
Applied Soft Computing 135 (2023) 110040

Y

n
c
t
a
c
n
i
w
f
f

(
l

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

EGNN: Graph structure learning based on evolutionary computation
helpsmore in graph neural networks
Zhaowei Liu1, Dong Yang1, Yingjie Wang ∗, Mingjie Lu, Ranran Li
antai University, YanTai, 264005, ShanDong, China

a r t i c l e i n f o

Article history:
Received 18 October 2022
Received in revised form 31 December 2022
Accepted 17 January 2023
Available online 20 January 2023

Keywords:
Graph neural networks
Evolutionary computation
Graph representation learning
Graph structure learning

a b s t r a c t

In recent years, graph neural networks (GNNs) have been successfully applied in many fields due
to their characteristics of neighborhood aggregation and have achieved state-of-the-art performance.
While most GNNs process graph data, the original graph data is frequently noisy or incomplete,
resulting in suboptimal GNN performance. In order to solve this problem, a Graph Structure Learning
(GSL) method has recently emerged to improve the performance of graph neural networks by learning
a graph structure that conforms to the ground truth. However, the current strategy of GSL is to
iteratively optimize the optimal graph structure and a single GNN, which will encounter several
problems in training, namely vulnerability and overfitting. A novel GSL approach called evolutionary
graph neural network (EGNN) has been introduced in this work in order to improve defense against
adversarial attacks and enhance GNN performance. Unlike the existing GSL method, which optimizes
the graph structure and enhances the parameters of a single GNN model through alternating training
methods, evolutionary theory has been applied to graph structure learning for the first time in this
work. Specifically, different graph structures generated by mutation operations are used to evolve
a set of model parameters in order to adapt to the environment (i.e., to improve the classification
performance of unlabeled nodes). An evaluation mechanism is then used to measure the quality of the
generated samples in order to retain only the model parameters (progeny) with good performance.
Finally, the progeny that adapt to the environment are retained and used for further optimization.
Through this process, EGNN overcomes the instability of graph structure learning and always evolves
the best progeny, providing new solutions for the advancement and development of GSL. Extensive
experiments on various benchmark datasets demonstrate the effectiveness of EGNN and the benefits
of evolutionary computation-based graph structure learning.

© 2023 Published by Elsevier B.V.
1. Introduction

Deep learning [1] has produced significant advancements in
atural language processing [2], computer vision [3], and other
ritical domains [4] in recent years, and it is mostly applied
o data in Euclidean space. In addition, the real world contains
substantial amount of non-Euclidean graph data, such as so-
ial networks, citation networks, chemical molecular interaction
etworks, and knowledge graphs. Deep learning has found signif-
cant success with data in Euclidean spaces, but it performs poorly
ith graph data. Recent GNNs [5] aggregate feature information

rom local neighborhoods in each convolution layer by success-
ully applying the rules of neighborhood message passing [6] to

∗ Corresponding author.
E-mail addresses: lzw@ytu.edu.cn (Z. Liu), yangdong@s.ytu.edu.cn

D. Yang), wangyingjie@ytu.edu.cn (Y. Wang), lumingjie@s.ytu.edu.cn (M. Lu),
rr.ytu@gmail.com (R. Li).
1 Co-first authors, contributed equally to this work.
ttps://doi.org/10.1016/j.asoc.2023.110040
568-4946/© 2023 Published by Elsevier B.V.
graph data. Existing GNNs have done the best at a wide range
of graph analysis tasks, such as classifying nodes [7,8], predicting
links [9–11], and many others [12–14].

Existing GNNs have been used effectively for numerous sce-
narios, but they rely on the assumption that the original graph
structure is real. Notably, this assumption is frequently invalid,
and the quality of the original graph structure is frequently un-
trustworthy. To begin with, the original graph is not always
owned. For instance, in computer vision [15,16], it is typically
generated using subjective prior knowledge. For another, the
original graph is typically noisy, and data loss is an unavoid-
able issue. In the chemical molecular interaction network, for
instance, the edges connecting nodes are primarily derived from
experimental data collected in the laboratory, and experimental
errors tend to distort the reality of the network. A crucial step in
GNNs is the aggregation of features. The neighborhood’s feature
information is aggregated and given to the neighborhood, and
then the learned node embeddings are implanted for downstream
tasks. It has been demonstrated that the performance of GNNs

https://doi.org/10.1016/j.asoc.2023.110040
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110040&domain=pdf
mailto:lzw@ytu.edu.cn
mailto:yangdong@s.ytu.edu.cn
mailto:wangyingjie@ytu.edu.cn
mailto:lumingjie@s.ytu.edu.cn
mailto:lrr.ytu@gmail.com
https://doi.org/10.1016/j.asoc.2023.110040

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040
Fig. 1. A common framework for graph structure learning (GSL).
on untrustworthy graphs is far from optimal [17–19]. The per-
formance of the same GNN on graphs with varied homogeneity
(i.e., the adjacency of nodes typically belongs to the same cat-
egory) is typically rather distinct. In brief, the original graph is
rife with nonsensical and erroneous edges, which violates the
neighborhood aggregation condition of GNNs and degrades their
performance.

Graph structure learning (GSL) has received considerable at-
tention in order to construct the ideal graph structure. As shown
in Fig. 1, the goal of GSL is to learn the best graph structure and
the parameters of the GNN by going through a series of steps
until a predetermined stopping condition is met. Existing GSL
approaches can be split mostly into two types. One is based on
a single view, and the original graph is forced to be changed
into an optimal structure by imposing specific constraints. Among
these are: [20] promotes the training of graph neural networks
by relocating the influence of labeled nodes through neighbor
consistency scores; [17] generates new graph structures by learn-
ing the discrete probability distribution of connected edges on
the graph; [21] enhances the model’s generalization capability by
removing redundant and task-independent edges from the graph;
Pro-GNN [22] adds constraints, such as low rank and feature
smoothness, to obtain an ideal graph structure; [23] proposes
a memory-based message passing method that decouples the
messages of each node into self-embedded parts for identification
and memory parts for propagation and proves its effectiveness
in data sets with different homogeneity ratios. The second is to
reduce bias by fusing information from multiple perspectives and
comprehensively estimating the optimal graph structure based
on information from multiple perspectives, such as [24] based on
Bayesian reasoning and incorporating various observational data
into Bayesian models to reduce bias. [25] pulls out multiple basic
views from the original structure and uses different information
to decide on the best graph structure. [26] proposes a structure-
bootstrapping contrastive learning framework that optimizes the
topology of the graph through the data itself, without any la-
bels. [27] proposes to quantify the neighborhood identity with
Von Neumann enterprise and proposes the CAGNNs framework,
which enhances the performance of GNNs on heterophily datasets
by learning the neighbor effect of each node. However, exist-
ing methods still face the following challenges in reality: (1)
Learning GNN model parameters from one information source
will inevitably lead to bias. If the GNN model parameters are
learned separately under multiple measurement conditions, the
optimal solution is chosen based on principle, which makes the
results more stable. (2) The judgment of each view in multiple
views mainly depends on the discriminator and hyperparameter
settings. If the view that is most beneficial to the GNN model
can be determined without introducing additional mechanisms,
this can reduce the complexity of the model, thereby reducing

the problem of overfitting.

2

In order to solve these problems, this work studies a new
graph structure learning paradigm, i.e., the graph structure esti-
mator uses globally optimal node embedding feature to estimate
the graph structure. In the proposed learning paradigm, the GNN
model is copied into multiple models that are trained under
different graph structures, and then the optimal GNN model is
selected. In this case, a very natural question arises: How do we
choose the optimal GNN model in a principled way in this graph
structure learning paradigm? In order to solve these problems,
this work creates a graph embedding model (EGNN) based on
an evolutionary framework and treats the learning process of the
optimal model parameters as an evolutionary problem in order
to search for the best model parameters to improve the quality
of the node embedding feature. Specifically, the performance
metrics of GNNs serve as the environment (i.e., enhance the
classification performance on unlabeled nodes), and the graph
structure estimator evolves the population of GNN model pa-
rameters to adapt to the environment. Different graph structures
can guide the parameters of the GNN model to produce different
variations because varied graph structure estimators try to de-
scribe optimal graph structures from multiple perspectives, and
various graph structures enable GNN models to create differ-
ent model parameters to capture corresponding local structure
information. As producers in the proposed model, the popula-
tion of model parameters generates several variations depending
on different graph structures in order to produce environmen-
tally adapted offspring. Using the best classification performance
of the present GNN, the quality of every mutant offspring is
then evaluated. According to the ‘‘survival of the fittest’’ prin-
ciple, the underperforming offspring are eliminated, while the
well-performing offspring (i.e., producers) are maintained and
employed for further optimization.

Based on evolutionary algorithms to optimize model parame-
ters, the proposed EGNN overcomes the limitation of instability
of model parameters trained in multiple views and always retains
the optimal offspring (model parameters) generated by different
graph structure generators (i.e., mutations) by way of mutations.
Thus, we contribute to the development of GSL techniques.

To sum up, the contributions of this work are summarized in
three aspects:

(1) A GNN model parameter evolution problem is studied
within an evolutionary framework. The goal is to improve
the quality of node embeddings by optimizing model pa-
rameters. The evolution process adheres to the principle of
survival of the fittest and steadily improves the quality of
node embedding through ‘‘mutation-evaluation’’ of model
parameters.

(2) It is the first time that a new GSL framework based on
evolution theory has been proposed. The graph structure
estimator estimates the graph structure from the features

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040

t
i
i
q
c

2

p
n
c

2

g
g
b
r
w
t
a
p
c
i
w
f
f
f
n
b
f
f
p
w
t
n
a
t
g
t
i

2

t
t
m
a
s
l
t
s
a
t

of the nodes, uses different graph structure estimators as
mutation operations to create model parameter popula-
tions, and evaluates the best individual from the mutation
progeny to fit the environment.

(3) By conducting extensive tests on multiple challenging
datasets, EGNN’s ability to achieve a desirable performance
is demonstrated. In addition, several significant character-
istics of EGNN are investigated.

The remainder of this paper is organized as follows. In Sec-
ion 2, some related works are reviewed. In Section 3, prelim-
naries are introduced. In Section 4, the proposed EGNN model
s qualitatively analyzed. In Section 5, the proposed model is
uantitatively analyzed through experiments, and the work is
oncluded in Section 6.

. Related work

According to the research topic of this work, this section
rovides a quick overview of the most pertinent studies on graph
eural networks and graph topology learning, followed by a dis-
ussion of evolutionary algorithms for deep learning.

.1. Graph neural networks

Graph neural networks [28,29] fall into two broad categories:
raph convolution based on spectral decomposition and spatial
raph convolution based on spatial transformation. The approach
ased on spectral decomposition can be understood as a node
epresentation learning method based on graph spectral theory,
ith [30] first proposing a graph convolution network based on
he Laplacian spectrum of graphs. [31] uses Chebyshev polynomi-
ls to calculate the feature matrix in order to improve computing
erformance. [5] introduces a semi-supervised GCN node classifi-
ation model and enhances its accuracy and learning capacity by
ncreasing the network’s depth and decreasing the neighborhood
idth. Spatial graph convolution aggregates node neighborhood

eatures extracted from the spatial topology of graphs; [32] per-
orms inductive graph convolution by aggregating the neighbor
eatures generated from multiple iterations. When aggregating
eighbor nodes, [33] assigns a weight factor to each neighbor
ased on its characteristics. [34] presents a graph attention model
or multi-label learning to improve multi-label classification per-
ormance and interpretability. [35] offers an attention-based tem-
oral graph neural network and a spatial graph neural network,
hich adaptively assign the interaction weights of graph nodes in
he spatial and temporal dimensions using the attention mecha-
ism. We direct the reader to the most recent reviews [36,37] for
more exhaustive overview of graph neural networks. However,
he vast majority of these graph neural networks treat the original
raph structure as information that corresponds to the ground
ruth, severely limiting their ability to communicate uncertainty
n the graph structure.

.2. Graph structure learning

GNNs are constrained by the quality of the input graph struc-
ure, and efforts have been made to circumvent this limita-
ion [19,21,24]. In addition to these efforts, [25] suggests a mini-
um sufficient graph structure. By including requirements such
s low rank and feature smoothness, [38] achieves an ideal graph
tructure. In [10], a framework for optimum graph structure
earning on heterophily networks is proposed for different graph
ypes. [39] proposes a framework for learning the best graph
tructure on heterogeneous graphs. [40] describes a GaN-based
pproach for generating directed graphs that creates source and
arget nodes of nodes through joint learning.
3

This paper’s objective is not to examine a single GNN model
parameter but rather to study the evolutionary model parameter
population based on graph structure learning, to identify the
individuals who adapt to the environment as the parent, and the
parent continues to evolve new populations. In this manner, it
is possible to develop the model parameters and optimize the
graph structure estimator until the ideal combination is formed,
resulting in the best model.

2.3. Evolutionary algorithms for GNNs

In past research, evolutionary computing-related methods
have been widely used for computational tasks such as network
modeling, parameter optimization, and component design [41–
44]. An evolutionary algorithm is a mature global optimiza-
tion method with great robustness and broad applicability that
is inspired by natural evolution. It has self-organization, self-
adaptation, and self-learning properties. Individuals in a popula-
tion produce offspring via mutation and choose optimal solutions
based on fitness [45].

Recently, evolutionary algorithms have been developed to
overcome challenges in deep learning. Numerous attempts have
been made to optimize deep learning hyperparameters and con-
struct deep network topologies [46–48] via evolutionary search
in order to minimize human participation in designing deep
algorithms and automatically uncover optimal configurations.
Evolutionary algorithms have also been shown to be capable of
optimizing deep neural networks [49–51]. In addition, Genetic-
GNN [18] combines evolutionary learning with the selection of
model structures and hyperparameters to dynamically approach
each other’s optimal fit for deep learning on graph data. [52]
offers an approach to dissect changes in information flow in net-
works by employing evolutionary graphs to explain variations in
GNN predictions. [53] presents a new GNN component automated
learning framework based on evolutionary computation in order
to dynamically match the optimal combination of GNN structure
and model parameters.

This work is the first to explore the application of evolu-
tionary algorithms to graph-structured learning and consider the
learning process of optimal model parameters as an evolutionary
problem. In addition, unlike existing methods that merely op-
timize the parameters of a single GNN model, graph structure
learning is proposed to generate a population of GNN model
parameters, with the population predicted to gradually adapt to
its environment.

3. Preliminary knowledge

To support the proposed EGNN model, this section provides a
brief overview of the relevant prior knowledge.

3.1. Graph embedding

The target graph can be written as G = (A, X), where A ∈ Rn×n

is a symmetric adjacency matrix consisting of n unique nodes
and expressing a sequence of edges between nodes; Aij = 1 if
there is an edge between node i and node j, otherwise Aij =

0. X =
[
x1, x2, . . . , xN

]
∈ RN×D is the d-dimensional feature

matrix of n distinct nodes, so xi is the feature vector of node
i. The objective of graph embedding is to learn a mapping f :
G → {h1, h2, . . . , hn} from the input graph, where hi ∈ Rdl

is the low-dimensional vector representation of nodes, dl ≪
d is the dimension of the embedding vector, and f can be a
feature aggregation model whose parameters can be learned. In
this work, the mapping f is accomplished by means of semi-
supervised learning, i.e., in a given graph, only a small proportion
of nodes VL =

{
v1, v2, . . . , vl

}
are associated with the matching

labels Y =
{
y , y , . . . , y

}
, where the label of v is y .
L 1 2 l i i

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040

3

c
e
s
g
p
t
s
h
e
g
t

w
f
m
i
t
t
n
l

l

α

.2. Homogeneity of graphs

Common graph data (citation networks and knowledge graphs)
onform to the property of homogeneity, i.e., nodes usually have
dges with nodes of the same category, and their features are
imilar. However, in the real world, a considerable amount of
raph data contains noise. For example, two people with different
references in a social network may communicate, which shows
hat the nodes connected to each other do not belong to the
ame category of preferences, which can be interpreted as low
omogeneity in the social network. It is worth noting that het-
rogeneous graphs do not necessarily have poor homogeneity of
raph structures, as they depict graphs with different types (more
han 2) of nodes and edges.

[18] offers the homogeneity ratio H(g) to assess the homo-
geneity index of the graph, taking into account the homogeneity
of the node’s i-order neighborhood and represented as:

H(g) =
1
|V|

∑
v∈V

⏐⏐⏐∑u∈Ni(v)
(yu = yv)

⏐⏐⏐
|Ni(v)|

. (1)

The larger the value of the homogeneity ratio H(g) ∈ [0, 1], the
greater the homogeneity of the graph structure, and the smaller
the value, the lower the homogeneity.

3.3. Traditional GNNs

The majority of GNNs adhere to the neighborhood aggregation
paradigm [5], in which node features are updated by the node
itself and its neighborhood features. The expression for neigh-
borhood aggregation in Layer-l graph convolutional networks is:

hl
v = f

(
ϕ
(
hl−1
u | u ∈ N(v)

))
, (2)

where hl
v represents the hidden feature of the ith graph convolu-

tional network, h0
v = X , f (·) is the conversion function between

two graph convolutional layers, describing the change of the node
between each layer, and ϕ(·) is the neighborhood aggregation
function of the node that describes how features are transferred
between nodes. A classic graph convolutional network aggregates
and updates nodes in the following ways:

hl
v = σ

⎛⎝W
∑

u∈N(v)

hl−1
u
√
dudv

⎞⎠ , (3)

here W is the weight matrix applied to each node’s linear trans-
ormation, d is the node’s degree determined from the adjacency
atrix A + I , 1

√
dudv

is the weight between nodes u and v, and σ

s the nonlinear activation function. In order to prevent overfit-
ing, the graph convolutional layer typically has two layers. Due
o the nature of neighborhood aggregation, graph convolutional
etwork tend to produce suboptimal solutions on graphs with
ow homogeneity.

Based on the attention graph convolutional network, the fol-
owing formula is used to define the weights between nodes:

uv = a (Whu ∥ Whv) , (4)

where a is the feedforward layer parameter vector and ∥ indicates
the concatenation operation. According to the attention score,
the significance of a node’s neighbors can be determined, hence
reducing graph noise to some extent.
4

3.4. Motivation of EGNN

Based on the issue that conventional GNNs perform poorly
on graphs with poor homogeneity, we present the EGNN model,
which is an evolutionary framework-based graph neural network.
GNNmodels variation in various graphs, approaching the learning
of optimal model parameters as an evolutionary problem and
obtaining superior performance. Following is a description of the
proposed model.

4. Model description

In this section, the problem is first defined. Then, feature
extraction modules and evolutionary algorithms are introduced.
The advantages of the suggested model are elaborated upon by
exhibiting the mutation mechanism and EGNN evaluation. Finally,
the entire EGNN training process is introduced.

4.1. Problem definition

This work focuses on the semi-supervised node classification
challenge, and its objective is to steadily increase the quality
of graph embeddings based on an evolutionary framework, sat-
isfying the requirements of GNNs to develop better and more
robust node embeddings. The task of ‘‘GNN parameter evolution
learning’’ is as follows.

For the GNN parameter evolution learning task of this work,
the GNN parameter space Θ =

{
Θ1, Θ2, . . . , ΘEp

}
∈

R|Θ1|×|Θ2|×···×
⏐⏐⏐ΘEP

⏐⏐⏐ mutates individuals with different characteris-
tics in various graph structures, where Ep is the number of model
parameters in the GNN parameter space, and Θi=1,2,...,Ep ∈ R|Θi|

is the candidate in the GNN parameter set and represents a
potential solution in the parameter space. The parental mutation
produces several children with varying traits, and the optimal
individual (i.e., Θbest) is tested for environmental adaptation. In
conclusion, the best embedding performance is achieved by using
GNN parameter evolution learning to create a robust model f ={
Θbest

1 , Θbest
2 , . . . , Θbest

Ep

}
.

4.2. Feature extraction module

The feature extraction module is also known as the graph
embedding module, which may effectively apply the structure
knowledge of the original graph and the similarity information
between nodes to downstream tasks. In this research, the tra-
ditional GCN model [5] is employed as the basis for our fea-
ture extraction module, which captures feature information about
neighbors. Given the node’s feature X and the adjacency matrix
A, the feature of the lth layer can be represented as:

H l+1
= σ

(
GCN

(
H l, A

))
∈ Rn×d, (5)

where the GCN model in Eq. (3) is adopted as the feature aggrega-
tion rule for the proposed EGNN model, where σ is the nonlinear
activation function and Z ∈ Rn×dz represents the node features of
the final layer.

4.3. Evolutionary algorithms

Throughout the entire evolution procedure, multiple graph
structures are initially constructed based on the graph structure
estimator. Next, the module for feature extraction trains a model
parameter population Θ based on different graph topologies,
where each individual represents a potential optimal solution in
the parameter space Θ . Each individual is assigned a fitness value
that indicates how effectively it adapts to its environment. This

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040

s
i
p
t
f
d

Fig. 2. The proposed EGNN model, a group of GNN models, evolves in a dynamic environment.
tudy anticipates that the population can progressively adapt to
ts surroundings, which means that the optimal option in the
arameter space can create more accurate and robust features for
he EGNN model, reaching state-of-the-art performance. The total
ramework is depicted in Fig. 2. The process of evolution can be
escribed as follows:
1. Initialization (multiple graph structures)
2. Mutations (model parameter population)
3. Evaluation (model parameter population)
4. While (the optimal individual is incapable of environmental

adaptation):
(a) Estimate (multiple graph structures)
(b) Mutations (population of model parameters)
(c) Evaluation (population of model parameters)
(d) Selection (population of model parameters)

5. Return the top membership of the model parameter popu-
lation
where the initialization stage and the estimate stage try to es-
timate several graph structures using the graph structure esti-
mator, and where each graph structure expresses the genuine
adjacency connection from distinct perspectives. In the mutation
step, new model parameters are generated and trained based on
various graph structures. The goal is to adapt new offspring to
environmental conditions through evolution. The evaluation step
tries to evaluate the quality or personal attributes of each off-
spring based on an environment-dependent fitness function. The
goal of the selection stage is to choose based on how healthy the
offspring are. Only the good-quality offspring will live, become
parents, and be used in the next step, training.

After each evolutionary stage, superior individuals are able to
generate more reliable node embeddings, and the classification
performance (environment) of unlabeled nodes is therefore up-
dated. The environment is designed to enable individual EGNN
parameters to boost the recognition performance of unlabeled
nodes, expressed as:

min
Θ,Q

L (A, X, YL) =
∑
vi∈VL

ı (fΘ (X,Q)i, yi) , (6)

where Θ is the parameter learned by EGNN, fΘ (X,Q)i is used to
give the anticipated value of node i, and ı(·, ·) is used to determine
the gap between the expected value of the node and the actual
label. The cross-entropy loss function, for instance, is used to
5

update the model’s parameters. Therefore, the environment can
continuously impose new and more stringent constraints to drive
the evolution of the model parameter population, resulting in
improved solutions. Next, the proposed mutation operator and
assessment are elaborated upon.

4.4. Mutations

Various forms of asexual reproduction are utilized to generate
the next generation of individuals. In particular, these mutation
operators correspond to distinct graph structures, which are re-
estimated precisely by the graph structure estimator. These graph
topologies are independent of one another and have distinct
properties from varying perspectives, hence offering distinct in-
formation regarding the labels for the model parameters. This
section introduces the mutations utilized.

4.4.1. Basic graph structure
EGNN begins by extracting various graph structures from a

graph. This paper employs three widely studied fundamental
graph structures: (1) the diffusion matrix A1, which provides a
global perspective of the graph structure [31]. Here, the heat
kernel instance of generalized graph diffusion is used to and
recalculate the first h nodes of each node, whose closed solution
is S = exp(tAD−1−t), where t is the diffusion time parameter and
D is A’s degree matrix. (2) The cosine similarity-based kNN graph
A2, which depicts the similarity in the feature space, determines
the edges by selecting the top k similar node pairs. The cosine
value of the angle between the vectors xi and xj is calculated as
follows:

S =
xi · xj
|xi||xj|

, (7)

(3) Based on the kNN graph A3 of the heat core, the similarity is
determined using Eq. (8), where t is the time parameter in the
equation for heat conduction, and t is set to 2.

S = exp

(
−

xi − xj
2

t

)
, (8)

These three graph structures {A1, A2, A3} convey distinct features
from several vantage points and serve as input to the EGNN
model.

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040

4

r
s
e
{

i

H

A
f
f
t
b

w

w
r
t
n

Q

i
t
g
V

V

w
e

t
f

m

w

4

e
i
a
i

(
c
t
d

F

l
i
i
s

f
p
d

.4.2. Graph structure estimator
After providing the three graph structures, the EGNN model

e-estimates them to yield flexible graph structures that corre-
pond to the ground truth. In this research, a graph structure
stimator is used to estimate three fundamental graph structures
A1, A2, A3}. First, for graph structure A1, the node embedding H1

s derived using Eq. (5):
1
= σ (GCN (X, A1)) . (9)

The connections between the node pairs in the graph structure
1 are then reestimated based on the node embedding H1 learned
rom the graph structure A1. Regarding node v, the embedded
eatures are concatenated between nodes v and u, and then feed
his information into the MLP layer to obtain the weight w1

vu
etween the nodes:
1
vu = W1 ·

[
H1

v ∥ H
1
u

]
+ b1, (10)

here W1 ∈ R2d×1 represents the mapping vector and b1 ∈ R2d×1

epresents the bias vector. Next, normalize all of the node weights
o determine the confidence Q 1

vu that there is an edge between
odes v and u, as follows:

1
vu =

exp
(
w1

vu

)∑
k∈s1 w1

vk
. (11)

In order to reduce the hardware overhead, the information Qvu
s only calculated within a specified range S1. For example, only
he first k neighbors of the node are examined. Finally, when the
raph structure A1 is joined with the estimated graph structure
1, the following is obtained:
1
= A1 + α1

· Q 1, (12)

here α1
∈ (0, 1) represents the combination factor. Other

stimated graphs {V 2, V 3
} are calculated similarly to V 1.

Given a trained classification model, the graph structure es-
imator’s parameters are continuously tuned to define the loss
unction shown below:

in
ω

L = −
∑

V∈{V1,V2,V3}

∑
vi∈VL

yi ln Zi, (13)

here Zi is the prediction of training node vi.

.5. Evaluation

In the entire neural network based on an evolutionary graph,
valuation is the process of measuring individual traits or qual-
ties. A fitness function is created to evaluate each offspring
nd then decide the evolutionary direction (select the optimal
ndividual).

This section addresses two attributes: (1) personal traits and
2) qualities. When measuring a person’s personal traits, the
ross-entropy loss function is used to find the difference be-
ween the EGNN model’s prediction Z and the true label Y . This
ifference is referred to as the personal traits score:

L = −
∑
vi∈VL

Yi ln Zi. (14)

Notably, during training, the classification performance of un-
abeled nodes is continuously enhanced to the highest score,
ndicating the quality of the EGNN model parameters with each
teration of evolution. If the EGNN model’s prediction Z has a high
core, it is highly congruent with the actual label Y .
In addition to measuring individual traits, the evaluation stage

ocuses on the quality of the prediction Z created by the model
arameters and strive to increase the confidence of model pre-
ictions. Recently, [25] propose the importance ranking of node
6

predictions to provide a new perspective on the ability of node
predictions and to facilitate the effective training of model pa-
rameters.

This study used a similar methodology to assess the qual-
ity and stability of the predicted Z generated by the EGNN
model after undergoing various mutations. There are two specific
cases. First, it is assumed that the EGNN model mutates on
the graph structure V 1 to generate the predicted value Z1

v of
node v. In the first scenario, if Z1

v exhibits a sharp distribution
(e.g., [0.1, 0.1, 0.7, 0.1] for a four-item classification), whereas
the other three predictors {Z2

v , Z3
v } exhibit a smoother distribution

(e.g., one of them behaves as [0.25, 0.3, 0.25, 0.2]), in instances
where it is difficult for the other three models to be optimal, Z1

v

is selected as the optimal value. In another instance in which all
predicted values have the same maximum value (for example,
anticipated values Z2

v and Z3
v appear as [0.5, 0.2, 0.15, 0.15] and

[0.5, 0.4, 0.05, 0.05]), it is evident that Z3
v is more timid than Z2

v .
In conclusion, if a predicted value has a high maximum value
Zv,m in its classification performance and is significantly different
from the next maximum value Zv,nm, the model generating the
predicted value is more likely to make confident judgments,
hence receiving a higher High Quality Score. Using the aforemen-
tioned evaluation criteria, we conduct a quality evaluation of the
predicted value Z learned by each EGNN model, and the quality
evaluation score of prediction Z1 is stated as follows:

SZ1 =
∑
v∈V

eγ1

(
γ2 log Z1v,m+(1−γ2) log

(
Z1v,m−Z

1
v,nm

))
, (15)

where Z1
v is the expected value of node v on graph structure

V 1, and γ1 and γ2 are hyperparameters. This calculation does
not need the introduction of extra learning parameters, which
mitigates the overfitting issue to some degree. Similarly, the
quality evaluation scores of the EGNN model following mutation
on the graph structures V 2 and V 3 are SZ2 and SZ3 . Lastly, we
standardize its quality assessment score using SZ1 as an example:

FZ1 =
SZ1

SZ1 + SZ2 + SZ3
. (16)

Based on the above two fitness scores, the final fitness function
can be derived:

F = FL + FZ , (17)

higher fitness ratings for EGNN model parameters often result in
more confident judgments and enhanced predictive ability.

4.6. EGNN

After describing the proposed evolutionary algorithm and its
accompanying mutations and assessment, Algorithm 1 describes
the EGNN’s training procedure. The parameters of the GNN model
are viewed as the evolutionary population, the classification per-
formance on unlabeled nodes as the environment, the estimated
different graph structures as mutation factors, and the proposed
fitness function as an evaluation of whether environmental adap-
tation indicators exist. In each repeated evolution step, the GNN
model adapts to the present environment by mutating accord-
ing to various graph configurations. The ‘‘survival of the fittest’’
principle dictates that only well-behaved offspring survive and
join future evolutionary groups. Unlike classic GNN’s tyranny of
learning model parameters, EGNN learns and trains many GNN
model parameters depending on the graph structure, then selects
the model with the greatest classification performance in order
to deliver the most competitive solution. Consequently, during
the training process, the evolutionary algorithm not only largely
circumvents the limitation that the poor homogeneity of the
original graph structure causes the GNN to be in a suboptimal
solution, but also exploits the benefits of graph structure learning

to seek out better solutions.

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040

1

1

1

1

1

1

t
F
p
e
t
s
a

5

5

c
A
a
s

Table 1
The statistics of the datasets.
Datasets Nodes Edges Classes Features Train Val Test

Polblogs 1,222 33,428 2 1,490 121 123 978
Citeseer 3,327 9,228 6 3,703 120 500 1,000
Wiki-CS 11,701 291,039 10 300 200 500 1,000
MS Academic 18,333 163,788 15 6,805 300 500 1,000

Wine 178 3,560 3 13 10 20 148
Cancer 569 22,760 2 30 10 20 539
Digits 1,797 43,128 10 64 50 100 1,647
Algorithm 1: EGNN
Input: original graph A, feature matrix X , labels YL,

iterations I , epochs{EΘ , ES}, hyper-parameter
{γ1, γ2}, amount of parents EP

Output: model parameters {Θ1, Θ2, ..., ΘEP }

1 Initialization: initialize basic graphs {A1, A2, A3}, initialize
model parameters {Θ1

0 , Θ2
0 , Θ3

0 };
2 for i = 1 : I do
3 for k = 1 : ES do
4 % Training Mutation Factors
5 The new graph structures are estimated according

to equation (12);
6 end
7 for l = 1 : EP do
8 % Training Classification Models
9 for j = 1 : EΘ do

10 Mutation model parameter Θ
l,j
child according to

equation (5);
11 Score F l,j according to equation (17);
2 end
3 end
4 Sort{F l,j

};

5 Θ1, Θ2, .., ΘEP ← Θ
l1,j1
child , Θ

l2,j2
child , .., Θ

lEP ,jEP
child ;

6 end
7 return model parameters {Θ1, Θ2, .., ΘEP };

5. Experiments

Extensive experiments are conducted in this section to test
he performance of EGNN for semi-supervised node classification.
irst, baseline trials of EGNN and existing approaches are com-
ared on several datasets, followed by the visualization of node
mbeddings. The graph structure estimator is then examined, and
he EGNN’s robustness is analyzed. The model’s hyper-parameter
ituation is then analyzed. Finally, the complexity of the model is
nalyzed.

.1. Experimental setup

.1.1. Datasets
Evaluate seven publicly accessible benchmark datasets and

lassify them according to whether they are graph-type data.
s shown in Table 1, use typical semi-supervised learning while
ssigning a different number of labels to each class in the training
et.

• Non-graph datasets: There are three non-graph datasets
available from SciKit-Learn [54]: Wine, Cancer, and Dig-
its. Construct a preliminary adjacency matrix for non-graph
datasets based on the processing of [55].
7

• Academic Networks: Both Citeseer [5] and Wiki-CS [56]
are citation network datasets, with nodes representing pub-
lications and edges representing citation relationships. MS
Academic [56] edges signify co-authors.
• Polblogs [22] is a blog dataset. Nodes are blog pages, edges

are links from one page to another, and node labels show
how political a blog is.

5.1.2. Baselines
To determine the efficacy of EGNN, it is compared to two

representative GNNs, including three graph neural network al-
gorithms (GCN [5], GAT [33], GraphSAGE [32]), and six graph
structure learning methods (LDS [57], ProGNN [22], SUBLIME [26],
IDGL [55], GEN [24], and CoGSL [25]). In order to be fair, exper-
imental comparisons are based on the source code provided by
the author and the way the original paper was set up.

5.1.3. Implementation details
EGNN generates four distinct basic graph structures as in-

put for each training set. During training, the graph structure
estimator selects a learning rate from 0.1, 0.01, and 0.001; the
classification model uses 0.01 as the learning rate; and each layer
has a separate learning rate. There is a 50% dropout rate, and
the Adam optimizer is utilized. For combined coefficients, the
search range for α is 0.1, 0.5, and 1.0. For hyper-parameters
γ1 ∈ {0.1, 0.3, 0.5, 0.9}, γ2 ∈ {0.1, . . . , 0.9}. The number of
optimization iterations I is set to 200, and the parameter with the
highest validation accuracy is saved for testing. For each method,
five separate tests with different random seeds were done, and
the average F1-macro, F1-micro, and AUC indexes were given to
measure the model performance.

5.2. Node classification

The results of evaluating EGNN’s performance on the semi-
supervised node classification task are presented in Table 2. All
datasets are divided into training, validation, and test sets and
evaluated based on three standard evaluation measures. ‘‘-’’ in
Table 2 shows that insufficient memory is available for experi-
mental comparison. The following are our observations:

• The performance of the proposed EGNN on the seven data
sets is generally better than that of other baselines, which
shows the effectiveness of adding the natural evolution
framework to the graph structure learning method. This is
because in graph structure learning, by evolving a group
of GNN model populations and selecting the optimal so-
lution in principle, graph structure learning will be more
stable, and better graph structure is more conducive to the
evolution of GNN models.
• Compared with the traditional GCN, the performance of the

proposed EGNN has great advantages. This phenomenon
is in line with our expectation that meaningless and false
edges in the original graph will prevent GCN from aggregat-
ing the correct information. This means that the proposed
EGNN can estimate a more reliable graph structure to pro-
mote the learning of the GNNmodel to obtain more effective
information.

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040

d
f
p
o
t
v

Table 2
Node classification results (%). (Bold: best.).
Datasets Metrics GCN GAT GraphSAGE LDS ProGNN SUBLIME IDGL GEN CoGSL EGNN

Polblogs
F1-macro 95.1 94.1 93.3 94.9 94.6 94.4 94.7 95.2 95.6 95.8
F1-micro 95.1 94.1 93.4 94.9 94.6 93.5 94.7 95.2 95.6 95.8
AUC 98.5 97.4 98.1 98.1 98.3 98.2 98.2 98.0 98.3 98.9

Citeseer
F1-macro 67.4 68.4 67.1 69.4 63.1 69.5 69.2 68.7 69.9 70.3
F1-micro 70.1 72.2 70.1 72.2 65.6 72.5 72.6 73.0 73.4 74.3
AUC 89.9 90.2 90.5 91.3 88.2 91.2 91.1 88.4 91.47 91.5

Wiki-CS
F1-macro 68.8 70.1 69.2 54.6 63.8 71.1 69.1 68.4 72.2 73.2
F1-micro 70.8 73.8 72.2 53.7 68.3 73.4 72.7 71.1 74.5 75.9
AUC 95.2 95.6 95.0 88.8 93.3 95.6 92.0 91.6 96.4 96.3

MS Academic
F1-macro 89.4 86.7 88.9 – – 89.3 89.6 89.8 90.3 90.7
F1-micro 91.9 89.0 91.1 – – 90.5 91.9 92.0 92.4 92.2
AUC 99.4 99.2 99.4 – – 98.6 99.6 98.8 99.4 99.5

Wine
F1-macro 94.1 93.6 96.3 93.4 97.3 96.1 96.3 96.4 98.0 98.1
F1-micro 93.9 93.7 96.2 93.4 97.2 95.9 96.2 96.3 97.8 98.0
AUC 99.6 97.8 99.4 99.0 99.5 99.1 99.6 99.3 99.7 99.8

Cancer
F1-macro 93.0 92.2 92.0 83.1 93.3 93.6 93.1 94.1 94.4 94.9
F1-micro 93.3 92.9 92.5 84.8 93.8 93.5 93.6 94.3 94.8 95.4
AUC 98.9 96.9 96.9 90.6 97.8 97.6 98.1 98.3 98.3 98.4

Digits
F1-macro 89.0 89.9 87.5 79.7 89.7 90.2 92.5 91.3 92.9 93.8
F1-micro 89.1 90.0 87.7 80.2 89.8 90.7 92.6 91.4 92.9 93.9
AUC 98.9 98.3 98.7 95.1 98.1 98.9 99.4 98.4 99.4 99.5
Fig. 3. A visualization of the Citeseer dataset’s learned node embeddings.
c
w
s
i
h
w
m
t
v
t
F
e
v

• Compared with the existing graph structure learning meth-
ods, the proposed method also has good performance. This
shows that the proposed evolutionary framework is helpful
for learning better graph structure and GNN model param-
eters. Because the best GNN model and its corresponding
graph structure can be judged in the evaluation steps of the
proposed evolutionary framework, there is no need to intro-
duce an additional mechanism to judge the graph structure,
which reduces the problem of overfitting.

5.3. Visualization

A low-dimensional vector visualization task on the Citeseer
ataset, EGNN (or GCN, GEN, CoGSL), is used as a comparison
or a more intuitive comparison and to further highlight the
erformance of the proposed model. Specifically, the final layer
f the hidden layer is output, i.e., the node embedding vector on
he test set prior to the output layer, and the node embedding
ector is visualized using the t-SNE method [58], as depicted in

Fig. 3.
In Fig. 3, the findings of GCN, GEN and CoGSL are not always

satisfying due to the fact that the degree of discriminating be-
tween nodes belonging to various categories is not evident and
there are several coincidences. EGNN performs best in visualiza-
tion, where the learned embeddings have a clearer structure and
show that nodes from different classes are close to each other and
nodes from different classes have clear borders.
8

5.4. Graph structure estimator analysis

The proposed EGNN has three fundamental graph structures as
inputs, each of which will be re-estimated using the graph struc-
ture estimator. To test the effectiveness of the graph structure
estimator described in Section 4.4.2, the model is first trained,
followed by the selection of three estimated graph structures. The
performance of three original graph structures, three estimated
graph structures, and the final evolutionary fusion are afterwards
compared. The datasets Citeseer, Wine and Digits are chosen for
comparison. Fig. 4 depicts the outcomes. A_1, A_2, and A_3 are
the original graph structures, whereas V_1, V_2, and V_3 are the
estimated graph structures.

The following conclusions can be drawn from the experimen-
tal results: (1) All the estimated graph structures V are improved
ompared with the corresponding original graph structures A,
hich shows that the graph structures learned by the graph
tructure estimator are effective in helping GNN aggregate mean-
ngful information. (2) The value of graph A_2 in Wine dataset is
igher, while the value of graph A_3 in Digits dataset is higher,
hich indicates that using multiple graph structures is more
eaningful for dealing with datasets with different characteris-

ics. (3) EGNN is always better than the other six cases, which
erifies the effectiveness of adding a natural evolution framework
o the graph structure estimator. (4) Comparing the results in
ig. 4 and Table 2, it can be seen that although only a single
stimated graph V is used, it still has some performance ad-
antages over the traditional GCN model. This shows that the

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040

g
m

5

p
A
t
a
a
i
t
l
P

o
s
a
n
p

Fig. 4. Effectiveness testing of graph structure estimators.
Fig. 5. Results from various models in scenarios where random edges are added.
Fig. 6. Results from various models in scenarios where random edges are deleted.
m

raph structure estimator plays an important role in the proposed
ethod.

.5. Defense analysis

On the Citeseer, Wiki-CS and Cancer datasets, the defensive
erformance of many models is evaluated in this subsection.
ccording to the strategy described in [55], the edges of the
hree datasets are attacked and random additions and deletions
re made. Select the poison attack [59] option here. Construct
n attack network on each of the three datasets before using
t to train the model. GNNs that support structure learning are
ypically more robust than other GNNs due to their capacity to
earn graph structures based on ground-truth data. Consequently,
roGNN, GEN, IDGL, and CoGSL were chosen as controls.
For adding edges, randomly add 25%, 50%, and 75% of the

riginal number of edges to each of the three datasets (if no
uch edges exist). For deleting edges, 5%, 10%, and 15% of edges
re randomly removed from the three datasets, but no orphan
odes are introduced. In addition, as both CoGSL and the pro-
osed EGNN require numerous inputs at the start of training for
9

correct evaluation, multiple inputs are attacked with the same
percentage. All experiments are performed five times, and Figs. 5
and 6 display the test outcomes. In addition, EGNN-1, EGNN-
2, and EGNN-3 each signal that one of EGNN’s inputs is under
assault, whereas EGNN implies that all three inputs are under
attack.

In both instances of the three datasets, EGNN achieves supe-
rior outcomes compared to other models. The performance gap
grows more obvious as the graph structure is greatly perturbed,
indicating that EGNN is more robust. Also, when all of EGNN’s
graphs are attacked, it still does better than other GSL models.
This shows that the proposed model is still effective when sub-
jected to brute-force attacks. It can thus be concluded that the
proposed model is able to defend against edge attacks.

5.6. Sensitivity of hyper-parameters

In this section, the effects of the change of hyper-parameters
on the Citeseer and Digits datasets on the model performance
are discussed, including the first h-hop neighbor in the diffusion
atrix, the coefficient k in Cosine kNN, the coefficient k in Heat
1 2

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040

b
t
v
r
c

g
T
w

e
o

i
p
t
a

5

p
w
g
o
c
O
o
c
b
O
O
t
m
c

Fig. 7. Analyze the impact of the hyper-parameter range on the Citeseer dataset.
Fig. 8. Analyze the impact of the hyper-parameter range on the Digits dataset.
Table 3
The amount of time(s) that the models are run on the datasets.
Datasets Polblogs Citeseer Wiki-CS MS Academic Wine Cancer Digits

GCN 0.0077 0.0093 0.0186 0.0285 0.0068 0.0074 0.0076
CoGSL 4.0426 8.7512 3.3483 7.488 1.0002 1.817 11.6314
EGNN 6.8452 12.849 6.7338 10.0581 1.5705 0.5429 14.0387
core kNN, and the parameters γ1 and γ2 in . As shown in Figs. 7
and 8, the same is true for other datasets.

The first h-hop neighbors in the diffusion matrix. It can
e seen from the two data sets that when h is less than 100,
he model performance reaches its maximum, and the maximum
alue of the Citeseer data set is 40. It can be seen that the
easonable selection of the range has an impact on the correct
onnection of the graph structure.
Thresholds k1 and k2. The two coefficients in the two data sets

enerally show an upward trend first and then a downward trend.
he reason may be that when the value of k is small, information
ill be lost, and excessive k will introduce more noise edges.
Parameter γ1. Verify the influence of γ1 in . When the param-

ter γ1 = 0.1 or so, the model performance reaches its best, and
ther values will affect the model performance.
Parameter γ2. The effect of γ2 is also verified in , and it

s observed that with the increase of parameter γ2, the model
erformance first improves and then decreases. Basically, when
he parameter γ2 is about 0.5, the model performance is optimal,
nd other values will damage the model performance.

.7. Complexity

The computational complexity and execution time of the pro-
osed method are analyzed. The complexity of each iteration
ithin EGNN mainly involves the updating of Θ , the inference of
raph structure V , and evaluation steps. Concerning the learning
f parameter Θ , the optimization of all GNN models in the group
an be performed in parallel, so the computational complexity is
(EΘNd), where N is the number of nodes and d is the dimension
f hidden nodes. As for the learning of graph structure V , the
omputational complexity is O(Nd) since all graph structures can
e calculated in parallel. The complexity of the assessment is
(N logN). In conclusion, the complexity of iteration I is about
(IN(d(EΘ +1)+ logN)). The Table 3 depicts the average training
ime for each step of the proposed method and the baseline
ethod across all data sets. This shows that mutation operations
an ensure diversity in search, but the convergence speed is
10
slower than that of traditional GSL methods. Noteworthy is the
fact that the computational complexity of the proposed method
can be optimized using Ball Tree [60], which can be utilized in
our future work.

6. Conclusion and future work

In this paper, the application of natural evolution theory to
graph structure learning is investigated for the first time, and
its effectiveness is demonstrated. To implement this framework,
an evolutionary algorithm is designed to evolve a population of
GNN models to adapt to dynamic environments (i.e., the clas-
sification performance of unlabeled nodes). Compared with the
traditional GSL method, the evolutionary paradigm can select the
best offspring without introducing additional mechanisms and
parameters, which improves the robustness of EGNN. Extensive
experimental results confirm the effectiveness of the proposed
EGNN.

Future work will investigate the interaction between graph
structure learning and model parameter learning via evolution-
ary computation in greater depth. Intuitively, the optimal model
parameters can be developed through the construction of various
graph structure estimators and classification models. But figuring
out how to describe the search space is still hard, and this leads
to a more complicated evolutionary strategy.

CRediT authorship contribution statement

Zhaowei Liu: Conceptualization, Methodology, Writing – re-
view & editing, Funding acquisition. Dong Yang: Conceptual-
ization, Methodology, Software, Writing – original draft. Yingjie
Wang: Conceptualization, Methodology, Writing – review & edit-
ing, Validation, Supervision. Mingjie Lu: Software, Data curation.
Ranran Li: Investigation, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040

D

A

e
c
J
P
N
Z
o
F
i
t

R

ata availability

Data will be made available on request.

cknowledgments

This work was supported in part by the National Natural Sci-
nce Foundation of China under Grant 62272405, School and Lo-
ality Integration Development Project of Yantai City under Grant
S22JY02, the Youth Innovation Science and Technology Support
rogram of Shandong Provincial under Grant 2021KJ080, the
atural Science Foundation of Shandong Province under Grant
R2022MF238, Yantai Science and Technology Innovation Devel-
pment Plan Project under Grant 2021YT06000645, the Open
oundation of the State Key Laboratory of Networking and Switch-
ng Technology (Beijing University of Posts and Telecommunica-
ions) under Grant SKLNST-2022-1-12.

eferences

[1] Geoffrey E. Hinton, Ruslan Salakhutdinov, Reducing the dimensionality of
data with neural networks, Science 313 (2006) 504–507.

[2] Abba Suganda Girsang, et al., Modified EDA and backtranslation augmen-
tation in deep learning models for Indonesian aspect-based sentiment
analysis, Emerg. Sci. J. 7 (1) (2022) 256–272.

[3] Ahmad Aljaafreh, Ahmad Abadleh, Saqer S. Alja’Afreh, Khaled Alawasa,
Eqab Almajali, Hossam Faris, Edge deep learning and computer vision-
based physical distance and face mask detection system using jetson xavior
NX, Emerg. Sci. J. 7 (2022) 70–80.

[4] Ricardo Costa-Mendes, Frederico Cruz-Jesus, Tiago Oliveira, Mauro Castelli,
Deep learning in predicting high school grades: A quantum space of
representation, Emerg. Sci. J. 6 (2022) 166–187.

[5] Thomas N. Kipf, Max Welling, Semi-supervised classification with graph
convolutional networks, in: Proceedings of the International Conference
on Learning Representations, 2017.

[6] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
George E. Dahl, Neural message passing for quantum chemistry, 2017,
arXiv arXiv:1704.01212.

[7] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi
Kawarabayashi, Stefanie Jegelka, Representation learning on graphs with
jumping knowledge networks, in: ICML, 2018.

[8] Keyulu Xu Weihua Hu Jure Leskovec, Stefanie Jegelka, How powerful are
graph neural networks, ICLR. Keyulu Xu Weihua Hu Jure Leskovec and
Stefanie Jegelka (2019).

[9] Muhan Zhang, Yixin Chen, Link prediction based on graph neural networks,
Adv. Neural Inf. Process. Syst. 31 (2018).

[10] Jiaxuan You, Rex Ying, Jure Leskovec, Position-aware graph neural net-
works, in: International Conference on Machine Learning, PMLR, 2019, pp.
7134–7143.

[11] Cheng Yang, Chunchen Wang, Yuanfu Lu, Xumeng Gong, Chuan Shi, Wei
Wang, Xu Zhang, Few-shot link prediction in dynamic networks, in:
Proceedings of the Fifteenth ACM International Conference on Web Search
and Data Mining, 2022, pp. 1245–1255.

[12] Yugang Ji, Guanyi Chu, Xiao Wang, Chuan Shi, Jianan Zhao, Junping Du,
Prohibited item detection via risk graph structure learning, in: Proceedings
of the ACM Web Conference 2022, 2022, pp. 1434–1443.

[13] Ranran Li, Zhaowei Liu, Yuanqing Ma, Dong Yang, Shuaijie Sun, Internet
financial fraud detection based on graph learning, IEEE Trans. Comput. Soc.
Syst. (2022).

[14] Shuyun Gu, Xiao Wang, Chuan Shi, Ding Xiao, Self-supervised graph neural
networks for multi-behavior recommendation, in: IJCAI, 2022.

[15] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, Raquel Urtasun, 3D
graph neural networks for RGBD semantic segmentation, in: 2017 IEEE
International Conference on Computer Vision, 2017, pp. 5209–5218.

[16] Adam Santoro, David Raposo, David G. Barrett, Mateusz Malinowski,
Razvan Pascanu, Peter Battaglia, Timothy Lillicrap, A simple neural network
module for relational reasoning, Adv. Neural Inf. Process. Syst. 30 (2017)
4967–4976.

[17] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He, Learning
discrete structures for graph neural networks, in: International Conference
on Machine Learning, 2019, pp. 1972–1982.

[18] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, Bo Yang,
Geom-GCN: Geometric graph convolutional networks, in: International
Conference on Learning Representations, 2019.
11
[19] Yingxue Zhang, Soumyasundar Pal, Mark Coates, Deniz Ustebay, Bayesian
graph convolutional neural networks for semi-supervised classification, in:
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, (01)
2019, pp. 5829–5836.

[20] Ming Xu, Baoming Zhang, Hualei Yu, Jinliang Yuan, Chongjun Wang, NC-
GNN: Consistent neighbors of nodes help more in graph neural networks,
Wirel. Commun. Mob. Comput. 2022 (2022).

[21] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu,
Haifeng Chen, Wei Wang, Robust graph representation learning via neural
sparsification, in: International Conference on Machine Learning, 2020, pp.
11458–11468.

[22] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, Jiliang Tang,
Graph structure learning for robust graph neural networks, in: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2020, pp. 66–74.

[23] Jie Chen, Weiqi Liu, Jian Pu, Memory-based message passing: Decoupling
the message for propagation from discrimination, in: ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and Signal Processing,
IEEE, 2022, pp. 4033–4037.

[24] Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi,
Xing Xie, Graph structure estimation neural networks, in: Proceedings of
the Web Conference 2021, 2021, pp. 342–353.

[25] Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, Chuan Shi,
Compact graph structure learning via mutual information compression, in:
Proceedings of the ACM Web Conference 2022, 2022, pp. 1601–1610.

[26] Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, Shirui Pan,
Towards unsupervised deep graph structure learning, in: Proceedings of
the ACM Web Conference 2022, 2022, pp. 1392–1403.

[27] Jie Chen, Shouzhen Chen, Zengfeng Huang, Junping Zhang, Jian Pu, Ex-
ploiting neighbor effect: Conv-agnostic GNNs framework for graphs with
heterophily, 2022, arXiv arXiv:2203.11200.

[28] Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, Liwei Wang,
Graphnorm: A principled approach to accelerating graph neural network
training, in: International Conference on Machine Learning, PMLR, 2021,
pp. 1204–1215.

[29] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio,
Xavier Bresson, Benchmarking graph neural networks, 2020, arXiv arXiv:
2003.00982.

[30] Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann LeCun, Spectral net-
works and deep locally connected networks on graphs, in: Proceedings of
the International Conference on Learning Representations, 2014.

[31] Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst, Convolutional
neural networks on graphs with fast localized spectral filtering, Adv. Neural
Inf. Process. Syst. 29 (2016).

[32] Will Hamilton, Zhitao Ying, Jure Leskovec, Inductive representation
learning on large graphs, Adv. Neural Inf. Process. Syst. 30 (2017).

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, Yoshua Bengio, Graph attention networks, in: Proceedings of
the International Conference on Learning Representations, 2018.

[34] Kien Do, Truyen Tran, Thin Nguyen, Svetha Venkatesh, Attentional multil-
abel learning over graphs: a message passing approach, Mach. Learn. 108
(10) (2019) 1757–1781.

[35] Hao Zhou, Dongchun Ren, Huaxia Xia, Mingyu Fan, Xu Yang, Hai Huang,
AST-GNN: An attention-based spatio-temporal graph neural network for
interaction-aware pedestrian trajectory prediction, Neurocomputing 445
(2021) 298–308.

[36] Lilapati Waikhom, Ripon Patgiri, Graph neural networks: Methods,
applications, and opportunities, 2021, arXiv arXiv:2108.10733.

[37] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, Maosong Sun, Graph neural networks: A
review of methods and applications, AI Open 1 (2020) 57–81.

[38] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, Liang Wang,
Deep graph structure learning for robust representations: A survey, 2021,
arXiv preprint arXiv:2103.03036.

[39] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, Yanfang Ye,
Heterogeneous graph structure learning for graph neural networks, in:
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, (5)
2021, pp. 4697–4705.

[40] Shijie Zhu, Jianxin Li, Hao Peng, Senzhang Wang, Lifang He, Adversarial
directed graph embedding, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35, (5) 2021, pp. 4741–4748.

[41] Kenneth De Jong, Evolutionary computation: a unified approach, in:
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2017, pp. 373–388.

[42] Yi nan Guo, Xu Zhang, Dun wei Gong, Zhen Zhang, Jian-Jian Yang, Novel
interactive preference-based multiobjective evolutionary optimization for
bolt supporting networks, IEEE Trans. Evol. Comput. 24 (2020) 750–764.

http://refhub.elsevier.com/S1568-4946(23)00058-3/sb1
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb1
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb1
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb2
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb2
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb2
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb2
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb2
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb3
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb3
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb3
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb3
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb3
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb3
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb3
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb4
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb4
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb4
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb4
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb4
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb5
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb5
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb5
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb5
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb5
http://arxiv.org/abs/1704.01212
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb7
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb7
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb7
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb7
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb7
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb8
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb8
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb8
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb8
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb8
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb9
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb9
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb9
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb10
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb10
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb10
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb10
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb10
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb11
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb11
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb11
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb11
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb11
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb11
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb11
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb12
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb12
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb12
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb12
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb12
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb13
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb13
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb13
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb13
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb13
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb14
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb14
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb14
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb15
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb15
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb15
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb15
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb15
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb16
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb16
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb16
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb16
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb16
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb16
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb16
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb17
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb17
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb17
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb17
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb17
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb18
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb18
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb18
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb18
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb18
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb19
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb19
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb19
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb19
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb19
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb19
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb19
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb20
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb20
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb20
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb20
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb20
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb21
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb21
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb21
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb21
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb21
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb21
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb21
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb22
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb22
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb22
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb22
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb22
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb22
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb22
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb23
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb23
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb23
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb23
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb23
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb23
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb23
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb24
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb24
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb24
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb24
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb24
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb25
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb25
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb25
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb25
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb25
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb26
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb26
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb26
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb26
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb26
http://arxiv.org/abs/2203.11200
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb28
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb28
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb28
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb28
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb28
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb28
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb28
http://arxiv.org/abs/2003.00982
http://arxiv.org/abs/2003.00982
http://arxiv.org/abs/2003.00982
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb30
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb30
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb30
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb30
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb30
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb31
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb31
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb31
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb31
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb31
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb32
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb32
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb32
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb33
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb33
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb33
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb33
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb33
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb34
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb34
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb34
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb34
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb34
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb35
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb35
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb35
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb35
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb35
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb35
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb35
http://arxiv.org/abs/2108.10733
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb37
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb37
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb37
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb37
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb37
http://arxiv.org/abs/2103.03036
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb39
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb39
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb39
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb39
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb39
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb39
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb39
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb40
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb40
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb40
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb40
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb40
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb41
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb41
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb41
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb41
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb41
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb42
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb42
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb42
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb42
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb42

Z. Liu, D. Yang, Y. Wang et al. Applied Soft Computing 135 (2023) 110040
[43] Sreenivas Sremath Tirumala, Evolving deep neural networks using coevo-
lutionary algorithms with multi-population strategy, Neural Comput. Appl.
32 (16) (2020) 13051–13064.

[44] Roua Jabla, Maha Khemaja, Sami Faiz, Decision-making improvement in
dynamic environments using machine learning, J. Human Earth Future 3
(1) (2022) 55–68.

[45] Agoston E. Eiben, Jim Smith, From evolutionary computation to the
evolution of things, Nature 521 (7553) (2015) 476–482.

[46] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,
Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel
Duffy, et al., Evolving deep neural networks, in: Artificial Intelligence in the
Age of Neural Networks and Brain Computing, Elsevier, 2019, pp. 293–312.

[47] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon
Suematsu, Jie Tan, Quoc V. Le, Alexey Kurakin, Large-scale evolution of
image classifiers, in: International Conference on Machine Learning, PMLR,
2017, pp. 2902–2911.

[48] Yinan Guo, Guoyu Chen, Min Jiang, Dunwei Gong, Jing Liang, A knowl-
edge guided transfer strategy for evolutionary dynamic multiobjective
optimization, IEEE Trans. Evol. Comput. (2022) 1.

[49] Yanan Sun, Bing Xue, Mengjie Zhang, Gary G. Yen, Evolving deep convolu-
tional neural networks for image classification, IEEE Trans. Evol. Comput.
24 (2) (2019) 394–407.

[50] Sean Lander, Yi Shang, EvoAE–A new evolutionary method for training
autoencoders for deep learning networks, in: 2015 IEEE 39th Annual
Computer Software and Applications Conference, Vol. 2, IEEE, 2015, pp.
790–795.
12
[51] Junhao Huang, Weize Sun, Lei Huang, Deep neural networks compression
learning based on multiobjective evolutionary algorithms, Neurocomputing
378 (2020) 260–269.

[52] Yazheng Liu, Xi Zhang, Sihong Xie, Explaining GNN over evolving graphs
using information flow, 2021, arXiv preprint arXiv:2111.10037.

[53] Min Shi, David A. Wilson, Xingquan Zhu, Yu Huang, Yuan Zhuang, Jianxun
Liu, Yufei Tang, Evolutionary architecture search for graph neural networks,
2020, arXiv preprint arXiv:2009.10199.

[54] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al., Scikit-learn: Machine learning in Python, J.
Mach. Learn. Res. 12 (2011) 2825–2830.

[55] Yu Chen, Lingfei Wu, Mohammed Zaki, Iterative deep graph learning for
graph neural networks: Better and robust node embeddings, Adv. Neural
Inf. Process. Syst. 33 (2020) 19314–19326.

[56] Johannes Klicpera, Aleksandar Bojchevski, Stephan Günnemann, Predict
then propagate: Graph neural networks meet personalized PageRank, in:
ICLR, 2019.

[57] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He, Learning
discrete structures for graph neural networks, in: ICML, 2019.

[58] G. Hinton, L.J.P. van der Maaten, Visualizing data using t-SNE, J. Mach.
Learn. Res. 9 (2008) 2579–2605.

[59] Tailin Wu, Hongyu Ren, Pan Li, Jure Leskovec, Graph information
bottleneck, Adv. Neural Inf. Process. Syst. 33 (2020) 20437–20448.

[60] Stephen M. Omohundro, Five Balltree Construction Algorithms, Interna-
tional Computer Science Institute Berkeley, 1989.

http://refhub.elsevier.com/S1568-4946(23)00058-3/sb43
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb43
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb43
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb43
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb43
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb44
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb44
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb44
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb44
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb44
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb45
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb45
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb45
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb46
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb46
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb46
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb46
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb46
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb46
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb46
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb47
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb47
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb47
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb47
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb47
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb47
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb47
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb48
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb48
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb48
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb48
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb48
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb49
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb49
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb49
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb49
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb49
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb50
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb50
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb50
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb50
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb50
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb50
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb50
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb51
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb51
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb51
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb51
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb51
http://arxiv.org/abs/2111.10037
http://arxiv.org/abs/2009.10199
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb54
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb54
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb54
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb54
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb54
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb54
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb54
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb55
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb55
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb55
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb55
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb55
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb56
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb56
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb56
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb56
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb56
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb57
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb57
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb57
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb58
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb58
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb58
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb59
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb59
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb59
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb60
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb60
http://refhub.elsevier.com/S1568-4946(23)00058-3/sb60

	EGNN: Graph structure learning based on evolutionary computation helps more in graph neural networks
	Introduction
	Related work
	Graph Neural Networks
	Graph Structure Learning
	Evolutionary Algorithms for GNNs

	Preliminary knowledge
	Graph Embedding
	Homogeneity of Graphs
	Traditional GNNs
	Motivation of EGNN

	Model description
	Problem Definition
	Feature Extraction Module
	Evolutionary Algorithms
	Mutations
	Basic Graph Structure
	Graph Structure Estimator

	Evaluation
	EGNN

	Experiments
	Experimental setup
	Datasets
	Baselines
	Implementation details

	Node classification
	Visualization
	Graph structure estimator analysis
	Defense analysis
	Sensitivity of hyper-parameters
	Complexity

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

