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Abstract: Perceiving the environment via cameras is crucial for Reinforcement
Learning (RL) in robotics. While images are a convenient form of representation,
they often complicate extracting important geometric details, especially with vary-
ing geometries or deformable objects. In contrast, point clouds naturally represent
this geometry and easily integrate color and positional data from multiple camera
views. However, while deep learning on point clouds has seen many recent suc-
cesses, RL on point clouds is under-researched, with only the simplest encoder
architecture considered in the literature. We introduce PointPatchRL (PPRL), a
method for RL on point clouds that builds on the common paradigm of divid-
ing point clouds into overlapping patches, tokenizing them, and processing the
tokens with transformers. PPRL provides significant improvements compared
with other point-cloud processing architectures previously used for RL. We then
complement PPRL with masked reconstruction for representation learning and
show that our method outperforms strong model-free and model-based baselines
on image observations in complex manipulation tasks containing deformable ob-
jects and variations in target object geometry. Videos and code are available at
alrhub.github.io/pprl-website.
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1 Introduction

In recent years, Reinforcement Learning (RL) for robots enabled solving increasingly complex
tasks [1, 2, 3]. A key factor contributing to these advancements is the development of representa-
tion learning techniques for encoding high-dimensional sensor data such as camera images or depth
maps into compact, low-dimensional representations [4, 5, 6]. There are a variety of learning objec-
tives to train visual representations for RL, such as image reconstruction [7], multi-view contrastive
loss [8], or multi-view consistency [9]. However, these methods struggle to extract 3D geometric
information about the scene and leave the handling of depth measurements under-explored. Not
being able to provide the policy with a 3D inductive bias for resolving ambiguities due to occlusions
or camera movement presents challenges for representations learned purely from pixels [10]. Point
clouds provide a natural representation of 3D geometry and can straightforwardly combine color and
positional information. In contrast to depth images, point clouds leverage the camera parameters to
obtain a common geometric representation from one or more camera views, alleviating the issues
of pixel-based approaches. While this requires measuring the relative poses between cameras, in
many cases this can be done without tracking markers or SLAM algorithms. For example, if all
cameras are mounted on the moving robot, the forward kinematics alone are sufficient. In addition,
policies trained in simulation on point clouds instead of color images may be easier transferable to
the real world [2, 11], since shapes are inherently easier to simulate than textures.
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Figure 1: Schematic of PointPatchRL(PPRL) with an auxiliary masked reconstruction loss trained
end-to-end for RL. Top: We train a patching-based tokenizer and transformer encoder to compute a
latent embedding for the RL policy and state-action-value estimation using sequence pooling. The
entire pipeline learns using the critic’s gradients while we detach the latent embedding before pro-
viding it to the actor. Bottom: We augment the policy learning using masked reconstruction. Using
the token sorting, masking, and transformer decoder introduced by PointGPT [17], we minimize the
Chamfer distance for the point’s positions and the mean squared reconstruction error for colors. This
auxiliary loss provides an additional training signal for the shared encoder and tokenizer, improving
RL performance and sample efficiency.

Since the introduction of PointNet [12] for processing raw point clouds directly, the number of
methods in this field has grown considerably [13, 14, 15, 16, 17]. However, the use of these
encoder architectures in the context of reinforcement learning is relatively under-explored.

In this work, we introduce PointPatchRL (PPRL), which builds on recent patching-based methods
for point clouds such as Point-BERT [15], Point-MAE [16] and PointGPT [17]. These methods
first divide the point clouds into overlapping patches, which are then tokenized and processed by a
Transformer encoder [18]. By following this approach, PPRL can leverage the intrinsic geometric
properties of point clouds to learn dense representations that capture the task-relevant features of the
environment directly from raw point cloud data. We show that providing this representation to a Soft
Actor-Critic [19] agent and training the encoder and tokenizer jointly with the critic already gives
successful results compared to most point cloud-based and image-based baselines. We then extend
PPRL with components from PointGPT [17] and introduce a masked reconstruction objective to
increase the geometric information encoded in the latent representation. This modification requires
adapting the padding and matching procedure to support point clouds of any size and integrating
point-level color features. We demonstrate that PPRL combined with this auxiliary loss further
improves performance, especially in more challenging mobile manipulation environments and tasks
with varying object geometries and moving cameras. A schematic overview of our architecture and
learning pipeline is given in Figure 1.

To summarize our main contributions: (i) we introduce PPRL, a novel, patching-based approach for
RL on point clouds. (ii) We augment PPRL using a masked reconstruction learning objective that
further significantly improves the performance of our agents. (iii) We empirically demonstrate the
capability of our method to solve complex simulated robotics tasks conditioned on color and depth
information relative to other point cloud-based and image-based approaches.

2 Related Work

Image Representations for RL. Images are a natural and versatile observation modality when using
Reinforcement Learning (RL) in unstructured environments. However, naively using images as
inputs to actor and critic networks often results in poor sample complexity, poor performance, or
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both. Previous works propose sophisticated approaches such as image augmentation [20, 21, 22],
autoencoding-based reconstruction [23, 7, 4], or other self-supervised methods [24, 25]. Driess et al.
[9] learn a representation with the help of a multi-view consistency objective using Neural Radiance
Fields (NeRF). Of particular importance to our work are approaches using masked autoencoding [26]
on images for RL. Xiao et al. [5] use a pre-trained masked autoencoder for on-policy RL. Seo et al.
[27] train a Dreamer world model [7] in the latent space of a masked autoencoder. They show that
naively masking image patches can be suboptimal for RL and instead mask convolutional features.
In subsequent work, they extend their approach to handle multiple viewpoints and make it robust
to viewpoint perturbations [28], properties which are shared implicitly by our point cloud-based
approach. While these approaches can be extended to depth images, we argue that point clouds are
a more natural representation of the scene’s geometry, as they leverage the camera geometry and
straightforwardly merge points from multiple cameras into the same coordinate frame.

Point Cloud Representation Learning. Since the advent of PointNet [12], many neural network ar-
chitectures for point clouds have been developed, mainly for classification and segmentation tasks.
PointNet++ [13] improves upon PointNet by using the Farthest Point Sampling algorithm to hi-
erarchically partition the point cloud. PointTransformer [14] introduces a transformer backbone
for point cloud processing, iteratively applying vector attention on point-level features within a
small neighborhood and downsampling similar to PointNet++. Point-MAE [16] adapts the popu-
lar masked autoencoding paradigm to learn point cloud embeddings, dividing the point cloud into
patches, masking them, and using a transformer to reconstruct the masked patches. The network
is trained to minimize the Chamfer distance between the reconstruction and the ground truth in the
masked point patches. Point-BERT [15] uses block masking instead of random masking and pre-
dicts discrete point tokens instead of continuous ones. Point-GPT [17] addresses several weaknesses
in Point-MAE and leverages the successful auto-regressive inference paradigm used in natural lan-
guage processing. Despite their success, many of these architectures have never been used for RL,
and we show that using the more modern point patching approach with an auxiliary objective as in
PointGPT [17] improves performance on challenging (mobile) manipulation tasks.

RL with Point Clouds. Despite recent advances in point cloud processing, RL on point clouds for
robotics is under-researched, with the most common application being dexterous manipulation of
objects [29, 3, 30]. Huang et al. [29] use a pretrained PointNet feature extractor to learn a general
dexterous manipulation policy capable of in-hand orientation of various objects. Chen et al. [3] train
a sparse 3D CNN feature extractor end-to-end using a student-teacher learning method, where the
teacher has access to privileged state information, while the student only relies on point clouds and
proprioception. Wu et al. [30] use imitation learning to solve the dexterous manipulation task, also
employing a pretrained PointNet that is finetuned during behavior cloning. Liu et al. [31] explore the
impact of different coordinate frames on tasks from ManiSkill2 [32] with point cloud observations
combined with proprioception. Ling et al. [33] study the effectiveness of point cloud-based RL com-
pared to image-based RL on a mix of two-dimensional and three-dimensional environments. They
find that point cloud observations offer benefits over image observations in environments where un-
derstanding agent-object and object-object relationships is important and that a PointNet encoder
outperforms a 3D SparseConvNet [34]. Wan et al. [35] make use of PointNet+Transformer [36],
but this requires a segmented point cloud, which is not always available. Peri et al. [37] investigate
the use of an encoder based on PointConv [38] for RL in latent imagination. However, a systematic
comparison of point cloud encoder architectures is missing in the literature. In particular, there are
no works that make use of the point patching paradigm, which we show empirically to be a powerful
approach on complex 3D (mobile) manipulation tasks.

3 PointPatchRL

PointPatchRL (PPRL) assumes point clouds X ∈ Rm×3 with m points. Here, the size m can vary
between the individual point clouds X encountered during RL and we thus design an encoder to
compute a fixed-length embedding containing all task-relevant information provided by X . We then
provide this embedding to an actor and a critic which we train using a soft actor-critic (SAC) [19].
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Our point cloud encoder is based on the point patching paradigm [15, 16, 17] with a transformer
backbone, adapted to handle point clouds of arbitrary size. If additional color information is avail-
able for the points, we can include it by appending corresponding features to each point. We use
a sequence pooling layer to obtain the fixed-length embedding required for RL. Besides training
the encoder solely using the critic loss, we consider augmenting training by explicit representation
learning. We do so using PointGPT [17], which learns representations via the reconstruction of
masked point patches. During training, we separately compute the reconstruction loss with masking
and the RL loss based on an embedding without masking, as illustrated in Figure 1.

3.1 Point Patch RL (PPRL)

Tokenization. To process the point cloud X using a transformer, we first need to tokenize it. Here,
grouping many points into a single token is desirable, as point clouds have low information density.
Thus, we sample n points as centroids C = fps(X), C ∈ Rn×3 using Farthest Point Sampling
(FPS) [13], which ensures good coverage and an even distribution of the centroids. Subsequently,
we conduct a K-Nearest Neighbours (k-NN) search to select the k nearest points of each centroid to
obtain (potentially overlapping) point patches P = knn(X,C), P ∈ Rn×k×3. The coordinates
of all points in a patch are normalized relative to the centroid’s position. A lightweight version of
PointNet [12], consisting of two MLPs and two max-pooling layers, converts point matches P into
input tokens T ∈ Rn×D of size D.

Transformer Architecture. A standard transformer encoder receives the sequence of tokens T and
produces a new sequence of encoded tokens. To this end, we also need to encode the position of each
centroid and add it to the respective token. As in PointGPT, we add sinusoidal positional encodings
of the centroids’ locations to the tokens.

Reinforcement Learning. We utilize soft-actor critic (SAC) which is a popular algorithm due to
its sample efficiency. SAC learns a policy and a state-action value function network, which both
require a fixed-length embedding as input vectors. We use a sequence pooling layer [39] to obtain
this embedding. This layer computes a weighted sum over all input tokens, where the weight of each
token is a function of that token, i.e.,

T pooled = wTT with w = softmax(g(T )) and T pooled ∈ Rd.

where g is a linear layer. Compared with using an explicit query token to compute a fixed-length
embedding, sequence pooling can improve the performance of small transformer networks [39].

If low-dimensional state observations are also available, they are projected with a linear layer to the
same dimensionality as the point cloud embedding, and then concatenated with the embedding. Ac-
tor and critic networks share a single point cloud encoder, which is updated only with the gradients
from the critic loss, as is standard practice in off-policy RL [24, 22].

3.2 Representation Learning Using Masked Reconstruction

We extend PPRL with a masked reconstruction objective, to benefit from an additional geometric
learning signal. By adding sorting, masking, and a transformer decoder to our architecture, we
obtain a modified version of PointGPT. Unless noted, all details below follow PointGPT.

After tokenization, the tokens are sorted according to the Morton order [41] (Z-order curve), which
maps n-dimensional data to one dimension while preserving the locality of the data points. Because
nearby point patches remain close to each other after sorting, the model can rely on neighboring
tokens to inform the reconstruction. In contrast to the transformer encoder, the transformer de-
coder does not receive the encodings of the absolute positions of point patches, but only the relative
direction between subsequent patches is encoded, i.e.,

Er
i = ϕ

(
Cs

i −Cs
i−1

∥ Cs
i −Cs

i−1 ∥2

)
, for i ∈ {2, . . . , n}, and Er

1 = CS
1

where Cs
i is the ith centroid of the ordered list of centroids. This avoids leaking global informa-

tion about the point cloud structure through the positional embeddings to the decoder. The masking
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Figure 2: Average success rates and 95% Bootstrap Confidence Intervals [40] for all methods on 2
sofaenv and 4 ManiSkill2 environments. Our method, PPRL + Aux, achieves top performance
on 5 of 6 environments. On DeflectSpheres, ThreadInHole, and PushChair, PPRL without represen-
tation learning achieves roughly the same success as PPRL + Aux, demonstrating the effectiveness
of our neural network architecture even without auxiliary learning objectives. On OpenCabinet-
Drawer and OpenCabinetDoor, two challenging tasks with non-trivial variations in scene geometry,
adding an auxiliary reconstruction loss significantly improves learning, and is required for solving
the task. On TurnFaucet, DrQ-v2 outperforms our method, potentially due to the availability of a
static camera, making the learning task easier for image-based methods.

combines random and causal masking as detailed in Appendix B. Finally, a one-layer prediction
head reconstructs point patches from the decoded tokens. The loss is the symmetric Chamfer dis-
tance [15] between the reconstructed and ground truth patches, which measures the average distance
of each point in the ground truth patch to the closest point in the reconstructed patch and vice-versa.

Variable Point Cloud Size. While standard representation learning commonly assumes fixed-sized
point clouds, in RL, their sizes can vary by orders of magnitude, especially in environments with a
moving camera. For point clouds smaller than a fixed minimum size, PointGPT duplicates random
points, which may distort objects’ point density and add redundant information. To alleviate this
problem, we add padding tokens to the input sequence and adjust the masking procedure to maintain
a constant ratio of masked and visible tokens among non-padding tokens while ensuring a consistent
length for all sequences in a batch.

Reconstruction of Color Features. Although most point cloud representation learning methods
ignore point-level features such as color, color may be useful in many tasks. We generalize PPRL
and PointGPT to include color by adding color features to the points, which are used as inputs by the
tokenizer as well as by the reconstruction loss. We will denote x = [xxyz,xrgb], x ∈ R6 as a single
point consisting of the coordinate component xxyz ∈ R3 and the color component xrgb ∈ R3. The
color reconstruction minimizes the MSE between the predicted color of each point in the predicted
point cloud P pd

i of patch i and the color of the nearest point in the ground truth point cloud P gt
i , i.e.,

Lrgb(P pd
i ,P gt

i ) =
1

| P pd
i |

∑
a∈P pd

i

(
argb − nn(axyz,P gt

i )
)2
, (1)

where nn(axyz,P gt
i ) returns the color of the nearest point to axyz in the ground truth point cloud P gt

i .
These correspondences are already available through the Chamfer distance computation. The final
auxiliary loss (referred to as Aux, i.e. PPRL + Aux) is then the sum of Chamfer loss and the color
reconstruction loss.
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Figure 3: Visualization of successful PPRL + Aux trajectories on the OpenCabinetDoor environ-
ment from a static rendering camera that the agent does not have access to. Each column shows a
single episode. Agents trained with PPRL + Aux adapt to varying geometries, including handle size
and orientation, and whether the door opens to the left or right. Our method is able to coordinate the
movements of the gripper and the base and generalize well over these factors.

4 Experiments

We compare our method with the auxiliary representation learning loss (PPRL + Aux) and
without it (PPRL) on 6 challenging visual robotic manipulation tasks from sofaenv [42] and
ManiSkill2 [32]. These environments highlight PPRL’s ability to infer non-trivial geometric infor-
mation from multiple viewpoints and moving cameras. We compare several ablations using different
point cloud architectures to showcase the benefits of using point patching with a transformer. Fur-
ther, we compare against SOTA image-based RL approaches to demonstrate the merits of using
point clouds. We report the average success rate and 95% Bootstrapped Confidence Intervals [40].
All results are averaged over 8 seeds, except for methods that fail1 where we only run 4.

Environments. sofaenv [42] provides environments for robot-assisted surgery, focusing on tasks
involving deformable objects. For these tasks, the camera’s position and orientation change for
each trajectory, mimicking viewpoint changes encountered during surgery with endoscopic cameras.
This is exceptionally challenging for most image-based approaches but reflects the desiderata of
deploying a learning agent in a real-world system without tedious camera calibration. Furthermore,
the deformable nature of the objects involved prevents access to concise state information.

ManiSkill2 [32] provides challenging robot manipulation tasks, including varying object geome-
tries by sampling object models randomly from PartNet [43] (e.g., cabinets, chairs, faucets, etc.).
PushChair, OpenCabinetDrawer, and OpenCabinetDoor are mobile manipulation tasks, using 3
cameras mounted above the mobile robot. TurnFaucet exhibits static manipulation and uses 2 cam-
eras, mounted to the mobile gripper and the static base. Point clouds are given in the egocentric
perspective, which is especially challenging for mobile manipulation, as this reference frame is not
static. The agent additionally has access to proprioception and the target location and pose.

We train on ThreadInHole, PushChair, and TurnFaucet without color, while we use color features
for DeflectSpheres, OpenCabinetDrawer, and OpenCabinetDoor, where color is either necessary or
helpful for detecting the target. Appendix A provides details for all environments.

Ablations and Baselines. We compare our encoder against several popular point cloud architectures
from the literature. We consider PointNet [12], which has previously been used in the literature
for RL on point clouds, as well as its successor PointNet++ [13]. To investigate the benefit of
transformer-based architectures, we consider PointTransformer [14].

1Failing means that none of the 4 seeds ever reached > 10% success.
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Figure 4: Average success rates and 95% Bootstrap Confidence Intervals for agents trained with
PPRL + Aux on selected environments with varying numbers of object models. Although there is a
general trend that more object models reduce success rates, the effect is not always strong, showing
that the encoder can generalize well. OpenCabinetDrawer performs approximately the same for 5,
10, or 15 object models, and only begins to decrease for 25.

Additionally, we compare PPRL against several SOTA image-based RL approaches, to showcase
the benefits of using point clouds. First, we compare against the model-free DrQ-v2 [22] and the
model-based Dreamer [7] approaches. To ensure all approaches receive the same information, both
get the full RGBD images from all available cameras. Finally, we compare PPRL against Multi-
View Masked World Models (MV-MWM) [28], which is tailored to integrate image observations
from different camera perspectives and uses a Dreamer-based world model to do sensor fusion in a
latent space. Appendix B provides details on the hyperparameters and training of the baselines.

4.1 Results

Figure 2 shows the results for all 6 environments tested. PPRL + Aux outperforms all baselines on
5 of 6 environments tested, while DrQ outperforms our method on the TurnFaucet task although
the final performance is similar. While PPRL also works on DeflectSpheres, ThreadInHole, and
PushChair without representation learning, representation learning leads to substantial benefits in the
challenging OpenCabinetDrawer, OpenCabinetDoor, and TurnFaucet tasks. In these tasks, object
geometry is crucial for policy execution, showing that representation learning is helpful for the
policy to understand the differences in object geometry. For DeflectSpheres and ThreadInHole,
representation learning still speeds up learning, while there is a slight decrease in performance on
the PushChair task. These tasks either have rather simple object geometries or the difference in the
object geometry does not require different strategies for manipulation (PushChair).

PPRL + Aux solves OpenCabinetDrawer and OpenCabinetDoor with success rates of 60% and 50%,
respectively, while PPRL without representation learning and the baseline methods are unable to
solve them. These environments are challenging mobile manipulation tasks that necessitate adapting
the strategy to the target geometry. The handles of each cabinet model have different sizes and poses,
and must therefore be grasped differently, and doors must be actuated according to their direction
of opening and turning radius. Additionally, all cameras in these environments are mobile, which
presents a much more difficult perception problem for image-based methods than for point cloud
methods. Figure 3 visualizes the policies for the OpenCabinetDoor environment, showing how the
agent responds to variations in the cabinet geometry.

In TurnFaucet, DrQ-v2 has a higher initial success rate than our method and a comparable final suc-
cess rate. We speculate that this is partly because one of the cameras is static, allowing image-based
methods to learn representations without needing to generalize across viewpoints. Dreamer and
Multi-View Masked World Models also appear to benefit from the static camera in TurnFaucet. All
other environments contain no completely static cameras, either due to variation between episodes
or the movement of the robot base, leading to the general tendency for point cloud-based meth-
ods to outperform image-based methods. Interestingly, PointNet++ also performs competitively
on DeflectSpheres, PushChair, and TurnFaucet, despite its relative simplicity. This may be due to
how it processes point cloud data at multiple geometric scales, using neighborhoods generated by
FPS to iteratively downsample. Surprisingly, PointTransformer performs poorly across all environ-
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Figure 5: Average success rates and 95% Bootstrap Confidence Intervals for agents trained with and
without color reconstruction loss, on all environments with color point cloud observations. When
training without color reconstruction loss, color is still observed, but only the signal from RL en-
courages the agent to condition on color features. In particular the hard Cabinet tasks profit from
explicitly reconstructing the color.

ments, despite containing many components common to more successful networks such as PPRL
and PointNet++, namely neighborhood computation via FPS and a transformer backbone.

Object Model Count. We test the generalization capabilities of our method by training on
ManiSkill2 environments with varying numbers of object models. Figure 4 shows the effect of
increasing numbers of object models on the sample efficiency. Although more models generally
result in a more difficult learning task, the effect is weak below a certain number of models (15 for
OpenCabinetDrawer, 10 for OpenCabinetDoor). This suggests that the encoder’s capacity is suffi-
cient for learning more object models, and the limiting factor may rather be the burden of exploring
and finding generalizable RL policies with an increasing number of geometries.

Color Reconstruction. To investigate the effect of color reconstruction we remove color recon-
struction for all 3 environments that use color point clouds. Without the reconstruction loss, only
the loss signal from RL encourages the agent to incorporate color into the embedding. The results
are shown in Figure 5. Surprisingly, the color reconstruction objective provides no significant ben-
efit for the 3 environments tested, despite the fact that DeflectSpheres encodes some task-relevant
information solely through color. Although it is important to provide color to the policy to solve the
task, the learning signal from RL alone is enough to learn any color features required. Furthermore,
this shows that the Chamfer distance loss is informative enough to learn much of the task-relevant
information in the point cloud without any additional modifications.

5 Conclusion

We present PPRL, a novel method for RL on point clouds, and an accompanying auxiliary recon-
struction objective based on PointGPT. PPRL exploits the inherent properties of point clouds to
combine color and positional information from all available cameras and is robust to changing and
moving viewpoints. We evaluate PPRL on a series of challenging visual robot (mobile) manipulation
tasks from sofaenv and ManiSkill2 and find thatPPRL outperforms popular baselines, even with-
out the auxiliary reconstruction objective. In combination with the auxiliary representation learning
objective, our method improves sample efficiency and final success rates in most environments com-
pared to both point cloud-based and image-based baselines. These advantages are more significant
for more challenging environments, such as OpenCabinetDrawer and OpenCabinetDoor. A key in-
sight is that point cloud methods offer robustness to changing viewpoints in environments without a
static camera, a domain where image-based methods are known to struggle [10].

Limitations. While we demonstrated the effectiveness of existing representation learning methods
for RL on point clouds, findings from image-representation learning with masked reconstruction for
RL [27] suggest that special treatment may further improve the performance. While the convolu-
tional feature masking method of [27] is not straightforwardly applicable to point clouds, similar
extensions could be investigated. Furthermore, we have not included other sensor modalities such
as proprioception in the representation learning, which has shown benefits for image-based RL [44].
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A Environments

Figure 6: ThreadInHole Figure 7: DeflectSpheres Figure 8: PushChair

Figure 9: OpenCabinetDrawer Figure 10: OpenCabinetDoor Figure 11: TurnFaucet

Figure 12: Image renderings of the 6 environments used. The ManiSkill2 environments are
rendered from a dedicated, fixed rendering camera that the agent does not have access to.

Task Descriptions: All 6 environments are rendered in Figure Figure 12. In ThreadInHole, the
goal is to feed the deformable thread into the (rigid) hole. In DeflectSpheres, the goal is to deflect
the red or blue sphere with the tool of the corresponding color. Spheres turn green after they are
deflected. In PushChair, the goal is to push the chair to the position marked by the red ball (not
visible to the agent), without knocking it over. In OpenCabinetDrawer (OpenCabinetDoor), the goal
is to grab the drawer (door) handle and open the drawer (door), then stabilize it in the open position.
In TurnFaucet, the goal is to turn a faucet to the open position.

sofaenv: All sofaenv environments have point cloud observations from only a single camera,
without a low-dimensional state. Upon each reset, the camera position and look-at are perturbed by
a vector uniformly sampled from [−2cm, 2cm] in all directions. Reward weights are taken from the
reference implementation.

ManiSkill2: All mobile manipulation tasks (OpenCabinetDrawer, OpenCabinetDoor, and
PushChair) have 3 cameras mounted above the robot base facing outwards, spaced radially at 120◦.
In these tasks, the camera FOV was increased to 1.5, such that the cabinet/chair is almost always
visible from at least one perspective. In OpenCabinetDoor, only the first 10 cabinet models are used
for training and evaluation. In addition, the target door is not randomized but fixed for each cabinet
model. OpenCabinetDrawer, because it is slightly easier, is not changed, using all 25 models and
a randomly chosen target drawer for each episode. TurnFaucet is a static manipulation task with
only 2 cameras, one mounted on the (static) base and one inside the gripper. In TurnFaucet, only
the first 10 faucet models are used for training and evaluation. In all environments, joint position
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delta control is used for the robot arm, and joint velocity control is used for the robot base, if ap-
plicable. Observations contain point clouds and a low-dimensional state vector containing robot
proprioception and the target location.

Discounts and Time Limits: Discounts for all tasks are: 0.99 for ThreadInHole and PushChair,
0.9 for DeflectSpheres, and 0.85 for OpenCabinetDoor, OpenCabinetDrawer, and TurnFaucet.
The time limits for all tasks are: 300 for ThreadInHole, 500 for DeflectSpheres, and 200 for all
ManiSkill2 tasks. In OpenCabinetDrawer, OpenCabinetDoor, and TurnFaucet, trajectories are
ended only on a timeout, not task success. In ThreadInHole, DeflectSpheres, and PushChair, trajec-
tories are ended either on a timeout or task success. PushChair is the only ManiSkill2 environment
treated like this, because we found that ending on task success is crucial for training.

Point Clouds: All environments are rendered with a resolution of 128x128, except PushChair,
which has a resolution of 64x64. Egocentric point clouds are created from depth images using
the linear transformations given by the camera intrinsic (focal length) and extrinsic (position and
orientation) parameters. Point clouds are then post-processed using the following steps: cropping,
appending target points, downsampling, and normalization (note that not all environments use all of
these steps). First, points beyond the boundaries of the scene are discarded. In ManiSkill2 environ-
ments, the floor is also cropped out, and furthermore in OpenCabinetDrawer and OpenCabinetDoor,
any points more than 0.5m in front of the cabinet are also cropped out. In OpenCabinetDrawer,
OpenCabinetDoor, and PushChair, 50 additional points are appended to the point cloud, sampled
from a uniform cube (of side length 7cm for OpenCabinetDrawer and OpenCabinetDoor and 14cm
for PushChair). Although this information is also present in the state vector observation, these points
serve to indicate the visual target position within the observation directly. In ThreadInHole, Deflect-
Spheres, and PushChair, we use voxel grid sampling (with a voxel size of 5mm for sofaenv and
5cm for PushChair) to downsample the point clouds, followed by random downsampling (without
replacement) to a maximum point cloud size of 1000 points. In OpenCabinetDrawer, OpenCab-
inetDoor, and TurnFaucet, we randomly downsample each point cloud (without replacement) to
a maximum point cloud size of 800 points. For DeflectSpheres, we normalize all observed point
clouds by subtracting a fixed center point and dividing by a fixed scale factor. The scale and center
point are chosen such that the extrema of a point cloud from a typical initial observation are roughly
within [−1, 1]. For ThreadInHole, we normalize each observed point cloud independently by sub-
tracting the mean and then dividing by the maximum absolute value over all 3 coordinates, such that
the longest axis is mapped to [−1, 1]. This method of normalization (compared to that of Deflect-
Spheres) was crucial for training. Point clouds for ManiSkill2 environments are not normalized as
they already lie roughly within [−1, 1].
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Figure 13: An example of an attention mask for a single token sequence. Black circles are masked
(not visible), and white circles are unmasked. The ith row shows the tokens that are visible when
encoding the ith token. The jth column shows which tokens may attend to the jth token. The first
column is the start-of-sequence token, not the token of the first point patch. A token is masked if it
is either randomly selected with a probability of m ∈ [0, 1] (random masking) or is in the present
or future (causal masking). A token is always allowed to attend the token immediately preceding it.
Additionally, a certain fraction of the tokens at the start of each sequence are never masked out.

B Hyperparameters and Architectures

PPRL We use hyperparameters for the tokenizer, masking, encoder, decoder, and prediction head
as defined in PointGPT. We reduce the number of transformer layers to 3 to speed up inference. For
environments with color, the point feature dimension is set to 3 in the tokenizer and the prediction
head; otherwise it is 0. We disable dropout.

Actor and Critic Networks Actor and critic networks are fully-connected networks with 3 layers
and 1024 neurons per layer, using ELU as the non-linearity.

Masking Figure 13 provides an overview of the attention mask used for the auxiliary reconstruc-
tion loss.

SAC We use SAC with a replay buffer of 500000. We use a replay ratio of 64, except for sofaenv
environments with a replay ratio of 32, and PushChair where we use 8. We update target networks
after every learning update with a τ of 0.005, except PushChair, which uses a τ of 0.01. By default,
the batch size is 1024 when training without auxiliary loss and 256 when training with auxiliary loss,
except for PushChair, where we use 128 in both cases. Due to compute constraints, we reduce the
batch size for PointNet++ to 256, and for PointTransformer to 512. Also due to compute constraints,
we reduce the replay ratio for PointNet++ on OpenCabinetDrawer and OpenCabinetDoor to 32, as
these environments have the largest point clouds on average. The learning rate is 1e-4, except for
DeflectSpheres and PushChair with 5e-5, and we use the Adam optimizer. The starting entropy
coefficient is 0.1 except for DeflectSpheres with 0.2 and PushChair for 0.05. The learning rate for
the entropy coefficient is 1e-4, except for PushChair with 2e-5.

For all baselines, we use hyperparameters as defined by the baselines, except for the environment-
dependent discount, initial entropy coefficient, and entropy learning rate, where we use the same
values as for our method.

DrQ-v2 Each camera uses a dedicated CNN encoder, and the features are concatenated together,
resulting in an image encoding of size 117600. Both the image embedding and the state are projected
down to a dimensionality of 384 (to match the dimensionality used for PPRL) using a single fully-
connected layer and then concatenated.

Dreamer and Multi-View Masked World Models For these world model-based methods, we
follow the approach of [45, 4] to handle the additional state information. They first encode both
image and state using separate encoders and concatenate their outputs before providing them to the
RSSM. For training, they then consider two separate output heads to reconstruct both the image
and state. Dreamer uses mostly the hyperparameters proposed by [46]. However, we assume a
Gaussian latent variable and use the same discount and entropy control as PPRL. For Multi-View
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Masked World Models, we run training in multi-view mode, which masks random viewpoints and
reconstructs them. We disable the behavioural cloning loss, as our method does not have access to
demonstrations.

B.1 Model Parameter Counts

Table 1 provides a comparison of the model sizes by listing parameter counts for the proposed
method and all ablations. Because the model size changes slightly based on the observation size,
and therefore the environment, we use OpenCabinetDrawer for this comparison.

Encoder Actor Critic Total

PPRL+Aux 9.47M 2.91M 5.80M 18.18M
PPRL 4.95M 2.91M 5.80M 13.66M
PointTransformer 2.20M 2.91M 5.80M 10.91M
PointNet++ 0.38M 2.91M 5.80M 9.09M
PointNet 1.55M 2.91M 5.80M 10.26M
DrQ-v2 0.08M 5.08M 6.25M 11.39M
Dreamer 2.69M 0.26M 0.25M 3.13M
MW-MWM 4.72M 0.84M 0.83M 6.39M

Table 1: Comparison of parameter counts for each method.

C Wallclock Runtimes

Thread
InHole

Deflect
Spheres

Push
Chair

Open
Cabinet
Drawer

Open
Cabinet
Door

Turn
Faucet

Average

PPRL+Aux 14.1 19.3 8.7 40.9 39.3 39.6 26.0
PPRL 7.4 10.7 7.4 23.2 22.5 22.3 15.0
PointTransformer 6.6 11.9 7.8 33.0 28.5 25.7 19.3
PointNet++ 7.7 5.9 7.3 25.1 24.1 47.7 16.4
PointNet 4.1 4.5 6.1 11.1 10.8 9.8 7.1
DrQ-v2 29.4 15.0 36.5 46.2 33.5 21.5 30.3
Dreamer 25.5 15.7 28.6 27.5 26.6 17.7 24.0
MW-MWM 32.3 13.3 23.3 22.0 21.4 14.8 21.2

Table 2: Comparison of wallclock runtime for each method (in hours).

Table 2 provides a comparison of the average wallclock runtimes for all methods considered. All
runs used a single Nvidia A100 GPU, 19 Intel Xeon Platinum 8368 CPUs, and 128Gb of RAM
(maximum memory, not average). In some cases, different encoders were run with different hy-
perparameters such as replay ratio, which has a subsantial effect on the runtime, making direct
comparisons difficult. However, we note that image-based methods are among the slowest of the
methods we considered, while PointNet is the fastest method by a wide margin. While there are
many factors that affect wallclock time, point cloud methods have the advantage that background
pixels are already filtered out, which may reduce the compute required for a given observation.
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D Further Ablations

D.1 Normalization Type
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Figure 14: Average success rates and 95% Bootstrap Confidence Intervals for agents trained with
fixed and per-pointcloud normalization on select environments.

To show the effect of different methods for point cloud normalization, we train agents using the
opposite normalization type for each environment. Per-pointcloud normalization scales each point
cloud independently by subtracting the mean and dividing by the maximum value over all 3 coor-
dinates, such that the longest axis is mapped to [−1, 1]. Per-pointcloud normalization is used for
ThreadInHole. Static normalization subtracts a fixed center point from each point cloud and divides
by a fixed scale factor, where the center and scale are chosen so that initial observations fall roughly
within [−1, 1]. Static normalization is used for all other environments. A special case of static nor-
malization selects a center at the original and a scale of 1, resulting in no change, which is used for
all ManiSkill2 environments.

Figure 14 shows the effect of normalization type. ThreadInHole depends greatly on per-pointcloud
normalization, while other environments appear to be robust to this design choice.

D.2 Point Patch Size

After a point cloud is tokenized into point patches, the structure of the patches is captured by the
positional encoding, while the structure within a point patch can only be captured by the PointNet-
based feature extractor. As such, the point patch size determines how fine-grained the agent’s per-
ception of the scene is. To investigate the effect of the point patch size (also known as k, because it
is used in the KNN step), we train PPRL+Aux agents on select environments using k = [8, 16, 32],
where k = 32 is the default value. The runtime of k = 64 is too slow to be practical except for
PushChair.

The results of this ablation are shown in Figure 15. We note that learning performance is relatively
robust to the value of k in all 3 tasks investigated. We suspect this is because the tokenizer is able to
extract all relevant point patch features up to a size of 64. Future work may investigate the optimal
trade-off between adding transformer layers and increasing the point patch size.
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Figure 15: Average success rates and 95% Bootstrap Confidence Intervals for agents trained with
varying point patch sizes (k value) on select environments.
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