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Abstract
Zarma is a Nilo-Saharan language spoken pre-001
dominantly in West Africa. The limited avail-002
ability of annotated data and the need for stan-003
dardized orthography make grammatical error004
correction (GEC) particularly challenging for005
Zarma. This study presents a comparative anal-006
ysis of GEC methods for Zarma, exploring clas-007
sical GEC approaches such as rule-based meth-008
ods, machine translation (MT) models, and009
state-of-the-art large language models (LLMs).010
Through rigorous evaluations, we compare the011
strengths and limitations of each method, as-012
sessing their effectiveness in identifying and013
correcting errors in Zarma texts. Our findings014
highlight the promising potential of both LLMs015
and MT models to significantly enhance GEC016
capabilities for low-resource languages, paving017
the way for developing more inclusive and ro-018
bust NLP tools for African languages.019

1 Introduction020

GEC is an essential task in NLP that aims to im-021

prove the quality and readability of texts by correct-022

ing grammatical errors. GEC tools are important023

for enhancing written materials, significantly im-024

pacting educational outcomes, professional oppor-025

tunities, and access to information. This is partic-026

ularly relevant in under-resourced settings where027

limited access to academic resources and formal028

training can exacerbate language proficiency dis-029

parities. Additionally, communities in these set-030

tings often rely on local languages for communica-031

tion and knowledge transmission. GEC tools are032

well-developed for high-resource languages, espe-033

cially English, where extensive annotated datasets034

and standardized writing systems are available035

(Napoles et al., 2019). However, GEC presents036

significant challenges for low-resource languages.037

Zarma, a Nilo-Saharan language spoken by over038

5 million people across Niger and neighboring039

countries (Lewis et al., 2016), exemplifies the dif-040

ficulties faced by many low-resource languages.041

The lack of standardized orthography and the lim- 042

ited availability of annotated data make it challeng- 043

ing to develop practical GEC tools. These chal- 044

lenges are not unique to Zarma but are shared by 045

a broad class of low-resource languages, which 046

include many African and indigenous languages 047

worldwide. Addressing these challenges requires 048

innovative approaches working with minimal data 049

and non-standardized texts. 050

The emergence of LLMs has ushered in a new 051

era in NLP, empowering machine learning (ML) 052

models to understand and generate human-like 053

text across many languages (Devlin et al., 2018; 054

Brown et al., 2020). LLMs exhibit remarkable 055

zero-shot and few-shot learning capabilities (Wan 056

et al., 2023), potentially beneficial for low-resource 057

languages. These capabilities allow LLMs to 058

perform effectively with minimal data, making 059

them valuable for languages with limited annotated 060

datasets. However, the use of LLMs is also chal- 061

lenging in low-resource settings. They are primar- 062

ily trained on data from high-resource languages, 063

which may limit their performance when applied 064

to low-resource languages. The lack of represen- 065

tative training data can lead to errors and biases, 066

reducing their effectiveness. Additionally, the sig- 067

nificant computational resources required to fine- 068

tune and deploy LLMs can be a barrier in resource- 069

constrained environments. 070

This study investigates the potential of LLMs 071

and traditional models to improve GEC for Zarma 072

by comparing conventional rule-based methods, 073

MT-based models, and the novel application of 074

LLMs for Zarma GEC. With the goal of study- 075

ing the performance of these models on other low- 076

resource languages, we replicate our Zarma GEC 077

experiments with Bambara, a West African lan- 078

guage spoken in Mali. Through a comprehensive 079

case study, we highlight the strengths and weak- 080

nesses of each method, aiming to bridge the lin- 081

guistic gap in NLP for low-resource languages like 082
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Zarma and Bambara.083

Our research addresses the following questions:084

RQ1: Do state-of-the-art LLM models outperform085

conventional rule-based and MT-based mod-086

els on GEC for Zarma texts?087

RQ2: What are the specific strengths and limita-088

tions of each GEC approach in low-resource089

settings, considering the lack of standardized090

orthography and limited annotated data?091

The main contributions of this paper are the fol-092

lowing:093

• A comprehensive evaluation of Zarma’s three094

distinct GEC approaches (rule-based, MT-095

based, and LLM-based). Our findings show096

that the MT-based approach delivered the097

highest accuracy with a detection rate of098

96.30%, a suggestion accuracy of 92.59%,099

and an acceptable performance in zero-shot100

scenarios.101

• Reproduction of the experiments with addi-102

tional West African languages (Bambara) to103

confirm replicability and broaden the study’s104

scope beyond Zarma.105

• Development and public release (upon accep-106

tance) of models fine-tuned for GEC of the107

tested languages.108

2 Related Work109

Cissé and Sadat (2023) present an approach for110

spellchecking Wolof, a language primarily spoken111

in Senegal. Their algorithm combines a dictionary112

lookup with an edit distance metric Levenshtein113

distance algorithm (Levenshtein, 1966) to identify114

and correct spelling errors.115

Vydrin and collaborators developed Daba, a soft-116

ware package for grammar and spellchecking in117

Manding languages (Vydrin, 2014). Their work118

employs a rule-based system focusing on morpho-119

logical analysis, addressing the agglutinative nature120

of Manding languages.121

Researchers have explored the use of LLMs for122

language-specific tasks, including GEC, demon-123

strating their adaptability beyond high-resource lan-124

guages. For instance, a study by Palma Gomez et al.125

(2023) showed that the MT5 model, a multilingual126

transformer model pre-trained on a massive dataset127

of text and code, could be effectively fine-tuned128

for GEC in Ukrainian. Song et al. (2023) present129

an innovative application of LLMs—specifically 130

GPT-4 (OpenAI, 2023)—for generating explana- 131

tions for grammatical errors. Another promising ap- 132

proach to GEC leverages pre-trained multilingual 133

MT models. The study by (Luhtaru et al., 2024) 134

introduced the "No Error Left Behind" approach, 135

which uses models like MT5 (Xue et al., 2020) and 136

NLLB (Team et al., 2022). The fine-tuning pro- 137

cess involves adapting the pre-trained MT model 138

to treat error correction as a "translation" task, 139

where the source language is the incorrect sentence 140

and the target language is the corrected sentence. 141

However, the research also identified a fundamen- 142

tal challenge: the trade-off between precision and 143

recall when training with synthetic data. This find- 144

ing shows the need for further research to optimize 145

these models for low-resource GEC tasks, poten- 146

tially through improved data augmentation tech- 147

niques or developing specialized architectures for 148

error correction. 149

3 Methods 150

3.1 GEC with LLMs 151

LLMs have significantly advanced NLP, exhibiting 152

capabilities in multitasking, few-shot learning, and 153

multilingual understanding. These models, exten- 154

sively pre-trained on diverse datasets, demonstrate 155

a remarkable ability to grasp nuanced aspects of 156

language, reasoning, and context (Brown et al., 157

2020; Raffel et al., 2020). This section outlines 158

our methodology for leveraging LLMs to develop 159

a GEC tool for Zarma. The proposed GEC tool is 160

designed to function independently of predefined 161

grammar rules or lexicons, utilizing the models’ 162

few-shot learning capabilities for enhanced effi- 163

ciency in low-resource scenarios. 164

3.1.1 Implementation 165

We employed two distinct approaches for LLM- 166

based GEC: 167

Instruction and Error Explanation Fine-tuning: 168

This method involves embedding training data 169

within a contextual sentence structure, enhancing 170

the model’s reasoning abilities, and facilitating ef- 171

fective learning from the examples. We use the 172

following instruction prompt: 173

Prompt: "Zarma sentence: [Incorrect Sentence],
Correct the zarma sentence: [Correct Sentence]
Error Causes: : [Error Cause]."

174
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This format, particularly the error explanation175

component, is crucial for aiding the model’s com-176

prehension of Zarma’s grammatical contexts and177

patterns, as demonstrated in previous research178

(Schick and Schütze, 2021; Wei et al., 2021).179

Non-Prompt Fine-tuning Using Aligned180

Sentences:181

This approach involves fine-tuning the model di-182

rectly on parallel data of incorrect and correct183

Zarma sentences without explicit prompts. This184

leverages the model’s ability to learn the implicit185

mapping between incorrect and correct forms.186

3.2 GEC with MT Models187

Exploring MT models for GEC represents a promis-188

ing avenue for addressing GEC challenges in low-189

resource languages like Zarma. MT models, par-190

ticularly those pre-trained on multilingual datasets,191

offer strong capabilities for understanding and pro-192

cessing text across diverse linguistic frameworks.193

3.2.1 Implementation194

We chose the M2M100 model (Fan et al., 2020)195

for its demonstrated ability to translate between196

many languages, indicating its potential to capture197

cross-linguistic patterns relevant to GEC. To adapt198

M2M100 for Zarma GEC, we fine-tuned it on a cor-199

rupted corpus designed to reflect common errors in200

Zarma text. This corpus was generated by apply-201

ing a custom noise script, described in Section 3.4.202

The script introduces various errors, ensuring the203

training data effectively represents realistic chal-204

lenges in real-world Zarma text. This corrupted205

corpus, paired with the original correct sentences,206

serves as the training data for M2M100, enabling207

the model to learn the mapping from incorrect to208

correct Zarma. Detailed training settings and evalu-209

ation metrics for this MT-based GEC approach can210

be found in Tables 3, 5, and 6.211

3.3 Rule-based GEC for Zarma212

As a baseline, we designed a rule-based GEC pro-213

cess, based on Levenshtein distance and the Bloom214

filter (Bloom, 1970), for Zarma (Figure 1). Addi-215

tionally, we implemented a tool and API in Python.216

The tool—the first of its kind for Zarma, to our217

knowledge—is designed to cater to a wide range218

of users. It offers command-line and graphical219

user interfaces (GUI) and is much less computa-220

tionally intensive than the LLM-based approach.221

Moreover, our results show that it provides a com-222

petitive spell correction performance compared to 223

the LLMs- and MT-based approaches. To ensure 224

the tool’s accessibility, we plan a public release 225

upon acceptance. 226

Figure 1: Rule-Based GEC tool Workflow

The GEC process for Zarma text includes a se- 227

quence of logical steps, beginning with the input 228

text T , moving through a Bloom filter decision 229

B, leading to a dictionary lookup outcome D, and 230

culminating in the final correction C: 231

C(T ) =

{
T if D(B(T )) = True,
Correct(T ) if D(B(T )) = False.

(1) 232

The detailed process includes: 233

Text Processing The system begins by process- 234

ing the text, where the Zarma content is segmented 235

into words, punctuation, and spaces using regular 236

expressions. This initial step ensures that every part 237

of the text is ready for individual examination—a 238

necessity given Zarma’s linguistic intricacies. 239

Bloom Filter The Bloom filter—known for its 240

space and time efficiency—performs probabilistic 241

checks on whether a word might be in the dictio- 242

nary. For a given word w, it uses a set of hash 243

functions to probe various positions in a bit array. 244

If all checked positions are flagged, w might be in 245

the dictionary: 246

B(w) =

k∧
i=1

bit[hi(w)], (2) 247

Given the extensive Zarma lexicon sourced from 248

the Feriji Dataset (kei, 2024), this component 249
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makes the process faster and more efficient, to-250

taling 9902 unique words.251

Dictionary Lookup At the core of the system252

is the trie-based dictionary lookup. This setup253

manages Zarma’s intricate word forms, confirm-254

ing word accuracy after the Bloom filter. This step255

is crucial to ensure the text adheres to Zarma’s256

linguistic norms and serves as a post-Bloom filter257

double-checking process.258

Grammar Rules The system incorporates a set259

of Zarma grammar rules, a task made challenging260

by the lack of a standard writing format. This phase261

scrutinizes elements like consonant rules and vowel262

lengths, essential for keeping the text accurate to263

Zarma’s grammatical essence despite its diverse264

phonology and absence of a writing standard.265

Correction Algorithm When an error is de-266

tected, the correction algorithm is activated. This267

component leverages the Levenshtein distance L to268

identify the smallest number of edits—insertions,269

deletions, or substitutions—required to rectify the270

erroneous word. For illustration, given a cor-271

rupted sentence "A sindq biri," the Levenshtein272

algorithm’s operation can be represented as:273

Corrupted Sentence: "A sindq biri"
↓

LevSuggest(”sindq”)
↓

{"sind", "sinda"}

(3)274

Here, "sindq" undergoes comparison with the275

lexicon, and "sind" and "sinda" are suggested based276

on their proximity in terms of minimal edit distance.277

In this context, L(a, b) calculates the distance be-278

tween the incorrect string a and a potential correct279

string b, considering their lengths i and j, with280

1(ai ̸=bj) serving as an indicator function to high-281

light discrepancies. This mechanism ensures the282

algorithm’s efficiency in providing appropriate cor-283

rections, thus enhancing the GEC tool’s overall284

accuracy for Zarma text.285

3.4 Data Preparation286

This section details the process of gathering and287

preparing data to train our GEC models for Zarma.288

We created two distinct datasets, which were then289

combined to form a larger, more comprehensive290

training dataset.291

3.4.1 Synthetic Data 292

The first dataset was generated using a custom cor- 293

ruption script applied to the Feriji Dataset. The 294

script was designed to introduce realistic typo- 295

graphical and grammatical errors into Zarma sen- 296

tences. To ensure the introduction of plausible 297

errors that mimic human mistakes, the corruption 298

process is guided by a defined formula: 299

CSZ(S, V, C) = N ◦ SZ(S, V, C) (4) 300

Where CSZ denotes the corrupted Zarma sen- 301

tence resulting from applying the noise function N 302

to the original sentence, SZ. Here, (S, V, C) repre- 303

sents a sentence’s subject, verb, and complement, 304

respectively. The noise function (N), consists of 305

four operations: deletions δ, insertions µ, substi- 306

tutions σ, and transpositions τ . The script was 307

meticulously crafted to ensure the introduced noise 308

did not inadvertently create another grammatically 309

valid Zarma sentence. 310

For example, consider SZ as "A go koy fuo" 311

which translates to "He is going home". Applying 312

the noise function N , such as a substitution σ that 313

changes "go" to "ga," results in the sentence CSZ: 314

"A ga koy fuo". While "ga" is a valid Zarma word, 315

in this context, it alters the meaning of the sentence 316

to "He will go home", introducing a grammatical 317

error. 318

SZ = ”Ago koy fuo”

N(SZ) = SZ
σ(”go”→”ga”)−−−−−−−−−→ ”Aga koy fuo”

CSZ = ”Aga koy fuo”

SZ N−→ Correct CSZ

(5) 319

Furthermore, the script creates four corrupted 320

variants for each correct sentence in the dataset, en- 321

riching the learning material with diverse linguistic 322

nuances. The dataset is illustrated in Table 1. 323

3.4.2 Human-Annotated Data 324

The second dataset—referred to as the Gold Data 325

2—was curated by human annotators. Annota- 326

tors introduced grammatical and logical errors into 327

Zarma sentences and provided justifications for 328

each alteration. This dataset structure exposes the 329

models to a broader array of error types— precisely 330

logical and grammatical errors—and correspond- 331

ing corrections, thereby enhancing the model’s ca- 332

pacity to generalize and accurately correct unseen 333
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Correct Sentence Corrupted Sentences
Sintina gaa Irikoy na beena da ganda taka. Sintina gaa Irikog na beena da ganda taka.

Sintina gaa Irikoy na been da ganda taka.
Sintina aga Irikoy na beena da ganda taka.
Sintina gaa Irikoy na beena ea ganda taka.

Table 1: Snapshot of The Synthetic Data

texts in Zarma, particularly in zero-shot or few-shot334

learning scenarios.335

Incorrect
Sentence

Correction Error Explanation

Souba,
Ay koy
Niamey

Souba,
Ay ga koy
Niamey

"Souba" means to-
morrow, and there-
fore the tense must
be in the future us-
ing the future tense
marker "ga" after
the subject "Ay."

... ... ...

Table 2: Snapshot of the Gold Data

4 Experiment336

We selected three models for training based on337

their demonstrated proficiency in multilingual tasks338

and their aptitude for few-shot learning: Gemma339

(Team et al., 2024), MT5, and M2M100. The train-340

ing was conducted on Google Cloud, utilizing a341

Deep Learning Virtual Machine. Due to resource342

constraints, QLoRA quantization (Dettmers et al.,343

2023) was applied to Gemma, while smaller vari-344

ants of MT5 and M2M100 were used. For LLM345

training, the combined dataset was structured as346

shown in 3.1.1, while for the MT method, we347

adopted an MT task-specific format, using aligned348

sentences without error explanations. The detailed349

training settings for each model are presented in350

Table 3.351

5 Results & Comparative Analysis352

To assess the effectiveness of each GEC method for353

Zarma GEC, we tested them in two ways: fixing354

words and logic/grammar (LG) problems in sen-355

tences. We used two sets of 100 sentences each356

from the Feriji Dataset. Sample A was for fixing357

single words, and Sample B was for fixing LG er-358

rors. We also used a third set, Sample C, with 27359

sentences to test how well the models could handle360

new words and LG problems they had not seen361

before (zero-shot testing). For Sample A, we used362

our script to add 71 typos—common mistakes peo- 363

ple make when writing Zarma—-and for Sample 364

B, our Zarma annotators added grammar errors — 365

logic—and sentence structure. This gave us a good 366

mix of mistakes to test the models. 367

5.1 Word-Level Correction Metrics 368

To compare the methods for fixing single words, 369

we looked at these things: 370

• Detection: How many errors did the method 371

find and correct? 372

• Suggestion: How many corrections suggested 373

were correct? 374

• F1-Score: A score that combines detection 375

and suggestion, giving us a balanced view of 376

how well the method worked 377

As shown in Table 4, the rule-based method 378

achieved a perfect score in this test. It found all 379

the errors and suggested the proper correction ev- 380

ery time. However, this was a controlled test with 381

common typos. In real-world situations, the rule- 382

based method might not work well if it encounters 383

new words or errors it has not seen before. The 384

M2M100 model did the best among the models, 385

with high scores for detection—100%, suggestion— 386

91%, and F1-score—0.95. This model learns from 387

many different languages, which helps it under- 388

stand and fix errors in Zarma even though it is a 389

low-resource language. 390

5.2 LG Improvement Metrics 391

For Sample B, five Zarma speakers rated how well 392

each method fixed LG errors using a scale from 393

1 to 5. 1 means the correction was terrible, and 394

5 means it was perfect. We also examined how 395

well the methods did with different error types, like 396

verb tense errors, subject-verb agreement errors, 397

and missing words. See Table 5. 398

Again, the rule-based method struggled with LG 399

errors because it needed help understanding the 400

context of the sentences. It could only fix prob- 401

lems based on its predefined rules rather than based 402

on how the words were used in the sentence. The 403
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Models Parameters Training Details

QLoRA GPU Used Lr Loss

Gemma 2b 2 billion Applied NVIDIA P100 2× 10−4 1.2613
MT5-small 300 million Not Applied NVIDIA T4x2 2× 10−5 0.0345
M2M100 418 million Not Applied NVIDIA P100 2× 10−5 0.0214

Table 3: Training Settings for the models

Methods Word Level Metrics

Detection Suggestion F1-
Score

Rule-based 100% 100% 1.00
Gemma 2b 92% 66% 0.77
MT5-small 95% 64% 0.76
M2M100 100% 91% 0.95

Table 4: Word-Level Correction Performance Metrics

Methods Context Level Avg(1-5)

Logical Errors
Correction

Sentence Im-
provement

Rule-based 0.4 0
Gemma 2b 1 0
MT5-small 1.7 1
M2M100 3 2.5

Table 5: LG Improvement Metrics

M2M100 model performed better than the other404

methods, getting higher scores for fixing logical405

errors—3/5, and improving sentence structure—406

2.5/5 as shown in Table 5. This shows that learning407

from many languages helps MT models understand408

the context of sentences and make better correc-409

tions. We also noticed that the models had more410

trouble with some LG errors than others. For ex-411

ample, they were better at fixing verb tense than412

subject-verb agreement errors. This tells us that413

we need more training data with different kinds of414

mistakes to help the models learn how to fix them.415

Recent research has shown that training models on416

diverse error types, including synthetic errors that417

reflect real-world linguistic variations, can signifi-418

cantly enhance their performance in LG correction419

tasks (Napoles et al., 2017).420

5.3 Zero-Shot Performance421

In the zero-shot test (Sample C), we looked at how422

well the models could handle new words and LG423

errors they had not seen before. Table 6 shows the424

results.425

As expected, the rule-based method could not426

suggest corrections for new words because it did427

not have them in its dictionary. The M2M100 428

model again performed best, showing its ability 429

to generalize from its multilingual training data to 430

handle new Zarma words and LG errors it had never 431

seen before—with an accuracy of 96.30% for detec- 432

tion, 92.59% for suggestion, 2.4/5 for logical error 433

correction, and 2.3/5 for sentence improvements. 434

These results strongly suggest that MT models, 435

especially those trained on diverse, multilingual 436

data, hold significant potential for improving GEC 437

in low-resource languages. This aligns with re- 438

cent research highlighting the effectiveness of MT 439

models for cross-lingual transfer learning in vari- 440

ous NLP tasks (Conneau et al., 2018). However, 441

more research is needed to explore the optimal 442

training strategies and data requirements for fur- 443

ther maximizing the performance of MT models 444

in low-resource GEC scenarios. To validate the 445

reproducibility and robustness of our methods, we 446

conducted further experiments with the Bambara 447

language, which belongs to a different linguistic 448

family. The results of this experiment are detailed 449

in Section A of the appendix. 450

6 Discussion 451

Our comparative analysis, detailed in Tables 4, 452

5 and 6, indicates that the M2M100 model— 453

leveraging the MT approach—yielded the most 454

promising results among the tested models. This 455

was particularly evident in its superior suggestion 456

accuracy and ability to handle zero-shot words 457

effectively. This strong performance is likely at- 458

tributable to M2M100’s design, which leverages a 459

balanced approach to translation tasks across mul- 460

tiple languages, making it adept at understanding 461

and correcting errors within a multilingual context. 462

6.1 Methods’ Strengths and Limitations 463

6.1.1 Rule-Based Methods 464

Rule-based approaches are highly effective in ad- 465

dressing predictable and previously encountered 466

error patterns. Our controlled tests showed that 467

these methods achieved perfect detection and sug- 468
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Methods Evaluation Metrics

Word Level Context Level Avg(1-5)

Detection Suggestion Logical Errors
Correction

Sent.Improvement

Rule-based 100% 81.48% 1 0
Gemma 2b 92.59% 40.74% 0.5 0
MT5-small 92.59% 48.15% 1.2 0.6
M2M100 96.30% 92.59% 2.4 2.3

Table 6: Correction Performance Metrics (Zero-Shot Dataset)

gestion scores. Their strength lies in their reliance469

on a comprehensive set of predefined rules and470

a detailed target language dictionary. However,471

this reliance also presents a significant limitation—472

inflexibility. Rule-based methods struggle to han-473

dle new or unexpected errors, which is common in474

dynamic language use. This limitation becomes475

particularly pronounced in zero-shot scenarios,476

where the system encounters words or grammatical477

constructions not included in its defined patterns or478

dictionary. This inherent dependency on extensive479

and carefully curated linguistic resources restricts480

the scalability of rule-based methods, especially481

for low-resource languages like Zarma, where such482

resources are often limited or incomplete, as high-483

lighted in (Scannell, 2007).484

6.1.2 LLMs485

The LLMs in our experiments—Gemma 2b and486

MT5—demonstrated adequate performance in con-487

trolled and zero-shot scenarios. A key strength488

of LLMs is their capacity to understand context,489

enabling them to generate corrections based on490

broader textual cues rather than relying solely on491

direct matches to known errors. However, LLM492

performance significantly depends on the diversity493

and quality of the training data. A critical limi-494

tation is that most pre-existing LLMs are primar-495

ily trained on data from high-resource languages,496

mainly Western languages. Consequently, their ap-497

plicability to African languages like Zarma is often498

hindered by a need for more representative train-499

ing examples (Bender et al., 2021). This results500

in lower suggestion accuracy and difficulties in501

effectively handling the unique linguistic complex-502

ities of these languages. Moreover, training LLMs503

necessitates substantial computational resources,504

posing a significant barrier in resource-constrained505

environments.506

6.1.3 MT Models 507

In our case, the MT approach—using the M2M100 508

model—demonstrated exceptional performance in 509

zero-shot scenarios, surpassing both rule-based 510

methods and LLMs. The strength of this approach 511

lies in the ability of these models to leverage multi- 512

lingual translation mechanisms, effectively adapt- 513

ing to the nuances of diverse languages through 514

their exposure to vast and varied training datasets. 515

This characteristic makes MT models particularly 516

suitable for GEC in low-resource languages, as 517

they can infer corrections from patterns learned 518

across multiple languages. This aligns with re- 519

search highlighting the effectiveness of MT models 520

for cross-lingual transfer learning in various NLP 521

tasks (Conneau et al., 2018). However, a signifi- 522

cant challenge in utilizing MT models for GEC in 523

low-resource languages is the frequent scarcity of 524

high-quality, parallel corpora for training. With suf- 525

ficient data, the models may generate more accurate 526

and contextually appropriate corrections (Tiede- 527

mann, 2020). Moreover, despite their strengths, 528

MT models require fine-tuning and continuous up- 529

dating to maintain their accuracy and relevancy, 530

especially as language use evolves. 531

6.2 Recommendations for Improvement 532

To further enhance GEC systems for Zarma and 533

other low-resource languages, we propose the fol- 534

lowing recommendations: 535

Increasing Dataset Size: Expanding datasets 536

with more varied examples, including those repre- 537

senting zero-shot scenarios, can substantially im- 538

prove model training, especially for LLMs and MT 539

models. As noted by (Scannell, 2007), limited data 540

availability is a significant challenge in developing 541

resources for low-resource languages. Increasing 542

the training data’s volume and diversity could en- 543

able models to handle a broader range of linguistic 544

variations and rare scenarios, enhancing overall 545

accuracy and robustness. 546
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Hybrid Approaches: Our findings suggest that547

combining the strengths of rule-based systems with548

the adaptability of LLMs and the robustness of MT549

models could yield a more powerful GEC system.550

Such a hybrid approach could utilize rule-based551

systems to handle standard, predictable errors and552

leverage machine learning models to address more553

complex, context-dependent errors. This approach554

aligns with research highlighting the effectiveness555

of integrating multilingual resources to improve556

language processing capabilities across different557

systems (Tiedemann, 2020).558

Continuous Learning: Implementing mecha-559

nisms for models to learn continuously from new in-560

put and user-generated corrections can contribute to561

progressively improving their accuracy and adapt-562

ability. This aligns with the findings of (Bender563

et al., 2021), who emphasize the importance of con-564

tinuous model updating and reevaluation to main-565

tain their effectiveness, especially in rapidly evolv-566

ing language use patterns.567

7 Potential Applications568

Our team visited Niamey to present the work to569

the local Zarma community and inquire about their570

feedback. The discussions provided valuable in-571

sights into potential applications for our GEC tool572

and broader language models.573

Content Creation One critical comment we re-574

ceived was the potential use of our model to trans-575

late coding content and general educational mate-576

rials for enthusiasts and students. There is a grow-577

ing interest in technology and programming within578

the community, but a significant language barrier579

exists. By translating coding tutorials, textbooks,580

and other educational resources into Zarma, our581

model can help overcome this challenge, making582

these materials more accessible and encouraging583

non-western language speakers to engage in tech-584

related fields. Additionally, the GEC tool can be585

used to translate and produce general educational586

content in Zarma. This includes textbooks, instruc-587

tional materials, and online courses across various588

subjects.589

Communication Tools Integrating the GEC tool590

into communication platforms can facilitate seam-591

less interaction in Zarma for users with varying lev-592

els of language proficiency. In addition, tools such593

as messaging apps and email clients could incorpo-594

rate the GEC tool to provide real-time corrections,595

helping users learn and adopt proper language us- 596

age. 597

Cultural Preservation Some feedback high- 598

lighted the importance of maintaining accurate writ- 599

ten records of folklore, oral histories, and tradi- 600

tional knowledge. The GEC tool can support these 601

efforts by providing a reliable tool for transcribing 602

and publishing grammatically accurate texts. 603

8 Conclusion and Future Work 604

This research demonstrates the potential of LLMs 605

and MT models to address the critical need for 606

effective GEC tools in low-resource languages, ex- 607

plicitly focusing on Zarma. While previous studies 608

have shown the effectiveness of these models in 609

high-resource settings, their application to Zarma 610

presents unique challenges due to data scarcity and 611

a need for established benchmarks. 612

To overcome these challenges, we implemented 613

a novel approach that combines three key elements: 614

(1) a custom corruption script to generate synthetic 615

training data, effectively addressing the limited 616

availability of annotated Zarma text; (2) a human- 617

annotated "Gold Data" set incorporating expert 618

knowledge of Zarma grammar, providing a valu- 619

able benchmark for evaluating model performance 620

on complex errors; and (3) the adaptation of ad- 621

vanced LLMs and MT models, such as Gemma or 622

M2M100, for the specific task of Zarma GEC. 623

Our findings reveal the potential of LLM and MT 624

models—particularly M2M100—in achieving high 625

accuracy in Zarma GEC, even in zero-shot scenar- 626

ios. This highlights their ability to leverage cross- 627

lingual patterns learned from diverse, multilingual 628

datasets to improve GEC in under-resourced lan- 629

guages. This research comprehensively evaluates 630

different GEC approaches for Zarma and estab- 631

lishes a baseline for future work in this area. Fur- 632

ther exploration of hybrid approaches that combine 633

rule-based methods with the adaptability of LLMs 634

and the robustness of MT models holds promise 635

for creating even more effective GEC tools. Addi- 636

tionally, incorporating continuous learning mecha- 637

nisms can enable these tools to adapt to evolving 638

language use and user feedback, enhancing their 639

accuracy and relevance. 640

Limitations 641

Despite the promising results obtained from our ex- 642

periments, we observed several limitations. Firstly, 643

while effective in controlled scenarios with known 644

8



error patterns, the rule-based approach exhibited645

significant challenges when faced with unseen pat-646

terns. This is due to its dependence on predefined647

rules and extensive dictionaries, which could be648

better for languages with limited resources and649

writing standards.650

Secondly, the LLMs we used—including651

Gemma 2b and MT5-small—also faced several652

challenges. One primary limitation was the mod-653

els’ reliance on the diversity and quality of their654

training data. These models— primarily built for655

high-resource languages– -may need more nuances656

and contextual understanding for low-resource657

languages like Zarma. In addition, the models658

are resource-hungry, which is a disadvantage in659

resource-constrained environments typical of low-660

resource language communities.661

Thirdly, a significant challenge is the need for662

more quality annotated data for Zarma and other663

low-resource languages. While we created a syn-664

thetic dataset and a smaller human-annotated "Gold665

Data" set to mitigate this, these datasets may still666

not capture the full linguistic error patterns in lan-667

guage use. The reliance on synthetic data—though668

helpful for experiments—may introduce biases that669

do not entirely reflect real-world usage. Therefore,670

the generalizability of our findings is–constrained671

by the quality and representativeness of the avail-672

able training data.673

Lastly, the zero-shot performance highlighted674

challenges in achieving a good score across the675

approaches regarding LG errors and sentence im-676

provements. The approaches showed variability677

in handling different LG errors, with some types678

being more challenging than others. This suggests679

that our current methodologies require further re-680

finement and additional data to handle the wide681

range of errors.682
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these methods—using the M2M100 and Gemma864

models. We selected the Bambara language for this865

experiment because it belongs to a different linguis-866

tic family, allowing us to evaluate the performance867

of the approaches on a language outside the Nilo-868

Saharan family. We utilized the Bayelemabaga869

dataset (Vydrin et al., 2022) for Bambara. The870

same data preparation process described in the871

methodology section was followed; however, we872

excluded any human-annotated data to focus solely873

on word-level GEC performance. The results are874

presented in Table 7.875

Methods Word Level Metrics

Detection Suggestion F1-
Score

Gemma 2b 87.45% 52.91% 0.6594
M2M100 94.64% 68.18% 0.7926

Table 7: Word-Level Correction Performance Metrics
for Bambara

The Bambara experiment demonstrated that the876

MT-based approach outperformed the LLMs-based877

one regarding word-level correction metrics. The878

MT-based approach achieved a detection rate of879

94.64% and a suggestion accuracy of 68.18%.880

In contrast, the LLMs-based approach detected881

87.45% of errors and suggested corrections with882

52.91% accuracy. The promising results from the883

Bambara experiment highlight the potential of both884

LLMs and MT models to improve GEC for low-885

resource languages significantly. However, they886

also emphasize the necessity for continued expand-887

ing and diversifying training datasets.888

B Errors Being Addressed889

In this section, we explain the types of errors our890

grammatical error correction (GEC) methods ad-891

dress. We categorize the errors into two main types:892

word-level correction (spellchecking) and context-893

level correction. The context-level correction is894

further divided into grammar errors, logical errors,895

and sentence improvement. Below, we define each896

error type and provide examples to illustrate them.897

B.1 Word-Level Correction (Spellchecking)898

Word-Level correction involves identifying and cor-899

recting typographical errors in individual words.900

These errors are usually due to misspellings, incor-901

rect usage of characters, or typographical mistakes.902

• Example:903

– Incorrect: Sintina gaa Irikog na beena 904

da ganda taka. 905

– Correct: Sintina gaa Irikoy na beena da 906

ganda taka. 907

B.2 Context-Level Correction 908

Context-level correction involves errors that go be- 909

yond individual words and affect the overall struc- 910

ture and meaning of the sentence. We categorize 911

these errors into logical errors and sentence im- 912

provement. 913

B.2.1 Logical Errors 914

Logical errors include incorrect verb conjugations, 915

subject-verb agreement issues, incorrect use of 916

grammatical markers, and logical inconsistencies 917

within the sentence. These errors affect the gram- 918

matical correctness and logical coherence of the 919

sentence. 920

• Example: 921

– Incorrect: Souba, Ay koy Niamey. (The 922

time indicator "Souba" means "tomor- 923

row," but the verb "koy" indicates present 924

tense.) 925

– Correct: Souba, Ay ga koy Niamey. (The 926

future tense marker "ga" matches the 927

time indicator "Souba.") 928

B.2.2 Sentence Improvement 929

Sentence improvement involves enhancing the qual- 930

ity of the sentence by making it more precise, con- 931

cise, or stylistically appropriate. This category ad- 932

dresses grammatically correct sentences that can 933

be improved for better readability or style. 934

• Example: 935

– Original: I girbi honkuna i tun be. 936

– Improved: I ga girbi suba. 937
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Figure 2: Images of the different GEC tool interfaces. The rule-based on the left and the other approaches on the
right
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