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Abstract

Quantum computing promises to revolutionize machine learning, offering significant effi-
ciency gains in tasks such as clustering and distance estimation. Additionally, it provides
enhanced security through fundamental principles like the measurement postulate and the
no-cloning theorem, enabling secure protocols such as quantum teleportation and quantum
key distribution. While advancements in secure quantum machine learning are notable, the
development of secure and distributed quantum analogues of kernel-based machine learning
techniques remains underexplored.
In this work, we present a novel approach for securely computing common kernels, including
polynomial, radial basis function (RBF), and Laplacian kernels, when data is distributed,
using quantum feature maps. Our methodology introduces a robust framework that lever-
ages quantum teleportation to ensure secure and distributed kernel learning. The proposed
architecture is validated using IBM’s Qiskit Aer Simulator on various public datasets.

1 Introduction

Quantum computing is set to revolutionize machine learning (ML), by leveraging its capability to encode
high dimensional data into quantum bits, or qubits. These qubits exist in a superposition of states, enabling
quantum data to represent data exponentially more efficiently than classical computing; data represented
using N classical bits can equivalently be represented by log2N qubits. Although practical quantum com-
puters are still in their infancy, various quantum machine learning (QML) techniques have been and are
being proposed.

Notably, quantum computing has exhibited a substantial efficiency gain in some computational tasks as
compared to classical computing (Schuld & Petruccione, 2018): estimating distances and inner products
between post-processed N -dimensional vectors is achieved in O(log(N)) as compared to the O(N). Simiarly,
clustering N -dimensional vectors into M clusters is expedited to O(log(MN)) using quantum data, as
compared to O(poly(MN)).

Quantum computers however are not only effective because they handle high dimensional data better, but
also offer strengthened security due to two fundamental principles of quantum mechanics - the measurement
postulate and the no-cloning theorem (Wootters & Zurek, 1982). Quantum data collapses upon measurement,
and can’t be copied without destroying the original data, offering absolutely secure communication. Secure
quantum computing is well studied, and comprises of protocols such as quantum teleportation (Bennett et al.,
1993; Bouwmeester et al., 1997), quantum key distribution (Bennett & Brassard, 2014; Bennett et al., 1992),
and quantum secure direct communication (Long & Liu, 2002; Deng et al., 2003; Wang et al., 2005; Zhang
et al., 2006). Additionally, quantum computers utilizing various technologies, such as trapped ions, photons,
superconducting circuits and so forth, are actively being developed, enhancing the practical implementation
of these secure communication protocols.

Meanwhile, kernel-based ML comprises a set of techniques that are particularly effective for classification
and regression tasks. These methods assess the similarity between data points in higher-dimensional spaces,
which is essential for learning from data when data is not trivially separable. In contrast to more advanced
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counterparts such as deep-learning, many kernel-based ML techniques often offer greater interpretability
(Morocho-Cayamcela et al., 2019; Ponte & Melko, 2017), and provide better accuracy and models when the
high-dimensional data is limited which is often the case in many real-world applications (Ding et al., 2021;
Montesinos-López et al., 2021). While much of the focus in QML has been on developing quantum or hybrid
(quantum-classical) deep learning and neural networks (Garg & Ramakrishnan, 2020; Kwak et al., 2023),
quantum analogues of kernel-based ML techniques are important alternatives with landmark studies that
work on centralized data (Havlíček et al., 2019; Schuld & Killoran, 2019).

In real-world scenarios, data is often distributed amongst various parties, who would want to collaboratively
train a model but ensure privacy of their data. A critical challenge in QML is designing methods that work
with distributed data in a secure manner. Current research in the field of QML in the context of distributed
kernel-based techniques (Yu et al., 2006; Hannemann et al., 2023) is limited, with only one notable study
addressing it (Sheng & Zhou, 2017). Although it is not described as a kernel method originally, Schuld &
Killoran (2019) later laid the mathematical framework to describe the work to be a special case of the linear
kernel applied in a 2-qubit system.

Our work addresses the gaps left by previous research by introducing a novel approach to securely compute
some commonly used kernels. We achieve this by encoding classical data into quantum states using Random
Fourier Features (RFF) (Rahimi & Recht, 2007). We provide a robust architecture for secure and distributed
kernel-based learning, utilizing a centralized semi-honest server to compute kernels and train machine learning
models. This approach leverages quantum teleportation to ensure data security during transmission.

To validate our proposed architecture empirically, we use various publicly available datasets and Qiskit’s
Aer Simulator (Wille et al., 2019) to simulate feasible kernel-based machine learning techniques. Our results
demonstrate that this method not only ensures data security but also achieves performance comparable
to both centralized classical and quantum scenarios. Although quantum analogs of classical algorithms
provide promising avenues for secure and efficient computations in high-dimensional data settings, it is
widely recognized that these methods exhibit lower accuracy (Bharti et al., 2022). This is primarily due
to inherent quantum noise, approximations in quantum state preparation, and the current limitations of
quantum simulators and hardware.

We make the following three contributions:

1. Introduction of Quantum Feature Maps: We introduce quantum feature maps for the polyno-
mial, Radial Basis Function (RBF), and Laplacian kernels, and theoretically prove the correctness
of these feature maps.

2. Architecture for Secure Kernel Computation: We propose a secure architecture to securely
compute the linear, polynomial, RBF, and Laplacian kernels in a federated manner on distributed
datasets using quantum encoding.

3. Implementation and Validation: We theoretically validate our architecture, and for empirical
validation, we implement the architecture for linear kernels on publicly available datasets using the
capabilities of Qiskit’s Aer Simulator. Due to the limitations of the simulator and our lack of access
to a real quantum computer, we were unable to test other kernels at this stage.

2 Background

2.1 Kernel-based Machine Learning

In machine learning, one typically works with a dataset X consisting of data points {x1, x2, . . . , xN } ∈ X ,
where the goal is to identify patterns to evaluate previously unseen data. Kernel-based techniques employ a
similarity measure called the kernel function, between two inputs to construct models that effectively capture
the underlying properties of the data distribution. This kernel function is often an inner product in a feature
space, typically of higher dimensionality, where non-linear relationships between data points becomes more
apparent. Various kernel functions are used in practice, such as Linear, RBF, Polynomial, and Laplacian
Kernels. These functions are designed to accommodate diverse data characteristics, making them suitable
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for various applications. Besides many applications, these methods have a rich theoretical foundation that
we briefly explore below.
Definition 1. Kernel function (Aizerman, 1964)
A kernel function K is a map K : X × X → C that satisfies K(x, y) = ⟨ϕ(x), ϕ(y)⟩, where ϕ : X → H is a
map from the input space X to a Hilbert space (H, ⟨·, ·⟩).

One refers to ϕ as a feature map. Since for any unitary operator U : H → H, ⟨ϕ(x), ϕ(y)⟩ = ⟨Uϕ(x), Uϕ(y)⟩,
a kernel can be related to many different feature maps. However, kernel theory defines a unique Hilbert
space associated with a kernel, called the Reproducing Kernel Hilbert space (RKHS) as follows.
Definition 2. Reproducing Kernel Hilbert Space (RKHS) (Aronszajn, 1950)
Let X be an input space, and (R, ⟨·, ·⟩) the Hilbert space of functions f : X → C. Then R is an RKHS if
there exists a function K : X × X → C such that for all x ∈ X and f ∈ R, the following holds true:

f(x) = ⟨f,K(x, ·)⟩.

Alternatively, considering an associated feature map, ϕ : X → H, then R is the space of functions f : X → C
such that for all x ∈ X and ν ∈ H,

f(x) = ⟨ν, ϕ(x)⟩H.

Typically, a large family of machine learning problems aim to compute a prediction function f : X → C that
takes training or test data and predicts the corresponding label. This is often formulated as the solution to
the following optimization problem:

min
f∈R

 n∑
j=1

L(yj , f(xj)) + λ∥f∥2

 , (1)

where L is a loss function, xj are training data points, yj the corresponding labels, and λ a regularization
term. This prediction function generally lives in an RKHS. The representer theorem (Schölkopf & Smola,
2002) then states that the solution to this optimization problem can be formulated as follows.

f∗(x) =
n∑

j=1
αiK(x, xj),

where K is the corresponding kernel in the RKHS. Hence, the optimization in the infinite-dimensional space
is reduced to a finite-dimensional problem of solving for αi by computing the kernel values at the training
data points.

In summary, kernel functions are fundamental in machine learning as they enable the transformation of data
into higher-dimensional spaces where non-trivial relationships between data can be studied. By leveraging
the theoretical framework of RKHS and the representer theorem, kernels facilitate efficient computations for
a large class of machine learning models, such as Support Vector Machines (SVM), Gaussian Processes, and
Principal Component Analysis (PCA).

2.2 Quantum Encoding

Quantum encoding techniques are crucial for translating classical data into quantum states. There are
various methods to do so, such as basis encoding, angle encoding, amplitude encoding, and Hamiltonian
evolution ansatz encoding - each with its distinct advantages and disadvantages. For instance, one defines
one such encoding below.
Definition 3. Amplitude Encoding (Schuld et al., 2015)
Given classical data x = (x1, x2, . . . , xN )T , where N = 2n, one defines the amplitude encoding of the data as
the quantum state:

|ψ(x)⟩ :=
N∑

j=1

xj

∥x∥
|j⟩ ,

where |j⟩ represents the computational basis states of an n−qubit system.
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Hence, encoding classical information into qubits is achieved by mapping an input x ∈ X to a quantum
state |ψ(x)⟩ in a separable complex Hilbert space H. This encoding x 7→ |ψ(x)⟩ can then just be viewed
as a quantum feature map (Schuld & Killoran, 2019), inducing a kernel and an associated RKHS. Utilizing
the representer theorem, this connection enables the application of the rich theory of kernel methods in
optimizing machine learning (ML) algorithms. For example, Schuld & Killoran (2019) detailed that the
amplitude encoding for example, corresponds to the linear kernel (Vapnik, 2013):

k(x, y) = xT y.

Further, Schuld & Killoran (2019) also introduce the quantum feature map Copies of Quantum States:

x = (x1, . . . , xN ) 7→

 N∑
j

xj

∥xj∥
|j⟩

⊗d

.

This map is then associated with the homogeneous polynomial kernel, expressed as

k(x, y) = (xT y)d.

As discussed earlier, a large family of ML algorithms optimize a functional (1) to obtain a prediction function.
There are two primary approaches to this optimization in the context of QML: the implicit approach and
the explicit approach. The implicit approach uses the representer theorem and computes kernels, while
offloading the remaining tasks to classical computing, as demonstrated by Rebentrost et al. (2014); Schuld
& Killoran (2019); Schuld (2021). The explicit approach uses variational circuits to solve the optimization
problem in the infinite-dimensional RKHS, as discussed by Havlíček et al. (2019); Schuld & Killoran (2019);
Cerezo et al. (2021). Our work follows the implicit approach, in a distributed setting where quantum states
are used for kernel computation, and the modeling is offloaded to classical computing.

2.3 Random Fourier Features

Kernel methods often face significant computational challenges, particularly with large datasets. To address
this issue, Rahimi & Recht (2007) introduced Random Fourier Features (RFF) as an effective approach to
estimate kernel functions using finite-dimensional feature maps. RFF enable efficient computation of kernel
approximations by leveraging the Fourier transform properties of shift-invariant kernels. One defines RFF
as below:

Definition 4. Random Fourier Features (RFF) (Rahimi & Recht, 2007)
Given a shift invariant kernel k(x − y) that is the fourier transform of a probability distribution χ, the
corresponding lower dimensional feature map z : RD → Rd defined by

z(x) :=
(√

2cos(w1x+ b1), . . . ,
√

2cos(wdx+ bd)
)
,

with wi ∼ χ((w1, . . . , wd)) and bi are independent samples from the uniform distribution U [0, 2π] satisfies
the following inequality for all ϵ:

P
(
|zT (x)z(y) − k(x, y)| ≥ ϵ

)
≤ 2 exp

(
−Dϵ2

4

)
.

The feature map z is called an RFF.

In the context of our work where we want to compute the quantum feature maps associated with widely used
kernels, we adopt RFF to determine the quantum encoding necessary for computing the RBF and Laplacian
kernels.
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3 Related Work

To the best of our knowledge, only one study (Sheng & Zhou, 2017) has implemented kernel-based techniques
using quantum computing within a distributed framework. It primarily devised a method to compute
distances between 2D vectors using a polarization based 1-qubit system. The method although not described
as a kernel computation originally, can be seen as a special case of the linear kernel, later proposed by Schuld
& Killoran (2019). However, the work did not identify or utilize the implicit relationship between quantum
encoding and kernels. Consequently, it overlooked the broader kernel framework that can be leveraged for
various supervised and unsupervised machine learning tasks across different types of data, including images,
text, and numeric data.

In contrast, our research substantially broadens these initial concepts by facilitating the computation of
encoding-induced kernels and other standard kernels such as the polynomial, RBF, and Laplacian kernels
for data of any dimensionality. Our approach offers a comprehensive solution by clearly defining the roles of
participants in the pipeline and establishing a well-defined adversary model. This generalization to kernel
based techniques is much stronger, and important for future study.

4 Quantum Feature Maps

Although Schuld & Killoran (2019) pointed out the implicit connection between quantum encoding techniques
and feature maps, they only devised the feature maps associated with the linear kernel, the homogeneous
polynomial kernel and the cosine kernel. We extend this by defining quantum feature maps associated with
three very commonly used kernels in the context of ML - the polynomial, RBF and the Laplacian kernel.

4.1 Polynomial Kernel

Given classical data x = (x1, x2, . . . , xN )T , we define the following quantum feature map:

x 7→ ψ(x) =
(N+d

d )⊗
j=1

√
a
√
d!√

k1!k2! . . . kN+1!
xk1

1 . . . xkN

N

√
c

kN+1 |j − 1⟩ ,

where the multi-index k = (k1, . . . , kN+1) runs over all combinations such that
∑N+1

l=1 kl = d, and
c = 1 − a∥x∥ if d ∈ N, or c = −1 − a∥x∥ if d ∈ 2N.

Theorem 1. The quantum feature map above is a well-defined quantum state.

Proof. To be well defined, we require the map to be normalizable. Consider the map x 7→ ψ(x). Then, using
the multinomial theorem (Aizerman, 1964; Boser et al., 1992), we have that

∥ψ(x)∥ =
∑∑
l

kl=d

( √
a
√
d!√

k1!k2! . . . kN+1!

)2

(xk1
1 )2 . . . (xkN

N )2ckN+1 ,

= (a∥x∥ + c)d = 1.

This completes the proof.

Theorem 2. The quantum feature map defined above yields the polynomial kernel (Schölkopf & Smola,
2002),

Kpoly = (axT y + c)d,

under an inner product.
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Proof. This follows directly from the multinomial theorem. Take ϕ(x) and ϕ(y) to be two quantum feature
maps of classical data x and y, defined as above. Then,

⟨ϕ(x)|ϕ(y)⟩ =
∑∑
l

kl=d

( √
a
√
d!√

k1!k2! . . . kN+1!

)2

xk1
1 . . . xkN

N yk1
1 . . . ykN

N ckN+1 ,

= (axT y + c)d,

= Kpoly(x, y).

This completes the proof.

4.2 RBF Kernel

Using RFF, given classical data x = (x1, x2, . . . , xN )T , we define the following quantum feature map :

x 7→ ψ(x) = 1√
D

D∑
j=1

(
cos
(
wT

j x
)

|2j − 2⟩ + sin
(
wT

j x
)

|2j − 1⟩
)
,

where ⌈log2(2D)⌉ determines the number of qubits used and the approximation quality, and wi are
independent samples from the normal distribution N (0, σ−2I).

Theorem 3. The quantum feature map above is a well-defined quantum state.

Proof. To be well defined, we require the map to be normalizable. Consider the map x 7→ ψ(x). Then, we
have that

∥ψ(x)∥ = 1
D

D∑
j=1

cos2(wT
j x) + sin2(wT

j x) = 1.

This completes the proof.

Theorem 4. The quantum feature map defined above yields the RBF kernel (Broomhead & Lowe, 1988),

KRBF (x, y) = exp
(

−∥x− y∥2

2σ2

)
,

under an inner product.

Proof. Take ϕ(x) and ϕ(y) to be two quantum feature maps of classical data x and y, defined as above. It
follows that

E[⟨ϕ(x)|ϕ(y)⟩] = 1
D

D∑
j=1

E
[
cos(wT

j x)cos(wT
j y) + sin(wT

j x)sin(wT
j y)
]
,

= 1
D

D∑
j=1

E[cos
(
wT

j (x− y)
)
].

Using Euler’s formula, we can rewrite this as

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

(
E[exp

(
iwT

j (x− y)
)
] + E[exp

(
−iwT

j (x− y)
)
]
)
. (2)

Since normal distributions are closed under linear transformations (Wackerly et al., 2008),

wT
j (x− y) =

N∑
k=1

wjk(xk − yk) ∼ N

(
0, 1
σ2

N∑
k=1

(xk − yk)2

)
∼ N

(
0, 1
σ2 ∥x− y∥2

)
.
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Since wT
j (x− y) is a normal distribution, we rewrite (2) as

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

(
MwT

j
(x−y)(i) +MwT

j
(x−y)(−i)

)
,

where MZ(t) = E[exp (tZ)] is the moment generating function of a random variable Z. Hence, since the
moment generating function of a normal distribution Z ∼ N (µ, γ2) is given by MZ(t) = exp

(
tµ+ 1

2γ
2t2
)
,

we have

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

[
exp

(
− 1

2σ2 ∥x− y∥2
)

+ exp
(

− 1
2σ2 ∥x− y∥2

)]
,

= exp
(

− 1
2σ2 ∥x− y∥2

)
= KRBF (x, y).

This completes the proof.

4.3 Laplacian Kernel

Using RFF, given classical data x = (x1, x2, . . . , xN )T , we define the following quantum feature map:

x 7→ ψ(x) = 1√
D

D∑
j=1

(
cos
(
wT

j x+ αj

)
|2j − 2⟩ + sin

(
wT

j x+ αj

)
|2j − 1⟩

)
,

where ⌈log2(2D)⌉ determines the number of qubits used and the approximation quality, wj are independent
samples from the Cauchy distribution C(0, α−1I), and αj are independent samples from the Uniform
distribution U(0, 2π).

Theorem 5. The quantum feature map above is a well-defined quantum state.

Proof. To be well defined, we require the map to be normalizable. Consider the map x 7→ ψ(x). Then, we
have that

∥ψ(x)∥ = 1
D

D∑
j=1

cos2(wT
j x+ αj) + sin2(wT

j x+ αj) = 1.

This completes the proof.

Theorem 6. The quantum feature map defined above yields the Laplacian kernel (Smola & Kondor, 2003),

KL(x, y) = exp
(

−∥x− y∥1

α

)
,

under an inner product.

Proof. Take ϕ(x) and ϕ(y) to be two quantum feature maps of classical data x and y, defined as above. It
follows like in Theorem 4 that

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

(
E[exp

(
iwT

j (x− y)
)
] + E[exp

(
−iwT

j (x− y)
)
]
)
. (3)

Since Cauchy distributions are closed under linear transformations (Nolan, 2012),

wT
j (x− y) =

N∑
k=1

wjk(xk − yk) ∼ C

(
0, 1
α

N∑
k=1

|xk − yk|2
)

∼ C
(

0, ∥x− y∥1

α

)
.
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Since, wT
j (x− y) is a Cauchy distribution, we rewrite (3) as

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

(
ϕwT

j
(x−y)(1) + ϕwT

j
(x−y)(−1)

)
,

where ϕZ(t) = E[exp (itZ)] is the characteristic function of a random variable Z. Hence, since the charac-
teristic function of a Cauchy distribution Z ∼ C(µ, γ) is given by ϕZ(t) = exp (itµ− γ|t|), we have

E[⟨ϕ(x)|ϕ(y)⟩] = 1
2D

D∑
j=1

[
exp

(
−∥x− y∥1

α

)
+ exp

(
−∥x− y∥1

α

)]
,

= exp
(

−∥x− y∥1

α

)
= KL(x, y).

This completes the proof.

5 Distributed Secure Computation of Kernels

5.1 Architecture

Our architecture comprises multiple clients, a central server, and a helper entity. The clients hold sensitive
data that they privately and collaboratively want to learn from. The central server is tasked with computing
the kernel securely and privately. The helper prepares entangled quantum states to facilitate quantum
communication. All entities in this setup are capable of performing the necessary quantum operations. The
architecture is depicted in Figure 1.

Figure 1: Visualization of our architecture consisting of a helper, a server and multiple clients.

We employ an infrastructure in which clients are initially provided with their shared seeds securely, using
established cryptographic primitives. The helper party ensures the fair distribution of seeds, adhering to
standard privacy-preserving protocols.

5.2 Protocol Description

Without loss of generality, we describe our protocol with two participants. Our method naturally extends to
any number of participants. To start, Alice and Bob, declare the size of their classical data in bits, denoted
by N . The helper entity then computes the number of qubits, n, needed to encode the data for a single
participant based on the chosen encoding technique. Then the protocol is established within a total system
of (6n+ 1) qubits.

The protocol’s circuit diagram is detailed in Figure 2 below. The correctness of the protocol is theoretically
shown in Appendix A.
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Figure 2: Quantum circuit diagram associated with our secure and distributed quantum-based kernel com-
putation architecture.

5.2.1 Helper: Quantum State Preparation for Teleportation

The helper generates 2n Bell states, distributing the qubits between Alice, Bob, and the server as follows:

1. In the first set of n Bell states, one qubit from each entangled pair represented by |0⟩HA is sent to
Alice, and the other represented by |0⟩SA to the server.

2. In the remaining n Bell states, one qubit from each entangled pair represented by |0⟩HB is sent to
Bob, and the other represented by |0⟩SB to the server.

This then enables us to quantum teleport Alice’s and Bob’s encoded data to the server for secure computation.

5.2.2 Clients: Data Encoding and Measurement

Alice and Bob determine the encoding of their data represented by |ψ⟩A and |ϕ⟩B respectively, with multiple
encodings for every data point based on the required model accuracy. The encoding sequence is derived from
the initial shared seed. Subsequently, Alice and Bob execute the following steps:

1. Apply a Controlled-X gate to the qubits they received from the helper using their original quantum
data as control.

2. Perform a Hadamard gate on their original data.

3. Measure their data and the received qubits in the computational basis.

4. Communicate the results to the server through an encrypted classical communication channel.

Upon receiving the measurements, the server adjusts the qubits it holds by applying appropriate X and Z
gates.

5.2.3 Server: Inner Product Measurement

The server then executes a standard swap test (Barenco et al., 1997). It prepares an ancilla qubit in the
zero state, applies a Hadamard gate, and uses it to conditionally swap the two sets of qubits received from
Alice and Bob. After reverting the ancilla qubit with another Hadamard and measuring it, the output helps
determine the required inner product (Buhrman et al., 2001). This measurement process is repeated p times
to enhance accuracy.

5.3 Security of Protocol

In our proposed adversarial model, clients such as Alice and Bob, along with the server, are semi-honest.
They adhere to the defined protocol yet may attempt to infer additional information from the data they
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handle. A helper entity, deemed a semi-honest third party, guarantees the integrity of the quantum states
used in communication, similar to protocols implementing secure multi-party computation (SMPC) (Yao,
1982). The server is explicitly characterized as non-colluding with the clients, consistent with established
norms in distributed and federated architectures (Hannemann et al., 2024).

In our setup, each client processes exclusively their own data and cannot access information from other
clients, effectively mitigating the risk of adversarial clients learning the data from honest input parties.
The non-colluding server, does not know the series of encodings applied on the original data, and hence
can’t reconstruct the original classical data from the quantum data it receives, since it doesn’t know how
to measure it. It only learns the kernel matrix reflecting similarities between participants’ data. However,
since the labels are obfuscated and are irrelevant to model training, the server gains no knowledge beyond
the similarity distribution pertaining to obscured labels.

An adversarial third party attempting to eavesdrop on the quantum data would face significant challenges due
to the no-cloning theorem (Wootters & Zurek, 1982), which prohibits the duplication of quantum information
without destroying the original information. In the event of interception, the malicious entity would need
to generate and transmit its own quantum data to the server. This can be effectively detected if clients and
the server intermittently exchange predetermined random quantum states, enabling the server to check for
any discrepancies indicative of interference (Sheng & Zhou, 2017). Additionally, the utility of intercepted
data is limited for the third party, as the encoding of data for transmission is randomized, and only known
to the clients through the pre-shared seed.

6 Experimental Evaluation

All the proof-of-concept experiments in our following evaluation were conducted using classical computing
resources on a High-Performance Computing (HPC) cluster. Each node within this HPC environment was
equipped with an Intel XEON CPU E5-2650 v4, complemented by 256 GB of memory and a 2 TB SSD
storage capacity. We used the Qiskit Aer Simulator to run the program offline due to limited access to
IBM’s quantum resources. Due to this, we were restricted to simulating only 31 qubits in our environment.
Note that we don’t report any timings since the experiments are run on a simulator.

Our experiments focused on computing the linear kernel. Given the limitation of simulating only 31 qubits,
which confines us to 27 features, we adopted this approach and assigned n = 7 qubits to each party in
our distributed setup. While implementing other kernels, such as encoding-induced kernels, RBF kernels,
polynomial kernels, and Laplacian kernels, would require more qubits than available, our primary goal is to
validate the architecture rather than exhaustively test every encoding. Since the validity of these encodings
has already been theoretically established, our focus is on demonstrating that our architecture functions as
expected within this framework.

Additionally, we tested our methodology in a two-party configuration. This is trivially expandable, as the
data can be redistributed to additional participants, thereby maintaining consistent results. Due to the
constraints on qubit simulation, a two-party configuration is employed, allocating 14 qubits for the two data
providers, 14 for the helper, and 1 for the server.

6.1 Accuracy Analysis

We present a comparative analysis of our distributed quantum kernel learning setup against centralized
quantum kernel computation and centralized classical kernel computation. Centralized quantum kernel
computation only performs the swap test, and doesn’t constitute quantum teleportation. The datasets used
for this analysis are widely used, and publicly available, and include the Wine dataset (178 samples, 13
features) (Asuncion et al., 2007), the Parkinson’s disease dataset (197 samples, 23 features) (Sakar et al.,
2019), and the Framingham Heart Study dataset (4238 samples, 15 features) (Bhardwaj, 2022). Kernel-
based training was performed using SVM for all datasets, and PCA was applied to the binary datasets
(Parkinson’s and Framingham Heart Study) to reduce dimensionality. After applying PCA, SVM was used
on the transformed data to obtain accuracy metrics. All SVM training and evaluation were performed using
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stratified 5-fold cross-validation to ensure unbiased accuracy metrics. The accuracies of the different models
on the datasets are summarized in Table 1 below.

Table 1: Comparison of accuracies across different methods and datasets.

Dataset
(Samples × Features)

Method
Accuracy

Centralised
Classical

Centralised
Quantum

Distributed
Quantum

Wine (178 × 13) kernel-SVM 0.9860 ± 0.0172 0.8805 0.8874 ± 0.0259
Parkinsons
(197 × 23)

kernel-SVM 0.8196 ± 0.0644 0.7875 0.7983 ± 0.0798
kernel-PCA 0.7872 ± 0.0716 0.7451 0.7660 ± 0.0744

Framingham Heart
Study (4238 × 15)

kernel-SVM 0.6788 ± 0.0108 0.6308 0.6340 ± 0.0143
kernel-PCA 0.6788 ± 0.0095 0.6249 0.6422 ± 0.0092

As expected centralized classical methods generally achieve the highest accuracy, serving as a baseline.
Centralized quantum methods show competitive performance, although slightly lower than their classical
counterparts, due to the inherent characteristics of quantum data and quantum simulators. Our distributed
quantum architecture exhibits comparable but not the same accuracy as centralized quantum architecture,
due to the complexity introduced by additional gates in the quantum circuit. All experiments were conducted
with 1024 shots of the quantum circuit to ensure reliable accuracy. Here, shots refers to the number of times,
p, that a circuit is repeated.

6.2 Effect of Noise

Quantum computing is susceptible to various types of errors due to environmental interactions and im-
perfections in quantum gate implementations. Our objective is to evaluate the performance of distributed
kernel-based QML under different noise conditions on Qiskit and compare it with a classical SVM. We
employed three noise models:

No Noise: This model assumes an ideal environment without any noise. It serves as a baseline to evaluate
the performance of the our protocol in the absence of errors.

Noise Level 1: This model introduces a depolarizing error with a 0.1% error rate for single-qubit gates
and two-qubit gates. Depolarizing error is a type of quantum error where a qubit, with a certain probability,
is replaced by a completely mixed state, losing all its original information.

Noise Level 2: This model simulates a more challenging environment with a depolarizing error rate of
1%.

Our results reported in Figure 3 show that increasing noise had a negative impact on model performance.

6.3 Effect of Shots

Here, we detail the impact of varying the number of shots used in Qiskit to repeat a quantum circuit on
the performance of our proposed algorithm. We used a subset of the Digits dataset containing 100 samples
(Pedregosa et al., 2011). The objective was to classify these samples into 10 labels (0-9) and evaluate the
classification accuracy using linear kernel-based SVM.

We varied the number of shots, specifically using 128, 256, 512, and 1024 shots, to observe the effect on
the classification accuracy. The results, depicted in Figure 4, indicate improved performance with increased
amount of shots.

11
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Figure 3: Comparison of accuracy scores across different noise levels. The baseline includes centralized clas-
sical kernel computation and our distributed quantum kernel computation with no noise. We incrementally
introduce noise, using depolarizing error at Level 1 and Level 2, to evaluate and report the corresponding
accuracy loss.
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Figure 4: Accuracy of linear kernel-based SVM on a subset of the Digits dataset featuring 100 samples and
10 labels, compared against the number of shots run by the simulator.

7 Conclusion and Future Work

In this study, we introduced a novel kernel-based QML algorithm that operates within a distributed and
secure framework. By utilizing the implicit connection between quantum encoding and kernel computation,
our method supports the calculation of encoding-induced as well as traditional kernels. To that end, we
extended the existing body of knowledge by introducing three novel quantum feature maps, designed to
compute the polynomial, RBF, and the Laplacian kernels, building upon previous studies that mainly focused
on linear and homogeneous polynomial kernels. Furthermore, we have theoretically validated that the
proposed quantum feature maps help compute the concerned kernels.

Using a hybrid quantum-classical architecture, our approach functions under a distributed environment where
a central server aids data providers in processing their data collaboratively, akin to a centralized model. This
setup primarily addresses the case of a semi-honest scenario—a common consideration in studies involving
distributed architectures. The architecture is further enhanced by the inclusion of a trusted third party
helper, that ensures the integrity of the Bell pairs necessary for quantum teleportation within our framework.

12



Under review as submission to TMLR

We have demonstrated that our proposed framework upholds security against semi-honest parties as well as
external eavesdroppers.

The application of our architecture to compute the linear kernel for publicly available datasets using Qiskit’s
Aer Simulator validates our distributed framework, yielding accuracies comparable to those achieved in
centralized classical and quantum frameworks.

In the future, we aim to adapt our methodology to scenarios involving actively malicious entities. Addition-
ally, provided the rich potential of kernel theory, further theoretical and practical explorations into quantum
feature maps represent a promising direction for future research in the field.

Supplementary information

Our code and results are available at the following URL: https://anonymous.4open.science/r/
distributed-secure-kernel-based-QML-480F/.
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A Correctness of Architecture

In this section, we provide a theoretical proof of correctness for the proposed circuit architecture, demon-
strating that it accurately computes the kernel matrix for given input data. Without loss of generality,
consider an n-qubit system, where Alice’s encoded data is represented by |ψ⟩A and Bob’s data by |ψ⟩B .
As illustrated in Figure 1, the Helper initializes the system by preparing 2n Bell states. The initial state
consists of |0⟩⊗n

HA, |0⟩⊗n
SA, |0⟩⊗n

SB , and |0⟩⊗n
HB , where the superscript denotes qubits in each subsystem, e.g., the

i-th qubit of Alice’s data is represented as |ψ⟩i
A.

Let |ψ⟩ in the computational basis be written as α |0⟩ + β |1⟩ and |ϕ⟩ as δ |0⟩ + γ |1⟩. Initially, the entire
system is in the state:
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|ψ⟩⊗n
A ⊗ |0⟩⊗n

HA ⊗ |0⟩⊗n
SA ⊗ |0⟩⊗n

SB ⊗ |0⟩⊗n
HB ⊗ |ϕ⟩⊗n

B

For simplicity, we track only the i-th qubit of each n-qubit state:

|ψ⟩i
A ⊗ |0⟩i

HA ⊗ |0⟩i
SA ⊗ |0⟩i

SB ⊗ |0⟩i
HB ⊗ |ϕ⟩i

B

After applying Hadamard gates to the Helper qubits, the system evolves to the following state:

|ψ⟩i
A ⊗ 1√

2

(
|0⟩i

HA + |1⟩i
HA

)
⊗ |0⟩i

SA ⊗ |0⟩i
SB ⊗ 1√

2

(
|0⟩i

HB + |1⟩i
HB

)
⊗ |ϕ⟩i

B .

Upon applying the Controlled-X gates, the system is entangled, preparing it for quantum teleportation:
1
2

(
|ψ⟩i

A ⊗
(

|00⟩i
HA,SA + |11⟩i

HA,SA

)
⊗
(

|00⟩i
SB,HB + |11⟩i

SB,HB

)
⊗ |ϕ⟩i

B

)
.

Next, Alice and Bob perform Controlled-X gates, resulting in the state:
1
2

(
α |000⟩i

A,HA,SA + β |110⟩i
A,HA,SA + α |011⟩i

A,HA,SA + β |101⟩i
A,HA,SA

)
⊗1

2

(
γ |000⟩i

SB,HB,B + δ |011⟩i
SB,HB,B + γ |110⟩i

SB,HB,B + δ |101⟩i
SB,HB,B

)
.

After applying Hadamard gates, the system evolves to:
1
4

(
α |000⟩i

A,HA,SA + α |100⟩i
A,HA,SA + β |010⟩i

A,HA,SA − β |110⟩i
A,HA,SA

+α |011⟩i
A,HA,SA + α |111⟩i

A,HA,SA + β |001⟩i
A,HA,SA − β |101⟩i

A,HA,SA

)
⊗1

4

((
γ |000⟩i

SB,HB,B + γ |001⟩i
SB,HB,B − δ |011⟩i

SB,HB,B + δ |010⟩i
SB,HB,B

+γ |110⟩i
SB,HB,B + γ |111⟩i

SB,HB,B − δ |101⟩i
SB,HB,B + δ |100⟩i

SB,HB,B

))
.

Once the classical bits are communicated to the server, the server applies the appropriate X and Z gates,
resulting in the system state:

|0⟩a (α |0⟩SA + β |1⟩SA) ⊗ (γ |0⟩SB + δ |1⟩SB).

After applying a Hadamard gate, the server obtains:
1√
2

(|0⟩a + |1⟩a)(|ψ⟩SA) ⊗ (|ϕ⟩SB).

The final step involves applying Fredkin gates, with the ancilla qubit as the control:
1√
2

(
|0ψϕ⟩a,SA,SB + |1ϕψ⟩a,SA,SB

)
.

Upon applying a Hadamard gate to the ancilla qubit, we obtain:
1
2

(
|0⟩a ⊗ (|ψϕ⟩SA,SB + |ϕψ⟩SA,SB) + |1⟩a ⊗ (|ψϕ⟩SA,SB − |ϕψ⟩SA,SB)

)
.

Measuring the ancilla qubit along the computational basis yields:

Pr(0)a = 1
4

(
⟨ψ| ⟨ϕ| + ⟨ϕ| ⟨ψ|

)(
|ψ⟩ |ϕ⟩ + |ϕ⟩ |ψ⟩

)
= 1

2 + 1
2∥⟨ψ|ϕ⟩∥2,

where, P (0)a is the probability that the anscilla qubit is in the |0⟩ state. Rearranging, this then determines
the inner product of |ψ⟩ and |ϕ⟩.

∥⟨ψ|ϕ⟩∥ =
√

2Pr(0)a − 1,
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