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Abstract

Zarma is a Nilo-Saharan language spoken pre-
dominantly in West Africa. The limited avail-
ability of annotated data and the need for stan-
dardized orthography make grammatical error
correction (GEC) particularly challenging for
Zarma. This study presents a comparative anal-
ysis of GEC methods for Zarma, exploring clas-
sical GEC approaches such as rule-based meth-
ods, machine translation (MT) models, and
state-of-the-art large language models (LLMs).
Through rigorous evaluations, we compare the
strengths and limitations of each method, as-
sessing their effectiveness in identifying and
correcting errors in Zarma texts. Our findings
highlight the promising potential of both LLMs
and MT models to significantly enhance GEC
capabilities for low-resource languages, paving
the way for developing more inclusive and ro-
bust NLP tools for African languages.

1 Introduction

GEC is an essential task in NLP that aims to im-
prove the quality and readability of texts by correct-
ing grammatical errors. GEC tools are important
for enhancing written materials, significantly im-
pacting educational outcomes, professional oppor-
tunities, and access to information. This is partic-
ularly relevant in under-resourced settings where
limited access to academic resources and formal
training can exacerbate language proficiency dis-
parities. Additionally, communities in these set-
tings often rely on local languages for communica-
tion and knowledge transmission. GEC tools are
well-developed for high-resource languages, espe-
cially English, where extensive annotated datasets
and standardized writing systems are available
(Napoles et al., 2019). However, GEC presents
significant challenges for low-resource languages.

Zarma, a Nilo-Saharan language spoken by over
5 million people across Niger and neighboring
countries (Lewis et al., 2016), exemplifies the dif-
ficulties faced by many low-resource languages.

The lack of standardized orthography and the lim-
ited availability of annotated data make it challeng-
ing to develop practical GEC tools. These chal-
lenges are not unique to Zarma but are shared by
a broad class of low-resource languages, which
include many African and indigenous languages
worldwide. Addressing these challenges requires
innovative approaches working with minimal data
and non-standardized texts.

The emergence of LLMs has ushered in a new
era in NLP, empowering machine learning (ML)
models to understand and generate human-like
text across many languages (Devlin et al., 2018;
Brown et al., 2020). LLMs exhibit remarkable
zero-shot and few-shot learning capabilities (Wan
et al., 2023), potentially beneficial for low-resource
languages. These capabilities allow LLMs to
perform effectively with minimal data, making
them valuable for languages with limited annotated
datasets. However, the use of LLMs is also chal-
lenging in low-resource settings. They are primar-
ily trained on data from high-resource languages,
which may limit their performance when applied
to low-resource languages. The lack of represen-
tative training data can lead to errors and biases,
reducing their effectiveness. Additionally, the sig-
nificant computational resources required to fine-
tune and deploy LLMs can be a barrier in resource-
constrained environments.

This study investigates the potential of LLMs
and traditional models to improve GEC for Zarma
by comparing conventional rule-based methods,
MT-based models, and the novel application of
LLMs for Zarma GEC. With the goal of study-
ing the performance of these models on other low-
resource languages, we replicate our Zarma GEC
experiments with Bambara, a West African lan-
guage spoken in Mali. Through a comprehensive
case study, we highlight the strengths and weak-
nesses of each method, aiming to bridge the lin-
guistic gap in NLP for low-resource languages like



Zarma and Bambara.
Our research addresses the following questions:

RQ1: Do state-of-the-art LLM models outperform
conventional rule-based and MT-based mod-
els on GEC for Zarma texts?

RQ2: What are the specific strengths and limita-
tions of each GEC approach in low-resource
settings, considering the lack of standardized
orthography and limited annotated data?

The main contributions of this paper are the fol-
lowing:

* A comprehensive evaluation of Zarma’s three
distinct GEC approaches (rule-based, MT-
based, and LL.M-based). Our findings show
that the MT-based approach delivered the
highest accuracy with a detection rate of
96.30%, a suggestion accuracy of 92.59%,
and an acceptable performance in zero-shot
scenarios.

* Reproduction of the experiments with addi-
tional West African languages (Bambara) to
confirm replicability and broaden the study’s
scope beyond Zarma.

* Development and public release (upon accep-
tance) of models fine-tuned for GEC of the
tested languages.

2 Related Work

Cissé and Sadat (2023) present an approach for
spellchecking Wolof, a language primarily spoken
in Senegal. Their algorithm combines a dictionary
lookup with an edit distance metric Levenshtein
distance algorithm (Levenshtein, 1966) to identify
and correct spelling errors.

Vydrin and collaborators developed Daba, a soft-
ware package for grammar and spellchecking in
Manding languages (Vydrin, 2014). Their work
employs a rule-based system focusing on morpho-
logical analysis, addressing the agglutinative nature
of Manding languages.

Researchers have explored the use of LLMs for
language-specific tasks, including GEC, demon-
strating their adaptability beyond high-resource lan-
guages. For instance, a study by Palma Gomez et al.
(2023) showed that the MT5 model, a multilingual
transformer model pre-trained on a massive dataset
of text and code, could be effectively fine-tuned
for GEC in Ukrainian. Song et al. (2023) present

an innovative application of LL.Ms—specifically
GPT-4 (OpenAl, 2023)—for generating explana-
tions for grammatical errors. Another promising ap-
proach to GEC leverages pre-trained multilingual
MT models. The study by (Luhtaru et al., 2024)
introduced the "No Error Left Behind" approach,
which uses models like MT5 (Xue et al., 2020) and
NLLB (Team et al., 2022). The fine-tuning pro-
cess involves adapting the pre-trained MT model
to treat error correction as a "translation" task,
where the source language is the incorrect sentence
and the target language is the corrected sentence.
However, the research also identified a fundamen-
tal challenge: the trade-off between precision and
recall when training with synthetic data. This find-
ing shows the need for further research to optimize
these models for low-resource GEC tasks, poten-
tially through improved data augmentation tech-
niques or developing specialized architectures for
error correction.

3 Methods

3.1 GEC with LLMs

LLMs have significantly advanced NLP, exhibiting
capabilities in multitasking, few-shot learning, and
multilingual understanding. These models, exten-
sively pre-trained on diverse datasets, demonstrate
a remarkable ability to grasp nuanced aspects of
language, reasoning, and context (Brown et al.,
2020; Raffel et al., 2020). This section outlines
our methodology for leveraging LLMs to develop
a GEC tool for Zarma. The proposed GEC tool is
designed to function independently of predefined
grammar rules or lexicons, utilizing the models’
few-shot learning capabilities for enhanced effi-
ciency in low-resource scenarios.

3.1.1 Implementation

We employed two distinct approaches for LLM-
based GEC:

Instruction and Error Explanation Fine-tuning:

This method involves embedding training data
within a contextual sentence structure, enhancing
the model’s reasoning abilities, and facilitating ef-
fective learning from the examples. We use the
following instruction prompt:

Prompt: "Zarma sentence: [Incorrect Sentence],
Correct the zarma sentence: [Correct Sentence]
Error Causes: : [Error Cause]."



This format, particularly the error explanation
component, is crucial for aiding the model’s com-
prehension of Zarma’s grammatical contexts and
patterns, as demonstrated in previous research
(Schick and Schiitze, 2021; Wei et al., 2021).

Non-Prompt Fine-tuning Using Aligned
Sentences:

This approach involves fine-tuning the model di-
rectly on parallel data of incorrect and correct
Zarma sentences without explicit prompts. This
leverages the model’s ability to learn the implicit
mapping between incorrect and correct forms.

3.2 GEC with MT Models

Exploring MT models for GEC represents a promis-
ing avenue for addressing GEC challenges in low-
resource languages like Zarma. MT models, par-
ticularly those pre-trained on multilingual datasets,
offer strong capabilities for understanding and pro-
cessing text across diverse linguistic frameworks.

3.2.1 Implementation

We chose the M2M 100 model (Fan et al., 2020)
for its demonstrated ability to translate between
many languages, indicating its potential to capture
cross-linguistic patterns relevant to GEC. To adapt
M2M100 for Zarma GEC, we fine-tuned it on a cor-
rupted corpus designed to reflect common errors in
Zarma text. This corpus was generated by apply-
ing a custom noise script, described in Section 3.4.
The script introduces various errors, ensuring the
training data effectively represents realistic chal-
lenges in real-world Zarma text. This corrupted
corpus, paired with the original correct sentences,
serves as the training data for M2M100, enabling
the model to learn the mapping from incorrect to
correct Zarma. Detailed training settings and evalu-
ation metrics for this MT-based GEC approach can
be found in Tables 3, 5, and 6.

3.3 Rule-based GEC for Zarma

As a baseline, we designed a rule-based GEC pro-
cess, based on Levenshtein distance and the Bloom
filter (Bloom, 1970), for Zarma (Figure 1). Addi-
tionally, we implemented a tool and API in Python.
The tool—the first of its kind for Zarma, to our
knowledge—is designed to cater to a wide range
of users. It offers command-line and graphical
user interfaces (GUI) and is much less computa-
tionally intensive than the LLM-based approach.
Moreover, our results show that it provides a com-

petitive spell correction performance compared to
the LLMs- and MT-based approaches. To ensure
the tool’s accessibility, we plan a public release
upon acceptance.
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Figure 1: Rule-Based GEC tool Workflow

The GEC process for Zarma text includes a se-
quence of logical steps, beginning with the input
text T, moving through a Bloom filter decision
B, leading to a dictionary lookup outcome D, and
culminating in the final correction C":

c(T) = T
(1) = Correct(T")

if D(B(T)) = True,
if D(B(T)) = False.
)]

The detailed process includes:

Text Processing The system begins by process-
ing the text, where the Zarma content is segmented
into words, punctuation, and spaces using regular
expressions. This initial step ensures that every part
of the text is ready for individual examination—a
necessity given Zarma’s linguistic intricacies.

Bloom Filter The Bloom filter—known for its
space and time efficiency—performs probabilistic
checks on whether a word might be in the dictio-
nary. For a given word w, it uses a set of hash
functions to probe various positions in a bit array.
If all checked positions are flagged, w might be in
the dictionary:

k
B(w) = /\ bit[h;(w)], @)
=1

Given the extensive Zarma lexicon sourced from
the Feriji Dataset (kei, 2024), this component



makes the process faster and more efficient, to-
taling 9902 unique words.

Dictionary Lookup At the core of the system
is the trie-based dictionary lookup. This setup
manages Zarma’s intricate word forms, confirm-
ing word accuracy after the Bloom filter. This step
is crucial to ensure the text adheres to Zarma’s
linguistic norms and serves as a post-Bloom filter
double-checking process.

Grammar Rules The system incorporates a set
of Zarma grammar rules, a task made challenging
by the lack of a standard writing format. This phase
scrutinizes elements like consonant rules and vowel
lengths, essential for keeping the text accurate to
Zarma’s grammatical essence despite its diverse
phonology and absence of a writing standard.

Correction Algorithm When an error is de-
tected, the correction algorithm is activated. This
component leverages the Levenshtein distance L to
identify the smallest number of edits—insertions,
deletions, or substitutions—required to rectify the
erroneous word. For illustration, given a cor-
rupted sentence "A sindq biri," the Levenshtein
algorithm’s operation can be represented as:

Corrupted Sentence: "A sindq biri"
3
LevSuggest(” sindq”) 3)

1
{"sind", "sinda"}

Here, "sindq" undergoes comparison with the
lexicon, and "sind" and "sinda" are suggested based
on their proximity in terms of minimal edit distance.
In this context, L(a, b) calculates the distance be-
tween the incorrect string a and a potential correct
string b, considering their lengths ¢ and j, with
L(a;b;) serving as an indicator function to high-
light discrepancies. This mechanism ensures the
algorithm’s efficiency in providing appropriate cor-
rections, thus enhancing the GEC tool’s overall
accuracy for Zarma text.

3.4 Data Preparation

This section details the process of gathering and
preparing data to train our GEC models for Zarma.
We created two distinct datasets, which were then
combined to form a larger, more comprehensive
training dataset.

3.4.1 Synthetic Data

The first dataset was generated using a custom cor-
ruption script applied to the Feriji Dataset. The
script was designed to introduce realistic typo-
graphical and grammatical errors into Zarma sen-
tences. To ensure the introduction of plausible
errors that mimic human mistakes, the corruption
process is guided by a defined formula:

CSZ(S,V,.C)=NoSZ(S,V,C) &

Where CSZ denotes the corrupted Zarma sen-
tence resulting from applying the noise function N
to the original sentence, SZ. Here, (S, V, C) repre-
sents a sentence’s subject, verb, and complement,
respectively. The noise function (N), consists of
four operations: deletions ¢, insertions p, substi-
tutions o, and transpositions 7. The script was
meticulously crafted to ensure the introduced noise
did not inadvertently create another grammatically
valid Zarma sentence.

For example, consider SZ as "'A go koy fuo"
which translates to ""He is going home''. Applying
the noise function IV, such as a substitution o that
changes "go" to "ga," results in the sentence CSZ:
"A ga koy fuo''. While "ga" is a valid Zarma word,
in this context, it alters the meaning of the sentence
to ""He will go home'"', introducing a grammatical
error.

SZ =" A go koy fuo”

0,(779077_>7aga77)

N(SZ) = SZ
CSZ =" A ga koy fuo”

SZ L Correct CSZ

” A ga koy fuo”
gakoy f )

Furthermore, the script creates four corrupted
variants for each correct sentence in the dataset, en-
riching the learning material with diverse linguistic
nuances. The dataset is illustrated in Table 1.

3.4.2 Human-Annotated Data

The second dataset—referred to as the Gold Data
2—was curated by human annotators. Annota-
tors introduced grammatical and logical errors into
Zarma sentences and provided justifications for
each alteration. This dataset structure exposes the
models to a broader array of error types— precisely
logical and grammatical errors—and correspond-
ing corrections, thereby enhancing the model’s ca-
pacity to generalize and accurately correct unseen



Correct Sentence

Corrupted Sentences

Sintina gaa Irikoy na beena da ganda taka.

Sintina gaa Irikog na beena da ganda taka.

Sintina gaa Irikoy na been da ganda taka.
Sintina aga Irikoy na beena da ganda taka.
Sintina gaa Irikoy na beena ea ganda taka.

Table 1: Snapshot of The Synthetic Data

texts in Zarma, particularly in zero-shot or few-shot
learning scenarios.

Incorrect Correction Error Explanation
Sentence

Souba, Souba, "Souba" means to-
Ay  koy Aygakoy morrow, and there-
Niamey Niamey fore the tense must

be in the future us-
ing the future tense
marker "ga" after
the subject "Ay."

Table 2: Snapshot of the Gold Data

4 Experiment

We selected three models for training based on
their demonstrated proficiency in multilingual tasks
and their aptitude for few-shot learning: Gemma
(Team et al., 2024), MT5, and M2M100. The train-
ing was conducted on Google Cloud, utilizing a
Deep Learning Virtual Machine. Due to resource
constraints, QLoRA quantization (Dettmers et al.,
2023) was applied to Gemma, while smaller vari-
ants of MT5 and M2M100 were used. For LLM
training, the combined dataset was structured as
shown in 3.1.1, while for the MT method, we
adopted an MT task-specific format, using aligned
sentences without error explanations. The detailed
training settings for each model are presented in
Table 3.

5 Results & Comparative Analysis

To assess the effectiveness of each GEC method for
Zarma GEC, we tested them in two ways: fixing
words and logic/grammar (LG) problems in sen-
tences. We used two sets of 100 sentences each
from the Feriji Dataset. Sample A was for fixing
single words, and Sample B was for fixing LG er-
rors. We also used a third set, Sample C, with 27
sentences to test how well the models could handle
new words and LG problems they had not seen
before (zero-shot testing). For Sample A, we used

our script to add 71 typos—common mistakes peo-
ple make when writing Zarma—-and for Sample
B, our Zarma annotators added grammar errors —
logic—and sentence structure. This gave us a good
mix of mistakes to test the models.

5.1 Word-Level Correction Metrics

To compare the methods for fixing single words,
we looked at these things:

* Detection: How many errors did the method
find and correct?

* Suggestion: How many corrections suggested
were correct?

e F1-Score: A score that combines detection
and suggestion, giving us a balanced view of
how well the method worked

As shown in Table 4, the rule-based method
achieved a perfect score in this test. It found all
the errors and suggested the proper correction ev-
ery time. However, this was a controlled test with
common typos. In real-world situations, the rule-
based method might not work well if it encounters
new words or errors it has not seen before. The
M2M100 model did the best among the models,
with high scores for detection—100%, suggestion—
91%, and F1-score—0.95. This model learns from
many different languages, which helps it under-
stand and fix errors in Zarma even though it is a
low-resource language.

5.2 LG Improvement Metrics

For Sample B, five Zarma speakers rated how well
each method fixed LG errors using a scale from
1 to 5. 1 means the correction was terrible, and
5 means it was perfect. We also examined how
well the methods did with different error types, like
verb tense errors, subject-verb agreement errors,
and missing words. See Table 5.

Again, the rule-based method struggled with LG
errors because it needed help understanding the
context of the sentences. It could only fix prob-
lems based on its predefined rules rather than based
on how the words were used in the sentence. The



Models Parameters Training Details
QLoRA GPU Used Lr Loss
Gemma 2b 2 billion Applied NVIDIA P100 2x 107" 1.2613
MTS5-small 300 million Not Applied NVIDIA T4x2 2x107° 0.0345
M2M100 418 million Not Applied NVIDIA P100 2x107° 0.0214
Table 3: Training Settings for the models
Methods Word Level Metrics not have them in its dictionary. The M2M100
Detection  Suggestion F1- model again performed best, showing its ability
Score to generalize from its multilingual training data to
Rule-based  100% 100% 1.00 handle new Zarma words and LG errors it had never
GemmaZ2b  92% 66% 0.77 seen before—with an accuracy of 96.30% for detec-
MT5-small  95% 64% 0.76 . . .
M2MI100  100% 91% 0.95 tion, 92.59% for suggestion, 2.4/5 for logical error

Table 4: Word-Level Correction Performance Metrics

Methods Context Level Avg(1-5)
Logical Errors Sentence Im-
Correction provement

Rule-based 0.4 0

Gemma 2b 1 0

MT5-small 1.7 1

M2M100 3 2.5

Table 5: LG Improvement Metrics

M2M100 model performed better than the other
methods, getting higher scores for fixing logical
errors—3/5, and improving sentence structure—
2.5/5 as shown in Table 5. This shows that learning
from many languages helps MT models understand
the context of sentences and make better correc-
tions. We also noticed that the models had more
trouble with some LG errors than others. For ex-
ample, they were better at fixing verb tense than
subject-verb agreement errors. This tells us that
we need more training data with different kinds of
mistakes to help the models learn how to fix them.
Recent research has shown that training models on
diverse error types, including synthetic errors that
reflect real-world linguistic variations, can signifi-
cantly enhance their performance in LG correction
tasks (Napoles et al., 2017).

5.3 Zero-Shot Performance

In the zero-shot test (Sample C), we looked at how
well the models could handle new words and LG
errors they had not seen before. Table 6 shows the
results.

As expected, the rule-based method could not
suggest corrections for new words because it did

correction, and 2.3/5 for sentence improvements.
These results strongly suggest that MT models,
especially those trained on diverse, multilingual
data, hold significant potential for improving GEC
in low-resource languages. This aligns with re-
cent research highlighting the effectiveness of MT
models for cross-lingual transfer learning in vari-
ous NLP tasks (Conneau et al., 2018). However,
more research is needed to explore the optimal
training strategies and data requirements for fur-
ther maximizing the performance of MT models
in low-resource GEC scenarios. To validate the
reproducibility and robustness of our methods, we
conducted further experiments with the Bambara
language, which belongs to a different linguistic
family. The results of this experiment are detailed
in Section A of the appendix.

6 Discussion

Our comparative analysis, detailed in Tables 4,
5 and 6, indicates that the M2M100 model—
leveraging the MT approach—yielded the most
promising results among the tested models. This
was particularly evident in its superior suggestion
accuracy and ability to handle zero-shot words
effectively. This strong performance is likely at-
tributable to M2M100’s design, which leverages a
balanced approach to translation tasks across mul-
tiple languages, making it adept at understanding
and correcting errors within a multilingual context.

6.1 Methods’ Strengths and Limitations
6.1.1 Rule-Based Methods

Rule-based approaches are highly effective in ad-
dressing predictable and previously encountered
error patterns. Our controlled tests showed that
these methods achieved perfect detection and sug-



Methods

Evaluation Metrics

Word Level Context Level Avg(1-5)
Detection Suggestion Logical Errors  Sent.Improvement
Correction
Rule-based  100% 81.48% 1 0
Gemma?2b  92.59% 40.74% 0.5 0
MT5-small ~ 92.59% 48.15% 1.2 0.6
M2M100 96.30% 92.59% 24 23

Table 6: Correction Performance Metrics (Zero-Shot Dataset)

gestion scores. Their strength lies in their reliance
on a comprehensive set of predefined rules and
a detailed target language dictionary. However,
this reliance also presents a significant limitation—
inflexibility. Rule-based methods struggle to han-
dle new or unexpected errors, which is common in
dynamic language use. This limitation becomes
particularly pronounced in zero-shot scenarios,
where the system encounters words or grammatical
constructions not included in its defined patterns or
dictionary. This inherent dependency on extensive
and carefully curated linguistic resources restricts
the scalability of rule-based methods, especially
for low-resource languages like Zarma, where such
resources are often limited or incomplete, as high-
lighted in (Scannell, 2007).

6.1.2 LLMs

The LLMs in our experiments—Gemma 2b and
MT5—demonstrated adequate performance in con-
trolled and zero-shot scenarios. A key strength
of LLMs is their capacity to understand context,
enabling them to generate corrections based on
broader textual cues rather than relying solely on
direct matches to known errors. However, LLM
performance significantly depends on the diversity
and quality of the training data. A critical limi-
tation is that most pre-existing LLMs are primar-
ily trained on data from high-resource languages,
mainly Western languages. Consequently, their ap-
plicability to African languages like Zarma is often
hindered by a need for more representative train-
ing examples (Bender et al., 2021). This results
in lower suggestion accuracy and difficulties in
effectively handling the unique linguistic complex-
ities of these languages. Moreover, training LLMs
necessitates substantial computational resources,
posing a significant barrier in resource-constrained
environments.

6.1.3 MT Models

In our case, the MT approach—using the M2M 100
model—demonstrated exceptional performance in
zero-shot scenarios, surpassing both rule-based
methods and LLMs. The strength of this approach
lies in the ability of these models to leverage multi-
lingual translation mechanisms, effectively adapt-
ing to the nuances of diverse languages through
their exposure to vast and varied training datasets.
This characteristic makes MT models particularly
suitable for GEC in low-resource languages, as
they can infer corrections from patterns learned
across multiple languages. This aligns with re-
search highlighting the effectiveness of MT models
for cross-lingual transfer learning in various NLP
tasks (Conneau et al., 2018). However, a signifi-
cant challenge in utilizing MT models for GEC in
low-resource languages is the frequent scarcity of
high-quality, parallel corpora for training. With suf-
ficient data, the models may generate more accurate
and contextually appropriate corrections (Tiede-
mann, 2020). Moreover, despite their strengths,
MT models require fine-tuning and continuous up-
dating to maintain their accuracy and relevancy,
especially as language use evolves.

6.2 Recommendations for Improvement

To further enhance GEC systems for Zarma and
other low-resource languages, we propose the fol-
lowing recommendations:

Increasing Dataset Size: Expanding datasets
with more varied examples, including those repre-
senting zero-shot scenarios, can substantially im-
prove model training, especially for LLMs and MT
models. As noted by (Scannell, 2007), limited data
availability is a significant challenge in developing
resources for low-resource languages. Increasing
the training data’s volume and diversity could en-
able models to handle a broader range of linguistic
variations and rare scenarios, enhancing overall
accuracy and robustness.



Hybrid Approaches: Our findings suggest that
combining the strengths of rule-based systems with
the adaptability of LLMs and the robustness of MT
models could yield a more powerful GEC system.
Such a hybrid approach could utilize rule-based
systems to handle standard, predictable errors and
leverage machine learning models to address more
complex, context-dependent errors. This approach
aligns with research highlighting the effectiveness
of integrating multilingual resources to improve
language processing capabilities across different
systems (Tiedemann, 2020).

Continuous Learning: Implementing mecha-
nisms for models to learn continuously from new in-
put and user-generated corrections can contribute to
progressively improving their accuracy and adapt-
ability. This aligns with the findings of (Bender
etal., 2021), who emphasize the importance of con-
tinuous model updating and reevaluation to main-
tain their effectiveness, especially in rapidly evolv-
ing language use patterns.

7 Potential Applications

Our team visited Niamey to present the work to
the local Zarma community and inquire about their
feedback. The discussions provided valuable in-
sights into potential applications for our GEC tool
and broader language models.

Content Creation One critical comment we re-
ceived was the potential use of our model to trans-
late coding content and general educational mate-
rials for enthusiasts and students. There is a grow-
ing interest in technology and programming within
the community, but a significant language barrier
exists. By translating coding tutorials, textbooks,
and other educational resources into Zarma, our
model can help overcome this challenge, making
these materials more accessible and encouraging
non-western language speakers to engage in tech-
related fields. Additionally, the GEC tool can be
used to translate and produce general educational
content in Zarma. This includes textbooks, instruc-
tional materials, and online courses across various
subjects.

Communication Tools Integrating the GEC tool
into communication platforms can facilitate seam-
less interaction in Zarma for users with varying lev-
els of language proficiency. In addition, tools such
as messaging apps and email clients could incorpo-
rate the GEC tool to provide real-time corrections,

helping users learn and adopt proper language us-
age.

Cultural Preservation Some feedback high-
lighted the importance of maintaining accurate writ-
ten records of folklore, oral histories, and tradi-
tional knowledge. The GEC tool can support these
efforts by providing a reliable tool for transcribing
and publishing grammatically accurate texts.

8 Conclusion and Future Work

This research demonstrates the potential of LLMs
and MT models to address the critical need for
effective GEC tools in low-resource languages, ex-
plicitly focusing on Zarma. While previous studies
have shown the effectiveness of these models in
high-resource settings, their application to Zarma
presents unique challenges due to data scarcity and
a need for established benchmarks.

To overcome these challenges, we implemented
a novel approach that combines three key elements:
(1) a custom corruption script to generate synthetic
training data, effectively addressing the limited
availability of annotated Zarma text; (2) a human-
annotated "Gold Data" set incorporating expert
knowledge of Zarma grammar, providing a valu-
able benchmark for evaluating model performance
on complex errors; and (3) the adaptation of ad-
vanced LLMs and MT models, such as Gemma or
M2M100, for the specific task of Zarma GEC.

Our findings reveal the potential of LLM and MT
models—particularly M2M100—in achieving high
accuracy in Zarma GEC, even in zero-shot scenar-
ios. This highlights their ability to leverage cross-
lingual patterns learned from diverse, multilingual
datasets to improve GEC in under-resourced lan-
guages. This research comprehensively evaluates
different GEC approaches for Zarma and estab-
lishes a baseline for future work in this area. Fur-
ther exploration of hybrid approaches that combine
rule-based methods with the adaptability of LLMs
and the robustness of MT models holds promise
for creating even more effective GEC tools. Addi-
tionally, incorporating continuous learning mecha-
nisms can enable these tools to adapt to evolving
language use and user feedback, enhancing their
accuracy and relevance.

Limitations

Despite the promising results obtained from our ex-
periments, we observed several limitations. Firstly,
while effective in controlled scenarios with known



error patterns, the rule-based approach exhibited
significant challenges when faced with unseen pat-
terns. This is due to its dependence on predefined
rules and extensive dictionaries, which could be
better for languages with limited resources and
writing standards.

Secondly, the LLMs we used—including
Gemma 2b and MT5-small—also faced several
challenges. One primary limitation was the mod-
els’ reliance on the diversity and quality of their
training data. These models— primarily built for
high-resource languages— -may need more nuances
and contextual understanding for low-resource
languages like Zarma. In addition, the models
are resource-hungry, which is a disadvantage in
resource-constrained environments typical of low-
resource language communities.

Thirdly, a significant challenge is the need for
more quality annotated data for Zarma and other
low-resource languages. While we created a syn-
thetic dataset and a smaller human-annotated "Gold
Data" set to mitigate this, these datasets may still
not capture the full linguistic error patterns in lan-
guage use. The reliance on synthetic data—though
helpful for experiments—may introduce biases that
do not entirely reflect real-world usage. Therefore,
the generalizability of our findings is—constrained
by the quality and representativeness of the avail-
able training data.

Lastly, the zero-shot performance highlighted
challenges in achieving a good score across the
approaches regarding LG errors and sentence im-
provements. The approaches showed variability
in handling different LG errors, with some types
being more challenging than others. This suggests
that our current methodologies require further re-
finement and additional data to handle the wide
range of errors.
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these methods—using the M2M 100 and Gemma
models. We selected the Bambara language for this
experiment because it belongs to a different linguis-
tic family, allowing us to evaluate the performance
of the approaches on a language outside the Nilo-
Saharan family. We utilized the Bayelemabaga
dataset (Vydrin et al., 2022) for Bambara. The
same data preparation process described in the
methodology section was followed; however, we
excluded any human-annotated data to focus solely
on word-level GEC performance. The results are
presented in Table 7.

Methods Word Level Metrics
Detection Suggestion F1-
Score
Gemma 2b 87.45% 52.91% 0.6594
M2M100 94.64% 68.18% 0.7926

Table 7: Word-Level Correction Performance Metrics
for Bambara

The Bambara experiment demonstrated that the
MT-based approach outperformed the LLMs-based
one regarding word-level correction metrics. The
MT-based approach achieved a detection rate of
94.64% and a suggestion accuracy of 68.18%.
In contrast, the LLMs-based approach detected
87.45% of errors and suggested corrections with
52.91% accuracy. The promising results from the
Bambara experiment highlight the potential of both
LLMs and MT models to improve GEC for low-
resource languages significantly. However, they
also emphasize the necessity for continued expand-
ing and diversifying training datasets.

B Errors Being Addressed

In this section, we explain the types of errors our
grammatical error correction (GEC) methods ad-
dress. We categorize the errors into two main types:
word-level correction (spellchecking) and context-
level correction. The context-level correction is
further divided into grammar errors, logical errors,
and sentence improvement. Below, we define each
error type and provide examples to illustrate them.

B.1 Word-Level Correction (Spellchecking)

Word-Level correction involves identifying and cor-
recting typographical errors in individual words.
These errors are usually due to misspellings, incor-
rect usage of characters, or typographical mistakes.

* Example:
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— Incorrect: Sintina gaa Irikog na beena
da ganda taka.

— Correct: Sintina gaa Irikoy na beena da
ganda taka.

B.2 Context-Level Correction

Context-level correction involves errors that go be-
yond individual words and affect the overall struc-
ture and meaning of the sentence. We categorize
these errors into logical errors and sentence im-
provement.

B.2.1 Logical Errors

Logical errors include incorrect verb conjugations,
subject-verb agreement issues, incorrect use of
grammatical markers, and logical inconsistencies
within the sentence. These errors affect the gram-
matical correctness and logical coherence of the
sentence.

* Example:

— Incorrect: Souba, Ay koy Niamey. (The
time indicator "Souba" means "tomor-
row," but the verb "koy" indicates present
tense.)

— Correct: Souba, Ay ga koy Niamey. (The
future tense marker "ga" matches the
time indicator "Souba.")

B.2.2 Sentence Improvement

Sentence improvement involves enhancing the qual-
ity of the sentence by making it more precise, con-
cise, or stylistically appropriate. This category ad-
dresses grammatically correct sentences that can
be improved for better readability or style.

* Example:

— Original: I girbi honkuna i tun be.
— Improved: 7 ga girbi suba.
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Figure 2: Images of the different GEC tool interfaces. The rule-based on the left and the other approaches on the
right
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