. Using this formulation for $f_{x_{\max}}$, the MSE using non-quantized scales is:
 1041

$$1042 \quad \text{MSE}_Z = \int_0^\infty \sum_j \text{MSE}_{Z,j}(q_j | x_{\max}) \cdot \frac{2N}{\sigma} \left[2\Phi\left(\frac{\theta}{\sigma}\right) - 1 \right]^{N-1} \phi\left(\frac{\theta}{\sigma}\right) dx \quad (29)$$

1043 Finally, we compute this error by discretizing the domain of x_{\max} over a series of θ , computing all
 1044 θ -dependent parameters (implicit in all α dependencies), and integrating numerically. The resulting
 1045 MSE_Z can be compared directly with the per-tensor MSE obtained experimentally, from either pre-
 1046 trained models or ideal distributions.

1047 As shown in Fig. 10, the agreement between theoretical model and experimental data is very re-
 1048 markable, across a range of σ and block sizes bs .
 1049

1050
 1051
 1052
 1053
 1054 Finally, we compute this error by discretizing the domain of x_{\max} over a series of θ , computing all
 1055 θ -dependent parameters (implicit in all α dependencies), and integrating numerically. The resulting
 1056 MSE_Z can be compared directly with the per-tensor MSE obtained experimentally, from either pre-
 1057 trained models or ideal distributions.
 1058
 1059 As shown in Fig. 10, the agreement between theoretical model and experimental data is very re-
 1060 markable, across a range of σ and block sizes bs .
 1061

1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076 Figure 10: Per-tensor MSE vs standard deviation σ curves comparing estimates from the theoretical
 1077 framework with *non-quantized scales* against corresponding results obtained experimentally from
 1078 elements drawn from a Normal distribution. The remarkable overlap validates the correctness of the
 1079 theoretical framework.

1080 F THEORETICAL FRAMEWORK: FP8 UE4M3 SCALES 1081

1082 In this appendix, we present the full derivation of the theoretical framework in the case microscaling
1083 quantization with FP8-UE4M3 scales. This derivation naturally builds on the process described
1084 in Appendix E and summarized in Sec. 4.2, where we derived a formulation in the case of non-
1085 quantized scales.

1086 When scales are FP8, they are additionally quantized with a "casting" operation to FP8:
1087

$$1088 \quad s = \mathbb{Q}_{\text{FP8}} \left(\frac{x_{\max}}{m} \right) \quad (30)$$

1090 As before, m is the maximum representable value of the quantized *elements* ($m = 6.0$ for FP4
1091 E2M1). \mathbb{Q}_{FP8} is the operator that maps each high-precision scale value to its FP8 counterpart. Dif-
1092 ferent quantization schemes can be modeled by simply replacing the \mathbb{Q} operator and summing over
1093 the k quantization levels associated with the new mapping.

1094 In the case of non-quantized scales, we only considered $x_i \neq x_{\max}$ case, because the element
1095 $x_i = x_{\max}$ was represented exactly, and thus did not contribute to the error. This consideration
1096 produced an $(N - 1)/N$ scaling factor on MSE (see eq. 3). When scales themselves are quantized,
1097 we must also account for the $x_i = x_{\max}$ scenario, which will result in non-zero quantization error.
1098 This error is to be scaled by $1/N$ instead of $(N - 1)/N$, accounting for 1 element out of N block
1099 elements being used for scale derivation in this condition.

1100 In addition, we will need to separately account for the case where all elements within a block are
1101 rounded to zero. This occurs when $x_{\max} < \frac{s_{\min}}{2}$, with s_{\min} being the lowest non-zero representable
1102 scale value. This contribution is not included in the previous derivation, where the case $s = 0$ was
1103 both ill-defined and contributed no error due to the continuous nature of the non-quantized scales.

1104 Overall, we will be modeling 3 separate sources of error:
1105

- 1106 • $x_i \neq x_{\max}$ with FP8 scales $s \neq 0$
- 1107 • $x_i = x_{\max}$ with FP8 scales $s \neq 0$
- 1108 • FP8 scales $s = 0$

1110 F.1 $x_i \neq x_{\max}$ WITH SCALES $s \neq 0$ 1111

1112 The case of $x_i \neq x_{\max}$ with $s \neq 0$ was covered in the non-quantized scales framework by remov-
1113 ing the conditioning over x_{\max} via integration. However, when introducing a discretization of the
1114 scales, we will have to sum over each quantized scale level s_k , so it becomes more convenient to
1115 express all formulas in terms of this parameter. We start by deriving an expression for $f_{S_x}(s)$, the
1116 distribution of the random variable S_x , representing the continuous scales prior quantization. This
1117 can be computed using the dependence of S_x on x_{\max} , with a change of variable to the function
1118 $f_{x_{\max}}(x)$, the previously-computed distribution of x_{\max} . We start from:

$$1119 \quad s = g(x) = \frac{x}{m} \Rightarrow g^{-1}(s) = m \cdot s \Rightarrow \frac{dx}{ds} = m \quad (31)$$

1120 and obtain the expression for the distribution:

$$\begin{aligned} 1123 \quad f_{S_x}(s) &= f_{x_{\max}}(m \cdot s) \cdot \left| \frac{dx}{ds} \right| \\ 1124 &= f_{x_{\max}}(m \cdot s) \cdot m \\ 1125 &= m \cdot \frac{2N}{\sigma} \left[2\Phi\left(\frac{m \cdot s}{\sigma}\right) - 1 \right]^{N-1} \phi\left(\frac{m \cdot s}{\sigma}\right) \end{aligned} \quad (32)$$

1130 To get the probability mass p_i^{FP8} of a single scale quantization bin around a value s_k , we can integrate
1131 within the bin's Voronoi boundaries a_k, b_k , assuming round-to-nearest:

$$1132 \quad p_k^{\text{FP8}} = \mathbb{P}(\mathbb{Q}(s) = s_k) = \int_{v_k}^{w_k} f_{S_x}(s) ds \quad (33)$$

To remove the conditioning on s_k , instead of integrating over the continuous distribution $f_{x_{\max}}$, we sum over the k FP8 bins the product of p_k^{FP8} and $\text{MSE}_{Z,k}(s_k)$, the latter being the MSE with respect to the random variable Z of the quantized/dequantized elements, conditioned to a scale s_k . Deriving $\text{MSE}_{Z,k}(s_k)$ requires knowledge of the PDF of Y :

$$f_Y(y, s_k) = \frac{\tilde{f}_Y(y | s_k)}{\int_{-m}^m \alpha \phi(\alpha y) dy} = \frac{\alpha_k \cdot \phi(\alpha_k y)}{2\Phi(m\alpha_k) - 1} \quad (34)$$

with $\alpha_k = s_k/\sigma$. Notice that for $s_k = 0$, the normalization factor denominator of $f_Y(y, s_k)$ is zero. We will have to treat the $s_i = 0$ case separately.

The expression for the MSE per-bin is similar to the non-quantized scale scenario, except for the dependence on k :

$$\begin{aligned} \text{MSE}_{Z,k,j}(q_j | s_k) &= s_k^2 \int_{a_j}^{b_j} (y - q_j)^2 \cdot f(y | s_k) dy \\ &= \frac{\sigma^2}{2\Phi(6\alpha_k) - 1} \frac{N-1}{N} \int_{v_j(\alpha_k)}^{w_j(\alpha_k)} (u - q_j \alpha_k)^2 \cdot \phi(u) du \end{aligned} \quad (35)$$

where the $(N-1)/N$ factor addresses the condition $x_i \neq x_{\max}$.

Finally, we remove the conditioning on s_k by summing over the scales quantization levels k and the elements quantization levels j :

$$\begin{aligned} \text{MSE}_{Z,x_i \neq x_{\max}} &= \sum_k p_k^{\text{FP8}} \cdot \text{MSE}_{Z,k}(s_k) \\ &= \sum_k \int_{a_k}^{b_k} f_{S_X}(s) ds \cdot \sum_j \text{MSE}_{Z,k,j}(q_j | s_k) \end{aligned} \quad (36)$$

F.2 $x_i = x_{\max}$ WITH SCALES $s \neq 0$

When $x_i = x_{\max}$ and scales are not quantized, the error on x_i is zero: the scale is derived directly from x_{\max} and one quantization level is aligned to x_{\max} exactly. However, this is no longer the case upon scale quantization, as the scale \mathbb{Q}_{FP8} introduces quantization error.

We can compute the error conditional on x_{\max} directly, as it pertains a single element $x_i = x_{\max}$, in lieu of having to integrate over the distribution of y :

$$\text{Err}_{x_i=x_{\max}}(x, s_k | x_{\max}) = \left(\mathbb{Q}_m \left(\frac{x}{s_k} \right) \cdot s_k - x \right)^2 \quad (37)$$

where \mathbb{Q}_{FPm} is the element quantization mapping (e.g., FP4 E2M1). Notice this computation is not defined for $s_k = 0$, the third source of error to be treated separately.

The corresponding MSE for the scale bin k ($\text{MSE}_{Z,x_i=x_{\max},k}$) is derived by simply scaling $\text{Err}_{x_i=x_{\max}}$ by $1/N$, because the error $\text{Err}_{x_i=x_{\max}}$ only applies to a single element in a block of size N .

To obtain the total MSE across all scales, we integrate $\text{MSE}_{Z,x_i=x_{\max},k}$ along with the probability mass p_k^{FP8} of a scales s_k , and sum over all non-zero scales:

$$\text{MSE}_{Z,x_i=x_{\max}} = \frac{1}{N} \int_{ma_k}^{mb_k} \text{Err}_{x_i=x_{\max}}(x, s_k) \cdot f_{x_{\max}}(x) dx \quad (38)$$

The interval $[ma_k, mb_k]$ comes from the boundaries $[a_k, b_k]$ of the bin of s_k , expressed in terms of $x = m \cdot s_k$.

F.3 SCALES $s = 0$

The third and last source of MSE error comes from the lowest FP8 scale bin which, assuming a round-to-nearest process, goes from 0 to $\frac{s_{\min}}{2}$, where s_{\min} is the lowest non-zero representable FP8

1188 value (2^{-9} for IEEE FP8 E4M3, which includes subnormals). If the maximum of N values of X
 1189 falls within this bin, all values in the block are rounded down to zero. This increases the error for
 1190 ultra-narrow distributions.

1191 The error for zero quantized scale is:

1193
$$\text{MSE}_{s=0} = P(s = 0) \cdot E[X^2 | s = 0] \quad (39)$$

1195 where $E[X^2 | s = 0]$ is the expected error when the scale is zero, and $P(s = 0)$ is the probability
 1196 of having zero scale. The probability of zero scale $P(s = 0)$ is derived considering that once a
 1197 value x_{\max} is drawn, all other x_i satisfy the condition $x_i < x_{\max}$. Hence, x_i do not conform to
 1198 the original distribution of X with standard deviation σ but to a distribution that is truncated in the
 1199 interval $[-\frac{s_{\min}}{2}, \frac{s_{\min}}{2}] = [-b_{\min}, b_{\min}]$. Therefore:

1200
$$P(s = 0) = P(x_{\max} < b_{\min}) = (F_{|X|}(b_{\min}))^N \quad (40)$$

1202 where $F_{|X|}(x)$ is the CDF of $|X|$ that we already computed as eq. 25. The expected error with a
 1203 zero scale is computed using the known expression (which includes a normalization factor at the
 1204 denominator):

1205
$$E[X^2 | s = 0] = E[X^2 | |X| < b_{\min}] = \frac{\int_{-b_{\min}}^{b_{\min}} x^2 f_X(x) dx}{\int_{-b_{\min}}^{b_{\min}} f_X(x) dx} \quad (41)$$

1209 F.4 TOTAL ERROR

1211 The total MSE when using quantized FP8 scales is the sum of the 3 separate contributions we
 1212 computed in the previous sections:

1213
$$\text{MSE}_Z = \text{MSE}_{Z, x_i \neq x_{\max}} + \text{MSE}_{Z, x_i = x_{\max}} + \text{MSE}_{Z, s=0} \quad (42)$$

1215 The first two terms contain a block size-dependent scaling factor: $(N - 1)/N$ or $1/N$, respectively.
 1216 Both these terms sum over all $s_i \neq 0$, while $\text{MSE}_{Z, s=0}$ is a single scale bin computation. As in the
 1217 case of non-quantized scales, we compute MSE_Z by discretizing the domain of x_{\max} and integrating
 1218 numerically.

1219 Fig. 11 compares theoretical results (lines) against experimental data derive by quantizing elements
 1220 from a Normal distribution (dots). The agreement is found to be excellent across a wide range of
 1221 σ and various block sizes, capturing all features of the experimental curves, including the presence
 1222 and location of crossover points, and steep MSE increase for ultra-narrow distributions.

1223 Fig. 12 expands Fig. 3(c), presenting the individual contribution of the 3 sources of errors for block
 1224 size 4, 8, 16, and 32. The relative weight to the total error of the different contributions varies.
 1225 At large block size, the error is largely dominated by $\text{MSE}_{Z, x_i \neq x_{\max}}$. As block size is decreased,
 1226 $\text{MSE}_{Z, x_i = x_{\max}}$ becomes more prominent, materializing the crossover between curves of different
 1227 block size. At small block size, $\text{MSE}_{Z, s=0}$ impacts a wider interval of lower-end σ and its magnitude
 1228 increases. Hence, narrow distributions become more and more susceptible to this source of error as
 1229 block size is decreased.

1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Figure 11: MSE estimates from the theoretical framework for FP4 microscaling quantization with FP8 UE4M3 scales (lines) against corresponding results obtained experimentally from elements drawn from a Normal distribution (dots).

Figure 12: Separate contributions to quantization error for block sizes 4, 8, 16, and 32.

1296 G MICROSCALING INT4 QUANTIZATION WITH FP8 UE4M3 SCALES

1297

1298 To provide further validation of the flexibility of our framework in modeling custom quantization
1299 strategies, we applied simple modifications to extract the MSE estimates under INT4 element per-
1300 block quantization (instead of FP4), with FP8 UE4M3 scales. This change only required an update
1301 to the specified list of quantization levels and to the simulation parameters that are dependent on
1302 the maximum of the element data format. For asymmetric INT4 quantization, which quantizes in
1303 range $[-7, 7]$, the format maximum is 7, instead of 6.0 of FP4. The comparison against experimental
1304 data obtained by directly quantizing elements drawn from Normal distribution and computing the
1305 corresponding per-tensor MSE is shows in Fig. 13. Similarly to the FP4 case, theoretical results and
1306 experimental data are found in excellent agreement ($\chi^2 = 1.3 \cdot 10^{-6}$).

1307

1329 Figure 13: Theoretical MSE estimates against experimental data from Normal distribution, under
1330 microscaling INT4 quantization with FP8 UE4M3 scales.

1331 Perplexity evaluation on microscaling INT4 formats across various models (Fig. 14) shows that per-
1332 perplexity inversion is still observed, albeit in a less pronounced manner compared to microscaling FP4.
1333 Both UE4M3-S and UE5M3 are effective in mitigating the inversion and improving performance,
1334 with UE5M3 achieving comparable or better perplexity than UE4M3-S.

1335 These results are consistent with the analysis of ideal normal distributions (synthetic data) as well
1336 as our theoretical framework (Fig. 13) for microscaling INT4: both show that narrow element dis-
1337 tributions quantized as INT4 do experience a qualitatively similar effect as FP4, with smaller block
1338 size producing larger error than larger block size in narrow distributions. For block size 16 vs. 8,
1339 the crossover does occur at a lower standard deviation ($\approx 1.5 \cdot 10^{-2}$) than for FP4 ($\approx 2 \cdot 10^{-2}$),
1340 suggesting that considering all tensors within a model, and their spread of standard deviations, we
1341 should observe a less pronounced effect, possibly arising at lower block sizes than FP4, at which the
1342 increase in error is larger.

1343
1344
1345
1346
1347
1348
1349

Figure 14: Perplexity evaluation of microscaling INT4 with different scales: UE4M3, UE4M3-S, and UE5M3.

1404 H MICROSCALING FP4 QUANTIZATION WITH FP6 SCALES

1405
 1406 As further validation of our framework, we have measured the impact of microscaling FP4 with two
 1407 custom FP6 formats. We stress that no standard format has been recommended for FP6 *scales* at this
 1408 time, and while OCP (Rouhani et al. (2023a)) prescribes FP6 E3M2 and FP6 E2M3 for elements
 1409 quantization in MXFP6 formats, based on our findings herein reported we believe supporting the
 1410 widest dynamic range is of utmost importance. Hence, we tested FP6 UE5M1 and FP6 UE4M2
 1411 scales (assuming repurposing of the unused sign bit), in combination with FP4 E2M1 elements, to
 1412 quantize weights and activations of llama-3.1-8b (BF16 baseline perplexity = 6.242). Consistently
 1413 with UE4M3-S nomenclature, UE5M1-S and UE4M2-S represent the use of per-tensor scale on
 1414 both weights and activations.

1415
 1416 Table 2: Perplexity (the lower the better) of llama-3.1-8b using microscaling FP4 elements at vari-
 1417 able block size and two FP6 formats for scales, UE5M1 and UE4M2, with or without per-tensor
 1418 scaling. BF16 baseline is 6.242

Block size	UE5M1	UE5M1-S	UE4M2	UE4M2-S
2	7.217	7.240	46 795.660	6.598
4	7.265	7.280	343.621	6.726
8	7.316	7.346	19.641	6.872
16	7.414	7.424	11.398	7.038
32	7.519	7.547	9.348	7.182
64	7.715	7.696	9.607	7.385
128	7.955	7.952	10.955	7.660
256	8.328	8.307	9.017	8.019

1419
 1420 Results are entirely consistent with our previous conclusions related to FP8 scales: the wider dy-
 1421 namic range provided by UE5M1 achieves limited degradation in absence of a per-tensor scale. In
 1422 fact, applying such global scale has negligible effect on perplexity when using this format. How-
 1423 ever, compared to UE5M3, this format suffers from the loss of 2 bits of precision. On the other hand,
 1424 UE4M2 performs very poorly without per-tensor scale and we once again we observe a *perplexity*
 1425 *inversion* behavior. This can be effectively mitigated by means of a per-tensor scale (UE4M2-S).

1426
 1427 Results are entirely consistent with our previous conclusions related to FP8 scales: the wider dy-
 1428 namic range provided by UE5M1 achieves limited degradation in absence of a per-tensor scale. In
 1429 fact, applying such global scale has negligible effect on perplexity when using this format. How-
 1430 ever, compared to UE5M3, this format suffers from the loss of 2 bits of precision. On the other hand,
 1431 UE4M2 performs very poorly without per-tensor scale and we once again we observe a *perplexity*
 1432 *inversion* behavior. This can be effectively mitigated by means of a per-tensor scale (UE4M2-S).
 1433
 1434 With respect to the validation of our theoretical framework, we modeled these two microscaling
 1435 formats based on FP4 E2M1 elements and FP6 scales, either UE5M1 and UE4M2. MSE estimates
 1436 are reported in Fig. 15(a,b) across different block sizes. In the case of FP6 UE5M1 scales, no
 1437 crossover is observed between curves of different block size, consistently with absence of perplexity
 1438 inversion reported above. By contrast, MSE estimates for FP6 UE4M2 show similar features as FP8
 1439 E4M3 (as in Fig. 3c and Fig. 11), but accentuated by the moderate decrease in dynamic range and
 1440 lower precision brought about by the smaller mantissa. Interestingly, for FP6 UE4M2, crossover
 1441 occurs at larger σ compared to FP8 E4M3 (for example, at $\sigma \approx 3.8 \cdot 10^{-2}$ going from block size 16
 1442 to 8, compared to $\sigma \approx 2 \cdot 10^{-2}$ we reported in Sec. 3.2), which suggests even wider distributions,
 1443 and hence more models, would experience larger error at smaller block sizes. Hence, mitigation
 1444 becomes even more important as more aggressive quantization formats are deployed.

1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493 Figure 15: Theoretical MSE estimates for microscaling FP4 quantization with two FP6 scales for
1494 mats (without per-tensor scaling)

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

I ACCURACY USING UE5M3 VS. UE4M3 WITH PER-TENSOR SCALING

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

Figure 16: Across various LLMs, UE5M3 scales perplexity is consistently on par with UE4M3 scales using per-tensor scaling, and shows large improvements with respect to UE4M3 scales without per-tensor scaling.

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

Table 3: Accuracy under the proposed FP4 microscaling quantization schemes, at **block size 16**. Acronyms are the same as in Tab. 1

Model	Format	Wiki \downarrow	PIQA \uparrow	Hsw \uparrow	Wng \uparrow	GSM8K \uparrow	MMLU \uparrow
granite-3.3-8b	BF16	4.72	80.41	61.49	72.38	62.47	60.55
	UE4M3	6.45	78.50	56.98	70.71	30.17	50.67
	UE4M3-S	5.51	77.42	58.58	72.22	36.47	54.44
	UE5M3 (ours)	5.15	79.71	60.08	71.11	51.25	56.12
llama-3.1-8b	BF16	6.24	79.87	60.05	73.48	50.49	63.28
	UE4M3	7.20	77.91	57.96	70.64	36.09	56.37
	UE4M3-S	6.95	78.29	58.73	72.69	39.27	59.16
	UE5M3 (ours)	6.96	78.51	58.50	71.74	38.13	58.96
nemotron-nano-9b-v2	BF16	8.08	80.30	58.22	73.24	79.61	73.86
	UE4M3	8.95	79.60	57.57	70.24	71.03	71.49
	UE4M3-S	8.50	79.60	57.46	73.80	76.50	71.78
	UE5M3 (ours)	8.48	79.49	57.02	73.17	74.15	72.13
bambab-9b-v2	BF16	6.21	80.96	62.18	73.95	42.15	64.96
	UE4M3	13.95	78.13	51.72	65.59	10.39	44.85
	UE4M3-S	6.64	79.92	61.50	73.64	38.89	63.11
	UE5M3 (ours)	6.64	80.14	61.17	72.22	40.49	63.63

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

J ALTERNATIVE BIT REPURPOSING: FP8 UE4M4 SCALES

1566 The unused bit of FP8 E4M3 can be alternatively repurposed to extend the mantissa, instead of the
 1569 exponent. The resulting FP8 UE4M4 format for scales not only benefits from higher precision, but
 1570 also a moderately extended dynamic range: the lowest representable subnormal element decreases
 1571 from 2^{-9} to 2^{-10} . Based on our findings, this is expected to lower the error associated to scales
 1572 quantization. Fig. 17 confirms that UE4M4 is indeed beneficial, but UE5M3 remains the superior
 1573 solution, more effective and robust across various block sizes. In addition, it is important to remark
 1574 that, as mentioned in Section 3.1, the complexity of multiplication in hardware scales quadratically
 1575 with the number of mantissa bits M , once again favoring UE5M3 as the most hardware friendly
 1576 option.

1577

Figure 17: Perplexity gap for alternative scale format FP8 UE4M4.

1620
1621

K UE5M3 HARDWARE DESIGN

1622 We synthesized a systolic array processing engine (PE) with a microarchitecture similar to that
1623 described in Agrawal et al. (2021). The engine has eight Single Instruction Multiple Data (SIMD)
1624 lanes, and each lane contains multiple multiply-and-accumulate (MAC) engines, each performing
1625 MAC operations on multiple weights and input terms, corresponding to different precisions. Each
1626 SIMD lane supports BF16, FP8 (both E4M3 and E5M2), INT8, and microscaling FP4. Two versions
1627 of microscaling FP4 were synthesized: one with an E4M3 scale and the other with an E5M3 scale.

1628 Both E4M3 and E5M3 incur the same multiplier cost for processing the sum of FP4 product terms
1629 and the product of the scale mantissas. E5M3 requires a 5-bit adder to compute the product scale
1630 exponent, compared to a 4-bit adder for E4M3. The resulting product exponent is further sub-
1631 tracted from the 8-bit exponent of the inter-PE partial sum; therefore, the width of the subsequent
1632 adders/datapath remains unchanged.

1633 Logic synthesis was performed using a 4 nm process node in a production-grade EDA flow. The
1634 area for the E5M3 scale is 0.5% larger than that for the E4M3 scale, which is negligible and does
1635 not affect the bounding box area for place-and-route or subsequent SoC floorplanning. Critical path
1636 timing increases by 4 picoseconds, which is negligible for setting the SoC frequency. The intuition
1637 behind this small area/timing impact is that the effect of the wider adder is diluted by the arithmetic
1638 pipelines for other precisions, as well as non-arithmetic logic such as operand staging and the local
1639 register file for operand reuse.

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673