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Abstract
In real-world reinforcement learning (RL) sys-
tems, various forms of impaired observability
can complicate matters. These situations arise
when an agent is unable to observe the most re-
cent state of the system due to latency or lossy
channels, yet the agent must still make real-time
decisions. This paper introduces a theoretical in-
vestigation into efficient RL in control systems
where agents must act with delayed and missing
state observations. We establish near-optimal re-
gret bounds, of the form Õ(

√
poly(H)SAK),

for RL in both the delayed and missing observa-
tion settings. Despite impaired observability pos-
ing significant challenges to the policy class and
planning, our results demonstrate that learning
remains efficient, with the regret bound optimally
depending on the state-action size of the original
system. Additionally, we provide a characteri-
zation of the performance of the optimal policy
under impaired observability, comparing it to the
optimal value obtained with full observability.

1. Introduction
In Reinforcement Learning (RL), an agent engages with
an environment in a sequential manner. In an ideal set-
ting, at each time step, the agent would observe the current
state of the environment, select an action to perform, and
receive a reward (Smallwood & Sondik, 1973; Bertsekas,
2012; Sutton & Barto, 2018; Lattimore & Szepesvári, 2020).
However, real-world engineering systems often introduce
impaired observability and latency, where the agent may
not have immediate access to the instant state and reward
information. In systems with lossy communication chan-
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nels, certain state observations may even be permanently
missing, never reaching the agent. Nevertheless, the agent
is still required to make real-time decisions based on the
available information.

The presence of impaired observability transforms the sys-
tem into a complex interactive decision process (Figure 1),
presenting challenges for both learning and planning in RL.
With limited knowledge about recent states and rewards, the
agent’s policy must extract information from the observed
history and utilize it to make immediate decisions. This
introduces significant complexity to the policy class and
poses difficulties for RL. Moreover, the loss of information
due to permanently missing observations further hampers
the efficiency of RL methods. Although a naïve approach
would involve augmenting the state and action space to cre-
ate a fully observable Markov Decision Process (MDP),
such a method would lead to exponential regret growth in
the state-action size.

Why existing methods do not work. One may be tempted
to cast the problem of impaired observability into a Partially
Observed MDPs (POMDPs). However, this would not solve
the problem. In POMDP, the system does not reveal its
instant state to the agent but provides an emission state
observation conditioned on the latent state. POMDPs are
known to suffer from the curse of history (Papadimitriou &
Tsitsiklis, 1987; Bertsekas, 2012; Krishnamurthy, 2016), un-
less additional assumptions are imposed. Existing efficient
algorithms focus on subclasses of POMDPs with decodable
or distinguishable partial observations (Jin et al., 2020; Ue-
hara et al., 2022; Zhan et al., 2022; Chen et al., 2022; Liu
et al., 2022; Zhong et al., 2022; Chen et al., 2023), where
the unseen instant state can be inferred from recent observa-
tions. Unfortunately, MDPs with impaired observability do
not fall into these benign subclasses. The reason behind this
is that at each time step, a new observation, if any, is in fact
a past state. Viewing it as an emission state of the current
one leads to a time reversal posterior distribution depending
on the underlying transitions, which suffers from the curse
of history and makes the POMDP intractable. The problem
becomes even harder if some observations get missing.

Empirical evidences suggested that efficient RL is possible
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Figure 1. Reinforcement learning with impaired observability. At time h, the agent only observes the past state sh−d and actions
ah−d, . . . , ah−1. The policy depends on the observed information.

even with impaired state observability (Lizotte et al., 2008;
Liu et al., 2014; Agarwal & Aggarwal, 2021). However,
theoretical understanding of this problem is very limited.
One notable work (Walsh et al., 2007) studied learning
with constant-time delayed observations. They identified
subclasses of MDPs with nearly deterministic transitions
that can be efficiently learned. Beyond this special case,
efficient RL with impaired observability in MDPs with fully
generality remains largely open.

Some recent works studied delayed feedback in MDPs
(Yang et al., 2023; Howson et al., 2023). It is a funda-
mentally different problem where the agent’s policy can
still access real-time states but learning uses delayed data.
Our problem is fundamentally harder because the agent’s
policy can only access the lossy and delayed history. See
Section 1.1 for more discussions.

Our results. In this paper, we provide algorithms and re-
gret analysis for learning the optimal policy in tabular MDPs
with impaired observability. Note that this optimal policy is
a different one from the optimal policy with full observabil-
ity. To approach this problem, we construct an augmented
MDP reformulation where the original state space is ex-
panded to include available observations of past state and
an action sequence. However, the expanded state space is
much larger than the original one and naïve application of
known methods would lead to exponentially large regret
bounds. In our analysis, we exploit structure of the aug-
mented transition model to achieve efficient learning and
sharp regret bounds. The main results are summarized as
follows.

• For MDPs with stochastic delays, we prove a sharp
Õ(H4

√
SAK) regret bound (Theorem 4.1) comparing to

the best feasible policy, Here S and A are the sizes of the
original state and action spaces, respectively, H is the hori-
zon, and K is the number of episodes. Here we allows
the delay to be stochastic and conditionally independent
given on current state and action. Moreover, we quantify the
performance degradation of optimal value due to impaired
observability, compared to optimal value of fully observable
MDPs (Proposition B.2). We also showcase in Proposi-
tion 4.2 that a short delay does not reduce the optimal value,
but slightly longer delay leads to substantial degradation.

• For MDPs with randomly missing observations, we
provide an optimistic RL method that provably achieves
Õ(

√
H3S2AK) regret (Proposition 5.1). We also provide a

sharper Õ(H4
√
SAK) regret in the case when the missing

rate is sufficiently small (Theorem 5.2).

To our best knowledge, these results present a first set of
theories for RL with delayed and missing observations. Re-
markably, our regret bounds nearly match the minimax-
optimal regret of standard MDP in their dependence on S,A
(noting that the target optimal policies are different in the
two cases). It implies that RL with impaired observability
are provably as efficient as RL with full observability (up to
poly factors of H).

1.1. Related work

Efficient algorithms for learning in the standard setting of
tabular MDPs without impaired observability has been ex-
tensively studied (Kearns & Singh, 2002; Brafman & Ten-
nenholtz, 2002; Jaksch et al., 2010; Dann & Brunskill, 2015;
Azar et al., 2017; Agrawal & Jia, 2017; Jin et al., 2018; Dann
et al., 2019; Zanette & Brunskill, 2019; Zhang et al., 2020;
Domingues et al., 2021), where the minimax optimal re-
gret is Õ(

√
H3SAK) (Azar et al., 2017; Domingues et al.,

2021).

The delayed observation studied in this paper is related
to delayed feedback in Howson et al. (2023); Yang et al.
(2023), yet the setup is fundamentally different. In delayed
feedback, an agent sends a policy to the environment for
execution. The environment executes the policy on behalf
of the agent for an episode, but the whole trajectory will
be returned to the agent after some episodes. The policy
executed by the environment is able to “see" instant state
and reward. It is Markov and not played by the agent. Our
setting concerns learning executable policies when delayed
or missing states appear within an episode. The policy is
no longer Markov and can only prescribe action based on
history. Therefore, the algorithms and analyses for delayed
feedback MDPs are not applicable to our settings.

Despite the distinct settings, there are existing fruitful re-
sults in efficiently learning MDPs or bandits with delayed
feedback. Stochastic delayed feedback in bandits is studied
in Agarwal & Duchi (2011); Dudik et al. (2011); Joulani
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et al. (2013); Vernade et al. (2017; 2020); Gael et al. (2020);
Lancewicki et al. (2021). In the more challenging setting
of reinforcement learning, Howson et al. (2023) considers
tabular MDPs and Yang et al. (2023) generalizes to MDPs
with function approximation and multi-agent settings.

On the other hand, results analyzing MDPs with missing
observations are limited in literature, although missing data
is a commonly recognized issue in applications (García-
Laencina et al., 2010; Jerez et al., 2010; Little et al., 2012;
Emmanuel et al., 2021). One notable result is Bouneffouf
et al. (2020) for bandits with missing rewards.

Notation: For real numbers a, b, we denote a ∧ b =
min{a, b}. In episodic MDPs, we use the superscript k
to denote the index of episodes, and the subscript h to de-
note the index of time. We denote ai:j = {ai, . . . , aj} as
the collection of actions from time i to j. For two proba-
bility distributions µ and ν, we denote their total variation
distance as ∥µ− ν∥TV.

MDP preliminary: An episodic MDP is described by a tu-
ple (S,A, H,R, P ), where S,A are state and action spaces,
respectively, H is the horizon, R = {rh}Hh=1 is the reward
function and P = {ph}Hh=1 is the transition probability.
We primarily focus on tabular MDPs, where S = |S| and
A = |A| are both finite. We also assume that the reward is
uniformly bounded with ∥rh∥∞ ≤ 1 for any h. An agent
will interact with the environment for K episodes, hoping
to find a good policy to maximize the cumulative reward.
Within an episode, at the h-th step, the agent chooses an
action based on the available information of the environ-
ment. After taking the action, the underlying environment
produces a reward and transits to the next state. With full
state observation, a policy π maps instant state s to an action
a or an action distribution. Given such a policy π, the value
function is V π

h (s1) = Eπ
[∑H

h′=h rh(sh′ , ah′)
∣∣sh] , where

Eπ is the policy induced expectation.

2. Problem formulation
In this work, we study MDPs with impaired observability.
We focus on two practical settings: 1) delayed observations
and 2) missing observations.

MDP with delayed observations In any episode, we de-
note dh ∈ {0, 1, . . . } as the observational delay of the state
and reward at step h. That is, we receive sh and rh at time
h + dh. The delay time dh can be dependent on the state
sh and action ah at time h. To facilitate analysis, we denote
the inter-arrival time between the arrival of observations
for step h and h + 1 as ∆h = dh+1 − dh. With delays, at
time h, the nearest observable state is denoted as sth , where
th = argmax {I :

∑I
i=0 ∆i ≤ h}. Then the executable

policy class

Πe = {πh(·|sth ,ath:h−1) for h = 1, . . . ,H}

chooses actions depending on the nearest visible state and
history actions. We impose the following assumption on the
interarrival time.

Assumption 2.1. The interarrival time ∆h takes value in
{0, 1, . . . }. The distribution Dh(sh, ah) of ∆h can depend
on (sh, ah), but is conditionally independent of the MDP
transitions given (sh, ah).

Assumption 2.1 does not impose any distributional assump-
tion on ∆h, but only requires that the delayed observations
still arrive in order and at each time step, there is at most one
new visible state and reward pair (∆h ≥ 0). A widely stud-
ied example of delays in literature is that the inter-arrival
time is geometrically distributed (Winsten, 1959). Then
the observation sequence {h+ dh} is known as a Bernoulli
process, which is understood as the discretized version of a
Poisson process.

Our delayed observation setting is newly proposed and sub-
stantially generalizes the Constant Delayed MDPs (CD-
MDPs) studied in Brooks & Leondes (1972); Bander &
White III (1999); Katsikopoulos & Engelbrecht (2003);
Walsh et al. (2007). When ∆h = 0 being deterministic
for all h ≥ 1 and k, our observation delay coincides with
CDMDPs. In CDMDPs, a new past observation is guaran-
teed to arrive at each time step. However, our delayed model
can result in no new observation at some time steps.

Observation delay leads to difficulty in planning, as the
agent can only infer the current state and then choose an
action. Therefore, the policy is naturally history dependent.
We summarize the interaction protocol of the agent with the
environment in Protocol 1. At the end of each episode,
we can collect all the delayed observations, however, these
observations are not used in planning. In reality, the agent
can collect these observations by waiting after time H .

MDP with missing observations In addition to the
stochastic delay in observations, we also consider randomly
missing observations. In applications, an agent interacts
with the environment through some communication chan-
nel. The communication channel is often imperfect and
thus, observation can be lost during transmission. This type
of missing is permanent and we describe in the following
assumption.

Assumption 2.2. Any pair of observation (state and reward)
is independently observable in the communication channel.
The observation rate is λh depending on h, but independent
of the MDP transitions. Moreover, there exists a constant
λ0 such that λh ≥ λ0 for any h. The agent will be informed
when an observation is missing.
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Protocol 1 Interaction between the agent and the environ-
ment with delayed observations

1: for episode k = 1, . . . ,K do
2: for time h = 1, . . . ,H do
3: The agent observes a pair of new, if any, state and

reward (skth , a
k
th
). By memory, the agent also has

access to past actions akth:h−1.
4: The agent plays action akh according to some exe-

cutable policy πk
h ∈ Πe.

5: The environment transits to next state skh+1 ∼
ph(·|skh, akh), which is unobservable to the agent.
The environment also decides the delay at step
h+ 1 as dkh+1 = dkh +∆k

h and tkh+1.
6: end for
7: The environment sends all unobserved pairs of state

and reward as well as their corresponding delay time
to the agent.

8: end for

3. Construction of augmented MDPs
To tackle the limited observability, we expand the original
state space and define an augmented MDP. It will serve
as the basis for our subsequent theoretical analysis. For
audience not interested in technical details, please feel free
to skip this section.

3.1. Augmented MDP with expected reward

In the remainder of this section, we focus on the delayed
observation case and defer the missing case to Section 5.
Define τh = {sth ,ath:h−1, δth} as the augmented state,
where δth ∈ [0,∆th ] is the delayed steps after observing
(sth , rth). Let Saug denote the augmented state space of
all possible τ ’s. Then the original MDP with delayed ob-
servations can be reformulated into a state-augmented one
MDPaug = (Saug,A, H,Raug, Paug). The reward is defined
as

rh,aug(τh, ah) = E [rh(sh, ah)|τh, ah] ,

which is the expected reward given the nearest past
state sth and history actions ath:h. We can define be-
lief distribution bh(s|τh) = P(sh = s|τh). Then
rh,aug(τh, ah) = Es∼bh(·|τh)[r(s, ah)]. Belief distributions
are widely adopted in partially observed MDPs (Ross et al.,
2007; Poupart & Vlassis, 2008). We will frequently use the
belief distribution to study the expressivity of Πe in Section
4.2.

The transition probabilities Paug are sparse. For any τh =
{sth ,ath:h−1, δth} and τh+1 = {sth+1

,ath+1:h, δth+1
}, we

have the transition probabilities in Table 1.

where Ma(τh, τh+1) indicates whether the rolling actions are

matched, i.e.,

Ma(τh, τh+1) = 1{ath:h−1 = ath+1:h−1},

and θdelay(sth , ath , δth) is defined as

θdelay(sth , ath , δth) = P(∆th = δth |sth , ath , δth)

=
P(∆th = δth |sth , ath)

1−∑δ<δth
P(∆th = δ|sth , ath)

.

The factored form of θdelay(sth , ath , δth)p(sth+1
|sth , ath)

follows from the conditional independence in Assump-
tion 2.1. We define Q-functions and value functions as
follows. For any τh, ah and policy π ∈ Πe, we have

Qπ
h,aug(τh, ah) = Eπ

[
H∑

h′=h

rh,aug(τh′ , ah′)
∣∣∣τh, ah] and

V π
h,aug(τh) =

〈
Qπ

h,aug(τh, ·), πh(·|τh)
〉
.

We note that V π
h is equivalent to V π

h,aug for the same ex-
ecutable policy π ∈ Πe. We also denote Ph,aug as the
transition operator corresponding to Paug. It can be checked
that

Qπ
h,aug(τh, ah) = rh,aug(τh, ah) + [Ph,augV

π
h,aug](τh, ah).

MDPaug also appears in makes all the policies in Πe exe-
cutable and Markov. Meanwhile, the reward function keeps
track of all the expected reward for H steps. Although the
expanded state space Saug is much more complicated than
the original state space S, the sparse structures in the tran-
sition probabilities still allow an efficient exploration. We
note that ph,aug only depends on the delay distribution and
one-step Markov transitions. However, there is still one
caveat for learning in MDPaug – the reward function depends
belief distributions, which involve multi-step transitions.

3.2. Augmented MDP with past reward

To tackle the aforementioned challenge, we further define
M̃DPaug = (S̃aug,A, H̃, R̃aug, P̃aug) that shares the optimal
policy in MDPaug with an enlonged horizon H̃ = 2H . The
state space S̃aug consists of any τh = {sth ,ath:h∧H , δth}.
Comparing to Saug, we cut off the action at horizon H ,
since ah for h > H has no influence on the state and reward
in time [0, H]. The reward function is defined as

r̃h,aug(τh, ah) = rh(sth , ath)1{δth = 0}1{th ∈ {1, . . . ,H}}.

By definition, r̃aug(τh, ah) is a past reward. More impor-
tantly, r̃h,aug(τh, ah) zeros out rewards outside the original
horizon H . Meanwhile, between the arrival of two consecu-
tive state observations, the reward only counts once. Lastly,
the transition probabilities are described in Table 2. We
interpret the transitions as follows. When h ≤ H , the tran-
sition is the same as MDPaug. When h > H , we simply wait
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Table 1. Transition probabilities of Paug.

ph,aug(τh+1|τh, ah) Condition

Ma(τh, τh+1)θdelay(sth , ath , δth)ph(sth+1
|sth , ath) if δth+1

= 0 and th+1 = th + 1

Ma(τh, τh+1)(1− θdelay(sth , ath , δth)) if δth+1
= δth + 1 and th+1 = th

0 otherwise

Table 2. Transition probabilities of P̃aug

p̃h,aug(τh+1|τh, ah) Condition

Ma(τh, τh+1)θdelay(sth , ath , δth)ph(sth+1
|sth , ath) if δth+1

= 0, th+1 = th + 1 and h < H

Ma(τh, τh+1)(1− θdelay(sth , ath , δth)) if δth+1
= δth + 1, th+1 = th and h < H

Ma(τh, τh+1)ph(sth+1|sth , ath) if δth+1 = 0, th+1 = th + 1 and h > H

0 otherwise

for unobserved states and rewards to come. As mentioned,
actions taken beyond time H are irrelevant. We build an
equivalence in the expected values of MDPaug and M̃DPaug.

Proposition 3.1. Let MDPaug and M̃DPaug be defined as in
the previous paragraphs. Then for any initial state τ1 and
any policy π = {πh}Hh=1 ∈ Πe, it holds that

Eπ

[
H∑

h=1

rh,aug(τh, ah)
∣∣∣τ1] = Eπ

 H̃∑
h=1

r̃h,aug(τh, ah)
∣∣∣τ1
 ,

where in the right-hand side, the policy for steps H + 1 to
H̃ is arbitrary.

The proof is provided in Appendix A.1. Proposition 3.1
implies that learning in MDPaug until time H is equivalent
to that in M̃DPaug for H̃ steps.

4. RL with delayed observations and regret
bound

In this section, we provide regret analysis of learning in
MDPs with stochastic delays. For the sake of simplicity,
we assume the reward is known, however, extension to un-
known reward causes no real difficulty. Motivated by the
augmented MDP reformulation, we introduce our learning
algorithm in Algorithm 2. In Line 2, unobserved states and
rewards are returned to the agent as described in Protocol 1.
Using the data set, we construct bonus functions compen-
sating the uncertainty in one-step transitions of the original
MDP. This largely sharpens the confidence region, yet still
ensures a valid optimism. We emphasize that in Line 2, we
are planning on M̃DPaug involving the augmented transitions
and expanded states of τ ∈ S̃aug. Only in this way, we can
obtain an executable policy in delayed MDPs. The planning
complexity is SAH though.

4.1. Regret bound

We define regret in delayed MDP as

Regret(K) =
∑K

k=1 maxπ∈Πe V
π
1 (sk1)−

∑K
k=1 V

πk
1 (sk1),

where V π
1 is the value function of the original MDP. Al-

though the regret here is defined on the original MDP, it is
equivalent to the regret of the same policy on MDPaug and
further M̃DPaug by Proposition 3.1. Note that we are com-
paring with the best executable policy. The performance
degradation caused by observation delay is discussed in
Section 4.2. The following theorem bounds the regret.
Theorem 4.1 (Regret bound for Delayed MDP). Suppose
Assumption 2.1 holds. Let γ ∈ (0, 1) be any failure prob-
ability. With probaiblity 1 − γ, the regret of Algorithm 2
satisfies

Regret(K) ≤ c
(
H4

√
SAKι+H4S2Aι2

)
,

where ι = log SAHK
γ and c is some constant.

The proof is provided in Appendix B.1. We discuss several
implications.

Sharp dependence on S and A Theorem 4.1 has a sharp
dependence on S and A, although the expanded state space
S̃aug has a cardinality bounded by SAH . Naïvely learning
and planning in M̃DPaug would suffer from the exponential
enlargement of AH . However, we identify the sparse struc-
tures in the transition probabilities. As can be seen, p̃h,aug
only involves one-step transitions in the original MDP and
some conditionally independent delay distributions. Such
structures lead to a rather easy estimation of p̃h,aug, which
can be constructed from the estimators of one-step transi-
tions in the original MDP. Meanwhile, the sparse structures
make exploration in M̃DPaug efficient, due to many unreach-
able states.
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Algorithm 2 Policy learning for delayed MDPs using
M̃DPaug

1: Input: Original horizon H , extended horizon H̃ , policy
class Πe, failure probability γ.

2: Init: VH̃+1(τ) = 0 and QH̃(τ, a) = H for any τ and
a, data set D0 = ∅, initial policy π0.

3: for episode k = 1, . . . ,K do
4: Execute policy πk−1 for H̃ steps.
5: After the episode ends, collect data Dk = Dk−1 ∪

{(skh, akh, rkh,∆k
h)}Hh=1.

6: On data set Dk, compute counting num-
bers Nk

h (sh, ah), Nk
h (sh, ah, sh+1) and

Nk
h (sh, ah, δh) =

∑k
j=1 1{s

j
h = sh, a

j
h =

ah,∆
j
h = δh}.

7: Estimate transition probabilities and delay distribu-
tions via

p̂kh(sh+1|sh, ah) =
Nk

h (sh, ah, sh+1)

Nk
h (sh, ah)

,

θ̂kdelay(sh, ah, δh) =
Nk

h (sh, ah, δh)∑
δ≥δh

Nk
h (sh, ah, δ)

.

Then estimators of p̃h,aug in M̃DPaug is computed us-
ing p̂kh and θ̂kdelay.

8: Set bonus function as

bkh(τh, ah)

= cH3/2

(√
ι

Nk
th
(sth , ah, δth)

+

√
ι

Nk
th
(sth , ath)

)

for ι = log SAKH
γ and c sufficiently large.

9: Run optimistic value iteration in M̃DPaug for H̃ steps
and obtain πk ∈ Πe.

10: end for
11: Return: Learned policy πk

1:H for k = 1, . . . ,K.

Effect of the delay distribution and delay length Theo-
rem 4.1 holds for arbitrary conditionally independent delay
distributions, even include heavy-tailed distributions. Our
regret bound encodes the influence of delay by paying extra
H factors. The reason to this is that if the delay is larger
than H , then the corresponding state will only be observed
after an episode ends and won’t be used in planning. There-
fore, we can truncate the delay at H , regardless of its tail
distributions.

4.2. Performance degradation of policy class Πe

This section devotes to quantify the performance degrada-
tion caused by delayed observations. In particular, we bound
the value difference between the best executable policy and

the best Markov policy in a no delay environment. Recall
that V1 is the value function of the original MDP. We denote

π∗
nodelay = argmaxπ V

π
1 (s1) and

π∗
delay = argmaxπ∈Πe

V π
1 (s1)

as the best vanilla optimal policy and executable policy,
respectively. The values achieved by π∗

nodelay and π∗
delay

are denoted as V ∗
1,nodelay(s1) and V ∗

1,delay(s1), respectively.
The gap between V ∗

1,nodelay and V ∗
1,delay quantifies the per-

formance degradation, which is denoted as gap(s1) =
V ∗
1,nodelay(s1) − V ∗

1,delay(s1). We bound gap in Proposi-
tion B.2 in Appendix due to space limit.

In a nutshell, we show that the performance degradation
gap is highly relevant to the belief distribution bh(·|τ).
When bh(·|τ) is evenly spread, meaning that the entropy
of bh is high and inferring the current unseen state is diffi-
cult, we potentially suffer from a large gap. On the con-
trary, when bh(·|τ) is nearly deterministic, the performance
degradation is small. In the special case of deterministic
transitions, we have gap = 0.

4.3. The (mysterious) effect of delay on the optimal
value

To further understand the effect of the delay on the optimal
value, we provide the following dichotomy. On the one
hand, we show that there exists an MDP instance, such that
a constant delay of d steps does not hurt the performance.
On the other hand, in the same MDP instance, a constant
delay of d + 1 steps suffers from a constant performance
drop.

Proposition 4.2. Consider constant delayed MDPs. Fix a
positive integer d < H . Then there exists an MDP instance
such that the following two items hold simultaneously.

• When delay is d, it holds that 1
K

∑K
k=1 gap(s

k
1) = 0.

• When delay is d + 1, it holds that 1
K

∑K
k=1 gap(s

k
1) ≥

1
2 −

√
1

2K log 1
γ , with probability 1− γ.

The proof is provided in Appendix B.3. We remark that
Proposition 4.2 says that observation delay can be danger-
ous, even with the slightest possible number of steps. The
idea behind Proposition 4.2 is consistent with the analy-
sis on gap. In particular, we construct an MDP instance
demonstrated in Figure 2. The reward vanishes at all times
but d + 1. When delay is d, the initial state s1 is revealed
and the policy can choose the best action to receive a re-
ward. When delay is d+ 1, however, there is always a 1/2
probability of missing the best action for any policy, which
leads to a constant performance degradation.
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rd+1(si, ai) = 1 for i = 1, 2

Figure 2. MDP instance on two states with two actions. The transition is lazy until time d. Then the transition is uniform regardless of
actions for time d+ 1. Reward is nonzero only at time d+ 1. This is an example with a delay of length d causes no degradation and a
delay of d+ 1 causes a constant performance degradation.

5. RL with missing observations and regret
analysis

We now switch our study to MDPs with missing observa-
tions. In such an environment, executable policies share
the same structures as delayed MDPs, where an action is
taken based on available history information. Compared to
delayed observations, learning with missing observations
is more challenging. Since unobserved states and rewards
are never revealed, we are suffering from information loss.
Besides, we will frequently deal with multi-step transitions,
due to missing observations between two consecutive visible
states.

5.1. Optimistic planning with missing observations

Despite the difficulty, we present here algorithms that are
efficient in learning and planning for MDPs with missing ob-
servations. We begin with an optimistic planning algorithm
in Algorithm 3. To unify the notation, we denote skh = ∅
and rkh = ∅ as missing the observation.

The majority of the algorithm resembles the typical opti-
mistic planning (Jaksch et al., 2010) but with some notable
differences. In Line 3, the value function V1,θ is for the
original MDP with transition probabilities parameterized by
θ. Different from the typical optimistic planning, the un-
derlying MDP here obeys the stochastic observable model
in Assumption 2.2. Therefore, the value V1,θ is the sum
of all possible values under missing observations. When
counting Nk

h (s, a) in Line 3, we exclude data tuples miss-
ing the next state, which inevitably slows down the learning
curve. Nonetheless, the effect of missing only contributes
as a scaling factor in the regret.

Proposition 5.1. Suppose Assumption 2.2 holds with λh

known. Given a failure probability γ, with probability 1−γ,
the regret of Algorithm 5 satisfies

Regret(K) ≤ c

(
1

− log(1− λ2
0)

√
H3S2AKι3 +

√
H4Kι

)
,

where ι = log SAHK
γ and c is some constant.

The proof is provided in Appendix C.1. Proposition 5.1

Algorithm 3 Optimistic planning for MDPs with missing
observations

1: Input: Horizon H , observable rate λh.
2: Init: B0 = Θ to be all possible tabular MDPs, data set

D0 = ∅.
3: for episode k = 1, . . . ,K do
4: Set policy πk = argmaxπ∈Πe

maxθ∈Bk V π
1,θ(s

k
1).

5: Play policy πk and collect data Dk−1 ∪
{(skh, akh, rkh)}Hh=1.

6: Compute counting number Nk
h (s, a) =∑k

j=1 1{s
j
h = s, ajh = a, sjh+1 ̸= ∅}.

7: Update confidence set

Bk =
{
θ : ∥p̂kh(·|s, a)− pθh(·|s, a)∥TV

≤ c

√
Sι

Nk
h (s, a)

for all (h, s, a)
}
∩ Bk−1,

where p̂kh(s
′|s, a) =

Nk
h (s,a,s′)

Nk
h (s,a)

and c is some con-
stant.

8: end for

is optimal in the K dependence and achieves an S2A de-
pendence on the complexity of the underlying MDP. In the
extreme case of λ0 ≈ 0, which implies that every state
and reward are hardly observable, we have Regret(K) =

Õ
(

1
λ2
0

√
H3S2AK

)
. Here λ2

0 is the probability of observ-
ing two consecutive states for estimating the transition prob-
abilities. Proposition 5.1 requires knowledge of observable
rate λh. This is not a restrictive condition, as estimating
λh from Bernoulli random variables is much easier than
estimating transition probabilities.

5.2. Model-based planning using augmented MDPs

Proposition 5.1 has a lenient dependence on the missing
rate 1 − λ2

0, nonetheless, is not sharp on the dependence
of S. We next show that the augmented MDP approach is
effective to tackle missing observations, when the observ-
able rate satisfies additional conditions. Specifically, we
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assume that the observable rate λh is independent of (s, a).
We utilize the MDPaug reformulation, except that we redefine
the transition probabilities as

ph,aug(τh+1|τh, ah)

=


λhph(sh+1|sth ,ath:h) if th+1 = h+ 1

Ma(τh+1, τh)(1− λh) if th+1 = th

0 otherwise
.

The first case in ph,aug corresponds to receiving the state
observation at time h+ 1. In contrast to the delayed MDPs,
the transition probabilities here potentially rely on multi-
step transitions in the original MDP. The second case of the
transition corresponds to missing the observation. We sum-
marize the policy learning procedure in Algorithm 5, which
is similar to Algorithm 2, but with a new bonus function.

Algorithm 4 Policy learning for MDPs with missing obser-
vations

1: Input: Horizon H .
2: Init: VH+1(τ) = 0 and QH(τ, a) = H for any τ, a,

data set D0 = ∅, initial policy π0.
3: for episode k = 1, . . . ,K do
4: Execute policy πk−1.
5: After the episode ends, collect data Dk = Dk−1 ∪

{(skh, akh, rkh)}Hh=1.
6: On data set Dk, compute counting numbers

Nk
h (τh, ah) =

k∑
j=1

1{τ jh = τh, a
j
h = ah, s

j
h+1 ̸= ∅},

Nk
h,λ =

k∑
j=1

1{sjh = ∅}.

7: Estimate transition probabilities and delay distribu-
tions via

p̂kh(sh+1|τh, ah) =
Nk

h (τh, ah, sh+1)

Nk
h (τh, ah)

λ̂k
h = Nk

h,λ/k.

8: Set bonus function as

bkh(τh, ah) = cH

(√
Hι

Nk
h (τh, ah)

+

√
ι

k

)

for ι = log SAKH
γ and c sufficiently large.

9: Run optimistic value iteration in MDPaug for H steps
and obtain πk ∈ Πe.

10: end for
11: Return: Learned policy πk for k = 1, . . . ,K.

We remark that similar to delayed MDPs, in Line 5 the

planning is on MDPaug and the obtained policy is executable
given any τ ∈ Saug when state observation is missed. There-
fore, the planning complexity is SAH . Different from Al-
gorithm 2, the bonus function here depends on multi-step
transitions, in that missing observations are permanently
lost.

The following theorem shows that Algorithm 5 is asymptot-
ically efficient when the observable rate is relatively high.

Theorem 5.2. Suppose Assumption 2.2 holds with λ0 ≥
1−A−(1+v) for some positive constant v. Given a failure
probability γ, with probability 1 − γ, the regret of Algo-
rithm 5 satisfies

Regret(K) ≤ c

(
H4

√
SAKι3 + S2

√
H9K

1
(1+v) ι6

)
,

where ι = log SAHK
γ and c is some constant.

The proof is provided in Appendix C.2. Some remarks are
in order.

SA rate when K is large When the number of episodes
K ≥ S3(1+v)/v, the first term H4

√
SAKι3 in the regret

bound dominates and attains a sharp dependence on S and
A. However, when the number of episodes are limited, the
regret bound has a worse dependence on the state space
size S. We also observe that as the missing rate λ becomes
small (equivalently, v becomes large), the regret is close to
Õ(H4

√
SAKι3).

Observable rate smaller than 1−1/A Theorem 5.2 holds
for an observable rate λ0 > 1−1/A. The intuition behind is
that to fully explore all the actions when a state observation
is missing takes A trials. Therefore, in expectation, we will
encounter a missing observation at least every A episodes
as long as λ0 > 1 − 1/A. Nonetheless, when λ0 ≤ 1 −
1/A, the regret bound remains curiously underexplored. We
conjecture that λ0 = 1−1/A is a critical point distinguishes
unique strategies for learning and planning in MDPs with
missing observations. A detailed analysis goes beyond the
scope of the current paper.

6. Conclusion and limitation
In this paper, we have studied learning and planning in
impaired observability MDPs. We focus on MDPs with
delayed and missing observations. Specifically, for delayed
observations, we have shown an efficient Õ(H4

√
SAK)

regret. For missing observations, we have provided an op-
timistic planning algorithm achieving an Õ(

√
H3S2AK)

regret. If the missing rate is relatively small, we have shown
an efficient Õ(H4

√
SAK) regret bound. Further, we have

characterized the performance drop caused by impaired ob-
servability compared to full observability.
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A. Omitted proof in Section 3
A.1. Proof of Proposition 3.1

Proof of Proposition 3.1. Consider an arbitrary fixed inter-arrival pattern ∆0,∆1, . . . ,∆H−1. We show that the expected
accumulated rewards under this inter-arrival pattern are identical for MDPaug and M̃DPaug. In M̃DPaug, we have

Eπ

 H̃∑
h=1

r̃h,aug(τh, ah)
∣∣∣ τ1,∆0, . . . ,∆H−1


(i)
= Eπ

 H̃∑
h=1

r̃th,aug(sth , ath)1{δth = 0}1{th ∈ {1, . . . ,H}}
∣∣∣ τ1,∆0, . . . ,∆H−1


(ii)
= Eπ

[
H∑

h=1

r(sh, ah)
∣∣∣ τ1,∆0, . . . ,∆H−1

]

= Eπ

[
H∑

h=1

rh,aug(τh, ah)
∣∣∣ τ1,∆0, . . . ,∆H−1

]
,

where equality (i) invokes the definition of r̃h,aug and equality (ii) eliminates zero reward terms. Now taking expectation
over all possible inter-arrival patterns, we deduce

Eπ

 H̃∑
h=1

r̃aug(τh, ah)
∣∣∣ τ1
 = Eπ

[
H∑

h=1

rh,aug(sh, ah)
∣∣∣ τ1] .

The proof is complete.

B. Omitted proofs in Section 4
B.1. Proof of Theorem 4.1

Proof of Theorem 4.1. We adapt the main steps from Azar et al. (2017) for proving the theorem. The proof consists of
verifying a valid optimism and developing a regret analysis. We denote Q̃∗

h,aug as the optimal Q-function for M̃DPaug. When

analyzing the regret, we also denote Q̃k
h,aug as the optimal Q-function in the k-th episode.

Valid optimism To begin with, we verify that the choice of the bonus functions leads to a valid optimism in the following
lemma.

Lemma B.1. Given any failure probability γ < 1, we set a bonus as

bkh(τh, ah) = cAH

(√
Hι

Nth(sth , ath , δth)
+

√
Hι

Nth(sth , ath)

)
,

where ι = log
(

SAHK
γ

)
and cA is a constant. Then with probability 1− γ, it holds

Q̃k
h,aug(τh, ah) ≥ Q̃∗

h,aug(τh, ah), Ṽ k
h,aug(τh) ≥ Ṽ ∗

h,aug(τh) for any (k, h, τh, ah).

Proof of Lemma B.1. We compute the cardinality of the expanded state space S̃aug as

|S̃aug|
(i)
=

H∑
i=0

HSAi = HS
AH+1 − 1

A− 1
≤ 2HSAH .

For a fixed episode k, we show by backward induction that the assertion in Lemma B.1 holds. To ease the presentation,
we omit all superscripts of k, all subscripts of “aug”, as well as the tilde ·̃ notation. When h = H̃ + 1, the base assertion
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holds immediately. Suppose the assertion is true for time h+ 1. At time h, for any fixed (τh, ah), if Qh(τh, ah) = H , the
assertion holds true. Otherwise, we have

Qh(τh, ah)−Q∗
h(τh, ah) = [P̂hVh+1](τh, ah)− [PhV

∗
h+1](τh, ah) + bkh(τh, ah)

≥
(
[P̂h − Ph]V

∗
h+1

)
(τh, ah)︸ ︷︷ ︸

(A)

+ bkh(τh, ah).

We show a lower bound on (A). If h ≥ H , expanding the transition kernel Ph leads to

(A) =
∑
τh+1

V ∗
h+1(τh+1)(p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))

(i)
=
∑
sth+1

V ∗
h+1(τh+1)(p̂h(sth+1|sth , ath)− ph(sth+1|sth , ath))

(ii)

≥ −cA,1H

√
Hι

Nth(sth , ath)
,

where equality (i) requires τh+1 to take sth+1 as the new state observation, and inequality (ii) follows from the Hoeffding’s
inequality (Lemma D.2) with a constant cA,1. Note that the Hι term in the numerator comes from a union bound over
S̃aug ×A.

On the other hand, if h < H , expanding the transition kernel Ph yields

(A) =
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))

=
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{δth+1

= 0}1{th+1 = th + 1}︸ ︷︷ ︸
(A1)

+
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{δth+1

= δth + 1}1{th+1 = th}︸ ︷︷ ︸
(A2)

.

Note that (A1) accounts for receiving a new state observation in τh+1, and (A2) accounts for no new state observation. We
tackle these two terms separately. For (A1), we have

(A1) =
∑
sth+1

V ∗
h+1(τh+1)

(
(1− θ̂(sth , ath , δth))p̂h(sth+1

|sth , ath)− (1− θ(sth , ath , δth))ph(sth+1
|sth , ath)

)
=
∑
sth+1

V ∗
h+1(τh+1)

((
1− θ̂(sth , ath , δth)

)
− (1− θ(sth , ath , δth))

)
p̂(sth+1

|sth , ath)

+
∑
sth+1

V ∗
h+1(τh+1)(1− θ(sth , ath , δth))

(
p̂(sth+1

|sth , ath)− p(sth+1
|sth , ath)

)
(i)

≥ −H
∣∣∣θ̂(sth , ath , δth)− θ(sth , ath , δth)

∣∣∣− cA,2H

√
Hι

Nth(sth , ath)
,

where in (i), the first term is the estimation error of θ̂ using the collected data, the second term follows from Hoeffding’s
inequality, and cA,2 is an absolute constant. For (A2), we have

(A2) ≥ −H
∣∣∣θ̂(sth , ath , δth)− θ(sth , ath , δth)

∣∣∣ ,
since τh+1 is now uniquely determined. Summing up (A1) and (A2), we obtain

(A) = (A1) + (A2) ≥ −2H
∣∣∣θ̂(sth , ath , δth)− θ(sth , ath , δth)

∣∣∣− cA,2H

√
Hι

Nth(sth , ath)
.
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It remains to bound the estimation error of θ̂(sth , ath , δth). Using the Hoeffding’s inequality again, we obtain

∣∣∣θ̂(sth , ath , δth)− θ(sth , ath , δth)
∣∣∣ ≤ cθ

√
Hι

Nth(sth , ath , δth)
.

Taking cA = max{cA,1, cA,2, cθ, 2}, we have

(A) ≥ −cAH

(√
Hι

Nth(sth , ath , δth)
+

√
Hι

Nth(sth , ath)

)
.

With the choice of the bonus function, it can be checked that

Q̃k
h,aug(τh, ah)− Q̃∗

h,aug(τh, ah) ≥ (A) + bkh(τh, ah) ≥ 0

with probability 1− γ for any (τh, ah).

Regret analysis In the sequel, we omit subscripts “aug” and tilde ·̃ for simplicity. Thanks to Lemma B.1, we consider(
Qk

h −Qπk

h

)
(τkh , a

k
h) as an upper bound of (Q∗

h −Qπk

h ) (τkh , a
k
h). We bound

(
Qk

h −Qπk

h

)
(τkh , a

k
h) by(

Qk
h −Qπk

h

)
(τkh , a

k
h)

≤
(
[P̂k

hV
k
h+1 − PhV

πk

h+1]
)
(τkh , a

k
h) + bkh(τ

k
h , a

k
h)

≤
(
[P̂k

h − Ph]V
∗
h+1

)
(τkh , a

k
h) +

(
[P̂k

h − Ph][V
k
h+1 − V ∗

h+1]
)
(τkh , a

k
h)

+
(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + bkh(τh, a

k
h)

≤
(
[P̂k

h − Ph][V
k
h+1 − V ∗

h+1]
)
(τkh , a

k
h)︸ ︷︷ ︸

(A)

+
(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + 2bkh(τ

k
h , a

k
h). (B.1)

Similar to Lemma B.1, for h ≥ H , we expand term (A) into

(A) =
∑
τh+1

(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
[V k

h+1 − V ∗
h+1](τh+1)

=
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sth+1|skth , akth)− ph(sth+1|skth , akth)

)
. (B.2)

On the other hand, for h ≤ H , the decomposition of term (A) is more complicated. We have

(A) =
∑
τh+1

(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
[V k

h+1 − V ∗
h+1](τh+1)

=
∑
τh+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
1{δth+1

= 0}1{th+1 = tkh + 1}︸ ︷︷ ︸
(A1)

+
∑
τh+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
1{δth+1

= δtkh + 1}1{th+1 = tkh}︸ ︷︷ ︸
(A2)

.

Term (A2) can be directly bounded by

(A2) ≤ H
∣∣∣θ̂k(skth , akth , δkth)− θ(skth , a

k
th
, δkth)

∣∣∣
≤ cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)
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with probability 1− γ. To bound (A1), we have

(A1) =
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)

((
1− θ̂k(skth , a

k
th
, δkth)

)
p̂kh(sth+1

|skth , akth)

−
(
1− θ(skth , a

k
th
, δkth)

)
ph(sth+1

|skth , akth)
)

=
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
((

1− θ̂k(skth , a
k
th
, δkth)

)
−
(
1− θ(skth , a

k
th
, δkth)

))
p̂kh(sth+1

|skth , akth)

+
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
1− θ(skth , a

k
th
, δkth)

) (
p̂kh(sth+1

|skth , akth)− ph(sth+1
|skth , akth)

)
≤
(
1− θ(skth , a

k
th
, δkth)

) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sth+1

|skth , akth)− ph(sth+1
|skth , akth)

)
+H

∣∣∣θ̂k(skth , akth , δkth)− θ(skth , a
k
th
, δkth)

∣∣∣
≤
(
1− θ(skth , a

k
th
, δkth)

) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sth+1

|skth , akth)− ph(sth+1
|skth , akth)

)
+ cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

Putting (A1) and (A2) together, we obtain

(A) ≤
(
1− θ(skth , a

k
th
, δkth)

) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sth+1

|skth , akth)− ph(sth+1
|skth , akth)

)
+ 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

. (B.3)

In both (B.2) and (B.3) for different ranges of h, we apply the Bernstein inequality (Lemma D.1) to derive∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sth+1

|skth , akth)− ph(sth+1
|skth , akth)

)

≤ c ·
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)

[√
ph(sth+1

|skth , akth)ι
Nk

th
(skth , a

k
th
)

+
ι

Nk
th
(skth , a

k
th
)

]
(i)

≤ c ·
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)

[
ph(sth+1

|skth , akth)
2cH

+
(2cH + 1)ι

Nk
th
(skth , a

k
th
)

]

≤ c ·

SH(2cH + 1)ι

Nk
th
(skth , a

k
th
)

+
1

2cH

∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)ph(sth+1
|skth , akth)

 , (B.4)

where inequality (i) follows from
√
ab ≤ a+ b. Substituting (B.4) into (B.2), for h ≥ H , we deduce

(A) ≤ 1

2H

∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)ph(sth+1
|skth , akth) +

cSH(2cH + 1)ι

Nk
th
(skth , a

k
th
)

(i)

≤ 1

2H

(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + c′

mSH2ι

Nk
th
(skth , a

k
th
)
,
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where c′ is a sufficiently large constant. By the same reasoning, substituting (B.4) into (B.3), for h < H , we have

(A) ≤ 1

2H

(
1− θ(skth , a

k
th
, δkth)

) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)ph(sth+1
|skth , akth) +

cSH(2cH + 1)ι

Nk
th
(skth , a

k
th
)

+ 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

(i)

≤ 1

2H

(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + c′

SH2ι

Nk
th
(skth , a

k
th
)
+ 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

We denote ζkh = c′ SH2ι
Nk

th
(skth

,ak
th

)
. Now we have a unified upper bound on (A) for any h ∈ [1, H̃] as

(A) ≤ 1

2H

(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + ζkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

. (B.5)

Substituting (B.5) back into (B.1), we have(
V k
h − V πk

h

)
(τkh ) =

(
Qk

h −Qπk

h

)
(τkh , a

k
h)

≤
(
1 +

1

2H

)(
Ph

[
V k
h − V πk

h

])
(τkh , a

k
h) + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

We further denote ξkh =
(
Ph

[
V k
h − V πk

h

])
(τkh , a

k
h)−

[
V k
h+1 − V πk

h+1

]
(τkh+1) and rewrite

(
V k
h − V πk

h

)
(τkh ) as

(
V k
h − V πk

h

)
(τkh ) ≤

(
1 +

1

2H

)([
V k
h+1 − V πk

h+1

]
(τkh+1) + ξkh

)
+ ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

Recall H̃ = 2H . Using a recursive summation argument, we deduce

(
V k
1 − V πk

1

)
(τk1 ) ≤

H̃∑
h=1

(
1 +

1

2H

)h
(
ξkh + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

)

≤ e

2H∑
h=1

(
ξkh + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

)
.

As a consequence, the total regret is bounded by

Regret(K) ≤ e

K∑
k=1

2H∑
h=1

(
ξkh + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

)
. (B.6)

We need to sum over ζkh , ξ
k
h, b

k
h. Consider ζkh first. We have

K∑
k=1

2H∑
h=1

ζkh = c′
K∑

k=1

2H∑
h=1

SH2ι

Nk
th
(skth , a

k
th
)

(i)

≤ c′H
K∑

k=1

H∑
h=1

SH2ι

Nk
h (s

k
h, a

k
h)

(ii)

≤ cζH
4S2Aι2, (B.7)

where inequality (i) invokes the fact that th only takes value in {1, . . . ,H} and each Nk
th
(skth , a

k
th
) is repeated at most H

times, and inequality (ii) follows from the pigeon-hole argument in Azar et al. (2017).
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Next we bound the summation over ξkh. This is a martingale difference sequence. We apply Azuma-Hoeffding’s inequality
(Lemma D.3) with n = 2H and ci = 4H to obtain

K∑
k=1

2H∑
h=1

ξkh ≤ cξ
√
KH4ι. (B.8)

The additional H dependence above comes from a union bound over S̃aug ×A. Lastly, we tackle the summation over bonus
functions bkh. We have

K∑
k=1

2H∑
h=1

bkh =

K∑
k=1

2H∑
h=1

cAH

√
Hι

Nk
th
(sth , ath)

≤ cAH

K∑
k=1

H∑
h=1

H

√
Hι

Nk
th
(sth , ath)

≤ cbH
7/2

√
SAKι. (B.9)

Putting (B.7), (B.8) and (B.9) together, we deduce

Regret(K) ≤ c
(
H7/2

√
SAKι+H4S2Aι2 +

√
H4Kι

)
+ 2ecθH

K∑
k=1

2H∑
h=1

√
Hι

Nk
th
(skth , a

k
th
, δkth)

for some constant c. To this end, the only remaining task is to find
∑K

k=1

∑2H
h=1

√
1

Nk
th

(skth
,ak

th
,δkth

)
, which undergoes a

similar argument as the bonus summation. We have
K∑

k=1

2H∑
h=1

√
1

Nk
th
(skth , a

k
th
, δkth)

≤ H

K∑
k=1

H∑
h=1

√
1

Nk
h (s

k
h, a

k
h, δ

k
h)

= H
∑

(h,s,a,δ)

NK
h (s,a,δ)∑
i=1

√
1

i

(i)

≤ 2H
∑
δ

∑
(h,s,a)

√
NK

h (s, a, δ)

(ii)

≤ 2H
∑
δ

√
SAKH

(iii)

≤ 2H2
√
SAKH, (B.10)

where inequality (i) invokes
∑n

i=1 1/
√
i ≤ 2

√
n, inequality (ii) follows from Cauchy-Schwarz, and inequality (iii) uses

the fact that δ is bounded by H . Plugging (B.10) into the regret bound, we obtain the desired result

Regret(K) ≤ c
(
H4

√
SAKι+H4S2Aι2 +

√
H4Kι

)
with probability 1− γ. Absorbing

√
H4Kι into H4

√
SAKι yields the bound in Theorem 4.1.

B.2. Statement and proof of Proposition B.2

Proposition B.2. In the setup of Section 4.2, we have

gap(s1) ≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)(
ρ
π∗
delay

h ∧ ρ
π∗
nodelay

h

)
(τ)dτ︸ ︷︷ ︸

E1

+ 2 ∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV︸ ︷︷ ︸
E2

]
.
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where ρ
π∗
nodelay

h and ρ
π∗
delay

h are visitation measures induced by π∗
nodelay and π∗

delay, respectively.

Term E1 is strictly larger than zero due to the convexity of the max operation. Term E2 accounts for the difference in the
visitation measure. When the original MDP has deterministic transitions, we can check that E1 is zero, since the expectation
over s is concentrated on a singleton that can be inferred from history. Hence, the visitation measures are also identical,
which implies V ∗

1,nodelay(s1)− V ∗
1,delay(s1) = 0. On the contrary, when bh(·|τ) is evenly spread, meaning that the entropy

of bh is high, we potentially suffer from a large performance drop, in that, inferring the current state is difficult.

Proof of Proposition B.2. Let τ1, . . . , τH denote the states observed in the delayed environment. Since π∗
nodelay is greedy

and Markov, we obtain

V ∗
1,nodelay(s1) = Eπ∗

nodelay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

nodelay [E[rH(sH , aH)|τH ]|s1]

= Eπ∗
nodelay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

nodelay

[∑
s

bH(s|τH)max
a

rH(s, a)|s1
]
.

Recursively applying the above argument, we deduce

V ∗
1,nodelay(s1) = Eπ∗

nodelay

[
H∑

h=1

∑
s

bh(s|τh)max
a

rh(s, a)|s1
]
.

We also rewrite V ∗
1,delay(s1) as

V ∗
1,delay(s1) = Eπ∗

delay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

delay [E[rH(sH , aH)|τH ]|s1]

= Eπ∗
delay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

delay

[
max

a

∑
s

bH(s|τH)rH(s, a)|s1
]

= ...

= Eπ∗
delay

[
H∑

h=1

max
a

∑
s

bh(s|τh)rh(s, a)|s1
]
.

Then we write the difference between V ∗
1,nodelay(s1) and V ∗

1,delay(s1) as

V ∗
1,nodelay(s1)− V ∗

1,delay(s1)

=

H∑
h=1

(∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

)

=

H∑
h=1

(∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ

+

∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

)

≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)
ρ
π∗
nodelay

h (τ)dτ + 2∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV

]
.
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We also have

V ∗
1,nodelay(s1)− V ∗

1,delay(s1)

=

H∑
h=1

(∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

+

∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

)

≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)
ρ
π∗
delay

h (τ)dτ + 2∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV

]
.

Combining the above two inequalities, we obtain

V ∗
1,nodelay(s1)− V ∗

1,delay(s1)

≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)(
ρ
π∗
delay

h ∧ ρ
π∗
nodelay

h

)
(τ)dτ

+ 2∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV

]
.

The proof is complete.

B.3. Proof of Proposition 4.2

Proof of Proposition 4.2. We construct an MDP instance (S,A, H,R, P ) for H > d as follows. Let S = {1, 2} and
A = {a1, a2}. For the reward function, we have

rh(s, a) =

{
1 if a = as and h = d+ 1

0 otherwise
.

The reward is nonzero only at time d+ 1. The transition probabilities are defined as

ph(s
′|s, a) =


1
2 if h = d+ 1

1 if h ̸= d+ 1 and s′ = s

0 otherwise
.

The transition probability at step d+ 1 says that s′ is uniform regardless of the previous state and action. Suppose a uniform
initial distribution on s1. We first show that if the constant delay equals d, then there exists a policy π∗,d achieving maximal
value. Indeed, the policy is chosen as

π∗,d
h (·|{sh−d,ah−d:h−1}) =

{
ash−d

if h = d+ 1

Uniform(A) if h ̸= d+ 1.

It is straightforward to check that π∗,d is optimal, since at step d+ 1, s1 is revealed and the policy takes the optimal action
as1 to obtain reward 1.

On the other hand, if the constant delay equals d+ 1, then any policy suffers from a constant performance degradation. To
see this, in a single trajectory, since the starting state is only revealed at time d+ 2, the policy at time d+ 1 cannot exploit
the information of the initial state. Therefore, any policy coincides with the best action with probability 1

2 . For K episodes,
with probability 1− γ, the total reward of any policy π ∈ Πe is bounded by

K∑
k=1

V π
1 (sk1) ≤

1

2
K +

√
K

2
log

1

γ
,
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due to Hoeffding’s inequality. As a result, the performance drop is at least

gap(K) ≥ 1

2
−
√

1

2K
log

1

γ
.

C. Omitted proofs in Section 5
C.1. Proof of Proposition 5.1

Proof of Proposition 5.1. We have by standard performance difference arguments that

K∑
k=1

max
π∈Πe

V π
θ⋆(sk1)− V πk

θ⋆ (sk1)
(i)

≤
K∑

k=1

V πk

θk (sk1)− V πk

θ⋆ (sk1)

(ii)
=

K∑
k=1

H∑
h=1

Eπk

θ⋆

[〈
(Pθk

h − Pθ⋆

h )(·|sh, ah), V πk

θk,h+1(·)
〉]

≤
H∑

h=1

K∑
k=1

Eπk

θ⋆

[
c

√
H2Sι

Nk
h (sh, ah)

∧H

]
(iii)

≤
H∑

h=1

K∑
k=1

c′
√

H2Sι

Nk
h (s

k
h, a

k
h)

+H
√
H2Kι

(iv)

≤ c′
(⌈

log HK
γ

− log(1− λ2
0)

⌉
√
H2Sι · SAHK +

√
H4Kι

)

≤ c′
(⌈

1

− log(1− λ2
0)

⌉√
H3S2AKι3 +

√
H4Kι

)
,

where inequality (i) follows from valid optimism, equality (ii) recursively expand the value function and ⟨·, ·⟩ denotes the
inner product, inequality (iii) invokes Azuma-Hoeffding’s inequality, and inequality (iv) invokes Lemma C.2.
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C.2. Algorithm and proof of Theorem 5.2

Algorithm 5 Policy learning for MDPs with missing observations
1: Input: Horizon H .
2: Init: VH+1(τ) = 0 and QH(τ, a) = H for any τ, a, data set D0 = ∅, initial policy π0.
3: for episode k = 1, . . . ,K do
4: Execute policy πk−1.
5: After the episode ends, collect data Dk = Dk−1 ∪ {(skh, akh, rkh)}Hh=1.
6: On data set Dk, compute counting numbers

Nk
h (τh, ah) =

k∑
j=1

1{τkh = τh, a
k
h = ah, s

k
h+1 ̸= ∅} and Nk

h,λ =

k∑
j=1

1{skh = ∅}.

7: Estimate transition probabilities and delay distributions via

p̂kh(sh+1|τh, ah) =
Nk

h (τh, ah, sh+1)

Nk
h (τh, ah)

and λ̂k
h = Nk

h,λ/k.

8: Set bonus function as

bkh(τh, ah) = cH

(√
Hι

Nk
h (τh, ah)

+

√
ι

k

)

for ι = log SAKH
γ and c sufficiently large.

9: Run optimistic value iteration in MDPaug for H steps and obtain πk ∈ Πe.
10: end for
11: Return: Learned policy πk for k = 1, . . . ,K.

We remark that similar to delayed MDPs, in Line 5 the planning is on MDPaug and the obtained policy is executable given
any τ ∈ Saug when state observation is missed. Therefore, the planning complexity is SAH . Different from Algorithm 2,
the bonus function here depends on multi-step transitions, in that missing observations are permanently lost.

Proof of Theorem 5.2. The proof utilizes similar steps as Theorem 4.1, with an extra care on the summation of bonus
functions.

Valid optimism We verify the choice of bonus functions leads to a valid optimism.

Lemma C.1. Given any failure probability γ < 1, we set bonus functions as

bkh(τh, ah) = cH

(√
Hι

Nk
h (τh, ah)

+

√
ι

k

)
with ι = log

(
SAHK

γ

)
.

Then with probability 1− γ, it holds

Qk
h,aug(τh, ah) ≥ Q∗

h,aug(τh, ah), V k
h,aug(τh) ≥ V ∗

h,aug(τh) for any (k, h, τh, ah).

Proof. In the proof, we omit subscript “aug” for simplicity. We use backward induction on time h again. The base case of
H + 1 holds immediately due to the initial value of VH+1,aug. Suppose at time h+ 1, the assertion holds. Then for time h,
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if Qh,aug = H , the assertion holds trivially. Otherwise, we have

Qh(τh, ah)−Q∗
h(τh, ah)

= r̂h(τh, ah) + [P̂hVh+1](τh, ah)− rh(τh, ah)− [PhV
∗
h+1](τh, ah) + bkh(τh, ah)

≥
(
[P̂h − Ph]V

∗
h+1

)
(τh, ah)︸ ︷︷ ︸

(A)

+ r̂h(τh, ah)− rh(τh, ah)︸ ︷︷ ︸
(B)

+ bkh(τh, ah).

We lower bound (A) and (B) separately. For term (A), we have

(A) =
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))

=
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{th+1 = h+ 1}

+
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{th+1 = th}

=
∑
sh+1

V ∗
h+1(τh+1)

(
(1− λ̂h)p̂h(sh+1|sth ,ath:h)− (1− λh)ph(sh+1|sth ,ath:h)

)
︸ ︷︷ ︸

(A1)

+ V ∗
h+1({sth ,ath:h})(λ̂h − λh)︸ ︷︷ ︸

(A2)

.

In (A1), τh+1 is {sh+1}. We bound (A1) as

(A1) =
∑
sh+1

V ∗
h+1(τh+1)

(
(1− λ̂h)p̂h(sh+1|sth ,ath:h)− (1− λh)p̂h(sh+1|sth ,ath:h)

+ (1− λh)p̂h(sh+1|sth ,ath:h)− (1− λh)ph(sh+1|sth ,ath:h)
)

=
∑
sh+1

V ∗
h+1(τh+1)(1− λh) (p̂h(sh+1|sth ,ath:h)− ph(sh+1|sth ,ath:h))

+
∑
sh+1

V ∗
h+1(τh+1)(λh − λ̂h)p̂h(sh+1|sth ,ath:h)

(i)

≥ −cAH

√
Hι

Nh(τh, ah)
−H

∣∣∣λ̂h − λh

∣∣∣ ,
where inequality (i) invokes Hoeffding’s inequality and holds with probability 1− γ for any τh, ah and some constant cA.
Term (A2) is immediately bounded by

(A2) ≥ −H
∣∣∣λ̂h − λh

∣∣∣ .
Putting (A1) and (A2) together, we derive

(A) ≥ −cAH

√
Hι

Nh(τh, ah)
− 2H

∣∣∣λ̂h − λh

∣∣∣
with high probabilty. For term (B), we have

(B) =
∑
sh

r(sh, ah)
(
b̂h(sh|τh)− bh(sh|τh)

)
≥ −cB

√
Hι

Nh(τh, ah)
.
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Taking c = cA + cB and summing up (A) and (B), we have

Qh(τh, ah)−Q∗
h(τh, ah) ≥ −cH

√
Hι

Nh(τh, ah)
− 2H

∣∣∣λ̂h − λh

∣∣∣+ bkh(τh, ah).

We estimate λh by its empirical average. In episode k ≥ 1, we have access to k i.i.d. realizations of Bernoulli random
variable with rate λh (observable or not). Therefore, by Hoeffding’s inequality, we have

∣∣∣λ̂k
h − λh

∣∣∣ ≤ 2

√
log HK

γ

k
≤ 2

√
ι

k
.

Substituting into Qk
h(τh, ah)−Q∗

h(τh, ah) and reloading constant c give rise to

Qk
h(τh, ah)−Q∗

h(τh, ah) ≥ −cH

(√
Hι

Nk
h (τh, ah)

+

√
ι

k

)
+ bkh(τh, ah) ≥ 0.

The proof is complete.

Regret analysis We omit subscript “aug” to ease the presentation. The same derivation in the proof of Theorem 4.1 gives
rise to

(Q∗
h −Qπk

h ) (τkh , a
k
h) ≤

(
Qk

h −Qπk

h

)
(τkh , a

k
h)

≤
(
[P̂k

h − Ph][V
k
h+1 − V ∗

h+1]
)
(τkh , a

k
h)︸ ︷︷ ︸

(A)

+
(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + 2bkh(τ

k
h , a

k
h). (C.1)

Lemma C.1 shows that (A) can be written as

(A) =
∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)(1− λh)
(
p̂kh(sh+1|skth ,akth:h)− ph(sh+1|skth ,akth:h)

)
+
∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)(λh − λ̂k
h)p̂

k
h(sh+1|skth ,akth:h)

≤
∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)(1− λh)
(
p̂kh(sh+1|skth ,akth:h)− ph(sh+1|skth ,akth:h)

)
+H

∣∣∣λ̂k
h − λh

∣∣∣
≤ (1− λh)

∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sh+1|skth ,akth:h)− ph(sh+1|skth ,akth:h)

)
+ 2H

√
ι

k
.

Following the derivation in (B.4), (B.5) and (B.6), we have

Regret(K) ≤ e

K∑
k=1

H∑
h=1

(
ξkh + ζkh + 2bkh + 2H

√
ι

k

)

≤ e

K∑
k=1

H∑
h=1

(
ξkh + ζkh + 2bkh

)
+ 2

√
H4Kι.

where ξkh =
(
Ph

[
V k
h − V πk

h

])
(τkh , a

k
h)−

[
V k
h+1 − V πk

h+1

]
(τkh+1) is the martingale difference and ζkh = c′ SH2ι

Nk
h (τk

h ,ak
h)

.

Counting number summation The summation over ξkh is standard. Using the Azuma-Hoeffding’s inequality, we have

K∑
k=1

H∑
h=1

ξkh ≤ cξ
√
KH4ι.
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It remains to find the summations involving Nk
h (τ

k
h , a

k
h). First, we show that the event Em = {h− th − 1 ≤ m}, i.e., the

maximal consecutive delay is upper bounded by m > 0, holds with high probability. We have

P(Em) ≤
(
1−H(1− λ0)

m+1
)K

,

since λ0 is a uniform lower bound of λh. Next, we provide an upper bound on NK
h (τh, ah). For a given tuple (h, τh, ah, th),

the consecutive missing length is h− th − 1. Such a missing pattern appears with probability at most (1− λ0)
h−th−1. As a

consequence, denote CK
h−th−1 as the number of h− th − 1 consecutive missings in K episodes. With probability 1− γ, we

have

CK
h−th−1 ≤ K(1− λ0)

h−th−1 +
√
K(1− λ0)h−th−1Hι+ ι.

by Bernstein’s inequality in Lemma D.1. Furthermore, at a fixed time h, we use Lemma C.3 to bound the gap between two
consecutive appearances of the same missing pattern. We instantiate Lemma C.3 with θ = (1− λ0)

h−th−1 and obtain that
the gap is bounded by

⌈
ι

− log(1−(1−λ0)
h−th−1)

⌉
with probability 1− γ. Within the gap, the number of consecutive delays of

length larger than h− th − 1 is bounded by

C≥h−th−1

(i)

≤
⌈

ι

− log(1− (1− λ0)h−th−1)

⌉
(1− λ0)

h−th

+

√⌈
ι

− log(1− (1− λ0)h−th−1)

⌉
(1− λ0)h−thHι+ ι

(ii)

≤
√
2(1− λ0)Hι+ 2(1− λ0) + ι,

where inequality (i) follows from Bernstein’s inequality again and inequality (ii) invokes the fact x+ log(1− x) ≤ 0 for
x ∈ [0, 1) and bounds ⌈x⌉ by x+ 1. Now we can bound the summation of the counting numbers. Conditioned on the event
Em, we have

K∑
k=1

H∑
h=1

√
1

Nk
h (τ

k
h , a

k
h)

(i)

≤
∑

(h,τ,a,th)

C≥h−th−1

NK
h (τ,a)∑
i=1

√
1

i

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
) ∑

(h,τ,a,th)

√
NK

h (τ, a)

(ii)

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
)∑

h,th

√
SAh−thCK

h−th−1

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
)

·
∑
h,th

√
SA

(
K((1− λ0)A)h−th−1 +

√
K(A2(1− λ0))h−th−1Hι+Ah−th−1ι

)
(iii)

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
)∑

h,th

√
SA

(
K +

√
KAmHι+Amι

)
≤ 2

(√
2(1− λ0)Hι+ 2(1− λ0) + ι

)
H2

√
SA

(
K +

√
KAmHι+Amι

)
≤ 2

√
H5SAι2

(
K +

√
KAmHι+Amι

)
,

where inequality (i) follows since Nk
h is repeated at most C≥h−th−1 times before getting an update and inequality (ii)

follows from Cauchy-Schwarz inequality, and inequality (iii) invokes the assumption of λA ≤ 1. Moreover, conditioned on



Efficient RL with Impaired Observability

the event Em, we also have

K∑
k=1

H∑
h=1

1

Nk
h (τ

k
h , a

k
h)

≤
∑

(h,τ,a,th)

C≥h−th−1

NK
h (τ,a)∑
i=1

1

i

≤
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
) ∑

(h,τ,a,th)

logNK
h (τ, a)

≤ ιH5/2SAm+1 logK.

Putting together On event Em, the regret is bounded by

Regret(K)
(i)

≤ c

(
√
H4Kι+

K∑
k=1

H∑
h=1

[
SH2ι

Nk
h (τ

k
h , a

k
h)

+H

√
Hι

Nk
h (τ

k
h , a

k
h)

])

≤ c

H4

√√√√SAι3K

(
1 +

√
AmHι

K
+

Amι

K

)
+ S2Am

√
H9ι6 +

√
H4Kι

 ,

where c is a sufficiently large constant and we substitute the bonus functions into inequality (i).

On the complement of Em, the regret is bounded by H(1−P(Em)) ≤ H2K(1−λ0)
m+1. We choose m = 1

2

⌊
logK

− log(1−λ0)

⌋
such that H(1− P(Em)) ≤ H2K(1− λ0)

m+1 ≤ H2
√
K. We can now check that Am+1 = exp

(
logA

− log(1−λ0)
log

√
K
)
≤

K
1

2(1+v) . Therefore, combining the regret on event Em and the complement event E∁
m leads to

Regret(K) ≤ c

(
H4

√
SAKι3 + S2

√
H9K

1
(1+v) ι6

)
.

The proof is complete.

C.3. Supporting lemmas

Lemma C.2. Suppose Assumption 2.2 holds. With probability 1− γ for some failure probability γ > 0, we have

K∑
k=1

H∑
h=1

1√
Nk

h (s
k
h, a

k
h)

≤
⌈

log HK
γ

− log(1− λ2
0)

⌉
√
SAKH.

Proof of Lemma C.2. For any time h, we denote Keff(h) as the collection of episodes that the h-th and (h + 1)-th step
observations are available. It is clear that the cardinality of Keff(h) is bounded by K for any h. Within each Keff(h), we
would like to bound the gap between two observations. Thanks to Lemma C.3, the gap is bounded by q with probability

1 − K(1 − λ2
0)

q+1. We set K(1 − λ2
0)

q+1 = γ/H , which implies q =

⌈
log HK

γ

− log(1−λ2
0)

⌉
. Therefore, for any time step h,

available observations are at most separated by q episodes.

With these notations, we bound

K∑
k=1

H∑
h=1

1√
Nk

h (s
k
h, a

k
h)

(i)

≤
⌈

log HK
γ

− log(1− λ2
0)

⌉
H∑

h=1

∑
k∈Keff (h)

1√
Nk

h (s
k
h, a

k
h)

(ii)

≤
⌈

log HK
γ

− log(1− λ2
0)

⌉
H∑

h=1

K∑
k=1

1√
Nk

h (s
k
h, a

k
h)

(iii)

≤ 2

⌈
log HK

γ

− log(1− λ2
0)

⌉
√
SAHK,
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where inequality (i) follows since Nk
h will only be updated when h ∈ Keff(h) and then repeat at most

⌈
log HK

γ

− log(1−λ2
0)

⌉
times, inequality (ii) invokes the cardinality bound of Keff(h), and inequality (iii) follows from the standard pigeon-hole
principle.

Lemma C.3. Let {ui}ki=1 be i.i.d. Bernoulli random variables. Suppose P(ui = 1) = θ. Define the largest gap between
ui’s as

g(k) = sup{j − i : ui = 0 and uj = 0 with uℓ = 1 for ℓ = i+ 1, . . . , j − 1}.

Then for any integer q > 0, the following tail probability bound holds

P(g(k) > q) ≤ kθq+1.

Proof of Lemma C.3. We denote Ineg = {ℓ1, . . . , ℓm} as the index set for uℓi = 0 when i = 1, . . . , |Ineg|. Let vj =
ℓj+1 − ℓj , which is a geometric random variable with a success rate θ. Note that the cardinality of Ineg is at most k.
Therefore, we have

P(g(k) > q) ≤ P( max
j=1,...,k

vj > q)

= 1− P (vj ≤ q for j = 1, . . . , k)

= 1−
(
1− θq+1

)k
≤ kθq+1,

where the last inequality follows from 1− kθq+1 ≤ (1− θq+1)k.

D. Helper concentration inequalities
Lemma D.1 (Bernstein’s inequality). Let x1, . . . , xn be i.i.d. zero mean random variables. Suppose |xi| ≤ M for any
i = 1, . . . , n. Then for all positive t, it holds

P

(
n∑

i=1

xi > t

)
≤ exp

(
−

1
2 t

2∑n
i=1 Var[xi] +

1
3Mt

)
.

In particular, given a failure probability γ < 1, it holds

P

 n∑
i=1

xi >

√√√√ n∑
i=1

Var[xi] log
1

γ
+M log

1

γ

 ≤ γ.

Proof of Lemma D.1. The proof of Bernstein’s inequality is standard, see for example Wainwright (2019, Section 2.1). Here
we verify the second claim. Let exp

(
−

1
2 t

2∑n
i=1 Var[xi]+

1
3Mt

)
≤ γ hold true. We find a suitable t by

exp

(
−

1
2 t

2∑n
i=1 Var[xi] +

1
3Mt

)
≤ γ

⇐⇒
1
2 t

2∑n
i=1 Var[xi] +

1
3Mt

≥ log
1

γ

⇐⇒ t2 − 2

3
tM log

1

γ
≥

n∑
i=1

Var[xi] log
1

γ

⇐⇒ t ≥

√√√√ n∑
i=1

Var[xi] log
1

γ
+

1

9
M2 log2

1

γ
+

1

3
M log

1

γ
.

It is enough to choose t =
√∑n

i=1 Var[xi] log
1
γ +M log 1

γ .
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Lemma D.2 (Hoeffding’s inequality). Let x1, . . . , xn be i.i.d. random variables. Suppose ai ≤ xi ≤ bi for any i = 1, . . . , n.
Then for all positive t, it holds

P

(∣∣∣∣∣
n∑

i=1

xi − E

[
n∑

i=1

xi

]∣∣∣∣∣ > t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

In particular, given a failure probability γ < 1, it holds

P

 1

n

∣∣∣∣∣
n∑

i=1

xi − E

[
n∑

i=1

xi

]∣∣∣∣∣ >
√∑n

i=1(bi − ai)2 log
2
γ

2n2

 ≤ γ.

Proof of Lemma D.2. The proof is standard; see Wainwright (2019, Section 2.1).

Lemma D.3 (Azuma-Hoeffding’s inequality). Let x1, . . . , xn be a martingale adapted to filtration F1 ⊂ · · · ⊂ Fn. Suppose
E[xi − E[xi]|Fi−1] = 0 and |xi − E[xi]| ≤ ci. Then for all positive t, it holds

P

(
n∑

i=1

xi − E[xi] > t

)
≤ exp

(
− t2

2
∑n

i=1 c
2
i

)
.

In particular, given a failure probability γ < 1, it holds

P

 n∑
i=1

xi − E[xi] >

√√√√2

n∑
i=1

c2i log
1

γ

 ≤ γ.

Proof of Lemma D.3. The proof is standard and applies Lemma D.2.


