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ABSTRACT

The growing significance of RNA engineering in diverse biological applications
has spurred interest in AI methods for structure-based RNA design. Adapting ex-
isting biomolecular structure design methods for RNA presents challenges due to
RNA’s conformational flexibility and the computational cost of fine-tuning large
structure prediction models. We propose RNAFlow, a flow matching model for
protein-conditioned RNA sequence-structure co-design. Its denoising network in-
tegrates an RNA inverse folding model and a pre-trained RosettaFold2NA network
for generation of RNA sequences and structures. We enhance the inverse folding
model by conditioning it on inferred conformational ensembles to model the dy-
namic nature of RNAs. Evaluation on structure and sequence generation tasks
demonstrates RNAFlow’s advantage over existing RNA design methods.

1 INTRODUCTION

In recent years, RNA molecules have been engineered for versatile and controllable functions in
biological systems (Dykstra et al., 2022). However, experimental methods for high-throughput RNA
selection like SELEX (Gold, 2015) remain time-consuming and labor-intensive. To unlock the full
potential of RNA therapeutics, there is a pressing need for developing deep learning models to
automatically design RNAs that bind with a protein of interest (Sanchez de Groot et al., 2019).

State-of-the-art protein structure design method, RFDiffusion (Watson et al., 2023), fine-tuned
RoseTTAFold (Baek et al., 2021) to generate protein structures that meet complex constraints,
including conditional generation of protein binders. While we can adopt a similar approach for
RNA by fine-tuning a protein-nucleic acid structure prediction network like RoseTTAFold2NA
(RF2NA) (Baek et al., 2023), there are two major caveats. First, RNAs exhibit a high degree of
conformational flexibility, which is often the key to their biological function (Ganser et al., 2019). A
generative model that outputs a single structure may bottleneck the downstream sequence generation
process. Second, fine-tuning a large structure prediction network is computationally expensive.

In this paper, we propose RNAFlow, a flow matching model for RNA sequence-structure co-design.
The denoising network in RNAFlow is composed of an RNA inverse folding model and a pre-trained
RF2NA network. In each iteration, RNAFlow first generates a RNA sequence given a noisy protein-
RNA complex and then uses RF2NA to fold into a denoised RNA structure. For computational
efficiency, we train the inverse folding model to minimize the flow matching objective while keeping
RF2NA fixed. RNAFlow offers three advantages over previous methods. First, RNAFlow generates
an RNA sequence and its structure simultaneously. Second, it is much easier to train because we
do not fine-tune a large structure prediction network. Third, our framework enables us to model the
dynamic nature of RNA structures for inverse folding. Specifically, we utilize the final few structure
predictions from inference trajectories as an effective approximation of an RNA conformational
ensemble and enhance our inverse folding model to condition on dynamic RNA conformations.
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2 METHODS

Problem Formulation. RNAFlow receives the protein backbone atom structure P⃗ ∈ RLp×3×3,
where Lp is the number of residues, and each residue contains backbone atoms N , Cα, and C. The
protein sequence is also given as input where a single token is pi, i ∈ {0, 1, 2, . . . , Lp − 1}. The
model is trained to predict RNA sequence with tokens ri, i ∈ {0, 1, 2, . . . , Lr − 1}. The model also
predicts RNA backbone structure R ∈ RLr×3×3, where Lr is the number of nucleotides, and each
nucleotide contains backbone atoms P , C ′

4, and N1/N9 (pyrimidine/purine) (Wadley et al., 2007).

Background: Conditional Flow-Matching. By the flow matching framework (Lipman et al.,
2022), consider data distribution p1 of RNA backbone structures and a prior distribution p0(R⃗|R⃗1),
where R⃗1 is a sample from p1. A flow transforms p0 to p1, and this flow can be parameterized by
a sequence of time-dependent conditional probability paths pt(R⃗t|R⃗1), t ∈ [0, 1]. A sample from
pt can be computed by linear interpolation, as given by Equation 1, where R⃗0 is a sample from the
prior distribution.

R⃗t|R⃗1 = (1− t) ∗ R⃗0 + t ∗ R⃗1 (1)
To generate new data with these conditional flows, we define the time-dependent conditional vector
field vt(R⃗|R⃗1). vt gives the dynamics of the flow at each point along the conditional probability
path, and this vector field can be integrated from time 0 to time 1 to generate samples from p1
given a noise sample from p0. We aim to learn this vector field with a neural network trained with
the reparameterized conditional flow matching objective. Particularly, as with diffusion, the neural
network can conveniently be trained to predict samples from the data distribution.

We choose to employ flow matching rather than the related diffusion framework (Ho et al., 2020),
primarily due to computational efficiency. Diffusion inference often requires thousands of forward
passes to generate quality samples. Since our score model involves a large structure prediction
network, RNAFlow inference time would be much slower in a diffusion setting (Yim et al., 2023).
In contrast, quality samples can be generated by flow matching with a much fewer number of passes.

2.1 RNAFLOW: OVERVIEW

We generate RNA sequences and structures using a conditional flow matching model. The flow
matching score predictor is an inverse folding denoiser (Noise-to-Seq) and pre-trained folding net-
work. Noise-to-Seq is a geometric graph neural network conditioned on protein structure and se-
quence, pre-trained on the RNA inverse folding task and subsequently fine-tuned on the flow match-
ing objective. It follows the RNA inverse folding architecture presented by Joshi et al. (2023).

Initialization. As our prior distribution, we choose a unit Gaussian on R3 centered at zero, from
which we sample R⃗0. We also translate the true protein-RNA complex from our target data dis-
tribution [P⃗1, R⃗1] such that the center of mass of R⃗1 is zero. By this approach, we train with the
ground-truth pose of the protein relative to the RNA, though this is not leaked at inference time.

Figure 1: One forward pass in RNAFlow training.

Training. As shown in Figure 1, during training, we sample a timestep t and interpolate the true
RNA backbone with the sampled prior to arrive at noised backbone R⃗t. The true protein backbone,
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noised RNA backbone, and protein sequence are given as input to Noise-to-Seq which predicts a de-
noised RNA sequence {r̂i}∀i. RF2NA folds {r̂i}∀i into predicted structure R̂1. The reparameterized
flow matching objective gives that the score model should be trained with a standard L2 loss. There-
fore, as given in Equation 2, we compute the MSE between all predicted and true RNA backbone
coordinates. Before MSE computation, we Kabsch align the two RNA backbones. Additionally, we
supervise the sequence with cross entropy between predicted and true nucleotide types.

L = MSE(R̂1, R⃗1) +
∑
i

CE(r̂i, ri) (2)

The sequence output from Noise-to-Seq is used as input to RF2NA, and the resulting structure
is supervised. Since gradients must propagate between Noise-to-Seq and RF2NA, we apply the
Gumbel-Softmax estimator to differentiably sample from the predicted logits (Jang et al., 2016).

Inference: RNAFlow-Base. To avoid leaking the ground-truth pose of the RNA relative to the
protein, we generate a “pose guess” by folding a mock RNA sequence of all adenines and true
protein MSA with RF2NA. Prior R⃗0 is drawn from the prior distribution, and P⃗0 is the true protein
backbone aligned to the centered pose guess. Noise-to-Seq then predicts denoised sequence {r̂i}∀i,
which is folded into R̂1. R̂1 is linearly interpolated with the predicted backbone from the previous
timestep to re-noise the structure. Thus, RNAFlow iteratively predicts the true complex.

Inference: RNAFlow-Traj. In standard RNAFlow inference, Noise-to-Seq predicts a sequence
based on a single RNA structure. However, an RNA backbone structure can adopt multiple con-
formations, and it is important that the final RNA sequence reflects this conformational diver-
sity (Ganser et al., 2019). Indeed, Joshi et al. (2023) demonstrates that inverse folding on a set
of RNA conformations improves the native sequence recovery rate compared to single-structure
model. To this end, we propose to generate a final RNA sequence by conditioning on multiple RNA
structures generated over the course of flow matching inference. This inverse folding model, referred
to as Trajectory-to-Seq (Traj-to-Seq), is a multi-graph neural network which can handle multiple
RNA conformation inputs. Its architecture is detailed in section 2.3.

Output Rescoring Model. Since RNAFlow can be sampled many times to obtain several RNA
designs, we train an output rescoring model to select from amongst the samples based on predicted
recovery rate. Details are given in A.6.

2.2 NOISE-TO-SEQ MODULE

Graph Representation. We represent each backbone 3D point cloud [P⃗ , R⃗] as a graph G = (V, E).
Each amino acid i is assigned a node at Cα coordinate x⃗i ∈ P⃗ , and each nucleotide j is assigned
a node at C ′

4 coordinate x⃗j ∈ R⃗. We construct a nearest neighbors graph where node features
are denoted as V = {v1, . . . , vLp+Lr

} and edge features are denoted as E = {ei,j}i ̸=j . Graph
construction and featurization details are given in A.4.

Model. Noise-to-Seq is a graph-based inverse folding model where node and edge features are
encoded by message-passing GVP-GNN layers (Jing et al., 2020). The architecture is given in
A.5. We then incorporate protein and RNA sequence information with an embedding layer and
concatenate these features onto the edge features. By the autoregressive scheme, we mask out
sequence features for edges where the source node’s position is greater than the destination node’s
position. Our decoder’s architecture is identical to the encoder. Finally, we apply a softmax to
predict probabilities of the 4 nucleotide classes at each position, which is supervised by a cross
entropy loss.

2.3 TRAJ-TO-SEQ MODULE

Motivation. As shown in Figure 2, flow matching inference generates a trajectory of RNA struc-
tures over refinement steps. Traj-to-Seq is a graph-based inverse folding model that predicts RNA
sequences based on a flow matching output trajectory. At the final stages of the trajectory, the
structures have a high degree of secondary structure similarity while displaying variation in tertiary
structure, resembling a conformational ensemble (Fornili et al., 2013). Therefore, we can leverage
the outputs of a flow matching inference pass as a conformational ensemble approximation.
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Figure 2: One forward pass during Traj-to-Seq inference.

Model Inputs. We represent a trajectory of RNA backbones as a set of independent graphs
{G(1), ...,G(k)} where k is the number of conformers. Each node in G(n) corresponds to a nu-
cleotide j at C ′

4 coordinate x⃗j ∈ R⃗(n). Nearest neighbor edges are drawn between nodes of the
same conformer graph before constructing a “multi-graph.” As introduced by Joshi et al. (2023), a
multi-graph is constructed by stacking each RNA graph’s scalar and vector features and building a
joint adjacency matrix, computed as the union of each individual graph’s adjacency matrix.

Architecture. Traj-to-Seq employs the same encoder-decoder architecture as Noise-to-Seq. The
GVP encoder processes each structure independently, such that hvi ∈ Rk×f where f is the feature
dimension. A merged representation is computed by a structure order-invariant mean. Finally, a
decoder identical to Noise-to-Seq is employed to predict RNA sequence.

3 EXPERIMENTS

We evaluate RNAFlow in two experimental settings. First, we evaluate RNA sequence and struc-
ture prediction error with respect to existing protein-RNA complexes. Second, we evaluate whether
RNAFlow can design RNA aptamers for the GRK2 protein, given a known 4-nucleotide RNA bind-
ing sequence motif (Mayer et al., 2008; Lennarz, 2015).

3.1 STRUCTURE & SEQUENCE GENERATION

As mentioned, we evaluate two variants of our method: RNAFlow-Base which is based on Noise-to-
Seq and RNAFlow-Trajectory which additionally applies Traj-to-Seq. For both methods, we begin
by generating 10 structure-sequence pairs per protein in the test set. From amongst the 10 designs,
we additionally report the performance when 1 sample is selected by the output rescoring model.
All samples are generated with 5 integration steps.

Dataset. Protein-RNA complexes from the PDBBind dataset (2020 version) were used for training
and evaluation (Liu et al., 2017). Dataset preparation details are described in A.8. We perform all
experiments on two splits. The first accounts for RF2NA pre-training – all examples from complexes
in the RF2NA validation or test sets were assigned to the test split, and remaining examples were
randomly split into training and validation in a 9:1 ratio. We also evaluate on an RNA sequence
similarity split. All RNA chains were clustered using CD-HIT (Fu et al., 2012) where sequences
in the same cluster share ≥ 80% sequence identity, following the clustering protocol of Joshi et al.
(2023). The clusters were randomly split into train, validation, and test in an 8:1:1 ratio.

Traj-to-Seq was trained separately on RNASolo (Adamczyk et al., 2022), a dataset of RNA se-
quences and structures where many of the sequences are associated with multiple structure conform-
ers. At inference time, Traj-to-Seq is run on the final 3 structures in the flow matching trajectory.

Baselines. For structure generation, we compare against MMDiff (Morehead et al., 2023), an
SE(3)-discrete diffusion model that designs nucleic acid sequences and structures. We sample
10 RNA designs of the ground-truth RNA’s length per protein-RNA complex in our test set, con-
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Method RF2NA Pre-Training Split Sequence Similarity Split
RMSD lDDT RMSD lDDT

Conditional MMDiff 14.82± 1.01 0.34± 0.02 17.42± 0.86 0.38± 0.01
RNAFlow-Base 12.85± 0.63 0.51± 0.01 14.77± 0.34 0.57 ± 0.01
RNAFlow-Traj 13.12± 0.64 0.52 ± 0.01 15.11± 0.33 0.57± 0.00
RNAFlow-Base + Rescore 10.61 ± 1.73 0.53 ± 0.03 14.60 ± 1.05 0.56± 0.02
RNAFlow-Traj + Rescore 15.30± 1.89 0.52± 0.03 15.31± 0.93 0.56± 0.02
RF2NA [Upper Bound] 4.67± 1.29 0.76± 0.04 9.83± 1.69 0.79± 0.02

Table 1: Structure generation results. We report Mean ± SEM for RMSD and lDDT. RMSD is
computed after Kabsch alignment with the true RNA. lDDT is computed on Cα atoms.

Method RF2NA Pre-Training Split Sequence Similarity Split
Recovery Recovery

Random 0.25± 0.00 0.25± 0.00
LSTM 0.27± 0.01 0.24± 0.01
Conditional MMDiff 0.24± 0.02 0.22± 0.02
RNAFlow-Base 0.30± 0.02 0.30± 0.01
RNAFlow-Traj 0.31± 0.01 0.28± 0.01
RNAFlow-Base + Rescoring 0.33± 0.02 0.32 ± 0.03
RNAFlow-Traj + Rescoring 0.37 ± 0.05 0.29± 0.02
Inverse Folding [Upper Bound] 0.46± 0.01 0.35± 0.01

Table 2: Sequence generation results. We report Mean ± SEM for native sequence recovery.

ditioned on the protein backbone structure and sequence. As an upper bound, we compare against
RNA structures folded by RF2NA, given the ground-truth RNA sequence.

For sequence generation, we compare to a random baseline where RNA sequences of specified
length are generated by randomly selecting a nucleotide for each position. Next, we compare against
sequences designed by MMDiff. Our third baseline is a standard sequence-only model, consisting
of an LSTM layer to encode protein sequence and an autoregressive LSTM decoder layer to predict
RNA sequence. We establish an upper bound by comparing against results from our pre-trained
inverse folding model, which takes the ground-truth protein-RNA backbone complex as input.

Results. As shown in Table 1, RNAFlow outperforms the baseline on the structure generation task.
On the RF2NA and sequence similarity splits respectively, the best RNAFlow model gives a 28% and
16% reduction in RMSD relative to MMDiff. Without rescoring, RNAFlow gives a 15% reduction
in RMSD on both splits. Ablations and visualizations of RNA designs are given in A.7 and A.10.

As shown in Table 2, RNAFlow outperforms all baselines on the sequence generation task. On the
RF2NA split, the best RNAFlow model gives a 48% improvement over random generation and a
54% improvement over MMDiff. RNAFlow-Trajectory outperforms RNAFlow-Base, suggesting
that flow matching trajectories provide useful RNA dynamics information that is not present in
a single structure. Likewise, on the sequence similarity split, the best RNAFlow model gives a
28% improvement over random generation and a 45% improvement over MMDiff. RNAFlow-
Trajectory does not improve recovery, indicating that the generated trajectories may not approximate
conformational ensembles when trying to generalize to biologically dissimilar RNAs.

3.2 MOTIF-SCAFFOLDED DESIGN OF RNAS FOR GRK2

Design Procedure. For this task, we train RNAFlow on all protein-RNA examples except the
ground-truth GRK2-C28 protein-aptamer complex. We evaluate the structure and sequence accu-
racy of GRK2-conditioned RNA design given a 4-nucleotide binding site sequence motif. For all
methods, we sample 10 RNA designs and select 1 top design by the output rescoring model.

Results. As shown in Table 3, RNAFlow outperforms the baselines in terms of both RMSD and
recovery. Compared to MMDiff, RNAFlow-Trajectory gives an 22.85% improvement in RMSD and
a 68.75% improvement in recovery. Crucially, we observe that the sequence predicted by RNAFlow-
Trajectory recovers nucleotides on either end of the aptamer, far away from the given binding motif.
As noted by Tesmer et al. (2012), these stem regions are critical for the aptamer’s high affinity
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Figure 3: Designed RNAs for GRK2 binding. Green-colored characters show nucleotides that are
correctly recovered from the ground-truth. Underlined nucleotides are part of the given motif.

RMSD Recovery
LSTM - 0.29
MMDiff 9.19 0.32
RNAFlow-Base 8.44 0.43
RNAFlow-Trajectory 7.09 0.54

Table 3: GRK2 binder metrics.

because they “limit the number of possible conformations for the selected RNA.” Thus, we argue
that having conformational information is important to design these regions.

4 CONCLUSION

In this paper, we present RNAFlow, the first protein-conditioned generative model for RNA structure
and sequence co-design. We show that an inverse folding model is an effective score prediction
network within the flow matching framework, enabling the design of RNAs that outperform the
baselines in terms of structure and sequence accuracy. Additionally, we show that by inverse folding
over an inferred conformational ensemble, we can design plausible aptamers for GRK2 binding.
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A APPENDIX

A.1 RELATED WORK

Protein-Conditioned RNA Design. Early methods for computational design of protein-binding
RNAs involved generating a large number of RNA sequences and selecting by desired secondary
structure motifs Kim et al. (2010) or molecular dynamics Zhou et al. (2015); Buglak et al. (2020).
These approaches are computationally expensive and require specifying design constraints a priori,
which are often unknown for new protein targets. More recently, generative sequence-based ap-
proaches based on LSTMs and VAEs have been trained on SELEX data Im et al. (2019); Iwano
et al. (2022). However, these methods can only be trained for one protein at a time and cannot be
applied to proteins where SELEX data does not exist.

Unconditional RNA Design. Computational methods have been developed for RNA structure de-
sign, including classical algorithmic approaches Yesselman et al. (2019) and generative modeling
methods. In particular, Morehead et al. (2023) recently proposed an SE(3)-discrete diffusion model
(MMDiff) for joint generation of nucleic acid sequences and structures. While MMDiff can gener-
ate short micro-RNA molecules, it has trouble conditionally generating protein-binding RNAs and
samples of longer sequence length.

Deep learning methods for inverse folding generally apply graph-based encoders for a single RNA
structure Tan et al. (2023) or several conformers Joshi et al. (2023). We adapt an inverse folding
model to accept protein information as a condition and train on a denoising objective.

Protein Structure Design. Deep generative methods for protein design have demonstrated that
realistic protein backbones can be generated efficiently via flow matching Yim et al. (2023); Bose
et al. (2023). Prior work has also shown that diffusion models can be conditioned on a target protein
to generate functional protein binders Ingraham et al. (2023); Watson et al. (2023). We apply a
similar approach within the flow matching framework. Our work is also related to sequence-structure
co-design methods where the outputs are iteratively refined Jin et al. (2021); Stark et al. (2023).

A.2 RNAFLOW TRAINING AND INFERENCE ALGORITHMS

Training. As mentioned, we choose a unit Gaussian on R3 centered at zero as our prior distribution,
from which we sample R⃗0. We also translate the true protein-RNA complex [P⃗1, R⃗1] such that the
center of mass of R⃗1 is zero. As shown in Algorithm 1, we Kabsch align Kabsch (1976) the sampled
noise R⃗0 with the true RNA R⃗1 to eliminate global rotations, leading to faster training convergence
Klein et al. (2023).

Inference. As shown in Algorithm 2, we begin by generating a “pose guess” using RF2NA. Specif-
ically, we fold the protein MSA with a mock RNA sequence consisting of all adenines, of the same
length as the true RNA sequence. The predicted complex is used as an initial guess of protein pose
with respect to the RNA centroid. We translate the pose guess such that the RNA centroid is zero.
P⃗0 is the true protein backbone Kabsch-aligned onto the predicted protein pose, and R⃗0 is drawn
from the prior distribution. After R̂1 prediction, R̂1 is interpolated with the prior to re-noise the
structure for the subsequent inference iteration.

Algorithm 1 RNAFlow: Train

Require: {pi}∀i, {ri}∀i, [P⃗1, R⃗1]

Sample prior R⃗0 ∼ N (0, I3)
Lr

Kabsch align noise R⃗0 with true backbone R⃗1

Sample timestep t ∼ Uniform[0, 1]

Interpolate R⃗t ← t ∗ R⃗1 + (1− t) ∗ R⃗0

Predict {r̂i}∀i ← Noise-to-Seq{[P⃗1, R⃗t], {pi}∀i, t}
Predict R̂1 ← RF2NA{{r̂i}∀i}
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Algorithm 2 RNAFlow-Traj: Inference

Require: {pi}∀i, P⃗1

Position P⃗0 by aligning P⃗1 with RF2NA pose guess

Sample prior R⃗0 ∼ N (0, I3)
Lr

Initialize traj ← []

for n← 1 to N do
Let t2 ← n/N and t1 ← (n− 1)/N

{r̂i}∀i ← Noise-to-Seq{[P⃗t1 , R⃗t1 ], {pi}∀i, t1}
Predict [P̂1, R̂1]← RF2NA{{r̂i}∀i, protein MSA}
Append R̂1 to traj

Interpolate R⃗t2 ← R⃗t1 +
(R̂1−R⃗t1 )

(1−t1)
∗ (t2 − t1)

Align P⃗t2 ← Kabsch(P⃗1, P̂1)
end for
Predict {r̂i}∀i ← Traj-to-Seq{traj}
Outputs: {r̂i}∀i, traj[−1]

A.3 NOISE-TO-SEQ GRAPH CONSTRUCTION

Recall that we represent each backbone 3D point cloud [P⃗ , R⃗] as a graph G = (V, E). Each amino
acid i is assigned a node at Cα coordinate x⃗i ∈ P⃗ , and each nucleotide j is assigned a node at C ′

4

coordinate x⃗j ∈ R⃗. For all nodes x⃗i ∈ P⃗ , we draw edges to 10 nearest neighbor nodes whose 3D
coordinates are also in P⃗ . Likewise for all nodes x⃗i ∈ R⃗, we draw edges to 10 nearest neighbor
nodes whose 3D coordinates are also in R⃗. For all nodes x⃗i ∈ P⃗ , we additionally draw edges to 5

nearest neighbor nodes x⃗j ∈ R⃗. Nearest neighbors are computed by ∥x⃗i − x⃗j∥2.

We compute node features and edge features as follows. Node vector features include unit vectors
to neighboring nodes on the backbone chain and unit vectors to the remaining two atoms of the
nucleotide (P and N1/N9) or amino acid (N and C). Node scalar features include magnitudes of
all vector features, encoded by radial basis functions, and a one hot encoding of residue identity for
the protein chain. Edge vector features include a unit vector from the source node to the destination
node, and its magnitude encoded by radial basis functions is a scalar feature. Edge scalar features
also include distance along the backbone between the source and destination, encoded with a sinu-
soidal embedding. If the edge connects nodes in two different chains, the encoded number is equal
to Lp + Lr.

A.4 NOISE-TO-SEQ ARCHITECTURE

Here, we give the Noise-to-Seq encoder architecture. First, input node features vi and edge features
{ei,j}i ̸=j are encoded by GVPs.

hvi = gv(LayerNorm(vi))

hei,j = ge(LayerNorm(ei,j))

Node embedding GVP gv and edge embedding GVP ge apply the vector gating strategy proposed
by Jing et al. (2021). If the input structure is noised, we add a timestep embedding to the node
features, encoded by random Fourier features of size 256 Tancik et al. (2020) and concatenated onto
the scalar component of hvi . For every position i, hvi is residually updated by a sequence of three
message-passing layers where each layer has the following architecture:

mvi =
1

|N |
∑
j∈N

gMSG(hvi , hvj , hei,j )

h
′

vi = LayerNorm(hvi + Dropout(mvi))
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gMSG is a sequence of three GVPs with vector gating and ReLU activation on the scalar features.
After each message-passing layer, we also apply pointwise feedforward updates to the node embed-
ding.

h
′

vi = LayerNorm(h
′

vi + Dropout(gFF (h
′

vi)))

gFF is a sequence of two GVPs with vector gating and the ReLU activation on the scalar features.

For both splits, the Noise-to-Seq encoder and decoder GVP layers use a node scalar feature dimen-
sion of 128, node vector feature dimension of 16, edge scalar feature dimension of 32, and edge
vector feature dimension of 1. On both splits, the model was pre-trained for 100 epochs using an
Adam optimizer with a learning rate of 0.001, which takes a few hours on an NVIDIA A5000-24GB
GPU.

A.5 OUTPUT RESCORING MODEL

To train the output rescoring model, we generate 6 mutated RNA sequences for each ground-truth
protein-RNA complex. Binary labels are generated based on whether or not a generated RNA se-
quence has a recovery rate ≥ 30%. At test time, we evaluate many RNAFlow output samples for a
single protein and make selections based on the highest predicted probability of a positive outcome,
prioritizing designs with the greatest likelihood of achieving a recovery rate of at least 30%.

The inputs to the output scoring model are protein sequence, protein structure, RNA sequence,
and RF2NA-folded RNA structure. The protein and RNA are each encoded by a GVP model with
the same architecture as the Noise-to-Seq encoder, and the resulting node-level representations are
averaged and processed by a feed-forward network. The output is supervised by a binary cross
entropy loss.

Following Noise-to-Seq, the encoder and decoder GVP layers use a node scalar feature dimension
of 128, node vector feature dimension of 16, edge scalar feature dimension of 32, and edge vector
feature dimension of 1. The node output feature dimension is 256, and the final feedforward network
consists of three fully connected layers with ReLU activation. The model was trained for 50 epochs
using an Adam optimizer with a learning rate of 0.01.

A.6 ABLATION STUDY

We conduct an ablation study to determine which components of our model contribute to its per-
formance. As shown in Figure 4, we report recovery rate and RMSD on the sequence similarity
split under various conditions, since the sequence split is more general to a design setting. First,
we fine-tune Noise-to-Seq on sequence cross-entropy only, removing the structure MSE loss. When
this denoiser is used in the standard five-step flow matching loop, the RMSD increases by 1.25
compared to RNAFlow-Base, and recovery rate decreases by 1 percentage point. Next, we remove
protein conditioning and find that RMSD increases by 2.52, and recovery drops by 7 percentage
points, showing that providing protein information is important.

A.7 DATASET DETAILS

A.7.1 PDBBIND

We filter PDBBind to complexes where at least one protein Cα atom and RNA C ′
4 atom were within

7 Å, a threshold that has been used to perform alanine scans for protein-RNA interaction site analysis
Krüger et al. (2018). For complexes containing many protein-RNA interaction sites, we use the
interaction with least distance between the protein Cα atom and RNA C ′

4 atom. We filter to RNA
chains of length ≥ 6 and ≤ 96, and protein chains are contiguously cropped to length 50. As shown
in Figure 5, while there are many examples of short RNAs, the model is also exposed to several
longer RNA examples.

In the sequence similarity split, there are 1015 complexes in train, 105 in validation, and 72 in test.
The RF2NA split has 1059 complexes in train, 117 in validation, and 16 in test.
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Figure 4: Ablation study of RNAFlow components. We report RMSD and sequence recovery on the
sequence similarity split.

Figure 5: Distribution of RNA lengths in processed PDBBind dataset.

A.7.2 RNASOLO

As mentioned, we use the RNASolo dataset for Traj-to-Seq training. The dataset consists of RNAs
from apo RNA structures, protein-RNA complexes, and RNA-DNA complexes. On average, the
dataset contains 3 structures per sequence. Following Joshi et al. (2023), we filtered to structures
with resolution ≤ 3 Å. For the RF2NA split, we curate the Traj-to-Seq training set such that RNAs
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in our validation and test sets are not used for training. For the sequence similarity split, we remove
RNAs that have ≥ 80% similarity with data points in validation/test.

As shown in Figure 6, the distribution of RNA lengths in the dataset is somewhat bimodal, with
many sequences around length 10 and around length 75. In the sequence similarity split, there are
2314 distinct RNA sequences in train, 106 in validation, and 78 in test. In the RF2NA split, there
are 2370 distinct RNA sequences in train, 110 in validation, and 16 in test.

Figure 6: Distribution of RNA lengths in processed RNASolo dataset.

A.8 TRAINING AND ARCHITECTURE DETAILS

A.8.1 TRAJ-TO-SEQ

For both splits, the Traj-to-Seq encoder and decoder GVP layers use a node scalar feature dimension
of 128, node vector feature dimension of 16, edge scalar feature dimension of 64, and edge vector
feature dimension of 4. The model was trained for 100 epochs by an Adam optimizer with a learning
rate of 0.001.

A.8.2 RNAFLOW

We fine-tune RNAFlow for 100 epochs which takes one day on an NVIDIA A5000-24GB GPU, and
we use the Adam optimizer with a learning rate of 0.001.

A.8.3 LSTM

For both splits, the encoder’s hidden dimension is 128 which was selected by a hyperparameter
sweep, and the model was trained by an Adam optimizer with a learning rate of 0.001.

A.9 VISUALIZATIONS OF RNA DESIGNS
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Figure 7: Top: Structure and sequence design of RNA for interaction with a viral RNA-dependent
RNA polymerase (PDB ID: 4K4X). Bottom: Design of RNA for interaction with HIV-1 Rev protein
(PDB ID: 4PMI).
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