RLPIR: REINFORCEMENT LEARNING WITH PREFIX AND INTRINSIC REWARD

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) for large language models faces two critical limitations: (i) reliance on verifiable rewards restricts applicability to domains with accessible ground truth answers; (ii) training demands long rollouts (e.g., 16K tokens for complex math problems). We propose Reinforcement Learning with Prefix and Intrinsic Reward (RLPIR), a verifier-free reinforcement learning framework that learns from intrinsic rewards while reducing compute. RLPIR includes (1) a **prefix rollout** paradigm that avoids long rollouts by optimizing only the first L tokens, and (2) an **intra-group consistency reward** that eliminates reliance on verifiable rewards by measuring consistency among multiple sampled outputs. Across mathematical and general benchmarks, **RLPIR** matches RLVR's performance without ground truth, while substantially reducing training time by $6.96\times$. Moreover, **RLPIR** reduces reasoning sequence length by 45%, significantly improving the reasoning efficiency of LLMs.

1 Introduction

Large-scale Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated remarkable potential in advancing the reasoning capabilities of Large Language Models (LLMs), achieving breakthroughs in complex problem-solving tasks such as mathematical reasoning and code generation (Jaech et al., 2024; DeepSeek-AI et al., 2025). By leveraging external verifiers to provide precise reward signals, RLVR frameworks like GRPO (Hu et al., 2025) have enabled LLMs to refine their reasoning processes through iterative feedback.

However, RLVR faces an "impossible triangle" of practical challenges: (1) Verifier dependence. Reliance on domain-specific verifiers confines RLVR to domains with accessible ground-truth answers (e.g., mathematics), leaving general-domain reasoning, where answers are free-form and ambiguous, largely unexplored (Ma et al., 2025). (2) High training cost. The lengthy rollout sequences required for

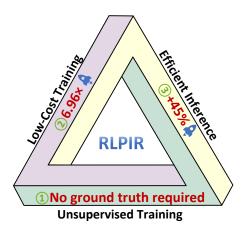


Figure 1: **RLPIR makes the "impossible triangle" possible.** It achieves (1) **unsupervised training** without ground truth, (2) **low-cost training** via prefix rollouts (\sim 6.96× faster), and (3) **efficient inference** with a 45% reduction in reasoning length.

training (e.g., ~16K tokens for complex math problems) incur substantial computational overhead, limiting practical deployment (Zeng et al., 2025). (3) Inference inefficiency. RLVR-trained models (e.g., GRPO) tend to produce gradually longer responses during training (DeepSeek-AI et al., 2025), reducing inference efficiency.

To address these "impossible triangle" challenges, we propose **RLPIR** (Reinforcement Learning with **P**refix and Intrinsic Reward). Our motivation is that the beginning of a solution (for example, the first 512 tokens) usually contains important decisions that determine the rest of the reasoning trajectory, yielding the correct solution. Therefore, training only on the prefix can maintain high effectiveness while increasing efficiency.

Motivated by this, RLPIR optimizes only a short prefix (e.g., L=512). To enable effective training at such short lengths, RLPIR introduces two core innovations: (1) **Prefix rollouts.** A prefix rollout paradigm that truncates training sequences to L tokens (e.g., 512 tokens), significantly reducing computational cost compared to RLVR baselines by focusing policy optimization on the prefix of reasoning chain, which contains critical decision points, thereby drastically reducing computational costs. (2) **Intra-group consistency reward.** For each prompt, we sample a group outputs and quantify their consistency to derive an intrinsic reward, removing the need for external verifiers.

Experimental results demonstrate that **RLPIR** matches the performance of verifier-dependent RLVR methods (e.g., GRPO) on mathematical and general benchmarks while reducing computational costs drastically without relying on ground truth answers. Notably, our framework achieves a 45% reduction in reasoning sequence length, significantly improving reasoning efficiency.

Our contributions are as follows: (1) We propose **RLPIR**, a novel RL paradigm eliminating reliance on ground truth answers. (2) We develop a **prefix rollout** training strategy that reduces training time by $6.96\times$ compared to standard RLVR baselines. (3) We introduce a novel **intra-group consistency reward** that eliminates the need for external verifiers and achieves performance comparable to RLVR in mathematical domains, while demonstrating strong generalization in general domains. (4) Our method achieves a 45% reduction in reasoning length during inference, achieving **efficient inference** for LLMs.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FOR REASONING IN LLMS

Reinforcement learning (RL) has emerged as a powerful framework for optimizing LLM reasoning, complementing supervised fine-tuning (SFT) by refining decision-making via feedback signals. Notable successes include DeepSeek-R1 (DeepSeek-AI et al., 2025) and GRPO (Hu et al., 2025), which leverage verifiable rewards such as code execution results or mathematical correctness to achieve state-of-the-art performance. However, RL with verifiable rewards (RLVR) faces two major bottlenecks: reliance on domain-specific verifiers (e.g., Math-Verify (Hynek & Greg, 2025)), which limits generality (He et al., 2025), and high computational cost from long rollouts (e.g., 16K tokens for math problems) (Zeng et al., 2025). Recent work aims to improve RL training by leveraging additional signals or trajectories. LUFFY (Yan et al., 2025) introduces off-policy guidance with high-quality reasoning trajectories and regularized importance sampling to balance imitation and exploration, outperforming pure on-policy RLVR. Token-supervised value models (Lee et al., 2025) estimate correctness probabilities at each token, enabling fine-grained credit assignment during tree search and reducing pruning errors.

2.2 BEYOND VERIFIABLE REWARDS

To mitigate RLVR's reliance on ground-truth verifiers, researchers have explored alternative reward signals. Generative reward models (Ma et al., 2025) and self-reward mechanisms (Zhou et al., 2024) use auxiliary models or policy consistency to evaluate reasoning quality. Policy-likelihood rewards (Yu et al., 2025) extend RLVR to settings without verifiable answers but are limited to short outputs, while entropy minimization strategies (Agarwal et al., 2025) encourage deterministic reasoning at the risk of suppressing diversity. Another promising direction leverages internal consistency signals: Xie et al. (2024) decode intermediate layer predictions and weight self-consistent reasoning paths to improve calibration in chain-of-thought reasoning. Our intra-group consistency reward generalizes this idea to group-level semantic similarity, providing a differentiable intrinsic reward that eliminates reliance on external verifiers.

2.3 EFFICIENT REINFORCEMENT LEARNING TRAINING PARADIGMS

Efficiency remains a key challenge in RL for reasoning. Full-rollout RLVR is computationally expensive, motivating research on more efficient paradigms. TTRL (Zuo et al., 2025) and Absolute Zero (Zhao et al., 2025) explore test-time refinement and self-play but remain task-specific. Controlled decoding approaches such as prefix scorers (Mudgal et al., 2024) bias generation under a reward–KL tradeoff to reduce inference-time cost. Prefix-based training has also been studied for

supervised setups (Ji et al., 2025) but its integration into RL remains underexplored. Our method addresses this gap by using prefix rollouts, truncating training to critical decision points and reducing compute by $6.96 \times$ relative to standard RLVR.

3 Preliminary

3.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement Learning with Verifiable Rewards (RLVR) trains large language models (LLMs) using programmatically verifiable signals of correctness—such as mathematical validity, logical consistency, or code execution results.

Given an input q and an output trajectory τ , RLVR defines a verifiable reward $r(q,\tau) \in \mathbb{R}$ that quantifies the correctness of τ based on predefined rules or external verification tools. For example, in code generation, $r(q,\tau)$ can indicate whether the generated program passes a suite of unit tests. With a policy model π_{θ} , we sample a response $\tau \sim \pi_{\theta}(\cdot \mid q)$ and compute the reward as

$$r(q,\tau) = \mathbb{I}[\text{Verify}(q,\tau) = \text{True}],$$
 (1)

where $\mathrm{Verify}(\cdot)$ is a deterministic function that checks whether τ meets the specified correctness criteria. The RLVR objective maximizes the expected verifiable reward while regularizing the policy towards a reference model π_{ref} :

$$\max_{\pi_{\theta}} \mathbb{E}_{\tau \sim \pi_{\theta}(\cdot|q)}[r(q,\tau)] - \beta \mathbb{D}_{KL}(\pi_{\theta} \| \pi_{ref}), \tag{2}$$

where $\beta > 0$ controls the strength of the regularization.

RLVR is commonly instantiated with policy-gradient methods such as REINFORCE (Williams, 1992), PPO (Schulman et al., 2017), or GRPO (Shao et al., 2024a). The GRPO objective (omitting clipping for brevity) is

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{\{\tau_g\}_{g=1}^G \sim \pi_{\theta_{\text{ref}}}(\cdot|q)} \frac{1}{G} \sum_{q=1}^G \left(\frac{\pi_{\theta}(\tau_g \mid q)}{\pi_{\theta_{\text{ref}}}(\tau_g \mid q)} A_g - \beta \, \mathbb{D}_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) \right) \tag{3}$$

where the KL-divergence term is calculated as:

$$\mathbb{D}_{\mathrm{KL}}(\pi_{\theta} \parallel \pi_{\mathrm{ref}}) = \frac{\pi_{\mathrm{ref}}(\tau_{g} \mid q)}{\pi_{\theta}(\tau_{g} \mid q)} - \log \frac{\pi_{\mathrm{ref}}(\tau_{g} \mid q)}{\pi_{\theta}(\tau_{g} \mid q)} - 1, \tag{4}$$

and the advantage A_g is computed via group-wise standardization of rewards $\{r_1,\ldots,r_G\}$:

$$A_g = \frac{r_g - \operatorname{mean}(\{r_1, \dots, r_G\})}{\operatorname{std}(\{r_1, \dots, r_G\})}.$$
 (5)

Despite its appeal, RLVR still hinges on ground truth: rewards exist only when a trusted verifier or gold answer is available. Moreover, $r(q,\tau)$ is computable only after the model completes a full trajectory, yielding delayed and often sparse feedback that is costly and domain-specific (Liu et al., 2025; Team et al., 2025). These properties limit its applicability beyond well-specified domains and tasks with ambiguity or subjective goals.

4 MOTIVATION

This work proposes a paradigm shift from full reasoning trajectory optimization with verifiable rewards to prefix optimization without relying on verifiable rewards, aiming at addressing crucial challenges for RLVR. This section presents the preliminary studies that ground the motivations of this proposal, and provide evidence supporting the design of **prefix rollout** and **intra-group consistency reward**, the two core elements of RLPIR.

163 164

165

166

167

168

170

171

172

173

174 175 176

177 178

179

180

181

182

183

185

187

188

189

190

192

196

206

207

208

210

211

212

213

214

215

4.1 Prefix Optimization Suffices to Improve Reasoning

The first study explores whether prefix optimization can play a similar role to full-length trajectory optimization **for RL training**. For this purpose, we fine-tuned Owen3-0.6B with DPO on the AIME24 benchmark under the fulllength reasoning trajectory (i.e., Full-length DPO) and 512token prefix (i.e., Prefix DPO) settings. As shown in Tallength DPO on AIME24.

Model	AIME24 Accuracy (%)
Qwen3-0.6B	9.67
+ Full-length DPO	13.7
+ Prefix DPO (512 tokens)	13.3

Table 1: Prefix DPO versus Full-

ble 1, prefix-only DPO substantially improves over the Qwen3-0.6B base model and performs nearly on par with full-length DPO (See Section E.2 for the training reward dynamics). This suggests that the first 512 tokens capture most of the learnable signal and that the policy learned on short prefixes generalizes to full-length reasoning trajectories. It motivates us to adopt prefix optimization in the RLPIR method.

HIGH-CONSISTENCY PREFIX YIELDS HIGH-QUALITY REASONING TRAJECTORY

The second study investigates the strategy for prefix optimization in the absence of verifiable rewards. We hypothesize that within a group of decent-looking reasoning trajectories, the prefix that is most semantically related to others is most likely to yield a correct reasoning trajectory. To test this hypothesis, we designed a controlled "forced-prefix continuation" task, where we forced Qwen3-8B to generate the full chain-of-thought solution based on the prefix on the AIME24 benchmark. For each problem, 64 full chain-of-thought solutions were sampled as marked as correct/incorrect based on their final answers. Then, the "best" prefix was selected with three different strategies from the first L tokens of the solutions:

- A: High-consistency. The first L tokens of all solutions (K=64 in total) were embedded¹. Then, for each solution i with embedding e_i , we estimated its overall semantically relatedness with other prefixes by computing its intra-group consistency score $c_i = \frac{1}{K} \sum_{i=1}^{K} \cos(e_i, e_i)$. The prefix with the greatest value of c_i was selected.
- B: Random correct. The best prefix was randomly picked from the correct solutions with a uniform distribution.
- C: Random incorrect. The best prefix was randomly picked from the incorrect solutions with a uniform distribution.

Prefix Length	Prefix Selection Strategy	Accuracy (%)
	A: High-consistency	77.1
512 tokens	B: Random correct	75.0
	C: Random incorrect	51.4
	A: High-consistency	78.1
1024 tokens	B: Random correct	77.2
	C: Random incorrect	50.1
Qwen3-8B basel	line	73.0

Table 2: Accuracy of forced-prefix continuation under different prefix selection strategies on AIME24. The high-consistency prefixes markedly boost performance over random correct ones, while incorrect-solution prefixes cause severe degradation.

Table 2 shows the accuracy of the forced-prefix continuation task on AIME24, where the prefixes were selected with all three strategies above with length L=512 or 1024. At both lengths, the highconsistency prefixes attain a superior performance over random correct, with a more remarkable gap at L=512 where high-consistency prefixes raises accuracy to 77.1% (vs 73.0% baseline). These results indicate that the first few hundred tokens capture the pivotal decisions of the reasoning chain, justifying our training strategy of **intra-group consistency reward**, where we generalize this idea into a differentiable intrinsic reward for reinforcement learning.

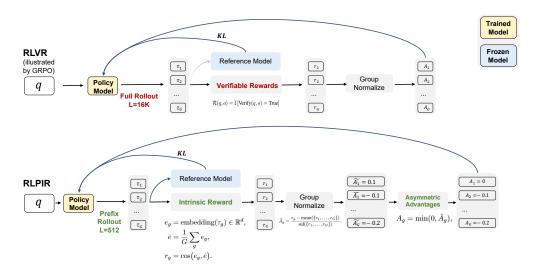


Figure 2: Comparison of RLVR (Reinforcement Learning with Verifiable Reward) and RLPIR (Reinforcement Learning with Prefix and Intrinsic Reward). While RLVR suffers from high computational costs due to long rollouts and relies on ground-truth verification, RLPIR achieves efficient training via short prefix rollouts and intrinsic rewards without requiring external verification. In addition, RLPIR employs Asymmetric Advantages to prevent reward hacking and maintain diversity while regularizing the policy effectively.

5 METHODOLOGY

As motivated in Section 4, we introduce **Reinforcement Learning** with **Prefix** and **Intrinsic Reward** (**RLPIR**), a novel reinforcement learning framework that addresses the limitations of traditional RLVR by introducing two key innovations: (1) a **prefix rollout** paradigm that optimizes only the first L tokens, and (2) an **intra-group consistency reward** that measures consistency among multiple sampled outputs, eliminating reliance on verifiable rewards. Figure 2 illustrates the framework's architecture compared to conventional RLVR (e.g., GRPO) approaches.

5.1 PROBLEM FORMULATION

Let q denote an input prompt drawn from a dataset \mathcal{D} . The policy model π_{θ} produces a partial trajectory $\tau=(t_1,\ldots,t_L)$ consisting of the first L tokens of the full reasoning chain. Our goal is to maximize the expected intrinsic reward $r(q,\tau)$ while constraining policy drift with a KL-divergence penalty:

$$\max_{\theta} \mathbb{E}_{q \sim \mathcal{D}, \, \tau \sim \pi_{\theta}(\cdot|q)} \Big[r(q, \tau) - \beta \, \mathbb{D}_{KL} \big(\pi_{\theta} \| \pi_{ref} \big) \Big], \tag{6}$$

where π_{ref} is the frozen reference policy and β controls the regularisation strength. The remainder of this section details the design of $r(q, \tau)$ and the prefix rollout schedule.

5.2 Prefix Rollout

Long rollouts (e.g., $\sim 16 \rm K$ tokens math) dominate the wall-clock cost in Reinforcement Learning with Verifiable Rewards (RLVR). Inspired by the analysis in Section 4, we train exclusively on the initial prefix of length L=512 tokens. During training, rewards and policy gradients are computed only over this prefix of L tokens. However, at evaluation time, the model is allowed to generate freely beyond L tokens to complete the output.

¹We use all-MiniLM-L6-v2 as embedding model

5.3 Intra-group Consistency Reward

We achieve the **intrinsic reward** via **Intra-group Consistency**, using semantic similarity as the reward signal. For each prompt q we sample G independent rollouts $\{\tau_g\}_{g=1}^G$ under the current policy. Each rollout τ_g is embedded with a sentence encoder². We measure similarity to the group center \bar{e} using cosine similarity, as described in Section 4.2 for computing high consistency:

$$e_g = \text{embedding}(\tau_g) \in \mathbb{R}^d, \qquad \bar{e} = \frac{1}{G} \sum_g e_g, \qquad r_g = \cos(e_g, \bar{e}).$$
 (7)

5.4 ASYMMETRIC ADVANTAGES

To mitigate reward hacking caused by excessive similarity, which could lead to model collapse, we adopt an asymmetric advantage mechanism. We first compute the cosine similarity scores r_g , standardize them, and then convert the standardized scores into asymmetric advantages by clipping the positive branch:

$$\tilde{A}_g = \frac{r_g - \text{mean}(\{r_1, \dots, r_G\})}{\text{std}(\{r_1, \dots, r_G\})}, \qquad A_g = \min(0, \tilde{A}_g).$$
 (8)

Only prefixes that are less consistent than the group average $(\tilde{A}_g < 0)$ get a non-zero (negative) advantage. We penalize those low-consistency samples and give no reward to already-similar ones. This prevents reward hacking while keeping useful diversity.

6 EXPERIMENTS

6.1 Training Setup

We implement **RLPIR** using Nemo-RL (nem, 2025). For each problem in a training batch, we generate a group of G=16 candidate solutions. Crucially, each rollout is limited to L=512 tokens, as motivated by the ablation results in Section 8.1.

The intrinsic reward for each prefix is calculated based on its semantic consistency within its group. We embed each L=512 token prefix using the all-MiniLM-L6-v2³ sentence encoder.

For policy optimization, we use GRPO (Shao et al., 2024b). We process a batch of 32 problems per step, with a constant KL-divergence penalty of $\beta=0.001$ to regularize the policy and prevent deviation from the reference model. All models are trained using the AdamW optimizer with a learning rate of 1×10^{-6} . Experiments were conducted on $8\times$ NVIDIA A100 GPUs.

6.2 MODELS AND TRAINING DATA

Our experiments are conducted on several base models to demonstrate the broad applicability of RLPIR. We apply our training method to Llama (Meta AI, 2024), Qwen2.5 (Yang et al., 2024) and Qwen3 series (Team, 2025a).

We construct our training set from two public math corpora, OpenR1-Math-220k⁴ and Big-Math-RL-Verified⁵. For each problem, we run inference with three models (Deepseek R1 1.5B, Deepseek R1 7B (DeepSeek-AI et al., 2025), and QWQ 32B (Team, 2025b)) and log their correctness. We then define a four-stage data split strategy: problems solved by the 1.5B model are labeled as Level 1 (easiest); those missed by 1.5B but solved by 7B form Level 2; items only solved by the 32B model become Level 3; and those unsolved by all three are Level 4 (hardest). This pipeline filters out trivially easy or completely intractable items, yielding a challenging yet learnable dataset focused

²We use all-MiniLM-L6-v2 as the embedding model.

³https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

⁴https://huggingface.co/datasets/open-r1/OpenR1-Math-220k

⁵https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified

Model		General			Ma	ath		Av	g
Model	MMLU-Pro ↑	GPQA \uparrow	SuperGPQA ↑	AIME 24↑	AIME 25 ↑	Olympiad ↑	Minerva ↑	General ↑	Math ↑
			L	ama Models					
Llama3.1-8B-Inst	46.9	30.2	22.2	3.0	0.0	13.0	10.2	33.1	6.6
+RLPIR(ours)	47.0	31.8	21.0	4.3	0.0	15.3	12.6	33.2	8.1
			Qw	en2.5 Model	S				
Qwen2.5-7B-Inst	56.6	33.8	29.0	11.6	8.5	34.2	26.1	39.8	20.1
+RLPIR(ours)	58.5	35.5	31.6	16.2	14.7	38.3	31.1	41.9	25.1
Qwen2.5-14B-Inst	62.7	41.4	35.0	11.3	11.0	37.3	29.7	46.4	22.3
+RLPIR(ours)	65.5	42.9	38.3	16.2	15.4	42.4	34.0	48.9	27.0
			Q	wen3 Models					
Qwen3-4B-Inst	63.7	53.0	42.4	72.6	64.3	61.4	33.4	53.0	57.9
+RLVR	59.5	50.4	33.8	80.9	70.7	66.5	43.2	47.9	65.3
+RLPIR(ours)	65.1	53.9	42.0	77.3	69.8	65.7	38.6	53.7	62.9
Qwen3-8B-Inst	67.7	61.1	48.5	73.0	66.0	63.5	35.6	59.1	59.5
+RLVR	65.8	61.7	40.6	80.1	73.3	68.5	40.8	56.0	65.7
+RLPIR(ours)	69.7	62.2	46.2	78.8	72.2	69.3	40.0	59.3	65.1
Qwen3-14B-Inst	72.4	65.1	52.5	80.0	70.3	63.4	37.1	63.3	62.7
+RLVR	71.5	61.0	50.3	86.6	78.7	66.1	40.2	60.9	67.9
+RLPIR(ours)	75.1	66.4	53.0	86.2	76.9	67.9	41.9	64.8	68.2

Table 3: Main results. RLVR is implemented as full-length GRPO_{16K}; RLPIR uses a 512-token prefix during training. Without any external verifiers or ground-truth labels, RLPIR attains math performance on par with verifier-dependent RLVR baselines. Beyond mathematics, RLPIR is consistently more robust on general-domain benchmark

on informative examples. After filtering, our splits contain 154,817, 80,486, 25,309, and 74,825 problems for Levels 1–4 respectively. Unless noted, all experiments are trained on the Level 3 data. Moreover, the correct/incorrect sample pairs obtained in this process constitute the DPO training data used for the training in Section 4.1.

6.3 BASELINES

We compare the performance of RLPIR against several strong baselines to comprehensively evaluate its effectiveness. Importantly, we do not include comparisons with verifier-free methods based on probabilistic rewards such as RLPR (Yu et al., 2025), since our method is explicitly designed for settings without any ground truth, whereas those approaches still rely on ground-truth signals for evaluation or reward construction.

Base models. We report the baseline performance of models without any further training, including Llama (Meta AI, 2024), Qwen2.5 (Yang et al., 2024), and the Qwen3 series (Team, 2025a), to verify the effectiveness of our method across different models.

RL with Verifiable Rewards (RLVR). As a verifier-dependent baseline, we implement GRPO with full-length rollouts (GRPO $_{16K}$), where rewards are computed by programmatic verification against ground-truth answers. Optimizing on full trajectories (up to $\sim 16K$ tokens) yields substantially higher cost but represents an approximate upper bound in performance, serving as a reference for our more efficient verifier-free approach. RLVR uses the same training data in Section 6.2.

6.4 EVALUATION

We evaluate the reasoning capabilities with multiple general reasoning and mathematical benchmarks. For math reasoning, we include Olympiad, Minerva, AIME24 and AIME25. For general domains, we include MMLU-Pro (Wang et al., 2024), GPQA (Rein et al., 2023), and SuperGPQA.

7 MAIN RESULTS

7.1 TRAINING EFFECTIVENESS AND GENERALIZATION

Table 3 shows that, **without any external verifiers or ground-truth labels**, **RLPIR** attains math performance on par with verifier-dependent RLVR baselines (e.g., GRPO_{16K}) while optimizing only a 512-token prefix. This indicates that high-fidelity reasoning signals can be learned from intrinsic, intra-group consistency alone. Beyond mathematics, **RLPIR** is **consistently more robust on**

general-domain benchmarks (e.g., MMLU-Pro, GPQA) than both the base models and RLVR, underscoring stronger cross-task transfer when no domain-specific verifiers are available. Taken together, these results demonstrate that RLPIR matches RLVR in verifier-friendly domains and surpasses it in verifier-scarce domains, while also delivering substantially lower training cost via short-prefix rollouts.

7.2 Compute Efficiency

378

379

380

381

382

383 384

385

386

387

388

389

390

391

392

393 394

395 396

397

398

399

408

409

410

411 412 413

414 415

416 417

418

419

420

421

422

423

424

425

426

427 428

429

430

431

We benchmark wall-clock training time on Qwen3-8B for 1000 optimization steps using identical hardware and hyper-parameters. RLVR (GRPO_{16K}) requires 177.5 hours, Table 4: Compute Efficiency. Wall-clock training whereas **RLPIR** completes in **25.5** hours, time on **Qwen3-8B** (8 × A100), 1000 steps.

Method	Time	Time/step	Speed-up
RLVR (GRPO _{16K})	177.5 h	10.65 min	-
RLPIR (ours, $L = 512$)	25.5 h	1.53 min	6.96 ×

yielding a 6.96× speed-up and an 85.6% reduction in wall-clock time. The observed gains are

consistent with our rollout budget: RLPIR trains on 512-token prefixes while RLVR consumes \sim **16K** tokens per step. RLPIR substantially lowers training cost.

7.3 REASONING EFFICIENCY

We measure reasoning efficiency by the average number of tokens generated on the AIME24 benchmark. Table 5 compares the average response lengths of Qwen3 models in three scenarios: the original base model, after RLVR training, and after RLPIR training. While RLVR-based optimization tends to increase response length, RLPIR produces markedly shorter response while maintaining accuracy. See Section I.1 for a detailed case.

Setting	Qwen3-4B	Qwen3-8B	Qwen3-14B
	(tokens)	(tokens)	(tokens)
$\begin{aligned} &\text{Base} \\ &+ \text{RLVR (GRPO}_{16\text{K}}) \\ &+ &\text{RLPIR (ours, } L = 512) \end{aligned}$	14229	14539	15280
	15846	16483	17294
	11772	9564	9474
Δ vs Base Δ vs RLVR	$-17.3\% \\ -25.7\%$	$-34.2\% \\ -42.0\%$	$-38.0\% \\ -45.2\%$

Prefix Len (tokens)	Acc↑	ΔAcc	Len↓ (tokens)	ΔLen(%)
Qwen3-8B	73.0	-	14539	-
256	76.3	+3.3	9866	-32.2%
512 1024	78.8 77.0	+5.8 +4.0	11797 14601	-18.9% +0.4%

Table 5: Reasoning efficiency. Average response lengths (tokens) on AIME24 by model (columns). Percent changes are computed for RLPIR relative to the indicated baseline.

Table 6: Effect of prefix length L with Qwen3-8B on AIME24. A 512-token prefix achieves the best accuracy while still shortening solutions substantially.

ABLATION STUDY

8.1 Effect of Prefix Length

We ablate the rollout prefix budget L to understand its effect on both final accuracy and reasoning efficiency. Using the Qwen3-8B backbone and AIME24 as the validation set, we train RLPIR with three prefix lengths ($L \in \{256, 512, 1024\}$) under identical settings (Section 6.2) and report accuracy as well as the average response length at evaluation time (the model is free to generate beyond the prefix length at test time).

Table 6 shows that a 512-token prefix yields the best accuracy, while still providing substantial length reduction relative to the base model. Shorter prefixes (e.g., L=256) further compress response but slightly underperform in accuracy, suggesting that the reward signal becomes less informative when too little of the early reasoning is observed. Conversely, longer prefixes (L=1024) do not improve accuracy and even increase average length back to the base level.

8.2 EFFECT OF ASYMMETRIC ADVANTAGES

We study the impact of Asymmetric Advantages in Eq. equation 8, which penalize only lowconsistency rollouts and assign zero advantage to highly consistent ones. This design aims to deter reward hacking behaviors (such as trivial repetition) that can artificially inflate similarity.

As shown in Table 7, removing the Asymmetric clipping causes severe degradation: accuracy collapses to 42.3% and outputs become extremely short (average length $\sim\!6.5 K$ tokens), consistent with a mode-seeking failure where the policy inflates similarity by emitting degenerate continuations. By contrast, **RLPIR** with Asymmetric advantages attains higher accuracy and shorter outputs versus the base model, indicating that the clipped signal effectively regularizes the policy away from collapse while preserving legitimate diversity. See Section I.3 for an illustration.

8.3 EFFECT OF TRAINING-DATA DIFFICULTY

We study how the difficulty of training data affects both accuracy and reasoning efficiency. Recall from Section 6.2 that we partition the training dataset into four levels (Level 1–4, easiest—hardest) using success rates from progressively stronger solvers. Using Qwen3-8B as the backbone, we fine-tune with **RLPIR** on each single level separately and evaluate on AIME24. See table 8 for details.

Findings. (1) Accuracy peaks at medium difficulty. All levels improve accuracy over the base model, with the best score attained by Level 3 (hard-but-solvable) and a mild drop at Level 4. We hypothesize that the intrinsic consistency signal benefits from items that are challenging enough to elicit diverse prefixes but not so hard that group rollouts become uniformly noisy. Overly easy items (Level 1) provide limited gradient signal because most prefixes already agree; overly difficult items (Level 4) increase variance and reduce the reliability of the group-consistency reward. (2)

Setting	Acc↑	ΔAcc	Len↓ (tokens)	ΔLen (%)
Qwen3-8B	73.0	0.0	14539	-
RLPIR (L=512)	78.8	+5.8	11797	-18.9%
w/o Asymmetric Advantages	42.3	-30.7	6543	-55.0%

Table 7: Effect of Asymmetric advantages (Eq. 8) on Qwen3-8B (AIME24). Removing it leads to reward hacking and large accuracy drops despite shorter outputs.

Setting	Acc↑	Δ Acc vs Base	Len ↓ (tokens)	Δ Len(%) vs Base
Qwen3-8B	73.0	-	14539	-
Level 1 (easy)	77.3	+4.3	13007	-10.5%
Level 2	78.0	+5.0	12423	-14.6%
Level 3	78.8	+5.8	11797	-18.9%
Level 4 (hard)	77.6	+4.6	9564	-34.2%
Random	78.1	+5.1	12073	-16.9%

Table 8: Effect of training-data difficulty on AIME24 with Qwen3-8B. "Random" uses 20,000 examples randomly sampled from the entire dataset.

Reasoning efficiency improves the most with higher difficulty. Average solution length decreases monotonically as difficulty increases, with the largest compression observed at Level 4 (Table 8). Harder items induce stronger disagreement across sampled prefixes, which yields larger Asymmetric penalties (Eq. 8) on off-manifold trajectories. Under RLPIR, the policy therefore learns to commit earlier to high-consistency paths, pruning meandering continuations and producing shorter final chains despite training only on 512-token prefixes. (3) Robustness to training-data difficulty. RLPIR is robust to the difficulty distribution of training data: training on a randomly sampled subset of the full dataset yields gains comparable to difficulty-stratified subsets (Table 8).

9 Conclusion and Future Work

In this work we introduced **RLPIR**, Reinforcement Learning with Prefix and Intrinsic Reward, a verifier free training paradigm that allows large language models to attain the "impossible trinity" by simultaneously achieving: (1) unsupervised training without ground truth, (2) low-cost training via prefix training, yielding a $6.96 \times$ speedup in training, and (3) efficient inference with a 45% reduction in reasoning length. In contrast, traditional RLVR methods (e.g., GRPO) rely on external verifiers and full-length rollouts (\sim 16K-token in math), which are costly and typically result in longer responses during inference. RLPIR achieves these goals through two key innovations: (a) a prefix rollout paradigm that optimizes only the first L tokens, (b) an intra-group consistency reward that measures consistency among multiple sampled outputs, eliminating reliance on verifiable rewards. Across mathematical and general benchmarks, **RLPIR** matches RLVR's (e.g., GRPO) performance without ground truth, while substantially lowering training time by 6.96×. Moreover, our method reduces reasoning sequence length by 45%, significantly improving the reasoning efficiency of LLMs. Moreover, RLPIR exhibits superior domain generalization compared to RLVR, as its verifier-free design avoids overfitting to narrow, task-specific reward signals, enabling robust transfer across diverse and open-ended domains. Future work will focus on extending RLPIR to additional domains and models to further validate its scalability and generalization capabilities.

REFERENCES

486

487

488

489 490

491

492

493

494

495

496

497

498

499

500

501

504

505

506

507

510

511

512

513

514

515

516

517

519

521

522

523

524

525

527

528

529

530

531

534

535

538

Nemo rl: A scalable and efficient post-training library. https://github.com/ NVIDIA-NeMo/RL, 2025. GitHub repository.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness of entropy minimization in llm reasoning. *arXiv preprint arXiv:2505.15134*, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. O. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng, Bo An, Yang Liu, and Yahui Zhou. Skywork open reasoner series, 2025. Notion Blog.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base model, 2025. URL https://arxiv.org/abs/2503.24290.

Kydlíček Hynek and Gandenberger Greg. Math-verify, March 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred

541

542

543

544

546

547

548

549

550

551

552

553

554

556

558

559

561

563

565

566

567 568

569

570

571

572

573

574

575 576

577

578

579

580

581

582 583

584

585

586

588

590

592

von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish, Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

- Ke Ji, Jiahao Xu, Tian Liang, Qiuzhi Liu, Zhiwei He, Xingyu Chen, Xiaoyuan Liu, Zhijie Wang, Junying Chen, Benyou Wang, et al. The first few tokens are all you need: An efficient and effective unsupervised prefix fine-tuning method for reasoning models. *arXiv preprint arXiv:2503.02875*, 2025.
- Jung Hyun Lee, June Yong Yang, Byeongho Heo, Dongyoon Han, Kyungsu Kim, Eunho Yang, and Kang Min Yoo. Token-supervised value models for enhancing mathematical problem-solving capabilities of large language models, 2025. URL https://arxiv.org/abs/2407.12863.
- Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*, 2025.
- Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner: Advancing Ilm reasoning across all domains, 2025. URL https://arxiv.org/abs/2505.14652.
- Meta AI. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024. Accessed: 2025-05-16.
- Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ahmad Beirami. Controlled decoding from language models, 2024. URL https://arxiv.org/abs/2310.17022.
- David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/2402.03300.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024b.
 - Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025.
 - Qwen Team. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.
 - Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b.
 - Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language understanding benchmark, 2024. URL https://arxiv.org/abs/2406.01574.
 - Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8:229–256, 1992.
 - Zhihui Xie, Jizhou Guo, Tong Yu, and Shuai Li. Calibrating reasoning in language models with internal consistency, 2024. URL https://arxiv.org/abs/2405.18711.
 - Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang. Learning to reason under off-policy guidance, 2025. URL https://arxiv.org/abs/2504.14945.
 - An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
 - Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan Yao, Zhiyuan Liu, Maosong Sun, and Tat-Seng Chua. Rlpr: Extrapolating rlvr to general domains without verifiers, 2025. URL https://arxiv.org/abs/2506.18254.
 - Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerlzoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025. URL https://arxiv.org/abs/2503.18892.
 - Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data. *arXiv preprint arXiv:2505.03335*, 2025.
 - Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang, Zhaorun Chen, Chenhang Cui, Xiyao Wang, Yun Li, Linjun Zhang, and Huaxiu Yao. Calibrated self-rewarding vision language models. *arXiv preprint arXiv:2405.14622*, 2024.
 - Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen Zhang, Xinwei Long, Ermo Hua, Biqing Qi, Youbang Sun, Zhiyuan Ma, Lifan Yuan, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning, 2025. URL https://arxiv.org/abs/2504.16084.

A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimentation was involved. All datasets used, were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory outcomes in our research process. No personally identifiable information was used, and no experiments were conducted that could raise privacy or security concerns. We are committed to maintaining transparency and integrity throughout the research process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code and datasets have been made publicly available in an anonymous repository to facilitate replication and verification. The experimental setup, including training steps, model configurations, and hardware details, is described in detail in the paper. We expect these practices will help the community validate our work and push forward future advancements in the field.

C LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript. Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or experimental design. All research concepts, ideas, and analyses were developed and conducted by the authors. The contributions of the LLM were solely focused on improving the linguistic quality of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.

D LIMITATIONS

RLPIR has several limitations: (i) while we empirically validate the effectiveness of a fixed prefix length L=512, the framework does not yet include an adaptive mechanism for selecting L, which could further improve robustness across diverse tasks and contexts; (ii) as is common in reinforcement learning methods, performance can be sensitive to hyperparameters such as KL weight, prefix length, and learning rate; (iii) due to hardware resource constraints, our experiments focus on representative domains and model sizes, so broader validation remains an important direction for future work.

E DATA PREPARATION

E.1 Training Data Distribution

We construct our training set from two public math corpora, OpenR1-Math-220k⁶ and Big-Math-RL-Verified⁷. For each problem, we run inference with three models (Deepseek R1 1.5B, Deepseek R1 7B (DeepSeek-AI et al., 2025), and QWQ 32B (Team, 2025b)) and log their correctness. We then define a four-stage data split strategy: problems solved by the 1.5B model are labeled as Level 1 (easiest); those missed by 1.5B but solved by 7B form Level 2; items only solved by the 32B model become Level 3; and those unsolved by all three are Level 4 (hardest). This pipeline filters out trivially easy or completely intractable items, yielding a challenging yet learnable dataset focused

⁶https://huggingface.co/datasets/open-r1/OpenR1-Math-220k

⁷https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified

Figure 3: **Prefix-only DPO on Qwen3-0.6B** (L=512). The reward for chosen prefixes (blue) rises while the reward for rejected prefixes (orange) falls. This supports our claim that the first L tokens contain sufficient information to learn a robust reasoning policy, motivating RLPIR's short-prefix rollouts.

on informative examples. After filtering, our splits contain 154,817, 80,486, 25,309, and 74,825 problems for Levels 1–4 respectively. Unless noted, all experiments are trained on the Level 3 data.

Level	# Problems	Proportion (%)
1 (easiest)	154,817	46.15
2	80,486	23.99
3	25,309	7.55
4 (hardest)	74,825	22.31
Total	335,437	100.00

Table 9: Curriculum levels and problem counts in our training set.

E.2 PREFIX DPO TRAINING

Setup. We use the same training corpus as in the main experiments. During corpus curation we additionally obtain positive/negative pairs per problem (correct vs. incorrect solutions). From each problem we construct a 512-token prefix pair.

Training. We fine-tune **Qwen3-0.6B** with DPO on these prefix pairs.

Results. Rewards for chosen prefixes increase while those for rejected prefixes decrease, indicating that prefixes alone provide a learnable signal. This supports our claim that the first L tokens contain sufficient information to learn a robust reasoning policy, motivating RLPIR's short-prefix rollouts.

E.3 INITIAL DATA COLLECTION

Our training data is sourced from two high-quality mathematical reasoning datasets: SynthLabsAI/Big-Math-RL-Verified and open-r1/OpenR1-Math-220k. The initial data collection process involves downloading and preprocessing these datasets to create a unified training corpus.

```
756
     8 dataset_name_list = [dataset_name_1, dataset_name_2]
757
    Q
758
    10 def process_prompt (example):
           messages = [
759
    11
    12
               {
760
                    "role": "system",
    13
761
                    "content": "You are a helpful and harmless assistant. You
    14
762
          should think step-by-step.",
763
    15
               },
764
    16
               {
                    "role": "user",
765
                    "content": example["problem"]
    18
766
               },
    19
767
    20
           1
768
    21
           return {"messages": messages}
769
    22
    23 def preprocess_dataset(dataset_name):
770
           dataset = load_dataset(dataset_name, split="train")
    24
771
    25
           dataset = dataset.map(process_prompt, num_proc=64, batched=False)
772
           return [x["messages"] for x in dataset], [x["answer"] for x in
    26
773
          dataset], [x["problem"] for x in dataset]
774
    28 # Collect and deduplicate data
775
    29 messages_list, answer_list, problem_list = [], [], []
776
    30 for dataset_name in dataset_name_list:
777
           m, a, p = preprocess_dataset(dataset_name)
    31
778
           messages_list.extend(m)
779
    33
           answer_list.extend(a)
           problem_list.extend(p)
    34
780
781
    36 # Remove duplicates based on problem content
782
    37 messages_list, answer_list, problem_list = unique_list(messages_list,
783
       answer_list, problem_list)
784
```

Listing 1: Initial Data Collection Script

E.4 DIFFICULTY-BASED DATA CATEGORIZATION

785 786 787

788 789

790

791

792

793 794

We implement a novel difficulty-based categorization system using three reference models of varying capabilities: DeepSeek-R1-Distill-Qwen-1.5B (1.5B parameters), DeepSeek-R1-Distill-Qwen-7B (7B parameters), and QwQ-32B (32B parameters). Each problem is evaluated by all three models, and the difficulty level is determined based on the models' success rates.

Algorithm 1 Difficulty-Based Data Categorization

```
795
          Require: Problems P, Models M = \{M_{1.5B}, M_{7B}, M_{32B}\}
796
          Ensure: Difficulty levels L = \{L_1, L_2, L_3, L_4\}
797
           1: for each problem p \in P do
798
           2:
                  c_{1.5B} \leftarrow \text{Evaluate}(p, M_{1.5B})
799
                  c_{7B} \leftarrow \text{Evaluate}(p, M_{7B})
           3:
800
           4:
                  c_{32B} \leftarrow \text{Evaluate}(p, M_{32B})
801
                  if c_{1.5B} = 1 then
           5:
                     Assign p to L_1 (Easiest)
802
           6:
           7:
                  else if c_{7B} = 1 then
803
                     Assign p to L_2
           8:
804
           9:
                  else if c_{32B} = 1 then
805
          10:
                     Assign p to L_3
806
          11:
807
          12:
                     Assign p to L_4 (Hardest)
808
          13:
                  end if
809
          14: end for
```

The categorization results in four distinct difficulty levels:

- Level 1 (Easiest): Problems solved correctly by the 1.5B model
- Level 2: Problems failed by 1.5B but solved by 7B model
- Level 3: Problems failed by 1.5B and 7B but solved by 32B model
- Level 4 (Hardest): Problems failed by all three models

E.5 DATA FORMAT CONVERSION

After categorization, we convert the data into Hugging Face Dataset format for efficient training:

```
from datasets import Dataset
import jsonlines

def convert_to_hf_format(data_path, target_path):
    data = list(jsonlines.open(data_path, mode="r"))
    dataset = Dataset.from_list(data)
    dataset.save_to_disk(target_path)
    return dataset
```

Listing 2: Dataset Format Conversion

F TRAINING PROMPT SAMPLING STRATEGY

F.1 GRPO CONFIGURATION

Our training employs Group Relative Policy Optimization (GRPO) with carefully designed sampling strategies. The key configuration parameters are:

Table 10: GRPO Training Configuration

Parameter	Value
num_prompts_per_step	32
num_generations_per_prompt	16
max_rollout_turns	1
normalize_rewards	True
use_leave_one_out_baseline	false
reference_policy_kl_penalty	0.001
ratio_clip_min	0.2
ratio_clip_max	0.2

F.2 PROMPT TEMPLATE DESIGN

The prompt template is designed to encourage step-by-step reasoning:

```
Solve the following math problem. Make sure to put the answer (and only answer) inside \boxed{}.

2
3 {problem_statement}
```

Listing 3: Mathematical Reasoning Prompt Template

G EVALUATION SAMPLING STRATEGY

G.1 MULTI-SHOT EVALUATION

For robust evaluation, we implement multi-shot sampling with different repetition counts based on dataset characteristics:

Table 11: Evaluation Sampling Configuration

Dataset	Repetitions	Sampling Strategy
MMLU-Pro	2	Temperature=0.6, TOP_P=0.95
GPQA	1	Temperature=0.6, TOP_P=0.95
SuperGPQA	1	Temperature=0.6, TOP_P=0.95
AIME24	10	Temperature=0.6, TOP_P=0.95
AIME25	10	Temperature=0.6, TOP_P=0.95
Olympiad	4	Temperature=0.6, TOP_P=0.95
Minerva	4	Temperature=0.6, TOP_P=0.95

G.2 Answer Extraction and Verification

We implement sophisticated answer extraction mechanisms for different question types:

G.2.1 MATHEMATICAL EXPRESSION MATCHING

For mathematical problems, we extract answers using LaTeX pattern matching:

```
ANSWER_PATTERN_BOXED = r"(?i) \\boxed\s*{([^\n]+)}"

def extract_mathematical_answer(response_text):
    match = re.search(ANSWER_PATTERN_BOXED, response_text)

if match:
    extracted_answer = match.group(1)
    # Normalize the extracted answer
    extracted_answer = normalize_response(extracted_answer)

return extracted_answer
```

Listing 4: Mathematical Answer Extraction

G.2.2 MULTIPLE CHOICE ANSWER EXTRACTION

For multiple-choice questions, we extract answers using pattern matching:

```
1 ANSWER_PATTERN_MULTICHOICE = r"(?i)Answer[ \t]*:[ \t]*\$?([A-D])\$?"
2
3 def extract_multiple_choice_answer(response_text):
4    match = re.search(ANSWER_PATTERN_MULTICHOICE, response_text)
5    if match:
6        extracted_answer = match.group(1).upper()
7    return extracted_answer
```

Listing 5: Multiple Choice Answer Extraction

G.3 EQUIVALENCE CHECKING

For problems, we implement equivalence checking using a dedicated LLM:

```
908
     1 EQUALITY_TEMPLATE = r"""
909
     2 Look at the following two expressions (answers to a math problem) and
910
           judge whether they are equivalent. Only perform trivial
911
          simplifications.
912
     4 Examples:
913
          Expression 1: $2x+3$
914
           Expression 2: $3+2x$
915
     7 Yes
916
     8
917
           Expression 1: 3/2
     9
          Expression 2: 1.5
```

```
918
    11 Yes
919
    12
920
           Expression 1: x^2+2x+1
    13
921
    14
           Expression 2: (x+1)^2
    15 Yes
922
923
    17 YOUR TASK:
924
    18 Respond with only "Yes" or "No" (without quotes).
925
    19
926
    20
           Expression 1: %(expression1)s
          Expression 2: %(expression2)s
    21
927
    22 """
928
    23
929
    24 def check_equality(sampler, expr1, expr2):
930
          prompt = EQUALITY_TEMPLATE % {"expression1": expr1, "expression2":
          expr2}
931
          response = sampler([dict(content=prompt, role="user")])
    26
932
    return response.lower().strip() == "yes"
933
```

Listing 6: Equivalence Verification

G.4 EVALUATION PIPELINE

The complete evaluation pipeline processes datasets in parallel:

Algorithm 2 Evaluation Pipeline

Require: Dataset D, Model M, Evaluation Config C

- 1: Load dataset D from remote URL
- 2: Shuffle examples with fixed seed for reproducibility
- 3: Initialize sampler with model ${\cal M}$ and config ${\cal C}$
- 4: **for** each example $e \in D$ **do**
- 5: Generate response r using sampler
- 6: Extract answer a from response r
- 7: Compute score s based on ground truth
- 8: Store result (e, r, a, s)
- 950 9: end for

H IMPLEMENTATION DETAILS

H.1 DETAILS IN MOTIVATION

In section 4, for each problem, we first sample K=64 full chain-of-thought (CoT) solutions with nucleus sampling (temperature = 0.6, top-p = 0.95, max new tokens = 32k). Each solution is labeled as correct or incorrect by exact matching the final answer against the ground truth.

H.2 MULTI-PROCESSING FOR DATA GENERATION

For efficient data generation, we implement multi-processing with dynamic GPU allocation:

```
def worker_process_dynamic(proc_id, task_queue, progress_queue, config):
      # Dynamic GPU allocation based on process ID
      global_cuda_visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
      available_gpus = [x.strip() for x in global_cuda_visible.split(",")]
      assigned_gpus = []
      for i in range(config["tensor_parallel"]):
6
          assigned_index = (proc_id * config["tensor_parallel"] + i) % len(
      available_gpus)
          assigned_gpus.append(available_gpus[assigned_index])
      os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(assigned_gpus)
10
      # Initialize model with assigned GPUs
11
      model = LLM(
12
          model=config["base_model_name"],
13
          tensor_parallel_size=config["tensor_parallel"],
14
          max_model_len=config["max_tokens"],
          gpu_memory_utilization=0.95,
16
17
```

Listing 7: Multi-Processing Data Generation

H.3 HYPERPARAMETER CONFIGURATION

Key hyperparameters for training:

Table 12: Training Hyperparameters

Parameter	Value
Learning Rate	1.0e-6
Weight Decay	0.01
Batch Size	512
Max Sequence Length	512
Precision	bfloat16
Temperature	1.0
Top-p	1.0

I TRAINING DYNAMIC DISCUSSION

I.1 REASONING LENGTH REDUCTION

To make the efficiency gains concrete, we report a representative item solved by **Qwen3-8B**. Before RLPIR training, the model produced a 2802-token solution. After RLPIR with a 512-token prefix budget, the same item was solved in 1299 tokens—a 53.6% reduction—while yielding the same final answer. This case study aligns with the aggregate trend reported in Section 7.3, indicating that optimizing the early prefix encourages earlier commitment to high-consistency trajectories and prunes meandering continuations.

```
1026
          Owen3-8B's answer before training: 2802tokens
1027
1028
          The question is: ## Task 2\n\nAs the special train stops, a freight
1029
          → train passes by. Peter counts the cars: Right after the
1030
              locomotive, 5 closed cars pass. Then follow 4 times as many
              open cars. At the end, 6 tank cars pass.\n\nHow many cars does
1031
              the freight train have?
1032
1033
          Response:
1034
          <think>
          Okay, let me try to figure out how many cars are in the freight
1035
          \hookrightarrow train. So, Peter is counting the cars as the freight train
1036
          \rightarrow passes by. Let me break down the information step by step.
1037
          [... (reasoning omitted for brevity) ...]
1038
          </think>
1039
          The freight train's composition is described in a sequence by Peter
          → as it passes by. He counts the cars in the following order:
1040
          - **After the locomotive**, 5 **closed cars** pass.
1041
          - Then, **4 times as many open cars** follow the closed cars.
1042
          - Finally, 6 **tank cars** conclude the train.
1043
          To determine the total number of **cars**, we first calculate the

→ number of each type:

1044
          - Closed cars: 5
1045
          - Open cars: 4 \times 5 = 20
1046
          - Tank cars: 6
1047
          Adding these together gives:
1048
          5 + 20 + 6 = 31
1049
          $$
1050
          The problem specifies that Peter counts the **cars**, and since the
1051
          \hookrightarrow locomotive is mentioned as a separate entity ("right after the
1052
          \rightarrow locomotive"), it is **not** included in the count of cars.
1053
          **Final Answer:**
1054
          $$
1055
          \boxed{31}
1056
          SS
1057
```

Qwen3-8B's answer after RLPIR training: 1299 tokens

1058

```
1061
          <think>
1062
          Okay, let's see. So the problem is about Peter counting the cars of
1063
          \,\hookrightarrow\, a freight train as it passes by. The question is asking how
          \,\hookrightarrow\, many cars the freight train has in total. Let me break down the
1064

→ information given step by step.

1065
          [... (reasoning omitted for brevity) ...]
1066
          </think>
1067
          To determine the total number of cars in the freight train, we
1068

→ analyze the sequence as described:

          1. **After the locomotive**, there are **5 closed cars**.
1069
          2. **Then**, there are **4 times as many open cars** as closed
1070
             cars. Since there are 5 closed cars, this means:
1071
             $4 \times 5 = 20 $ open cars.
1072
          3. **At the end**, there are **6 tank cars**.
1073
          Adding these together gives the total number of cars:
1074
          5 \text{ (closed)} + 20 \text{ (open)} + 6 \text{ (tank)} = 31
1075
1076
          Thus, the freight train has:
1077
          $$
          \boxed{31}
1078
          $$
1079
```

```
1080
          Owen3-8B's answer after GRPO training: 3271
1081
1082
          The question is: ## Task 2\n\nAs the special train stops, a freight
1083
             train passes by. Peter counts the cars: Right after the
1084
              locomotive, 5 closed cars pass. Then follow 4 times as many
              open cars. At the end, 6 tank cars pass.\n\nHow many cars does
1085
             the freight train have?
1086
1087
          Response:
1088
          <think>
         Okay, let's see. So the problem is about Peter counting the cars of
1089
          \hookrightarrow a freight train as it passes by. The question is asking how
1090
             many cars the freight train has in total. Let me try to break
1091
             down the information given
1092
          step by step.
1093
          [... (reasoning omitted for brevity) ...]
          </think>.
1094
          To determine how many **cars** the freight train has, we need to
1095
          → carefully analyze the sequence of events described:
1096
          ### Step-by-Step Breakdown
          1. **After the locomotive**, Peter observes **5 closed cars**.
             - These are the first set of cars.
1099
             - So, we count **5** cars.
1100
          2. **Then follow 4 times as many open cars**.
1101
             - This means the number of open cars is **4 times** the number
1102
             \hookrightarrow of closed cars.
             - Since there are 5 closed cars, the number of open cars is:
1103
               $$
1104
               4 \setminus times 5 = 20
1105
               $$
1106
             - So, we add **20** more cars.
          3. **At the end**, **6 tank cars** pass by.
1107
             - This is the final set of cars.
1108
             - Add **6** more cars.
1109
1110
          ### Total Number of Cars
         Now, summing up all the cars (excluding the locomotive, as the
1111
          → problem refers to "cars" and the locomotive is a separate
1112
             unit):
1113
          $$
1114
          5 \text{ (closed cars)} + 20 \text{ (open cars)} + 6 \text{ (tank
1115
             cars) = 31
          $$
1116
1117
          ### Final Answer
1118
          $$
1119
          \boxed{31}
          $$
1120
1121
```

I.2 SIMILARITY IMPROVEMENT

1122

1123 1124

1125

1126

1127

1128

1129

1130 1131

1132

1133

To verify that RLPIR effectively increases intra-group semantic agreement, we track the average pairwise cosine similarity among sampled prefixes during training. We observe a steady upward trend in similarity as optimization progresses, indicating that the policy learns to generate more coherent and self-consistent reasoning prefixes over time. This improvement confirms that the intra-group consistency reward provides a strong learning signal and successfully guides the model toward producing reasoning trajectories that are both semantically aligned and mutually consistent.

I.3 COLLAPSE PHENOMENON WITHOUT ASYMMETRIC ADVANTAGES

We further analyze the behavior of RLPIR when the asymmetric advantage clipping in Eq. 8 is removed. In this setting, the model rapidly drives similarity to an extreme by generating nearly

Figure 4: Average pairwise cosine similarity among sampled reasoning prefixes during training. The clear upward trend indicates that RLPIR enhances intra-group semantic agreement and encourages the generation of more coherent and self-consistent reasoning trajectories.

Figure 5: Trend of average pairwise cosine similarity on the AIME24 benchmark. The consistent increase demonstrates that the model progressively learns to produce reasoning prefixes that are semantically closer and more coherent as training advances.

 identical and repetitive continuations, leading to a collapse of diversity. This repetition causes a sharp drop in task accuracy and results in drastically shortened outputs. Such "mode collapse" behavior highlights the importance of penalizing only low-consistency samples: the Asymmetric design regularizes the policy, maintains useful variability in reasoning trajectories, and prevents degenerate solutions that maximize similarity without improving actual reasoning quality.

```
Collapse Phenomenon without One-Sided Advantages
The question is: ## Task 2\n\nAs the special train stops, a freight
    train passes by. Peter counts the cars: Right after the
   locomotive, 5 closed cars pass. Then follow 4 times as many
   open cars. At the end, 6 tank cars pass.\n\
   the freight train have?
Response:
<think>
Okay, let's see. Let me try to break down the information given
   step by step. Let me try to break down the information given
   step by step. Let me try to break down the information given
   step by step. Let me try to break down the information given
   step by step. Let me try to break down the information given
    step by step. Let me try to break down the information given
    step by step. Let me try to break down the information given
    step by step. Let me try to break down the information given
    step by step. Let me try to break down the information given
    step by step. Let me try to break down the information given
    step by step. Let me try to break down the information given
   step by step. Let me try to break down the information given
   step by step. Let me try to break down the information given
   step by step. Let me try to break down the information given
   step by step. Let me try to break down the information given
   step by step. [... (repeat reasoning content omitted for
   brevity) ...]
```

J MORE EXPERIMENTS

J.1 EFFECT OF EMBEDDING METHOD

To assess the sensitivity of our intrinsic reward to the embedding model, we ablate three embedding method. As shown in Table 13, the performance of **RLPIR** is remarkably robust to the choice of embedding.

Embedding Method	Acc↑	Len(tokens)
all-MiniLM-L6-v2	78.8	11797
Qwen3-Embedding-0.6B	78.6	11239
TF-IDF	78.1	12016

Table 13: Ablation study on the embedding method for computing intra-group consistency. Results are on AIME24 with the Qwen3-8B model. Performance is stable across different embedding methods.