
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RLPIR: REINFORCEMENT LEARNING WITH
PREFIX AND INTRINSIC REWARD

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) for large language mod-
els faces two critical limitations: (i) reliance on verifiable rewards restricts ap-
plicability to domains with accessible ground truth answers; (ii) training de-
mands long rollouts (e.g., 16K tokens for complex math problems). We pro-
pose Reinforcement Learning with Prefix and Intrinsic Reward (RLPIR), a
verifier-free reinforcement learning framework that learns from intrinsic rewards
while reducing compute. RLPIR includes (1) a prefix rollout paradigm that
avoids long rollouts by optimizing only the first L tokens, and (2) an intra-group
consistency reward that eliminates reliance on verifiable rewards by measuring
consistency among multiple sampled outputs. Across mathematical and general
benchmarks, RLPIR matches RLVR’s performance without ground truth, while
substantially reducing training time by 6.96×. Moreover, RLPIR reduces reason-
ing sequence length by 45%, significantly improving the reasoning efficiency of
LLMs.

1 INTRODUCTION

①No ground truth required
Unsupervised Training

 Lo
w

-C
os

t T
ra

in
in

g
②

6.
96

×

Efficient Inference

③
+45%

Figure 1: RLPIR makes the “impossible
triangle” possible. It achieves (1) unsuper-
vised training without ground truth, (2) low-
cost training via prefix rollouts (∼6.96×
faster), and (3) efficient inference with a
45% reduction in reasoning length.

Large-scale Reinforcement Learning with Verifiable
Rewards (RLVR) has demonstrated remarkable po-
tential in advancing the reasoning capabilities of
Large Language Models (LLMs), achieving break-
throughs in complex problem-solving tasks such as
mathematical reasoning and code generation (Jaech
et al., 2024; DeepSeek-AI et al., 2025). By leverag-
ing external verifiers to provide precise reward sig-
nals, RLVR frameworks like GRPO (Hu et al., 2025)
have enabled LLMs to refine their reasoning pro-
cesses through iterative feedback.

However, RLVR faces an “impossible triangle” of
practical challenges: (1) Verifier dependence. Re-
liance on domain-specific verifiers confines RLVR
to domains with accessible ground-truth answers
(e.g., mathematics), leaving general-domain reason-
ing, where answers are free-form and ambiguous,
largely unexplored (Ma et al., 2025). (2) High train-
ing cost. The lengthy rollout sequences required for
training (e.g., ∼16K tokens for complex math problems) incur substantial computational overhead,
limiting practical deployment (Zeng et al., 2025). (3) Inference inefficiency. RLVR-trained models
(e.g., GRPO) tend to produce gradually longer responses during training (DeepSeek-AI et al., 2025),
reducing inference efficiency.

To address these "impossible triangle” challenges, we propose RLPIR (Reinforcement Learning
with Prefix and Intrinsic Reward). Our motivation is that the beginning of a solution (for example,
the first 512 tokens) usually contains important decisions that determine the rest of the reasoning
trajectory, yielding the correct solution. Therefore, training only on the prefix can maintain high
effectiveness while increasing efficiency.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Motivated by this, RLPIR optimizes only a short prefix (e.g., L = 512). To enable effective training
at such short lengths, RLPIR introduces two core innovations: (1) Prefix rollouts. A prefix rollout
paradigm that truncates training sequences to L tokens (e.g., 512 tokens), significantly reducing
computational cost compared to RLVR baselines by focusing policy optimization on the prefix of
reasoning chain, which contains critical decision points, thereby drastically reducing computational
costs. (2) Intra-group consistency reward. For each prompt, we sample a group outputs and
quantify their consistency to derive an intrinsic reward, removing the need for external verifiers.

Experimental results demonstrate that RLPIR matches the performance of verifier-dependent RLVR
methods (e.g., GRPO) on mathematical and general benchmarks while reducing computational costs
drastically without relying on ground truth answers. Notably, our framework achieves a 45% reduc-
tion in reasoning sequence length, significantly improving reasoning efficiency.

Our contributions are as follows: (1) We propose RLPIR, a novel RL paradigm eliminating reliance
on ground truth answers. (2) We develop a prefix rollout training strategy that reduces training time
by 6.96× compared to standard RLVR baselines. (3) We introduce a novel intra-group consis-
tency reward that eliminates the need for external verifiers and achieves performance comparable
to RLVR in mathematical domains, while demonstrating strong generalization in general domains.
(4) Our method achieves a 45% reduction in reasoning length during inference, achieving efficient
inference for LLMs.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FOR REASONING IN LLMS

Reinforcement learning (RL) has emerged as a powerful framework for optimizing LLM reason-
ing, complementing supervised fine-tuning (SFT) by refining decision-making via feedback signals.
Notable successes include DeepSeek-R1 (DeepSeek-AI et al., 2025) and GRPO (Hu et al., 2025),
which leverage verifiable rewards such as code execution results or mathematical correctness to
achieve state-of-the-art performance. However, RL with verifiable rewards (RLVR) faces two major
bottlenecks: reliance on domain-specific verifiers (e.g., Math-Verify (Hynek & Greg, 2025)), which
limits generality (He et al., 2025), and high computational cost from long rollouts (e.g., 16K tokens
for math problems) (Zeng et al., 2025). Recent work aims to improve RL training by leveraging
additional signals or trajectories. LUFFY (Yan et al., 2025) introduces off-policy guidance with
high-quality reasoning trajectories and regularized importance sampling to balance imitation and
exploration, outperforming pure on-policy RLVR. Token-supervised value models (Lee et al., 2025)
estimate correctness probabilities at each token, enabling fine-grained credit assignment during tree
search and reducing pruning errors.

2.2 BEYOND VERIFIABLE REWARDS

To mitigate RLVR’s reliance on ground-truth verifiers, researchers have explored alternative reward
signals. Generative reward models (Ma et al., 2025) and self-reward mechanisms (Zhou et al.,
2024) use auxiliary models or policy consistency to evaluate reasoning quality. Policy-likelihood
rewards (Yu et al., 2025) extend RLVR to settings without verifiable answers but are limited to
short outputs, while entropy minimization strategies (Agarwal et al., 2025) encourage deterministic
reasoning at the risk of suppressing diversity. Another promising direction leverages internal con-
sistency signals: Xie et al. (2024) decode intermediate layer predictions and weight self-consistent
reasoning paths to improve calibration in chain-of-thought reasoning. Our intra-group consistency
reward generalizes this idea to group-level semantic similarity, providing a differentiable intrinsic
reward that eliminates reliance on external verifiers.

2.3 EFFICIENT REINFORCEMENT LEARNING TRAINING PARADIGMS

Efficiency remains a key challenge in RL for reasoning. Full-rollout RLVR is computationally ex-
pensive, motivating research on more efficient paradigms. TTRL (Zuo et al., 2025) and Absolute
Zero (Zhao et al., 2025) explore test-time refinement and self-play but remain task-specific. Con-
trolled decoding approaches such as prefix scorers (Mudgal et al., 2024) bias generation under a
reward–KL tradeoff to reduce inference-time cost. Prefix-based training has also been studied for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

supervised setups (Ji et al., 2025) but its integration into RL remains underexplored. Our method ad-
dresses this gap by using prefix rollouts, truncating training to critical decision points and reducing
compute by 6.96× relative to standard RLVR.

3 PRELIMINARY

3.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement Learning with Verifiable Rewards (RLVR) trains large language models (LLMs)
using programmatically verifiable signals of correctness—such as mathematical validity, logical
consistency, or code execution results.

Given an input q and an output trajectory τ , RLVR defines a verifiable reward r(q, τ) ∈ R that
quantifies the correctness of τ based on predefined rules or external verification tools. For example,
in code generation, r(q, τ) can indicate whether the generated program passes a suite of unit tests.
With a policy model πθ, we sample a response τ ∼ πθ(· | q) and compute the reward as

r(q, τ) = I[Verify(q, τ) = True] , (1)
where Verify(·) is a deterministic function that checks whether τ meets the specified correctness
criteria. The RLVR objective maximizes the expected verifiable reward while regularizing the policy
towards a reference model πref:

max
πθ

Eτ∼πθ(·|q)[r(q, τ)] − β DKL
(
πθ ∥πref

)
, (2)

where β > 0 controls the strength of the regularization.

RLVR is commonly instantiated with policy-gradient methods such as REINFORCE (Williams,
1992), PPO (Schulman et al., 2017), or GRPO (Shao et al., 2024a). The GRPO objective (omitting
clipping for brevity) is

JGRPO(θ) = E{τg}G
g=1∼πθref (·|q)

1

G

G∑
g=1

(
πθ(τg | q)
πθref(τg | q)

Ag − β DKL(πθ ∥πref)

)
(3)

where the KL-divergence term is calculated as:

DKL

(
πθ ∥πref

)
=

πref(τg | q)
πθ(τg | q)

− log
πref(τg | q)
πθ(τg | q)

− 1, (4)

and the advantage Ag is computed via group-wise standardization of rewards {r1, . . . , rG}:

Ag =
rg −mean({r1, . . . , rG})

std({r1, . . . , rG})
. (5)

Despite its appeal, RLVR still hinges on ground truth: rewards exist only when a trusted verifier
or gold answer is available. Moreover, r(q, τ) is computable only after the model completes a full
trajectory, yielding delayed and often sparse feedback that is costly and domain-specific (Liu et al.,
2025; Team et al., 2025). These properties limit its applicability beyond well-specified domains and
tasks with ambiguity or subjective goals.

4 MOTIVATION

This work proposes a paradigm shift from full reasoning trajectory optimization with verifiable
rewards to prefix optimization without relying on verifiable rewards, aiming at addressing crucial
challenges for RLVR. This section presents the preliminary studies that ground the motivations
of this proposal, and provide evidence supporting the design of prefix rollout and intra-group
consistency reward, the two core elements of RLPIR.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.1 PREFIX OPTIMIZATION SUFFICES TO IMPROVE REASONING

Model AIME24 Accuracy (%)

Qwen3-0.6B 9.67
+ Full-length DPO 13.7
+ Prefix DPO (512 tokens) 13.3

Table 1: Prefix DPO versus Full-
length DPO on AIME24.

The first study explores whether prefix optimization can
play a similar role to full-length trajectory optimization
for RL training. For this purpose, we fine-tuned Qwen3-
0.6B with DPO on the AIME24 benchmark under the full-
length reasoning trajectory (i.e., Full-length DPO) and 512-
token prefix (i.e., Prefix DPO) settings. As shown in Ta-
ble 1, prefix-only DPO substantially improves over the Qwen3-0.6B base model and performs nearly
on par with full-length DPO (See Section E.2 for the training reward dynamics). This suggests that
the first 512 tokens capture most of the learnable signal and that the policy learned on short prefixes
generalizes to full-length reasoning trajectories. It motivates us to adopt prefix optimization in
the RLPIR method.

4.2 HIGH-CONSISTENCY PREFIX YIELDS HIGH-QUALITY REASONING TRAJECTORY

The second study investigates the strategy for prefix optimization in the absence of verifiable re-
wards. We hypothesize that within a group of decent-looking reasoning trajectories, the prefix
that is most semantically related to others is most likely to yield a correct reasoning trajec-
tory. To test this hypothesis, we designed a controlled “forced-prefix continuation” task, where we
forced Qwen3-8B to generate the full chain-of-thought solution based on the prefix on the AIME24
benchmark. For each problem, 64 full chain-of-thought solutions were sampled as marked as cor-
rect/incorrect based on their final answers. Then, the “best” prefix was selected with three different
strategies from the first L tokens of the solutions:

• A: High-consistency. The first L tokens of all solutions (K = 64 in total) were em-
bedded1. Then, for each solution i with embedding ei, we estimated its overall seman-
tically relatedness with other prefixes by computing its intra-group consistency score
ci =

1
K

∑K
i cos(ei, ej). The prefix with the greatest value of ci was selected.

• B: Random correct. The best prefix was randomly picked from the correct solutions with
a uniform distribution.

• C: Random incorrect. The best prefix was randomly picked from the incorrect solutions
with a uniform distribution.

Prefix Length Prefix Selection Strategy Accuracy (%)

512 tokens
A: High-consistency 77.1
B: Random correct 75.0

C: Random incorrect 51.4

1024 tokens
A: High-consistency 78.1
B: Random correct 77.2

C: Random incorrect 50.1
Qwen3-8B baseline 73.0

Table 2: Accuracy of forced-prefix continuation under different prefix selection strategies on
AIME24. The high-consistency prefixes markedly boost performance over random correct ones,
while incorrect-solution prefixes cause severe degradation.

Table 2 shows the accuracy of the forced-prefix continuation task on AIME24, where the prefixes
were selected with all three strategies above with length L=512 or 1024. At both lengths, the high-
consistency prefixes attain a superior performance over random correct, with a more remarkable gap
at L=512 where high-consistency prefixes raises accuracy to 77.1% (vs 73.0% baseline). These
results indicate that the first few hundred tokens capture the pivotal decisions of the reasoning chain,
justifying our training strategy of intra-group consistency reward, where we generalize this idea
into a differentiable intrinsic reward for reinforcement learning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

�1

�2

��

...

RLPIR

� Policy
Model

Intrinsic Reward

�1

�2

��

...

Group
Normalize

Reference Model

��

Prefix
Rollout
L=512

�1

�2

��

...

RLVR
(illustrated
by GRPO)

� Policy
Model

�1

�2

��

...

Group
Normalize

�1

�2

��

...

Reference Model

��

Full Rollout
L=16K

 Verifiable Rewards

Asymmetric
Advantages

�1 = 0

�2 =− 0.1

�� =− 0.2

...

Trained
Model

Frozen
Model

...

�1 =− 0.1

�1 = 0.1

�� =− 0.2

Figure 2: Comparison of RLVR (Reinforcement Learning with Verifiable Reward) and RLPIR
(Reinforcement Learning with Prefix and Intrinsic Reward). While RLVR suffers from high com-
putational costs due to long rollouts and relies on ground-truth verification, RLPIR achieves effi-
cient training via short prefix rollouts and intrinsic rewards without requiring external verification.
In addition, RLPIR employs Asymmetric Advantages to prevent reward hacking and maintain di-
versity while regularizing the policy effectively.

5 METHODOLOGY

As motivated in Section 4, we introduce Reinforcement Learning with Prefix and Intrinsic Reward
(RLPIR), a novel reinforcement learning framework that addresses the limitations of traditional
RLVR by introducing two key innovations: (1) a prefix rollout paradigm that optimizes only the first
L tokens, and (2) an intra-group consistency reward that measures consistency among multiple
sampled outputs, eliminating reliance on verifiable rewards. Figure 2 illustrates the framework’s
architecture compared to conventional RLVR (e.g., GRPO) approaches.

5.1 PROBLEM FORMULATION

Let q denote an input prompt drawn from a dataset D. The policy model πθ produces a partial
trajectory τ = (t1, . . . , tL) consisting of the first L tokens of the full reasoning chain. Our goal is to
maximize the expected intrinsic reward r(q, τ) while constraining policy drift with a KL-divergence
penalty:

max
θ

Eq∼D, τ∼πθ(·|q)

[
r(q, τ)− β DKL

(
πθ∥πref

)]
, (6)

where πref is the frozen reference policy and β controls the regularisation strength. The remainder
of this section details the design of r(q, τ) and the prefix rollout schedule.

5.2 PREFIX ROLLOUT

Long rollouts (e.g., ∼ 16K tokens math) dominate the wall-clock cost in Reinforcement Learning
with Verifiable Rewards (RLVR). Inspired by the analysis in Section 4, we train exclusively on the
initial prefix of length L = 512 tokens. During training, rewards and policy gradients are computed
only over this prefix of L tokens. However, at evaluation time, the model is allowed to generate
freely beyond L tokens to complete the output.

1We use all-MiniLM-L6-v2 as embedding model

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.3 INTRA-GROUP CONSISTENCY REWARD

We achieve the intrinsic reward via Intra-group Consistency, using semantic similarity as the
reward signal. For each prompt q we sample G independent rollouts {τg}Gg=1 under the current
policy. Each rollout τg is embedded with a sentence encoder2. We measure similarity to the group
center ē using cosine similarity, as described in Section 4.2 for computing high consistency:

eg = embedding(τg) ∈ Rd, ē =
1

G

∑
g

eg, rg = cos
(
eg, ē

)
. (7)

5.4 ASYMMETRIC ADVANTAGES

To mitigate reward hacking caused by excessive similarity, which could lead to model collapse,
we adopt an asymmetric advantage mechanism. We first compute the cosine similarity scores rg ,
standardize them, and then convert the standardized scores into asymmetric advantages by clipping
the positive branch:

Ãg =
rg −mean({r1, . . . , rG})

std({r1, . . . , rG})
, Ag = min(0, Ãg). (8)

Only prefixes that are less consistent than the group average (Ãg < 0) get a non-zero (negative)
advantage. We penalize those low-consistency samples and give no reward to already-similar ones.
This prevents reward hacking while keeping useful diversity.

6 EXPERIMENTS

6.1 TRAINING SETUP

We implement RLPIR using Nemo-RL (nem, 2025). For each problem in a training batch, we
generate a group of G = 16 candidate solutions. Crucially, each rollout is limited to L = 512
tokens, as motivated by the ablation results in Section 8.1.

The intrinsic reward for each prefix is calculated based on its semantic consistency within its group.
We embed each L = 512 token prefix using the all-MiniLM-L6-v23 sentence encoder.

For policy optimization, we use GRPO (Shao et al., 2024b). We process a batch of 32 problems
per step, with a constant KL-divergence penalty of β = 0.001 to regularize the policy and prevent
deviation from the reference model. All models are trained using the AdamW optimizer with a
learning rate of 1× 10−6. Experiments were conducted on 8 × NVIDIA A100 GPUs.

6.2 MODELS AND TRAINING DATA

Our experiments are conducted on several base models to demonstrate the broad applicability of
RLPIR. We apply our training method to Llama (Meta AI, 2024), Qwen2.5 (Yang et al., 2024) and
Qwen3 series (Team, 2025a).

We construct our training set from two public math corpora, OpenR1-Math-220k4 and Big-Math-
RL-Verified5. For each problem, we run inference with three models (Deepseek R1 1.5B, Deepseek
R1 7B (DeepSeek-AI et al., 2025), and QWQ 32B (Team, 2025b)) and log their correctness. We
then define a four-stage data split strategy: problems solved by the 1.5B model are labeled as Level 1
(easiest); those missed by 1.5B but solved by 7B form Level 2; items only solved by the 32B model
become Level 3; and those unsolved by all three are Level 4 (hardest). This pipeline filters out
trivially easy or completely intractable items, yielding a challenging yet learnable dataset focused

2We use all-MiniLM-L6-v2 as the embedding model.
3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
4https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
5https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model General Math Avg
MMLU-Pro ↑ GPQA ↑ SuperGPQA ↑ AIME 24 ↑ AIME 25 ↑ Olympiad ↑ Minerva ↑ General ↑ Math ↑

Llama Models
Llama3.1-8B-Inst 46.9 30.2 22.2 3.0 0.0 13.0 10.2 33.1 6.6

+RLPIR(ours) 47.0 31.8 21.0 4.3 0.0 15.3 12.6 33.2 8.1
Qwen2.5 Models

Qwen2.5-7B-Inst 56.6 33.8 29.0 11.6 8.5 34.2 26.1 39.8 20.1
+RLPIR(ours) 58.5 35.5 31.6 16.2 14.7 38.3 31.1 41.9 25.1

Qwen2.5-14B-Inst 62.7 41.4 35.0 11.3 11.0 37.3 29.7 46.4 22.3
+RLPIR(ours) 65.5 42.9 38.3 16.2 15.4 42.4 34.0 48.9 27.0

Qwen3 Models
Qwen3-4B-Inst 63.7 53.0 42.4 72.6 64.3 61.4 33.4 53.0 57.9

+RLVR 59.5 50.4 33.8 80.9 70.7 66.5 43.2 47.9 65.3
+RLPIR(ours) 65.1 53.9 42.0 77.3 69.8 65.7 38.6 53.7 62.9

Qwen3-8B-Inst 67.7 61.1 48.5 73.0 66.0 63.5 35.6 59.1 59.5
+RLVR 65.8 61.7 40.6 80.1 73.3 68.5 40.8 56.0 65.7
+RLPIR(ours) 69.7 62.2 46.2 78.8 72.2 69.3 40.0 59.3 65.1

Qwen3-14B-Inst 72.4 65.1 52.5 80.0 70.3 63.4 37.1 63.3 62.7
+RLVR 71.5 61.0 50.3 86.6 78.7 66.1 40.2 60.9 67.9
+RLPIR(ours) 75.1 66.4 53.0 86.2 76.9 67.9 41.9 64.8 68.2

Table 3: Main results. RLVR is implemented as full-length GRPO16K; RLPIR uses a 512-token
prefix during training. Without any external verifiers or ground-truth labels, RLPIR attains
math performance on par with verifier-dependent RLVR baselines. Beyond mathematics, RLPIR is
consistently more robust on general-domain benchmark

on informative examples. After filtering, our splits contain 154,817, 80,486, 25,309, and 74,825
problems for Levels 1–4 respectively. Unless noted, all experiments are trained on the Level 3 data.
Moreover, the correct/incorrect sample pairs obtained in this process constitute the DPO training
data used for the training in Section 4.1.

6.3 BASELINES

We compare the performance of RLPIR against several strong baselines to comprehensively evaluate
its effectiveness. Importantly, we do not include comparisons with verifier-free methods based on
probabilistic rewards such as RLPR (Yu et al., 2025), since our method is explicitly designed for
settings without any ground truth, whereas those approaches still rely on ground-truth signals for
evaluation or reward construction.

Base models. We report the baseline performance of models without any further training, includ-
ing Llama (Meta AI, 2024), Qwen2.5 (Yang et al., 2024), and the Qwen3 series (Team, 2025a), to
verify the effectiveness of our method across different models.

RL with Verifiable Rewards (RLVR). As a verifier-dependent baseline, we implement GRPO
with full-length rollouts (GRPO16K), where rewards are computed by programmatic verification
against ground-truth answers. Optimizing on full trajectories (up to ∼16K tokens) yields substan-
tially higher cost but represents an approximate upper bound in performance, serving as a reference
for our more efficient verifier-free approach. RLVR uses the same training data in Section 6.2.

6.4 EVALUATION

We evaluate the reasoning capabilities with multiple general reasoning and mathematical bench-
marks. For math reasoning, we include Olympiad, Minerva, AIME24 and AIME25. For general
domains, we include MMLU-Pro (Wang et al., 2024), GPQA (Rein et al., 2023), and SuperGPQA.

7 MAIN RESULTS

7.1 TRAINING EFFECTIVENESS AND GENERALIZATION

Table 3 shows that, without any external verifiers or ground-truth labels, RLPIR attains math
performance on par with verifier-dependent RLVR baselines (e.g., GRPO16K) while optimizing only
a 512-token prefix. This indicates that high-fidelity reasoning signals can be learned from intrin-
sic, intra-group consistency alone. Beyond mathematics, RLPIR is consistently more robust on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

general-domain benchmarks (e.g., MMLU-Pro, GPQA) than both the base models and RLVR,
underscoring stronger cross-task transfer when no domain-specific verifiers are available. Taken
together, these results demonstrate that RLPIR matches RLVR in verifier-friendly domains and
surpasses it in verifier-scarce domains, while also delivering substantially lower training cost via
short-prefix rollouts.

7.2 COMPUTE EFFICIENCY
Method Time Time/step Speed-up
RLVR (GRPO16K) 177.5 h 10.65 min -
RLPIR (ours, L = 512) 25.5 h 1.53 min 6.96×

Table 4: Compute Efficiency. Wall-clock training
time on Qwen3-8B (8 × A100), 1000 steps.

We benchmark wall-clock training time on
Qwen3-8B for 1000 optimization steps us-
ing identical hardware and hyper-parameters.
RLVR (GRPO16K) requires 177.5 hours,
whereas RLPIR completes in 25.5 hours,
yielding a 6.96× speed-up and an 85.6% reduction in wall-clock time. The observed gains are
consistent with our rollout budget: RLPIR trains on 512-token prefixes while RLVR consumes ∼
16K tokens per step. RLPIR substantially lowers training cost.

7.3 REASONING EFFICIENCY

We measure reasoning efficiency by the average number of tokens generated on the AIME24 bench-
mark. Table 5 compares the average response lengths of Qwen3 models in three scenarios: the orig-
inal base model, after RLVR training, and after RLPIR training. While RLVR-based optimization
tends to increase response length, RLPIR produces markedly shorter response while maintaining
accuracy. See Section I.1 for a detailed case.

Setting Qwen3-4B Qwen3-8B Qwen3-14B
(tokens) (tokens) (tokens)

Base 14229 14539 15280
+RLVR (GRPO16K) 15846 16483 17294
+RLPIR (ours, L = 512) 11772 9564 9474

∆ vs Base −17.3% −34.2% −38.0%
∆ vs RLVR −25.7% −42.0% −45.2%

Table 5: Reasoning efficiency. Average re-
sponse lengths (tokens) on AIME24 by model
(columns). Percent changes are computed for
RLPIR relative to the indicated baseline.

Prefix Len Acc↑ ∆Acc Len↓ ∆Len(%)
(tokens) (tokens)

Qwen3-8B 73.0 - 14539 -

256 76.3 +3.3 9866 -32.2%
512 78.8 +5.8 11797 -18.9%
1024 77.0 +4.0 14601 +0.4%

Table 6: Effect of prefix length L with Qwen3-
8B on AIME24. A 512-token prefix achieves
the best accuracy while still shortening solutions
substantially.

8 ABLATION STUDY

8.1 EFFECT OF PREFIX LENGTH

We ablate the rollout prefix budget L to understand its effect on both final accuracy and reasoning
efficiency. Using the Qwen3-8B backbone and AIME24 as the validation set, we train RLPIR with
three prefix lengths (L∈{256, 512, 1024}) under identical settings (Section 6.2) and report accuracy
as well as the average response length at evaluation time (the model is free to generate beyond the
prefix length at test time).

Table 6 shows that a 512-token prefix yields the best accuracy, while still providing substantial
length reduction relative to the base model. Shorter prefixes (e.g., L = 256) further compress re-
sponse but slightly underperform in accuracy, suggesting that the reward signal becomes less infor-
mative when too little of the early reasoning is observed. Conversely, longer prefixes (L = 1024)
do not improve accuracy and even increase average length back to the base level.

8.2 EFFECT OF ASYMMETRIC ADVANTAGES

We study the impact of Asymmetric Advantages in Eq. equation 8, which penalize only low-
consistency rollouts and assign zero advantage to highly consistent ones. This design aims to deter
reward hacking behaviors (such as trivial repetition) that can artificially inflate similarity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

As shown in Table 7, removing the Asymmetric clipping causes severe degradation: accuracy col-
lapses to 42.3% and outputs become extremely short (average length∼6.5K tokens), consistent with
a mode-seeking failure where the policy inflates similarity by emitting degenerate continuations. By
contrast, RLPIR with Asymmetric advantages attains higher accuracy and shorter outputs versus the
base model, indicating that the clipped signal effectively regularizes the policy away from collapse
while preserving legitimate diversity. See Section I.3 for an illustration.

8.3 EFFECT OF TRAINING-DATA DIFFICULTY
Setting Acc↑ ∆Acc Len↓ ∆Len (%)

(tokens)

Qwen3-8B 73.0 0.0 14539 -
RLPIR (L=512) 78.8 +5.8 11797 -18.9%
w/o Asymmetric Advantages 42.3 -30.7 6543 -55.0%

Table 7: Effect of Asymmetric advantages (Eq. 8)
on Qwen3-8B (AIME24). Removing it leads to
reward hacking and large accuracy drops despite
shorter outputs.

We study how the difficulty of training data af-
fects both accuracy and reasoning efficiency.
Recall from Section 6.2 that we partition the
training dataset into four levels (Level 1–4,
easiest→hardest) using success rates from pro-
gressively stronger solvers. Using Qwen3-8B
as the backbone, we fine-tune with RLPIR on
each single level separately and evaluate on
AIME24. See table 8 for details.

Setting Acc↑ ∆ Acc Len↓ ∆ Len(%)
vs Base (tokens) vs Base

Qwen3-8B 73.0 - 14539 -

Level 1 (easy) 77.3 +4.3 13007 −10.5%
Level 2 78.0 +5.0 12423 −14.6%
Level 3 78.8 +5.8 11797 −18.9%
Level 4 (hard) 77.6 +4.6 9564 −34.2%

Random 78.1 +5.1 12073 −16.9%

Table 8: Effect of training-data difficulty on
AIME24 with Qwen3-8B. “Random” uses 20,000
examples randomly sampled from the entire
dataset.

Findings. (1) Accuracy peaks at medium
difficulty. All levels improve accuracy over
the base model, with the best score attained
by Level 3 (hard-but-solvable) and a mild drop
at Level 4. We hypothesize that the intrin-
sic consistency signal benefits from items that
are challenging enough to elicit diverse pre-
fixes but not so hard that group rollouts become
uniformly noisy. Overly easy items (Level 1)
provide limited gradient signal because most
prefixes already agree; overly difficult items
(Level 4) increase variance and reduce the re-
liability of the group-consistency reward. (2)
Reasoning efficiency improves the most with higher difficulty. Average solution length decreases
monotonically as difficulty increases, with the largest compression observed at Level 4 (Table 8).
Harder items induce stronger disagreement across sampled prefixes, which yields larger Asymmet-
ric penalties (Eq. 8) on off-manifold trajectories. Under RLPIR, the policy therefore learns to
commit earlier to high-consistency paths, pruning meandering continuations and producing shorter
final chains despite training only on 512-token prefixes. (3) Robustness to training-data difficulty.
RLPIR is robust to the difficulty distribution of training data: training on a randomly sampled subset
of the full dataset yields gains comparable to difficulty-stratified subsets (Table 8).

9 CONCLUSION AND FUTURE WORK

In this work we introduced RLPIR, Reinforcement Learning with Prefix and Intrinsic Reward, a
verifier free training paradigm that allows large language models to attain the "impossible trinity"
by simultaneously achieving: (1) unsupervised training without ground truth, (2) low-cost train-
ing via prefix training, yielding a 6.96× speedup in training, and (3) efficient inference with a 45%
reduction in reasoning length. In contrast, traditional RLVR methods (e.g., GRPO) rely on exter-
nal verifiers and full-length rollouts (∼16K-token in math), which are costly and typically result in
longer responses during inference. RLPIR achieves these goals through two key innovations: (a)
a prefix rollout paradigm that optimizes only the first L tokens, (b) an intra-group consistency
reward that measures consistency among multiple sampled outputs, eliminating reliance on verifi-
able rewards. Across mathematical and general benchmarks, RLPIR matches RLVR’s (e.g., GRPO)
performance without ground truth, while substantially lowering training time by 6.96×. Moreover,
our method reduces reasoning sequence length by 45%, significantly improving the reasoning ef-
ficiency of LLMs. Moreover, RLPIR exhibits superior domain generalization compared to RLVR,
as its verifier-free design avoids overfitting to narrow, task-specific reward signals, enabling robust
transfer across diverse and open-ended domains. Future work will focus on extending RLPIR to
additional domains and models to further validate its scalability and generalization capabilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Nemo rl: A scalable and efficient post-training library. https://github.com/
NVIDIA-NeMo/RL, 2025. GitHub repository.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-
tiveness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng, Bo An,
Yang Liu, and Yahui Zhou. Skywork open reasoner series, 2025. Notion Blog.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model, 2025. URL https://arxiv.org/abs/2503.24290.

Kydlíček Hynek and Gandenberger Greg. Math-verify, March 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey
Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben
Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen
Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin,
Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris
Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kap-
pler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred

10

https://github.com/NVIDIA-NeMo/RL
https://github.com/NVIDIA-NeMo/RL
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2503.24290

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Ke Ji, Jiahao Xu, Tian Liang, Qiuzhi Liu, Zhiwei He, Xingyu Chen, Xiaoyuan Liu, Zhijie Wang,
Junying Chen, Benyou Wang, et al. The first few tokens are all you need: An efficient and effective
unsupervised prefix fine-tuning method for reasoning models. arXiv preprint arXiv:2503.02875,
2025.

Jung Hyun Lee, June Yong Yang, Byeongho Heo, Dongyoon Han, Kyungsu Kim, Eunho Yang, and
Kang Min Yoo. Token-supervised value models for enhancing mathematical problem-solving ca-
pabilities of large language models, 2025. URL https://arxiv.org/abs/2407.12863.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains, 2025. URL https://arxiv.org/abs/2505.
14652.

Meta AI. Llama 3.2: Revolutionizing edge ai and vision with
open, customizable models. https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024. Accessed:
2025-05-16.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. Controlled decoding from language models, 2024. URL https://arxiv.org/
abs/2310.17022.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

11

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2407.12863
https://arxiv.org/abs/2505.14652
https://arxiv.org/abs/2505.14652
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2311.12022

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Qwen Team. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark, 2024. URL https://arxiv.org/abs/2406.01574.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Zhihui Xie, Jizhou Guo, Tong Yu, and Shuai Li. Calibrating reasoning in language models with
internal consistency, 2024. URL https://arxiv.org/abs/2405.18711.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance, 2025. URL https://arxiv.org/abs/
2504.14945.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan
Yao, Zhiyuan Liu, Maosong Sun, and Tat-Seng Chua. Rlpr: Extrapolating rlvr to general domains
without verifiers, 2025. URL https://arxiv.org/abs/2506.18254.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
data. arXiv preprint arXiv:2505.03335, 2025.

Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang, Zhaorun Chen, Chenhang Cui, Xiyao
Wang, Yun Li, Linjun Zhang, and Huaxiu Yao. Calibrated self-rewarding vision language models.
arXiv preprint arXiv:2405.14622, 2024.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, Biqing Qi, Youbang Sun, Zhiyuan Ma, Lifan Yuan, Ning Ding,
and Bowen Zhou. Ttrl: Test-time reinforcement learning, 2025. URL https://arxiv.org/
abs/2504.16084.

12

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2405.18711
https://arxiv.org/abs/2504.14945
https://arxiv.org/abs/2504.14945
https://arxiv.org/abs/2506.18254
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2504.16084
https://arxiv.org/abs/2504.16084

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We expect these practices will help the commu-
nity validate our work and push forward future advancements in the field.

C LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

D LIMITATIONS

RLPIR has several limitations: (i) while we empirically validate the effectiveness of a fixed prefix
length L = 512, the framework does not yet include an adaptive mechanism for selecting L, which
could further improve robustness across diverse tasks and contexts; (ii) as is common in reinforce-
ment learning methods, performance can be sensitive to hyperparameters such as KL weight, prefix
length, and learning rate; (iii) due to hardware resource constraints, our experiments focus on repre-
sentative domains and model sizes, so broader validation remains an important direction for future
work.

E DATA PREPARATION

E.1 TRAINING DATA DISTRIBUTION

We construct our training set from two public math corpora, OpenR1-Math-220k6 and Big-Math-
RL-Verified7. For each problem, we run inference with three models (Deepseek R1 1.5B, Deepseek
R1 7B (DeepSeek-AI et al., 2025), and QWQ 32B (Team, 2025b)) and log their correctness. We
then define a four-stage data split strategy: problems solved by the 1.5B model are labeled as Level 1
(easiest); those missed by 1.5B but solved by 7B form Level 2; items only solved by the 32B model
become Level 3; and those unsolved by all three are Level 4 (hardest). This pipeline filters out
trivially easy or completely intractable items, yielding a challenging yet learnable dataset focused

6https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
7https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 3: Prefix-only DPO on Qwen3-0.6B (L=512). The reward for chosen prefixes (blue) rises
while the reward for rejected prefixes (orange) falls. This supports our claim that the first L tokens
contain sufficient information to learn a robust reasoning policy, motivating RLPIR’s short-prefix
rollouts.

on informative examples. After filtering, our splits contain 154,817, 80,486, 25,309, and 74,825
problems for Levels 1–4 respectively. Unless noted, all experiments are trained on the Level 3 data.

Level # Problems Proportion (%)
1 (easiest) 154,817 46.15
2 80,486 23.99
3 25,309 7.55
4 (hardest) 74,825 22.31
Total 335,437 100.00

Table 9: Curriculum levels and problem counts in our training set.

E.2 PREFIX DPO TRAINING

Setup. We use the same training corpus as in the main experiments. During corpus curation we
additionally obtain positive/negative pairs per problem (correct vs. incorrect solutions). From each
problem we construct a 512-token prefix pair.

Training. We fine-tune Qwen3-0.6B with DPO on these prefix pairs.

Results. Rewards for chosen prefixes increase while those for rejected prefixes decrease, indicating
that prefixes alone provide a learnable signal. This supports our claim that the first L tokens contain
sufficient information to learn a robust reasoning policy, motivating RLPIR’s short-prefix rollouts.

E.3 INITIAL DATA COLLECTION

Our training data is sourced from two high-quality mathematical reasoning datasets:
SynthLabsAI/Big-Math-RL-Verified and open-r1/OpenR1-Math-220k. The initial data collection
process involves downloading and preprocessing these datasets to create a unified training corpus.

1 import os
2 import jsonlines
3 from datasets import load_dataset
4 from random import shuffle
5

6 dataset_name_1 = "SynthLabsAI/Big-Math-RL-Verified"
7 dataset_name_2 = "open-r1/OpenR1-Math-220k"

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

8 dataset_name_list = [dataset_name_1, dataset_name_2]
9

10 def process_prompt(example):
11 messages = [
12 {
13 "role": "system",
14 "content": "You are a helpful and harmless assistant. You

should think step-by-step.",
15 },
16 {
17 "role": "user",
18 "content": example["problem"]
19 },
20]
21 return {"messages": messages}
22

23 def preprocess_dataset(dataset_name):
24 dataset = load_dataset(dataset_name, split="train")
25 dataset = dataset.map(process_prompt, num_proc=64, batched=False)
26 return [x["messages"] for x in dataset], [x["answer"] for x in

dataset], [x["problem"] for x in dataset]
27

28 # Collect and deduplicate data
29 messages_list, answer_list, problem_list = [], [], []
30 for dataset_name in dataset_name_list:
31 m, a, p = preprocess_dataset(dataset_name)
32 messages_list.extend(m)
33 answer_list.extend(a)
34 problem_list.extend(p)
35

36 # Remove duplicates based on problem content
37 messages_list, answer_list, problem_list = unique_list(messages_list,

answer_list, problem_list)

Listing 1: Initial Data Collection Script

E.4 DIFFICULTY-BASED DATA CATEGORIZATION

We implement a novel difficulty-based categorization system using three reference models of vary-
ing capabilities: DeepSeek-R1-Distill-Qwen-1.5B (1.5B parameters), DeepSeek-R1-Distill-Qwen-
7B (7B parameters), and QwQ-32B (32B parameters). Each problem is evaluated by all three mod-
els, and the difficulty level is determined based on the models’ success rates.

Algorithm 1 Difficulty-Based Data Categorization

Require: Problems P , Models M = {M1.5B ,M7B ,M32B}
Ensure: Difficulty levels L = {L1, L2, L3, L4}

1: for each problem p ∈ P do
2: c1.5B ← Evaluate(p,M1.5B)
3: c7B ← Evaluate(p,M7B)
4: c32B ← Evaluate(p,M32B)
5: if c1.5B = 1 then
6: Assign p to L1 (Easiest)
7: else if c7B = 1 then
8: Assign p to L2

9: else if c32B = 1 then
10: Assign p to L3

11: else
12: Assign p to L4 (Hardest)
13: end if
14: end for

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The categorization results in four distinct difficulty levels:

• Level 1 (Easiest): Problems solved correctly by the 1.5B model
• Level 2: Problems failed by 1.5B but solved by 7B model
• Level 3: Problems failed by 1.5B and 7B but solved by 32B model
• Level 4 (Hardest): Problems failed by all three models

E.5 DATA FORMAT CONVERSION

After categorization, we convert the data into Hugging Face Dataset format for efficient training:
1 from datasets import Dataset
2 import jsonlines
3

4 def convert_to_hf_format(data_path, target_path):
5 data = list(jsonlines.open(data_path, mode="r"))
6 dataset = Dataset.from_list(data)
7 dataset.save_to_disk(target_path)
8 return dataset

Listing 2: Dataset Format Conversion

F TRAINING PROMPT SAMPLING STRATEGY

F.1 GRPO CONFIGURATION

Our training employs Group Relative Policy Optimization (GRPO) with carefully designed sampling
strategies. The key configuration parameters are:

Table 10: GRPO Training Configuration

Parameter Value
num_prompts_per_step 32
num_generations_per_prompt 16
max_rollout_turns 1
normalize_rewards True
use_leave_one_out_baseline false
reference_policy_kl_penalty 0.001
ratio_clip_min 0.2
ratio_clip_max 0.2

F.2 PROMPT TEMPLATE DESIGN

The prompt template is designed to encourage step-by-step reasoning:
1 Solve the following math problem. Make sure to put the answer (and only

answer) inside \boxed{}.
2

3 {problem_statement}

Listing 3: Mathematical Reasoning Prompt Template

G EVALUATION SAMPLING STRATEGY

G.1 MULTI-SHOT EVALUATION

For robust evaluation, we implement multi-shot sampling with different repetition counts based on
dataset characteristics:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: Evaluation Sampling Configuration

Dataset Repetitions Sampling Strategy
MMLU-Pro 2 Temperature=0.6, TOP_P=0.95
GPQA 1 Temperature=0.6, TOP_P=0.95
SuperGPQA 1 Temperature=0.6, TOP_P=0.95
AIME24 10 Temperature=0.6, TOP_P=0.95
AIME25 10 Temperature=0.6, TOP_P=0.95
Olympiad 4 Temperature=0.6, TOP_P=0.95
Minerva 4 Temperature=0.6, TOP_P=0.95

G.2 ANSWER EXTRACTION AND VERIFICATION

We implement sophisticated answer extraction mechanisms for different question types:

G.2.1 MATHEMATICAL EXPRESSION MATCHING

For mathematical problems, we extract answers using LaTeX pattern matching:

1 ANSWER_PATTERN_BOXED = r"(?i)\\boxed\s*{([^\n]+)}"
2

3 def extract_mathematical_answer(response_text):
4 match = re.search(ANSWER_PATTERN_BOXED, response_text)
5 if match:
6 extracted_answer = match.group(1)
7 # Normalize the extracted answer
8 extracted_answer = normalize_response(extracted_answer)
9 return extracted_answer

Listing 4: Mathematical Answer Extraction

G.2.2 MULTIPLE CHOICE ANSWER EXTRACTION

For multiple-choice questions, we extract answers using pattern matching:

1 ANSWER_PATTERN_MULTICHOICE = r"(?i)Answer[\t]*:[\t]*\$?([A-D])\$?"
2

3 def extract_multiple_choice_answer(response_text):
4 match = re.search(ANSWER_PATTERN_MULTICHOICE, response_text)
5 if match:
6 extracted_answer = match.group(1).upper()
7 return extracted_answer

Listing 5: Multiple Choice Answer Extraction

G.3 EQUIVALENCE CHECKING

For problems, we implement equivalence checking using a dedicated LLM:

1 EQUALITY_TEMPLATE = r"""
2 Look at the following two expressions (answers to a math problem) and

judge whether they are equivalent. Only perform trivial
simplifications.

3

4 Examples:
5 Expression 1: $2x+3$
6 Expression 2: $3+2x$
7 Yes
8

9 Expression 1: 3/2
10 Expression 2: 1.5

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

11 Yes
12

13 Expression 1: x^2+2x+1
14 Expression 2: $(x+1)^2$
15 Yes
16

17 YOUR TASK:
18 Respond with only "Yes" or "No" (without quotes).
19

20 Expression 1: %(expression1)s
21 Expression 2: %(expression2)s
22 """
23

24 def check_equality(sampler, expr1, expr2):
25 prompt = EQUALITY_TEMPLATE % {"expression1": expr1, "expression2":

expr2}
26 response = sampler([dict(content=prompt, role="user")])
27 return response.lower().strip() == "yes"

Listing 6: Equivalence Verification

G.4 EVALUATION PIPELINE

The complete evaluation pipeline processes datasets in parallel:

Algorithm 2 Evaluation Pipeline

Require: Dataset D, Model M , Evaluation Config C
1: Load dataset D from remote URL
2: Shuffle examples with fixed seed for reproducibility
3: Initialize sampler with model M and config C
4: for each example e ∈ D do
5: Generate response r using sampler
6: Extract answer a from response r
7: Compute score s based on ground truth
8: Store result (e, r, a, s)
9: end for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

H IMPLEMENTATION DETAILS

H.1 DETAILS IN MOTIVATION

In section 4, for each problem, we first sample K=64 full chain-of-thought (CoT) solutions with
nucleus sampling (temperature = 0.6, top-p = 0.95, max new tokens = 32k). Each solution is labeled
as correct or incorrect by exact matching the final answer against the ground truth.

H.2 MULTI-PROCESSING FOR DATA GENERATION

For efficient data generation, we implement multi-processing with dynamic GPU allocation:

1 def worker_process_dynamic(proc_id, task_queue, progress_queue, config):
2 # Dynamic GPU allocation based on process ID
3 global_cuda_visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
4 available_gpus = [x.strip() for x in global_cuda_visible.split(",")]
5 assigned_gpus = []
6 for i in range(config["tensor_parallel"]):
7 assigned_index = (proc_id * config["tensor_parallel"] + i) % len(

available_gpus)
8 assigned_gpus.append(available_gpus[assigned_index])
9 os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(assigned_gpus)

10

11 # Initialize model with assigned GPUs
12 model = LLM(
13 model=config["base_model_name"],
14 tensor_parallel_size=config["tensor_parallel"],
15 max_model_len=config["max_tokens"],
16 gpu_memory_utilization=0.95,
17)

Listing 7: Multi-Processing Data Generation

H.3 HYPERPARAMETER CONFIGURATION

Key hyperparameters for training:

Table 12: Training Hyperparameters

Parameter Value
Learning Rate 1.0e-6
Weight Decay 0.01
Batch Size 512
Max Sequence Length 512
Precision bfloat16
Temperature 1.0
Top-p 1.0

I TRAINING DYNAMIC DISCUSSION

I.1 REASONING LENGTH REDUCTION

To make the efficiency gains concrete, we report a representative item solved by Qwen3-8B. Before
RLPIR training, the model produced a 2802-token solution. After RLPIR with a 512-token prefix
budget, the same item was solved in 1299 tokens—a 53.6% reduction—while yielding the same
final answer. This case study aligns with the aggregate trend reported in Section 7.3, indicating
that optimizing the early prefix encourages earlier commitment to high-consistency trajectories and
prunes meandering continuations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Qwen3-8B’s answer before training: 2802tokens

The question is: ## Task 2\n\nAs the special train stops, a freight
train passes by. Peter counts the cars: Right after the
locomotive, 5 closed cars pass. Then follow 4 times as many
open cars. At the end, 6 tank cars pass.\n\nHow many cars does
the freight train have?

↪→
↪→
↪→
↪→

Response:
<think>
Okay, let me try to figure out how many cars are in the freight

train. So, Peter is counting the cars as the freight train
passes by. Let me break down the information step by step.

↪→
↪→
[... (reasoning omitted for brevity) ...]
</think>
The freight train's composition is described in a sequence by Peter

as it passes by. He counts the cars in the following order:↪→
- **After the locomotive**, 5 **closed cars** pass.
- Then, **4 times as many open cars** follow the closed cars.
- Finally, 6 **tank cars** conclude the train.
To determine the total number of **cars**, we first calculate the

number of each type:↪→
- Closed cars: 5
- Open cars: 4 × 5 = 20
- Tank cars: 6
Adding these together gives:
$$
5 + 20 + 6 = 31
$$
The problem specifies that Peter counts the **cars**, and since the

locomotive is mentioned as a separate entity ("right after the
locomotive"), it is **not** included in the count of cars.

↪→
↪→

Final Answer:
$$
\boxed{31}
$$

Qwen3-8B’s answer after RLPIR training: 1299 tokens

<think>
Okay, let's see. So the problem is about Peter counting the cars of

a freight train as it passes by. The question is asking how
many cars the freight train has in total. Let me break down the
information given step by step.

↪→
↪→
↪→
[... (reasoning omitted for brevity) ...]
</think>
To determine the total number of cars in the freight train, we

analyze the sequence as described:↪→
1. **After the locomotive**, there are **5 closed cars**.
2. **Then**, there are **4 times as many open cars** as closed

cars. Since there are 5 closed cars, this means:↪→
$ 4 \times 5 = 20 $ open cars.

3. **At the end**, there are **6 tank cars**.
Adding these together gives the total number of cars:
$$
5 \text{ (closed)} + 20 \text{ (open)} + 6 \text{ (tank)} = 31
$$
Thus, the freight train has:
$$
\boxed{31}
$$

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Qwen3-8B’s answer after GRPO training: 3271

The question is: ## Task 2\n\nAs the special train stops, a freight
train passes by. Peter counts the cars: Right after the
locomotive, 5 closed cars pass. Then follow 4 times as many
open cars. At the end, 6 tank cars pass.\n\nHow many cars does
the freight train have?

↪→
↪→
↪→
↪→

Response:
<think>
Okay, let's see. So the problem is about Peter counting the cars of

a freight train as it passes by. The question is asking how
many cars the freight train has in total. Let me try to break
down the information given

↪→
↪→
↪→
step by step.
[... (reasoning omitted for brevity) ...]
</think>.
To determine how many **cars** the freight train has, we need to

carefully analyze the sequence of events described:↪→

Step-by-Step Breakdown
1. **After the locomotive**, Peter observes **5 closed cars**.

- These are the first set of cars.
- So, we count **5** cars.

2. **Then follow 4 times as many open cars**.
- This means the number of open cars is **4 times** the number

of closed cars.↪→
- Since there are 5 closed cars, the number of open cars is:
$$
4 \times 5 = 20
$$

- So, we add **20** more cars.
3. **At the end**, **6 tank cars** pass by.

- This is the final set of cars.
- Add **6** more cars.

Total Number of Cars
Now, summing up all the cars (excluding the locomotive, as the

problem refers to "cars" and the locomotive is a separate
unit):

↪→
↪→
$$
5 \text{ (closed cars)} + 20 \text{ (open cars)} + 6 \text{ (tank

cars)} = 31↪→
$$

Final Answer
$$
\boxed{31}
$$

I.2 SIMILARITY IMPROVEMENT

To verify that RLPIR effectively increases intra-group semantic agreement, we track the average
pairwise cosine similarity among sampled prefixes during training. We observe a steady upward
trend in similarity as optimization progresses, indicating that the policy learns to generate more
coherent and self-consistent reasoning prefixes over time. This improvement confirms that the intra-
group consistency reward provides a strong learning signal and successfully guides the model toward
producing reasoning trajectories that are both semantically aligned and mutually consistent.

I.3 COLLAPSE PHENOMENON WITHOUT ASYMMETRIC ADVANTAGES

We further analyze the behavior of RLPIR when the asymmetric advantage clipping in Eq. 8 is
removed. In this setting, the model rapidly drives similarity to an extreme by generating nearly

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

train/rewards_sim

100 200 300 400

Step

0.94

0.95

0.96

0.97

0.98

0.99

2025/9/21 20:30 train_reward_sim.svg

file:///C:/Users/wenyao/Downloads/train_reward_sim.svg 1/1

Figure 4: Average pairwise cosine similarity among sampled reasoning prefixes during training. The
clear upward trend indicates that RLPIR enhances intra-group semantic agreement and encourages
the generation of more coherent and self-consistent reasoning trajectories.

validation/rewards_sim

100 200 300 400

Step

0.515

0.52

0.525

0.53

2025/9/21 20:29 test_reward_sim.svg

file:///C:/Users/wenyao/Downloads/test_reward_sim.svg 1/1

Figure 5: Trend of average pairwise cosine similarity on the AIME24 benchmark. The consistent
increase demonstrates that the model progressively learns to produce reasoning prefixes that are
semantically closer and more coherent as training advances.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

identical and repetitive continuations, leading to a collapse of diversity. This repetition causes a
sharp drop in task accuracy and results in drastically shortened outputs. Such “mode collapse”
behavior highlights the importance of penalizing only low-consistency samples: the Asymmetric
design regularizes the policy, maintains useful variability in reasoning trajectories, and prevents
degenerate solutions that maximize similarity without improving actual reasoning quality.

Collapse Phenomenon without One-Sided Advantages

The question is: ## Task 2\n\nAs the special train stops, a freight
train passes by. Peter counts the cars: Right after the
locomotive, 5 closed cars pass. Then follow 4 times as many
open cars. At the end, 6 tank cars pass.\n\nHow many cars does
the freight train have?

↪→
↪→
↪→
↪→

Response:
<think>
Okay, let's see. Let me try to break down the information given

step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. Let me try to break down the information given
step by step. [... (repeat reasoning content omitted for
brevity) ...]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

J MORE EXPERIMENTS

J.1 EFFECT OF EMBEDDING METHOD

To assess the sensitivity of our intrinsic reward to the embedding model, we ablate three embedding
method. As shown in Table 13, the performance of RLPIR is remarkably robust to the choice of
embedding.

Embedding Method Acc↑ Len(tokens)

all-MiniLM-L6-v2 78.8 11797
Qwen3-Embedding-0.6B 78.6 11239
TF-IDF 78.1 12016

Table 13: Ablation study on the embedding method for computing intra-group consistency. Results
are on AIME24 with the Qwen3-8B model. Performance is stable across different embedding meth-
ods.

23

	Introduction
	Related Work
	Reinforcement Learning for Reasoning in LLMs
	Beyond Verifiable Rewards
	Efficient Reinforcement Learning Training Paradigms

	Preliminary
	Reinforcement Learning with Verifiable Rewards (RLVR)

	Motivation
	Prefix Optimization Suffices to Improve Reasoning
	High-consistency Prefix Yields High-quality Reasoning Trajectory

	Methodology
	Problem Formulation
	Prefix Rollout
	Intra‑group Consistency Reward
	Asymmetric Advantages

	Experiments
	Training Setup
	Models and Training Data
	Baselines
	Evaluation

	Main Results
	Training Effectiveness and Generalization
	Compute Efficiency
	Reasoning Efficiency

	Ablation Study
	Effect of Prefix Length
	Effect of Asymmetric Advantages
	Effect of Training-Data Difficulty

	Conclusion and Future Work
	Ethics Statement
	Reproducibility Statement
	LLM Usage
	Limitations
	Data Preparation
	Training Data Distribution
	Prefix DPO Training
	Initial Data Collection
	Difficulty-Based Data Categorization
	Data Format Conversion

	Training Prompt Sampling Strategy
	GRPO Configuration
	Prompt Template Design

	Evaluation Sampling Strategy
	Multi-Shot Evaluation
	Answer Extraction and Verification
	Mathematical Expression Matching
	Multiple Choice Answer Extraction

	Equivalence Checking
	Evaluation Pipeline

	Implementation Details
	Details in Motivation
	Multi-Processing for Data Generation
	Hyperparameter Configuration

	Training Dynamic Discussion
	Reasoning Length Reduction
	Similarity Improvement
	Collapse Phenomenon without Asymmetric Advantages

	More Experiments
	Effect of Embedding Method

