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ABSTRACT

While deep neural networks provide good performance for a range of challenging
tasks, calibration and uncertainty estimation remain major challenges. In this paper,
we propose the amortized conditional normalized maximum likelihood (ACNML)
method as a scalable general-purpose approach for uncertainty estimation, cal-
ibration, and out-of-distribution robustness with deep networks. Our algorithm
builds on the conditional normalized maximum likelihood (CNML) coding scheme,
which has minimax optimal properties according to the minimum description
length principle, but is computationally intractable to evaluate exactly for all but
the simplest of model classes. We propose to use approximate Bayesian inference
technqiues to produce a tractable approximation to the CNML distribution. Our
approach can be combined with any approximate inference algorithm that provides
tractable posterior densities over model parameters. We demonstrate that ACNML
compares favorably to a number of prior techniques for uncertainty estimation in
terms of calibration on out-of-distribution inputs.

1 INTRODUCTION

Current machine learning methods provide unprecedented accuracy across a range of domains, from
computer vision to natural language processing. However, in many high-stakes applications, such as
medical diagnosis or autonomous driving, rare mistakes can be extremely costly, and thus effective
deployment of learned models requires not only high expected accuracy, but also a way to measure
the certainty in a model’s predictions in order to assess risk and allow the model to abstain from
making decisions when there is low confidence in the prediction. While deep networks offer excellent
prediction accuracy, they generally do not provide the means to accurately quantify their uncertainty.
This is especially true on out-of-distribution inputs, where deep networks tend to make overconfident
incorrect predictions (Ovadia et al., 2019). In this paper, we tackle the problem of obtaining reliable
uncertainty estimates under distribution shift.

Most prior work approaches the problem of uncertainty estimation from the standpoint of Bayesian
inference. By treating parameters as random variables with some prior distribution, Bayesian
inference can compute posterior distributions that capture a notion of epistemic uncertainty and allow
us to quantitatively reason about uncertainty in model predictions. However, computing accurate
posterior distributions becomes intractable as we use very complex models like deep neural nets, and
current approaches require highly approximate inference methods that fall short of the promise of
full Bayesian modeling in practice.

Bayesian methods also have a deep connection with the minimum description length (MDL) principle,
a formalization of Occam’s razor that recasts learning as performing efficient lossless data compres-
sion and has been widely used as a motivation for model selection techniques. Codes corresponding
to maximum-a-posteriori estimators and Bayes marginal likelihoods have been commonly used
within the MDL framework. However, other coding schemes have been proposed in MDL centered
around achieving different notions of minimax optimality. Interpreting coding schemes as predictive
distributions, such methods can directly inspire prediction strategies that give conservative predictions
and do not suffer from excessive overconfidence due to their minimax formulation.

One such predictive distribution is the conditional normalized maximum likelihood (CNML) (Grün-
wald, 2007; Rissanen and Roos, 2007; Roos et al., 2008) model, also known as sequential NML or
predictive NML (Fogel and Feder, 2018b). To make a prediction on a new input, CNML considers
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every possible label and tries to find the model that best explains that label for the query point together
with the training set. It then uses that corresponding model to assign probabilities for each input
and normalizes to obtain a valid probability distribution. Intuitively, instead of relying on a learned
model to extrapolate from the training set to the new (potentially out-of-distribution) input, CNML
can obtain more reasonable predictive distributions by asking “given the training data, which labels
would make sense for this input?”

While CNML provides compelling minimax regret guarantees, practical instantiations have been
exceptionally difficult, because computing predictions for a test point requires retraining the model on
the test point concatenated with the entire training set. With large models like deep neural networks,
this can potentially require hours of training for every prediction.

In this paper, we proposed amortized CNML (ACNML), a tractable and practical algorithm for
approximating CNML utilizing approximate Bayesian inference. ACNML avoids the need to optimize
over large datasets during inference by using an approximate posterior in place of the training set. We
demonstrate that our proposed approach is substantially more feasible and computationally efficient
than prior techniques for using CNML predictions with deep neural networks and compares favorably
to a number of prior techniques for uncertainty estimation on out-of-distribution inputs.

2 MINIMUM DESCRIPTION LENGTH: BACKGROUND AND PRELIMINARIES

ACNML is motivated from the minimum description length (MDL) principle, which can be used
to derive a connection between optimal codes and prediction. We begin with a review of the MDL
principle and discuss the challenges in implementing minimax codes that motivate our method. For
more comprehensive treatments of MDL, we refer the readers to (Grünwald, 2007; Rissanen, 1989).

Minimum description length. The MDL principle states that any regularities in a dataset can be
exploited to compress it, and hence learning is reformulated as losslessly transmitting the data with
the fewest number of bits (Rissanen, 1989; Grünwald, 2007). Simplicity is thus formalized as the
length of the resulting description. MDL was originally formulated in a generative setting where the
goal is to code arbitrary data, and we will present a brief overview in this setting. We can translate the
results to a supervised learning setting, which corresponds to transmitting the labels after assuming
either a fixed coding scheme for the inputs or that the inputs are known beforehand. While MDL
is typically described in terms of code lengths, in general, we can associate codes with probability
distributions, with the code length of an object corresponding to the negative log-likelihood under
that probability distribution (Cover and Thomas, 2006).

Normalized Maximum Likelihood. Let θ̂(x1:n) denote the maximum likelihood estimator for a
sequence of data x1:n over all θ ∈ Θ. For any x1:n ∈ Xn and distribution q over Xn, we can define
a regret relative to the model class Θ as

R(q,Θ, x1:n)
def
= log pθ̂(x1:n)(x1:n)− log q(x1:n). (1)

This regret corresponds to the excess number of bits q uses to encode x1:n compared to the best dis-
tribution in Θ, denoted θ̂(x1:n). We can then define the normalized maximum likelihood distribution
(NML) with respect to Θ as

pNML(x1:n) =
pθ̂(x1:n)(x1:n)∑

x̃1:n∈Xn pθ̂(x̃1:n)(x̃1:n)
(2)

when the denominator is finite. The NML distribution can be shown to achieve minimax regret
(Shtarkov, 1987; Rissanen, 1996)

pNML = argmin
q

max
x1:n∈Xn

R(q,Θ, x1:n). (3)

This corresponds, in a sense, to an optimal coding scheme for sequences of known fixed length.

Conditional NML. Instead of making predictions across entire sequences at once, we can adapt
NML to the setting where we make predictions about the next data point based on the previously seen
data, resulting in conditional NML (CNML) (Rissanen and Roos, 2007; Grünwald, 2007; Fogel and
Feder, 2018a). While several variations on CNML exist, we consider the following:

pCNML(xn|x1:n−1) ∝ pθ̂(x1:n)(xn). (4)
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For any fixed sequence x1:n−1, pCNML solves the minimax regret problem

pCNML = argmin
q

max
xn

log pθ̂(x1:n)(xn)− log q(xn), (5)

where the inner maximization is only over the last data point xn.

We can extend this approach to the supervised classification setting, where our models represent con-
ditional distributions pθ(y|x). The CNML distribution, given a sequence of already seen datapoints
(x1:n−1, y1:n−1) and the next input xn, then takes the form

pCNML(yn|xn;x1:n−1, y1:n−1) ∝ pθ̂(y1:n|x1:n)(yn|xn), (6)

and solves the minimax problem

pCNML = argmin
q

max
yn

log pθ̂(y1:n|x1:n)(yn|xn)− log q(yn). (7)

We see that this conditional distribution is amenable to our usual inductive learning procedure, where
(x1:n−1, y1:n−1) is our training set, and we want to output a predictive distribution over labels yn for
a new test input xn.

Figure 1: CNML probabilities
with a logistic regression model.
Note that CNML provides uni-
form predictions (indicated by the
white color) on most of the input
space away from the training set
(shown in blue and orange dots).

CNML provides conservative predictions. For each query point,
CNML considers each potential label and finds the model that would
be most consistent with that label and with the training set. If that
model assigns high probability to the label, then minimizing the
worst-case regret forces CNML to assign relatively high probability
to it. In particular, compared to simply letting a model trained only
on the training set extrapolate blindly, we expect CNML to give
more conservative predictions on out-of-distribution inputs, since it
explicitly considers what would have happened if the new data point
had been included in the training dataset with each particular label.

We use a 2D logistic regression example to illustrate CNML’s con-
servative predictions, showing a heatmap of CNML probabilities in
Figure 1. CNML provides uniform predictions on most of the input
space away from the training samples. In Figure 2, we illustrate
how CNML arrives at these predictions, showing the predictions for
the parameters θ̂0 and θ̂1, corresponding to labeling the test point
(shown in pink in Figure 2, left) with either the label 0 or 1.

However, CNML may be too conservative when the model class
Θ is very expressive. Naïvely applying CNML with large model
classes can result in the per-label models fitting their labels for the
query point arbitrarily well, such that CNML gives unhelpful uniform predictions even on inputs we
would hope to reasonably extrapolate on. We see this in the 2D logistic regression example in Figure
1. Thus, the model class Θ would need to be restricted in some form, for example by only considering
only parameters within a certain distance from the training set solution as a hard constraint.

Figure 2: Given the labeled training set (blue and orange dots), we want to predict the label at the query
input (shown in pink in the left image), which the training set MLE θ̂train confidently classifies as the blue
class. However, CNML assigns a near-uniform prediction on the query point, as it computes new MLEs θ̂0
and θ̂1 (center and right images) by assigning different labels to the query point, and finds both labels are
consistent with the training data.
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(a) λ = 0.1 (b) λ = 1 (c) λ = 10

Figure 3: CNMAP probability heatmaps with different levels of L2 regularization λ ‖w‖22. We see
predictions are less conservative as regularization increases.

Another approach for controlling the expressivity of the model class is to generalize CNML to use
regularized estimators instead of maximum likelihood, resulting in normalized maximum a posteriori
(NMAP) (Kakade et al., 2006) codes. Instead of using maximum likelihood parameters, NMAP
selects θ̂s to be the parameter that maximizes both data likelihood and a regularization term, or prior,
over parameters, and we can define slightly altered notions of regret using these MAP estimators in
all the previous equations to get a conditional normalized maximum a posteriori distribution instead.
See Appendix D for completeness.

Going back to the logistic regression example, we plot heatmaps of CNMAP predictions in Figure 3,
adding different amounts of L2 regularization to the logistic regression weights. As we add more
regularization, the model class becomes effectively less expressive, and the CNMAP predictions
become less conservative.

Computational Costs of CNML. A major practical issue with actually utilizing CNML or CNMAP
with neural networks is the prohibitive computational costs of computing the maximum likelihood
estimators for each new input and label combination. To evaluate the distribution on a new test
point, one must solve a nonconvex optimization problem for each possible label, with each problem
involving the entire training dataset along with the new test point. This direct evaluation of CNML
therefore becomes computationally infeasible with large datasets and high-capacity models, and
further requires that the model carry around the entire training set even when it is deployed. In
settings where critical decisions must be made in real time, even running a single epoch of additional
training would be infeasible. For this reason, NML-based methods have not gained much traction as
a practical tool for improving the predictive performance of high-capacity models.

3 AMORTIZED CNML

In this section, we derive our method, amortized conditional normalized maximum likelihood
(ACNML). ACNML provides a tractable approximation for CNML and CNMAP via approximate
Bayesian inference. Instead of directly computing maximum likelihood parameters over the query
point and training set, our method uses an approximate posterior distribution over parameters to
capture the necessary information about the training set, and thus reduces the maximization to only
the single new point. The computational cost at test-time therefore does not increase with training
set size. We specialize our notation to the supervised learning setting, where our aim is to obtain a
predictive distribution p(yn|xn) after observing a training set (x1:n−1, y1:n−1) and a test input xn.

3.1 ALGORITHM DERIVATION

Incorporating an exact posterior into CNML. Given a prior distribution p(θ), the Bayesian poste-
rior likelihood conditioned on the training data is given by

p(θ|x1:n−1, y1:n−1) ∝ p(θ)pθ(y1:n−1|x1:n−1). (8)
We can write the MAP estimators in the CNMAP distribution for a fixed query input xn as

θ̂y = argmax
θ∈Θ

log pθ(y|xn) + log pθ(y1:n−1|x1:n−1) + log p(θ)︸ ︷︷ ︸
log p(θ|x1:n−1,y1:n−1)

(9)
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Algorithm 1 Amortized CNML (ACNML)

Input: Model class Θ, Training Data (x1:n−1, y1:n−1), Test Point: xn, Classes (1, . . . , k)
Output: Predictive distribution p(y|xn)
Training: Run approximate inference algorithm on training data (x1:n−1, y1:n−1) to get posterior
density q(θ)
for all possible labels i ∈ (1, . . . , k) do

Compute θ̂i = argmaxθ log pθ(i|xn) + log q(θ)
end for
Return p(y|xn) =

pθ̂y (y|xn)∑k
i=1 pθ̂i

(i|xn)

We can thus replace the training data log-likelihood pθ(y1:n−1|x1:n−1) with the Bayesian posterior
density log p(θ|x1:n−1, y1:n−1) when computing θ̂y . We can also recover CNML as a special case of
CNMAP by using a uniform prior, but as discussed previously, CNML with highly expressive model
classes can lead to overly conservative predictions, so we will opt to use non-uniform priors that help
control model complexity instead. For example, with deep neural networks, we may elect to use a
zero-mean Gaussian prior p(θ) on the network weights, corresponding to L2 regularization.

ACNML with an approximate posterior. Of course, the exact Bayesian likelihood is no easier to
compute than the original training log likelihood. However, we can derive a tractable approximation
by replacing the exact posterior p(θ|x1:n−1, y1:n−1) with an approximate posterior q(θ) instead.
We can obtain an approximate posteriors via standard approximate Bayesian techniques such as
variational inference or Laplace approximations. We focus on Gaussian posterior approximations
for computational efficiency, and discuss in Section 3.2 why this class of distributions provides a
reasonable approximation.

For practical purposes, we expect the approximate posterior log-likelihood to ensure the optimal θ̂y
selected for each label retains good performance on the training set. By replacing the likelihood
over the training data with the probability under an approximate posterior, it becomes unnecessary to
retain the training data at test time, only the parameters of the approximate distribution. Optimization
also becomes much simpler, as it no longer requires stochastic gradients, and the Gaussian posterior
log density log q(θ) can serve as a strong convex regularizer.

ACNML algorithm summary A summary of the ACNML algorithm is presented in Algorithm 1.
The training process for obtaining q(θ) only needs to be performed once on the training set, whereas
the inference step is performed for each test point. However, this inference step only requires
optimizing the model parameters on a single data point, with the regularizer provided by log q(θ).

3.2 ANALYSIS OF GAUSSIAN APPROXIMATIONS IN ACNML

In this section, we argue that using a Gaussian approximate posteriors in ACNML, which correspond
to second-order approximations to the training set log-likelihood, suffice for accurately computing
the CNML distributions when the training set is large. The intuition is that for large training sets,
the combined likelihoods of all the training points dominate over the single new test point, so
the perturbed MLEs θ̂y remains close to the original training set MLE θ̂, letting us rely on local
approximations to the training loss.

Under some simplifying assumptions, we can formalize this argument using the concept of influence
functions, which measure how maximum likelihood parameters (and more general M -estimators) for
a dataset would change if the dataset were perturbed by reweighting inputs an infinitesimal amount.

We recall that maximum likelihood estimators for a dataset with n datapoints (x1:n, y1:n) is given by

θ̂ = argmax
θ

1

n

n∑
i=1

log pθ(yi|xi). (10)

Influence functions analyze how θ̂ relates to the MLE of a perturbed dataset

θ̂x,y,ε = argmax
θ

(
ε log pθ(y|x) +

1

n

n∑
i=1

log pθ(yi|xi)

)
, (11)
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where θ̂x,y,ε is the new MLE if we perturb the training set by adding a datapoint (x, y) with a weight
ε. A classical result (Cook and Weisberg, 1982) shows that θ̂x,y,ε is differentiable (under appropriate
regularity conditions) with respect to ε with derivative given by the influence function

dθ̂x,y,ε
dε
|ε=0= −H−1

θ̂
∇θ log pθ̂(y|x), (12)

where θ̂ is the MLE for the original dataset and Hθ̂ the Hessian of the mean training set log-likelihood
evaluated at θ̂. CNML computes the MLE after adding datapoint (x, y) with equal weight to points in
the training set, which is precisely given by θ̂x,y,ε evaluated at ε = 1/n. Thus, for sufficiently large n,
a first order Taylor expansion around θ̂ should be accurate and the new parameter can be estimated by

θ̃x,y = θ̂ − 1

n
H−1

θ̂
∇θ log pθ̂(y|x), (13)

which is equivalent to solving

θ̃x,y = argmax
θ

1

n
(θ − θ̂)T∇θ log pθ̂(y|x) +

1

2
(θ − θ̂)THθ̂(θ − θ̂). (14)

This suggests that, with large training datasets, the perturbed MLE parameters θ̂y in Equation 9
can be approximated accurately using a quadratic approximation to the training log-likelihood,
corresponding to a Gaussian posterior obtained via a Laplace approximation. We can explicitly
quantify the accuracy of this approximation in the theorem below, which is based on Theorem 1 from
Giordano et al. (2019), with full details and proof in Appendix E.
Theorem 3.1. (Adapted from Giordano et al. (2019)) Consider a training set with n datapoints and
an additional datapoint (x, y). Assume assumptions 1-5 hold with constants Cop, CIJ,∆δ as defined
in Appendix E. Let θ̂x,y denote the exact MLE if we had appended (x, y) to the training set, and θ̃x,y
the parameter obtained via the approximation in Equation 13.

Let

δ =
1

n+ 2
max{sup

θ∈Θ
‖∇θ log pθ(y|x)‖1 , sup

θ∈Θ

ww∇2
θ log pθ(y|x)

ww
1
}. (15)

If δ ≤ ∆δ , then wwwθ̂x,y − θ̃x,ywww
2
≤ 2C2

opCIJδ
2, (16)

Given a bound on how accurately we estimate the new parameters for CNML, we can also explicitly
quantify the accuracy of the resulting normalized distributions, with proof in Appendix E.
Proposition 3.2. Suppose y ∈ Y with |Y| = k (classification with k classes). Let θx,y be the exact
MLE after appending the datapoint (x, y) to the training set, and let θ̃x,y be an approximate MLE

with
wwwθ̂x,y − θ̃x,ywww ≤ δ for each y. Further suppose log pθ(y|x) is L-Lipschitz in θ.

Denote the exact CNML distribution for the fixed input x to be pCNML(y) ∝ pθ̂x,y (y|x) and an
approximate CNML distribution pACNML(y) ∝ pθ̃x,y (y|x). We then have

sup
y
|log pCNML(y)− log pACNML(y)| ≤ 2Lδ. (17)

Theorem 3.1 and Proposition 3.2 together suggest that the approximation produced by ACNML will
be increasingly close to the exact CNML distribution as the training set size n grows. However,
this formal theoretical result only holds for sufficiently large datasets and under strong simplifying
assumptions including smoothness and strong convexity of the training loss, so does not necessarily
hold in practical settings with deep neural networks.

In the context of interpreting how different data points influence the predictions of neural networks,
Koh and Liang showed that influence function approximations were able to provide useful predictions
for estimating leave-one-out retraining with deep convolutional neural networks. This closely
resembles the conditions we encounter when computing parameters for each label of the query point
with ACNML, with the key difference being that ACNML adds a datapoint while leave-one-out
retraining removes one. This suggests second-order approximations to the training loss, corresponding
to Gaussian approximations in ACNML, may suffice to yield useful predictions about how parameters
change when the query point is added, despite lacking formal guarantees with deep neural networks.
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4 RELATED WORK

Minimum description length has been used to motivate neural net methods dating back to Hinton
and van Camp (1993), who treat description length as a regularizer to mitigate overfitting. The
idea of preferring flat minima (Hochreiter and Schmidhuber, 1997) also has its origins in the MDL
framework, as it allows a coarser discretization of the weights (and thus fewer bits needed).

Bayesian methods typically serve as the starting point for uncertainty estimation in deep networks,
and a commonly used approach is to use simple tractable distributions to approximate the true
posterior (Hoffman et al., 2013; Blundell et al., 2015; Ritter et al., 2018). Recent work (Maddox et al.,
2019; Dusenberry et al., 2020) has shown fairly simple posterior approximations are able to achieve
well-calibrated predictions with marginalization. Our method builds on top of these approximate
posterior methods, but in contrast to the Bayesian methods, where the posterior is typically used to
efficiently sample models for Bayesian model averaging, our method uses the posterior density to
enable efficient optimization for computing the CNML, without needing to retain the training data.

Ovadia et al. (2019) evaluate various proposed methods for uncertainty estimates in deep learning
under different types of distribution shift. They found that good calibration on in-distribution points
did not necessarily indicate good calibration under distribution shift, and that methods relying on
marginalizing predictions over multiple models (Lakshminarayanan et al., 2016; Srivastava et al.,
2014) gave better uncertainty estimates under distribution shift than other techniques. We show that
our method ACNML maintains much better calibration under distribution shift than prior methods.

Perhaps most closely related to our work, Fogel and Feder (2018b) advocate for the use of the CNML
distribution in the context of supervised learning (under the name predictive NML), citing its minimax
properties. Bibas et al. (2019b) estimate the CNML distribution with deep networks by finetuning
the last layers of the network on every test input and label combination appended to the training
set. Since this finetuning procedure trains for several epochs, it is very computationally intensive at
test-time and requires continued access to the entire training set when evaluating. In contrast, our
method amortizes this procedure by condensing the information in the training data into a distribution
over parameters, allowing for much faster test-time inference without needing the training data.

In the analysis for our approximation, we use influence functions (Cook and Weisberg, 1982), which
have been studied as asymptotic approximations to how M -estimators change when perturbing a
dataset. In deep learning, Koh and Liang advocated for using influence functions to interpret neural
nets, generate adversarial examples, and diagnose errors in datasets. We use a theorem from Giordano
et al. (2019), which broadened the necessary assumptions for these infinitisemal approximations to
be accurate and provides explicit guarantees for fixed datasets rather than asymptotic results.

5 EXPERIMENTS

To instantiate ACNML, we must select a method for obtaining the approximate posterior. In principle,
any technique for computing a tractable posterior over parameters can be used, and we demonstrate
this flexibility by implementing ACNML on top of Stochastic Weight Averaging - Gaussian (SWAG)
(Maddox et al., 2019), KFAC-Laplace (Ritter et al., 2018), and Bayes-by-backprop (Blundell et al.,
2015). SWAG computes a posterior by fitting a Gaussian distribution to the trajectory of SGD
iterates. For simplicity and computational efficiency, we instantiate ACNML with the SWAG-D
variant, which uses a Gaussian posterior with only a diagonal covariance. KFAC-Laplace uses a
Gaussian posterior approximation with the MAP solution as the mean and the inverse Hessian of the
negative log likelihood as covariance, approximating the Hessian using KFAC (Martens and Grosse,
2015) to allow for tractable inversion and storage. Bayes-by-backprop (Blundell et al., 2015) uses the
reparameterization trick to learn a diagonal Gaussian posterior via the variational lower bound.

For each model, we report results across 3 seeds. We compare negative log likelihood (NLL),
accuracy, and expected calibration error (ECE) (Naeini et al., 2015) as well as showing reliability
diagrams (Guo et al., 2017) to further assess calibration. For reliability diagrams, we sort data points
by confidence and divide them into twenty equal sized buckets, plotting the mean accuracy against
the mean confidence for each bucket. This allows to see qualitatively see how well the confidence of
the prediction relates to the actual accuracy, as well as showing how the confidences are distributed
for each method.
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(a) CIFAR10 Test (b) CIFAR10-C Corruption Level 3 (c) CIFAR10-C Corruption Level 5

Figure 4: Reliability diagrams plotting confidence vs. accuracy for VGG16 on in-distribution and out-
of-distribution data. ACNML provides more conservative predictions than other methods, resulting in
better calibration on out-of-distribution inputs. For the OOD task, we show results for the Gaussian blur
corruptions at levels 3 and 5, with level 5 corresponding to a higher amount of corruption. Each point
shows the mean confidence and mean accuracy within a bucket, so the spread of points along the x-axis
shows that ACNML makes more low confidence predictions than other methods.

MNIST Rotated MNIST (OOD)
NLL Accuracy ECE NLL Accuracy ECE

ACNML (ours) 0.1818 97.28$ 0.1013 2.766 37.34 0.1540
MAP 0.0864 97.28 0.0047 3.994 37.2 0.4371

Marginal 0.1069 97.22 0.0313 3.017 37.63 0.2928
naive CNML 0.0774 98.05 0.0231 3.100 37.33 0.2497

Table 1: Comparative results for ACNML on MNIST using a
posterior obtained via Bayes by Backprop.

MNIST. We start with a simple il-
lustrative task based on the MNIST
dataset, where we construct out-of-
distribution inputs by randomly rotat-
ing the images in the MNIST test set.
Here, ACNML is implemented on top
of Bayes-by-backprop (Blundell et al.,
2015), and we compare to the MAP estimate and the marginal over models obtained from the same
Bayes-by-backprop posterior. The results in Table 1 show that all methods perform well on the
in-distribution MNIST test set, though ACNML likelihoods are somewhat worse due to the more
conservative CNML distribution. On OOD rotated digits, we see that ACNML exhibits substantial
improvements in calibration as measured by the ECE metric, as well as slightly better NLL value.
In general, this agrees with what we expect from ACNML: the predictions are more conservative
across the board, which does not necessarily improve results in-distribution, particularly for easy
domains like MNIST, but offer considerable improvements in calibration for out-of-distribution inputs
where errors are prevalent. We additionally compared to a much more computationally expensive
instantiation of CNML used by Bibas et al. (2019a) (denoted naive CNML in Table 1), which di-
rectly finetunes for several epochs using the training set to obtain the optimal parameters for each
query point and label, rather than using the approximate posterior like ACNML does. This direct
instantiation of CNML performs the best in terms of accuracy and NLL on the in-distribution test set,
while also improving over the MAP solution in terms of NLL and calibration on the OOD inputs.
However, we find that ACNML is overall more conservative when using this particular posterior
approximation, resulting in better NLL and calibration on the OOD inputs (see Appendix C for more
detailed comparisons between ACNML and naive CNML).

CIFAR and Corruptions We evaluate all methods using the VGG16 (Simonyan and Zisserman,
2014) network architecture. Focusing on the most direct comparisons, we compare against the MAP
solution for the given posterior, which is equivalent to Stochastic Weight Averaging (SWA) (Izmailov
et al., 2018), and Bayes model averaging with SWAGD and KFAC-Laplace, which provide an
apples-to-apples comparison to the two versions of our method that directly utilize the posteriors from
these prior approaches. We use CIFAR10 (Krizhevsky, 2012) for training and in-distribution testing.
Following (Ovadia et al., 2019), we evaluate predictive uncertainty in out-of-distribution settings
using the CIFAR10-Corrupted (Hendrycks and Dietterich, 2019) datasets, which apply different
severities of 15 common corruptions to the test set images. With this, we can assess performance
over a wide range of distribution shifts, as well as how performance degrades as shifts become more
extreme. We include additional comparisons across other methods and architectures in Appendix B.

Examining the reliability diagrams in Figure 4, we see that ACNML provides more conservative (less
confident) predictions than other methods, to the point of being underconfident on the in-distribution
CIFAR10 test set, while other methods tend toward being overconfident. On out-of-distribution
datasets, where accuracy degrades, we see that ACNML’s conservative predictions lead to many better
calibrated low-confidence predictions, while other methods drastically overestimate confidence.
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(a) CIFAR10C VGG16 ECEs (lower is better) (b) CIFAR10C VGG16 NLLs (lower is better)

Figure 5: ACNML compared against their Bayesian counterparts and the deterministic MAP baseline on
out-of-distribution CIFAR10-Corrupted datsets. We plot medians and 95% confidence intervals across
all corruptions. We see that ACNML methods (solid lines) achieve much lower ECE at higher corruption
values, and ACNML with SWAGD also achieves better NLL than other methods.

All methods perform similarly in terms of accuracy in all domains, and we find that ACNML’s more
conservative estimates perform competitively with Bayesian methods in NLL and calibration on
in-distribution datasets, with all evaluated methods performing reasonably well in-distribution (see
Table 3 in Appendix B). However, differences in calibration are much more pronounced for the OOD
results in Figure 5. We see that as the corruption strength increases, ACNML variants provide much
better calibration while performing similarly to or slightly better than other methods in terms of NLL.

MNIST MLP VGG16 WRN28x10
ACNML (ours) 0.08s 0.37s 1.1s

naïve CNML (per epoch) 13.83s 102.0s 359.1s
feedforward inference 0.0001s 0.0013s 0.004s

Table 2: Inference time per input (in seconds).

Timing Comparison vs. standard
CNML: In Table 2, we examine the
computational costs of our method.
We compare against a naïve imple-
mentation of CNML that fine-tunes
forN epochs on each test point and la-
bel, similarly to the method proposed
by Bibas et al. (2019b). In total, predicting a single input with k possible labels involves running kN
epochs of training. While ACNML is over two orders of magnitude faster than naïve CNML even
with just a single epoch of training (our experiments with naive CNML on MNIST used 5 epochs), it
is still slower than standard inference. The computational requirements of our method scale linearly
with the number of classes, but are constant with respect to dataset size. It is also not easily amenable
to data batching, as new copies of the model parameters are needed for each data point. Timing
experiments are run using a single NVIDIA 1080Ti, using MNIST for the MNIST MLP timing reselts
and using CIFAR10 for VGG16 and WideResNet28x10, with no parallelization over data points.

6 DISCUSSION

In this paper, we present amortized CNML (ACNML) as an alternative to Bayesian marginalization
for obtaining uncertainty estimates and calibrated predictions with high-capacity models, such as
deep neural networks. The CNML distribution is a theoretically well-motivated strategy derived
from the MDL principle with strong minimax optimality properties, but actually evaluating this
distribution is computationally daunting. ACNML utilizes approximate Bayesian posteriors to
tractably approximate it, and can be instantiated on top of a wide range of approximate Bayesian
methods. We view ACNML as a step towards practical uncertainty aware predictions that would be
essential for real-world decision making. Future work could further improve on our proposed method,
for example by combining ACNML with more complex and expressive posterior approximations.
In particular, training losses are highly non-convex and have many local minima, so incorporating
local approximations around multiple diverse minima could allow for even more reliable uncertainty
estimation. More broadly, tractable algorithms inspired by ACNML could in the future provide
for substantial improvement in our ability to produce accurate and reliable confidence estimates on
out-of-distribution inputs, improving the reliability and safety of learning-enabled systems.
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A EXPERIMENTAL DETAILS

For obtaining approximate posteriors with SWAG and KFAC-Laplace, we follow the exact training
procedures given in Maddox et al. (2019). We then implement ACNML on top of the diagonal SWAG
posterior and the KFAC-Laplace posterior.

The variance of the SWAG posterior depends in a complex way on the learning rate and gradient
covariances. To account for this, we introduce an additional temperature hyperparameter α and solve
for the ACNML approximation using

θ∗ = argmax
θ∈Θ

log pθ(yn|xn) +
1

α
log q(θ). (18)

To calibrate α, we can calculate the CNML distribution using a validation set, by training on the entire
training set and the validation point, and then selecting α such that our ACNML procedure produces
similar likelihoods. We can also treat α as a tunable hyperparameter and select it using a validation
set, similarly to how temperature scaling (Guo et al., 2017) is used to achieve better calibration for
prediction, or how the relative weighting of priors and likelihoods are used in generalized Bayesian
inference (Vovk, 1990) or safe Bayesian inference (Grünwald et al., 2017) as a way to deal with model
misspecification. For our experiments using the SWAGD posterior, we heuristically tune α to be as
large as possible without degrading the accuracy compared to the MAP solution. Note, however, that
this procedure is specific to the particular way in which SWAG estimates the parameter distribution,
and any posterior inference procedure that explicitly approximates the posterior likelihood (e.g.,
Blundell et al. (2015)) would not require this step. To select α for each model class, we swept
over values [0.25, 0.5, 1, 1.5, 2] and selected the highest value such that accuracy and NLL on the
validation set did not degrade significantly compared to SWA. For VGG16, we use α = 0.5 and for
WideResNet28x10, we used α = 1.5.

With our posterior q(θ) being a Gaussian with covariance Σ, we approximately compute the MAP
solution for each label y as per Algorithm 1 by initializing θ0 to be the posterior mean and iterating

θt+1 = θt + εtΣ(α∇ log pθt(y|xn) +∇ log q(θt)), (19)

using the covariance as a preconditioner. For our experiments, we run 5 steps of gradient ascent on
this objective, with a constant step size ε = 0.5. We empirically find that 5 steps was often enough to
find an approximate stationary point with the SWAG-D posterior, and 10 steps for the KFAC-Laplace
posterior.

For the reliability diagrams in Figure 4, we again follow the procedure used by Maddox et al. (2019).
We first divide the points into twenty bins uniformly based on confidence (each bin has the same
number of points), then plot the mean accuracy vs mean confidence within each bin. This differs
from the reliability diagrams used by Guo et al. (2017), where they divide the range of confidence
values into bins uniformly, resulting in unevenly filled bins.

For our expected calibration error (ECE) numbers, we use the same bins as computed for our reliability
diagrams, and compute

ECE =

K∑
i=1

P (i) · |oi − ei| , (20)

where P (i) is the empirical probability a randomly chosen point lies in bin i, oi is the accuracy within
bin i, and ei is the average confidence in bin i.

We adapted the SWAG authors’ implementation at https://github.com/wjmaddox/swa_gaussian to
include the ACNML procedure for test time evaluation, and include a copy of the modified codebase in
the supplementary materials with instructions on how to reproduce our experiments. We additionally
include pretrained models that were used for our experiments. Experiments were conducted using a
mix of local GPU servers and Google Cloud Program compute resources.

For the MNIST experiments, we used a feedforward network with 2 hidden layers of size 1200, with
no data augmentation. The posterior is factored as independent Gaussians for each parameter, with
the prior for each parameter being a zero-mean Gaussian with standard deviation 0.1.
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CIFAR10 Results VGG16 WideResNet28x10
NLL Accuracy ECE NLL Accuracy ECE

ACNML-SWAGD (ours) 0.2180± 0.0041 93.23± 0.09 0.0246± 0.0010 0.1130± 0.0012 96.38± 0.03 0.0122± 0.0006
ACNML-KFAC (ours) 0.2329± 0.0028 93.14± 0.08 0.0361± 0.0016 - - -

MAP (SWA) 0.2694± 0.0056 93.23± 0.13 0.0430± 0.0010 0.1128± 0.0014 96.41± 0.01 0.0099± 0.0004
SWAGD 0.2257± 0.0047 93.31± 0.04 0.0284± 0.0002 0.1125± 0.0012 96.28± 0.04 0.0042± 0.0003
SWAG 0.2016± 0.0031 93.60± 0.10 0.0158± 0.0030 0.1122± 0.0009 96.32± 0.08 0.0088± 0.0006

KFAC-Laplace 0.2236± 0.0013 92.76± 0.11 0.0097± 0.0005 0.1197± 0.0031 96.23± 0.02 0.0111± 0.0006
SWA-Dropout 0.2562± 0.0025 92.85± 0.14 0.0380± 0.0007 0.1111± 0.0024 96.36± 0.09 0.0107± 0.0008

SWA-Temp 0.2481± 0.0245 93.61± 0.11 0.0366± 0.0063 0.1064± 0.0004 96.46± 0.04 0.0080± 0.0007
SGD 0.3285± 0.0139 93.17± 0.14 0.0483± 0.0022 0.1294± 0.0022 96.41± 0.10 0.0166± 0.0007

Table 3: In-distribution comparative results We see that for in-distribution performance, ACNML
variants perform comparably to other methods, without large separations between most methods. Results
for SWA-Temp and SGD are taken from Maddox et al. (2019).

B FURTHER EXPERIMENTAL RESULTS AND COMPARISONS ON CIFAR10

In addition to the comparisons in the main paper, we additionally compare to SWA-Gaussian (SWAG),
which uses a more expressive posterior than SWAG-D, and SWA with Monte Carlo Dropout (Gal and
Ghahramani, 2015) (SWA-Drop). For reference, we show in-distribution performance of all methods
in Table 3. Overall, performance differences between all methods are quite small, and ACNML’s
conservative predictions do not improve on NLL or ECE over some baselines on in-distribution
performance, which is to be expected, since the main aim of our method is produce more calibrated
predictions on out-of-distribution tasks.

For completeness, we show expanded results on CIFAR10-Corrupted in Figures 6, 7, and 8. With the
same architecture, all methods generally have very similar accuracy. ACNML consistently achieves
significantly better ECE on the more severe corruptions, and generally comparable or slightly better
NLL.

While evaluating MC-Dropout, we found that adding dropout before each layer in VGG16 (labelled
VGG16Drop in 7) significantly improved performance on CIFAR10-C. For fair comparisons, we
reran all methods with the VGG16Drop architecture as well.

13



Under review as a conference paper at ICLR 2020

(a) CIFAR10C VGG16 Accuracies (higher is better)

(b) CIFAR10C VGG16 ECEs (lower is better)

(c) CIFAR10C VGG16 NLLs (lower is better)

Figure 6: CIFAR10-C performance with the VGG16 architecture. Instantations of our methods are shown
in stripes. Boxplots show quartiles of each statistic over all different corruption types of the given intensity,
with the mean indicated by a circle. The accuracy (a) and NLL (c) for most methods are similar, but both
ACNML variants attain significantly better ECE (b) on the more severe corruptions, as the images move
further out of distribution.
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(a) CIFAR10C VGG16Drop Accuracies (higher is better)

(b) CIFAR10C VGG16Drop ECEs (lower is better)

(c) CIFAR10C VGG16Drop NLLs (lower is better)

Figure 7: CIFAR10-C performance with the VGG16Drop architecture. Instantations of our methods are
shown in stripes. Boxplots show quartiles of each statistic over all different corruption types of the given
intensity, with the mean indicated by a circle. Again, the accuracy (a) and NLL (c) for most methods are
similar, but both ACNML variants attain significantly better ECE (b) on the more severe corruptions, as
the images move further out of distribution.
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(a) CIFAR10C WRN28x10 Accuracies (higher is better)

(b) CIFAR10C WRN28x10 ECEs (lower is better)

(c) CIFAR10C WRN28x10 NLLs (lower is better)

Figure 8: CIFAR10-C performance with the WideResNet28x10 architecture. Instantations of our methods
are shown in stripes. Boxplots show quartiles of each statistic over all different corruption types of the given
intensity, with the mean indicated by a circle. Again, we see that ACNML attains better ECE values than
comparable methods on the heavier corruptions (b). Note that the best performing prior method, SWAG,
uses a substantially more expressive posterior than the diagonal approximation used by SWAGD+ACNML,
whereas the comparable SWAGD method attains worse ECE.
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(a) CNML Normalizers
∑
y pθ̂y (y|x) (b) NLLs (c) Confidences

Figure 9: In Distribution Comparisons between ACNML and naive CNML. We plot scatter plots of
the values of each statistic for naive CNML (x-axis) vs ACNML (y-axis), with the red line indicating
Looking at the CNML normalizers, we see that the ACNML adaptation procedure using the approximate
posterior is much less constraining than using the training set, resulting in the normalizers being higher for
ACNML than naive CNML for almost all inputs. This leads to excess conservatism, with ACNML almost
always having lower confidence its predictions, and many inputs with close to 0 NLL with naive CNML
having higher NLL with ACNML.

C COMPARISONS BETWEEN ACNML AND NAIVE CNML ON MNIST

In this section, we include expanded comparisons between ACNML and a naive implementation of
CNML from Bibas et al. (2019b) that computes the MLE/MAP θ̂y for each label by appending the
query point and label to the dataset and finetuning for N epochs. Both ACNML and naive CNML are
initialized from the same MAP solution, with ACNML taking 5 gradient steps on the query point and
posterior and naive CNML finetuning with the query point and training set for 5 epochs.

This naive implementation differs slightly from Bibas et al. (2019b) in that we finetune the entire
network, while Bibas et al. (2019b) proposed only tuning the last few layers. During the finetuning,
we also append the query point and label to every batch in optimization, and downweighting that
portion of the loss accordingly to get unbiased gradient estimates. We found this led to more efficient
optimization than randomly sampling

We first examine how closely ACNML and naive CNML’s predictions match on the same datapoint.
To assess this, we compare the CNML normalization terms

∑
y pθ̂y (y|x), NLLs, and the confidences

of the two methods. The CNML normalization term captures how much each procedure was able
to adapt to different labels for that input. A higher normalization term for an input means that we
were flexible enough to fit multiple different labels well together with the training set (or approximate
posterior in the case of ACNML), and typically means a less confident prediction on that input.

In Figures 9 and 10, We show scatter plots over 1000 randomly selected test points (from the in-
distribution test set and the rotated OOD images respectively) comparing the CNML normalizers,
NLLs, and confidences of ACNML and naive CNML. In each scatter plot, we include a diagonal red
line to illustrate where points would lie if predictions of ACNML and naive CNML matched exactly.

We additionally plot reliability diagrams for MNIST experiments in Figure 11.

For the in-distribution test set, we see from the CNML normalizer plot that the ACNML adaptation
procedure using the approximate posterior is much less constraining than using the training set,
resulting in the normalizers being higher for ACNML than naive CNML for almost all inputs. This
leads to excess conservatism, with ACNML almost always having lower confidence its predictions.
As a result, we see that on many points where naive CNML outputted confident correct answers
and achieved close to 0 NLL loss, ACNML still incurs some higher losses due to its less confident
predictions.

On the OOD rotated images, we again see that ACNML typically adapts more than CNML as
measured by the CNML normalizers, though the difference is much less extreme compared to the
in-distribution dataset. In the confidence scatter plot, we again see that ACNML tends to make lower
confidence predictions than naive CNML (especially when naive CNML’s predictions are confident),
and as seen in Table 1 and Figure 11, result in ACNML having better NLL and calibration on the
OOD inputs.
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(a) CNML Normalizers
∑
y pθ̂y (y|x) (b) NLLs (c) Confidences

Figure 10: OOD Comparisons between ACNML and naive CNML. We plot scatter plots of the values
of each statistic for naive CNML (x-axis) vs ACNML (y-axis). Looking at the CNML normalizers, we
again see that the ACNML adaptation procedure using the approximate posterior is less constraining than
using the training set, with the normalizers being higher for ACNML than naive CNML for most inputs
(though to lesser extent than the in-distribution data). ACNML again outputs more conservative predictions
with lower confidence on many inputs, which leads to better NLL and calibration on the OOD dataset,
unlike with the in-distribution test set.

(a) MNIST Test Set (b) Randomly Rotated MNIST (OOD data)

Figure 11: Reliability diagrams plotting confidence vs. accuracy for Bayes-by-Backprop experiments on
the MNIST test set and the randomly rotated MNIST test set (OOD). ACNML’s conservative predictions
provided better calibrated predictions on the OOD test set.

Handling multiple MLEs in CNML: Strictly speaking, the CNML distribution is not well defined
when there exist multiple potential MLEs θ̂y that can output different predictions (prior references to
CNML typically assume such MLEs are unique). However, the non-convexity of the objective for
deep neural networks means multiple MLEs can exist, and to properly define CNML in this case, we
would need to select a particular MLE to use when assigning probabilities in CNML. In line with
the min-max formulation of CNML, we propose to select the MLE θ̂y that maximizes the likelihood
pθ̂y (y|x) of the query point and proposed label, as this is the choice that maximizes the regret for that
particular label over all MLEs.

With our naive CNML instantiation, we observe that during the finetuning for each query point x and
label y, the predicted probability of that label pθ(y|x) does not monotonically increase over iterations
as we might hope (since we initialize θ to be the MLE of the training set, then update it to maximize
likelihood of the training set with the query point and label), but can potentially oscillate substantially
throughout the finetuning process. We suspect this is due to the stochasticity in the optimization
procedure from to sampling minibatches of the training data causing the trajectory of parameters
can potentially visit several different (approximate) local optima that output different predictions
on the query point. While our instantiation of naive CNML simply used the parameter found at the
end of 5 epochs, we additionally compare against a variant that explicitly tries to select the MLE
that maximizes the likelihood of the proposed label. This variant heuristically uses the bset value
of pθ(y|x) over all θ encountered in the last epoch of finetuning. We see in Table 4 that this variant,
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MNIST Rotated MNIST (OOD)
NLL Accuracy ECE NLL Accuracy ECE

ACNML (ours) 0.1818± 0.0032 97.28± 0.21 0.1013± 0.0006 2.766± 0.0197 37.34± 0.06 0.1540± 0.0023
MAP 0.0864± 0.0025 97.28± 0.21 0.0047± 0.0006 3.994± 0.072 37.29± 0.02 0.4371± 0.0094

Marginal 0.1069± 0.0067 97.22± 0.24 0.0313± 0.0010 3.017± 0.022 37.63± 0.31 0.2928± 0.0032
naive CNML 0.0774± 0.0024 98.05± 0.08 0.0231± 0.0001 3.100± 0.057 37.33± 0.34 0.2497± 0.0072

naive CNML (max over itrs) 0.0882± 0.0018 97.90± 0.23 0.0355± 0.0005 2.991± 0.021 37.34± 0.003 0.1858± 0.0075

Table 4: Expanded comparative results for ACNML on MNIST using a posterior obtained via Bayes by
Backprop.

denoted naive CNML (max over itrs), gives more conservative predictions than naive CNML and
improves in NLL and calibration on the OOD dataset.

D NMAP AND ACNML

NML type methods can be extended with a prior-like regularization term on the selected parameter,
resulting in Normalized Maximum a Posteriori (NMAP)(Kakade et al., 2006), also referred to as
Luckiness NML (Grunwald, 2004). For a regularizer given by log p(θ), NMAP assigns probabilities
according to

pNMAP(xn) ∝ pθ̂(xn)(x
n) θ̂(xn) = argmax

θ
log pθ(x

n) + log p(θ).

Similarly to CNML, there are several variations on NMAP or LNML that predict slightly different
distributions, but we adopt the one of the same form as our CNML. Similarly to how NML was
extended to CNML, NMAP can be extended to a conditional version, again with the θ̂’s being
chosen via MAP rather than MLE. As mentioned in Section 3.1, with a non-uniform prior, ACNML
actually approximates a version of conditional NMAP, with the Bayesian prior term on the parameters
corresponding to the additional regularizer.

We also note that with the calculations in section 3.1, we see that CNML can be viewed as performing
NMAP on the new test point, with a regularizer corresponding to the likelihoods on the training data.
In this perspective, ACNML approximates CNML by using an approximation to that training loss
regularizer.

E DETAILS OF ANALYSIS IN SECTION 3.2

E.1 BOUNDING ERROR IN PARAMETER ESTIMATION

Here we state the primary theorem of Giordano et al. (2019) along with the necessary definitions and
assumptions.

Here, we attempt to estimate an unknown parameter θ ∈ Ωθ ⊆ RD where Ωθ is compact. Suppose
we have a dataset N datapoints and a weight vector w1, . . . , wN . Let gi(θ) denote the gradient of the
loss at datapoint i evaluated at θ, and hi(θ) the Hessian. We can then define

G(θ, w) =
1

N

N∑
i=1

wigi(θ) (21)

H(θ, w) =
1

N

N∑
i=1

wihi(θ). (22)

The MLE θ̂(w) for the dataset weighted by w is given by solving for G(θ̂(w), w) = 0. Let 1w
denote the vector of weights consisting of all 1s. We define θ̂1 to be the MLE for the whole
unweighted dataset, which is equivalent to evaluating θ̂(1w) and also define the corresponding
Hessian H1 = H(θ̂1, 1w). We now wish to estimate θ̂(w) using a first order approximation around
θ̂1 given by

θ̂IJ(w) = θ̂1 −H−1
1 G(θ̂1,∆w), (23)
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where we define ∆w = w − 1w. The theorem will proceed to bound
wwwθ̂(w)− θ̂IJ

www
2

for suitable
weights w.

Now we further define g(θ) ∈ RN×D to be the concatenation of all gi(θ)s and similarly for h(θ) ∈
RN×D×D. We let ‖g(θ)‖p and ‖h(θ)‖p to refer to the p-norms when treating those as vector
quantities.

Assumption 1 (Smoothness): For all θ ∈ Ωθ each gn(θ) is continuously differentiable.

Assumption 2 (Non-degeneracy): For all θ ∈ Ωθ, H(θ, 1w) is nonsingular and

sup
θ∈Ωθ

wwH(θ, 1w)−1
ww
op
≤ Cop ≤ ∞. (24)

Assumption 3 (Bounded averages): There exist finite constants Cg and Ch such that
supθ∈Ωθ

1√
N
‖g(θ)‖2 ≤ Cg and supθ∈Ωθ

1√
N
‖h(θ)‖2 ≤ Ch.

Assumption 4 (Local Smoothness): There exists a ∆θ > 0 and a finite constant Lh such thatwwwθ − θ̂1

www
2
≤ ∆θ implies

‖h(θ)−h(θ̂1)‖
2√

N
≤ Lh

wwwθ − θ̂1

www
2
.

Assumption 5 (Bounded weight averages). 1√
N
‖w‖2 is uniformly bounded for all w ∈ W by a

finite constant Cw.

We note that assumption 2 is equivalent to H1 being strongly positive definite. Assumption 5 is not
relevant for our use cases, but is stated for completeness.

Condition 1 (Set Complexity): There exists a δ ≥ 0 and corresponding set Wδ ⊆W such that

max
w∈Wδ

sup
θ∈Ωθ

wwwww 1

N

N∑
i=1

(wi − 1)gi(θ)

wwwww
1

≤ δ. (25)

max
w∈Wδ

sup
θ∈Ωθ

wwwww 1

N

N∑
i=1

(wi − 1)hi(θ)

wwwww
1

≤ δ. (26)

Condition 1 essentially describes the set of weight vectors for which θ̂IJ will be an accurate approxi-
mation within order δ.

Definition 1: Given assumptions 1-5, define

CIJ = 1 +DCwLhCop (27)

∆δ = min{∆θC
−1
op ,

1

n
C−1

IJ C−1
op }. (28)

We now state the main theorem of Giordano et al. (2019).

Theorem (Error Bound for the approximation). Under assumptions 1-5 and condition 1,

δ ≤ ∆δ ⇒ max
w∈Wδ

wwwθ̂IJ(w)− θ̂(w)
www

2
≤ 2C2

opCIJδ
2. (29)

We can now apply the above theorem to provide error bounds for a setting where we have a training
set of n datapoints and wish to consider the MLE after adding a new datapoint z. The issue is that the
theorem as stated bounds the error of the approximation when the approximation is centered around
the uniform weighting over all the datapoints, which would be appropriate for considering the impact
of removing datapoints from the dataset.

To apply the theorem to bound the effects of adding a datapoint, we have to do some slight manip-
ulation. We apply the previous theorem with N = n+ 2, where gi(θ) correspond to the gradients
of training data point i for i in (1, . . . , n), gn+1 = −∇ log pθ(z), and gn+2 = ∇ log pθ(z), and
similarly for the Hessians hi(θ). We have thus added the query point to the dataset, as well as another
fake point that serves to cancel out the contribution of the query point under a uniform weighting, so
G(θ, 1w) and H(θ, 1w) are the mean gradients and Hessians for just the training set. Now supposing
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assumptions 1-5 are met for this problem, then we need to check condition 1 for the particular Wδ

that contains the vector w̄ of all 1s, except for a 2 in the last entry. We can then find the smallest δ
that satisfies

sup
θ∈Ωθ

wwww 1

N + 2
gn+2(θ)

wwww
1

≤ δ (30)

sup
θ∈Ωθ

wwww 1

N + 2
hn+2(θ)

wwww
1

≤ δ, (31)

and so long as δ ≤ ∆δ , applying the theorem bounds
wwwθ̂IJ(w̄)− θ̂(w̄)

www
2
.

Commentary: The above theorem gives explicit conditions for the accuracy of the approximation
that we can verify for a particular training set and query point. Under assumptions that we have some
limiting procedure for growing the training set such that the constants defined hold uniformly, we
can extend this to an asymptotic statement to explicitly say that the approximation error decays as
O(n−2).

E.2 BOUNDING ERROR IN THE RESULTING CNML DISTRIBUTION

We now provide the proof for Proposition 3.2, which we restate here. For notational simplicity, we
ignore any dependence on the input x, which we consider fixed.
Proposition E.1 (3.2). Suppose z ∈ Z with |Z| = k (for example classification with k classes). Let
θ̂z be the exact MLE after appending z to the training set, and let θ̃z be an approximate MLE withwwwθ̂z − θ̃zwww ≤ δ for all z. Further suppose log pθ(z) is L-Lipschitz in θ.

Denote the exact CNML distribution pCNML(z) ∝ pθ̂z (z) and an approximate CNML distribution
pACNML(z) ∝ pθ̃z (z). Then, we have the bound

sup
z
|log pCNML(z)− log pACNML(z)| ≤ 2Lδ. (32)

Proof. The assumed bound
wwwθ̂z − θ̃zwww

2
≤ δ combined with L-Lipschitzness implies a bound on

differences of logits of each class ∣∣∣log pθ̂z (z)− log pθ̂z (z)
∣∣∣ ≤ Lδ. (33)

We note that the log probabilities of the exact CNML distribution pCNML (pACNML is given by a similar
expression using θ̃z instead of θ̂z) is given by

log pCNML(z) = log pθ̂z (z)− log
∑
z′∈Z

pθ̂z′
(z′). (34)

For any z ∈ Z , we can then expand, apply the triangle inequality and then Equation 33 to obtain

|log pCNML(z)− log pACNML(z)| =

∣∣∣∣∣log pθ̂z (z)− log pθ̃z (z)− log
∑
z′∈Z

pθ̂z′
(z′) + log

∑
z′∈Z

pθ̃z′ (z
′)

∣∣∣∣∣
(35)

≤
∣∣∣log pθ̂z (z)− log pθ̃z (z)

∣∣∣+

∣∣∣∣∣log
∑
z′∈Z

pθ̂z′
(z′)− log

∑
z′∈Z

pθ̃z′ (z
′)

∣∣∣∣∣
(36)

≤ Lδ +

∣∣∣∣∣log
∑
z′∈Z

pθ̂z′
(z′)− log

∑
z′∈Z

pθ̃z′ (z
′)

∣∣∣∣∣ . (37)

We now bound the difference between the log-normalizers
∣∣∣log

∑
z′ pθ̂z′

(z′)− log
∑
z′ pθ̃z′ (z

′)
∣∣∣.
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We first let pmin(z) = min{pθ̂z (z), pθ̃z (z)} and pmax(z) = max{pθ̂z (z), pθ̃z (z)}, and note that
Equation 33 implies log pmax(z) ≤ log pmin(z) + Lδ for all z. We then bound the difference in
log-normalizers∣∣∣∣∣log

∑
z′∈Z

pθ̂z′
(z′)− log

∑
z′∈Z

pθ̃z′ (z
′)

∣∣∣∣∣ ≤ log
∑
z′∈Z

pmax(z′)− log
∑
z′∈Z

pmin(z′) (38)

= log

∑
z′∈Z pmax(z′)∑
z′∈Z pmin(z′)

(39)

= log

∑
z′∈Z exp(log pmax(z′))∑

z′∈Z pmin(z′)
(40)

≤ log

∑
z′∈Z exp(log pmin(z′) + Lδ)∑

z′∈Z pmin(z′)
(41)

= log
exp(Lδ)

∑
z′∈Z pmin(z′)∑

z′∈Z pmin(z′)
(42)

= Lδ. (43)

Plugging back into Equation 37, we have the following bound for all z ∈ Z

|log pCNML(z)− log pACNML(z)| ≤ 2Lδ. (44)
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