Under review as a conference paper at ICLR 2026

RLPIR: REINFORCEMENT LEARNING WITH
PREFIX AND INTRINSIC REWARD

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) for large language mod-
els faces two critical limitations: (i) reliance on verifiable rewards restricts ap-
plicability to domains with accessible ground truth answers; (ii) training de-
mands long rollouts (e.g., 16K tokens for complex math problems). We pro-
pose Reinforcement Learning with Prefix and Intrinsic Reward (RLPIR), a
verifier-free reinforcement learning framework that learns from intrinsic rewards
while reducing compute. RLPIR includes (1) a prefix rollout paradigm that
avoids long rollouts by optimizing only the first L tokens, and (2) an intra-group
consistency reward that eliminates reliance on verifiable rewards by measuring
consistency among multiple sampled outputs. Across mathematical and general
benchmarks, RLPIR matches RLVR’s performance without ground truth, while
substantially reducing training time by 6.96 x. Moreover, RLPIR reduces reason-
ing sequence length by 45%, significantly improving the reasoning efficiency of

LLMs.

1 INTRODUCTION

Large-scale Reinforcement Learning with Verifiable
Rewards (RLVR) has demonstrated remarkable po-
tential in advancing the reasoning capabilities of
Large Language Models (LLMs), achieving break-
throughs in complex problem-solving tasks such as
mathematical reasoning and code generation (Jaech
et al., 2024; DeepSeek-Al et al., 2025). By leverag-
ing external verifiers to provide precise reward sig-
nals, RLVR frameworks like GRPO (Hu et al., 2025)
have enabled LLMs to refine their reasoning pro-
cesses through iterative feedback.

However, RLVR faces an “impossible triangle” of
practical challenges: (1) Verifier dependence. Re-
liance on domain-specific verifiers confines RLVR
to domains with accessible ground-truth answers
(e.g., mathematics), leaving general-domain reason-
ing, where answers are free-form and ambiguous,
largely unexplored (Ma et al., 2025)). (2) High train-
ing cost. The lengthy rollout sequences required for

\ (DNo ground truth required
Unsupervised Training

Figure 1: RLPIR makes the “impossible
triangle” possible. It achieves (1) unsuper-
vised training without ground truth, (2) low-
cost training via prefix rollouts (~6.96x
faster), and (3) efficient inference with a
45% reduction in reasoning length.

training (e.g., ~16K tokens for complex math problems) incur substantial computational overhead,
limiting practical deployment (Zeng et al.,[2025)). (3) Inference inefficiency. RLVR-trained models
(e.g., GRPO) tend to produce gradually longer responses during training (DeepSeek-Al et al.|[2025)),

reducing inference efficiency.

To address these "impossible triangle” challenges, we propose RLPIR (Reinforcement Learning
with Prefix and Intrinsic Reward). Our motivation is that the beginning of a solution (for example,
the first 512 tokens) usually contains important decisions that determine the rest of the reasoning
trajectory, yielding the correct solution. Therefore, training only on the prefix can maintain high

effectiveness while increasing efficiency.

Under review as a conference paper at ICLR 2026

Motivated by this, RLPIR optimizes only a short prefix (e.g., L = 512). To enable effective training
at such short lengths, RLPIR introduces two core innovations: (1) Prefix rollouts. A prefix rollout
paradigm that truncates training sequences to L tokens (e.g., 512 tokens), significantly reducing
computational cost compared to RLVR baselines by focusing policy optimization on the prefix of
reasoning chain, which contains critical decision points, thereby drastically reducing computational
costs. (2) Intra-group consistency reward. For each prompt, we sample a group outputs and
quantify their consistency to derive an intrinsic reward, removing the need for external verifiers.

Experimental results demonstrate that RLPIR matches the performance of verifier-dependent RLVR
methods (e.g., GRPO) on mathematical and general benchmarks while reducing computational costs
drastically without relying on ground truth answers. Notably, our framework achieves a 45% reduc-
tion in reasoning sequence length, significantly improving reasoning efficiency.

Our contributions are as follows: (1) We propose RLPIR, a novel RL paradigm eliminating reliance
on ground truth answers. (2) We develop a prefix rollout training strategy that reduces training time
by 6.96x compared to standard RLVR baselines. (3) We introduce a novel intra-group consis-
tency reward that eliminates the need for external verifiers and achieves performance comparable
to RLVR in mathematical domains, while demonstrating strong generalization in general domains.
(4) Our method achieves a 45% reduction in reasoning length during inference, achieving efficient
inference for LLMs.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FOR REASONING IN LLMS

Reinforcement learning (RL) has emerged as a powerful framework for optimizing LLM reason-
ing, complementing supervised fine-tuning (SFT) by refining decision-making via feedback signals.
Notable successes include DeepSeek-R1 (DeepSeek-Al et al., [2025) and GRPO (Hu et al.l [2025)),
which leverage verifiable rewards such as code execution results or mathematical correctness to
achieve state-of-the-art performance. However, RL with verifiable rewards (RLVR) faces two major
bottlenecks: reliance on domain-specific verifiers (e.g., Math-Verify (Hynek & Greg, |[2025))), which
limits generality (He et al.,[2025)), and high computational cost from long rollouts (e.g., 16K tokens
for math problems) (Zeng et al., 2025). Recent work aims to improve RL training by leveraging
additional signals or trajectories. LUFFY (Yan et al., |2025) introduces off-policy guidance with
high-quality reasoning trajectories and regularized importance sampling to balance imitation and
exploration, outperforming pure on-policy RLVR. Token-supervised value models (Lee et al.| [2025)
estimate correctness probabilities at each token, enabling fine-grained credit assignment during tree
search and reducing pruning errors.

2.2 BEYOND VERIFIABLE REWARDS

To mitigate RLVR’s reliance on ground-truth verifiers, researchers have explored alternative reward
signals. Generative reward models (Ma et al.l [2025)) and self-reward mechanisms (Zhou et al.|
2024) use auxiliary models or policy consistency to evaluate reasoning quality. Policy-likelihood
rewards (Yu et al,, [2025) extend RLVR to settings without verifiable answers but are limited to
short outputs, while entropy minimization strategies (Agarwal et al., [2025) encourage deterministic
reasoning at the risk of suppressing diversity. Another promising direction leverages internal con-
sistency signals: Xie et al.| (2024) decode intermediate layer predictions and weight self-consistent
reasoning paths to improve calibration in chain-of-thought reasoning. Our intra-group consistency
reward generalizes this idea to group-level semantic similarity, providing a differentiable intrinsic
reward that eliminates reliance on external verifiers.

2.3 EFFICIENT REINFORCEMENT LEARNING TRAINING PARADIGMS

Efficiency remains a key challenge in RL for reasoning. Full-rollout RLVR is computationally ex-
pensive, motivating research on more efficient paradigms. TTRL (Zuo et al., [2025) and Absolute
Zero (Zhao et al.| |2025) explore test-time refinement and self-play but remain task-specific. Con-
trolled decoding approaches such as prefix scorers (Mudgal et al.| 2024)) bias generation under a
reward—KL tradeoff to reduce inference-time cost. Prefix-based training has also been studied for

Under review as a conference paper at ICLR 2026

supervised setups (Ji et al.,2025)) but its integration into RL remains underexplored. Our method ad-
dresses this gap by using prefix rollouts, truncating training to critical decision points and reducing
compute by 6.96 x relative to standard RLVR.

3 PRELIMINARY

3.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement Learning with Verifiable Rewards (RLVR) trains large language models (LLMs)
using programmatically verifiable signals of correctness—such as mathematical validity, logical
consistency, or code execution results.

Given an input ¢ and an output trajectory 7, RLVR defines a verifiable reward r(¢q,7) € R that
quantifies the correctness of 7 based on predefined rules or external verification tools. For example,
in code generation, r(g, 7) can indicate whether the generated program passes a suite of unit tests.
With a policy model 7y, we sample a response T ~ gy (- | ¢) and compute the reward as

r(q,7) = [[Verify(q, 7) = True], (1)

where Verify(+) is a deterministic function that checks whether 7 meets the specified correctness
criteria. The RLVR objective maximizes the expected verifiable reward while regularizing the policy
towards a reference model 7pes:

H}%X IETNTFQ(-lq)[T(q7 T)] - BDKL(TFQ || 7Tref)7 (2

where 3 > 0 controls the strength of the regularization.

RLVR is commonly instantiated with policy-gradient methods such as REINFORCE (Williams,
1992), PPO (Schulman et al., 2017), or GRPO (Shao et al.,[2024a)). The GRPO objective (omitting
clipping for brevity) is

G

Jareo(0) = IE:{Tg}g 1~ (1) Z(

mo(7g | q)
ﬂ-eref(Tg | q

Ag — Do (7 || 7Tref)) 3)

where the KL-divergence term is calculated as:

7rref(7_g | Q) “lo 7Tref(7_g | Q)

Dgr(7o || Mrer) = -1, (4)
(rollmer) = e Ta) ~ ' Tty 1)
and the advantage A, is computed via group-wise standardization of rewards {r1,...,7¢}:

4, = ry —mean({ri,...,ra}) . 5)

std({r1,...,7¢})

Despite its appeal, RLVR still hinges on ground truth: rewards exist only when a trusted verifier
or gold answer is available. Moreover, 7 (g, 7) is computable only after the model completes a full
trajectory, yielding delayed and often sparse feedback that is costly and domain-specific (Liu et al.,
2025} Team et al., 2025). These properties limit its applicability beyond well-specified domains and
tasks with ambiguity or subjective goals.

4 MOTIVATION

This work proposes a paradigm shift from full reasoning trajectory optimization with verifiable
rewards to prefix optimization without relying on verifiable rewards, aiming at addressing crucial
challenges for RLVR. This section presents the preliminary studies that ground the motivations
of this proposal, and provide evidence supporting the design of prefix rollout and intra-group
consistency reward, the two core elements of RLPIR.

Under review as a conference paper at ICLR 2026

4.1 PREFIX OPTIMIZATION SUFFICES TO IMPROVE REASONING

The first study explores whether prefix optimization can _ Model AIME24 Accuracy (%)
play a similar role to full-length trajectory optimization ?;!zﬁicongi PO 287
for RL training. For this purpose, we fine-tuned Qwen3- . prefix DPO (512 tokens) 133

0.6B with DPO on the AIME24 benchmark under the full-
length reasoning trajectory (i.e., Full-length DPO) and 512- Table 1: Prefix DPO versus Full-
token prefix (i.e., Prefix DPO) settings. As shown in Ta- length DPO on AIME24.

ble[l] prefix-only DPO substantially improves over the Qwen3-0.6B base model and performs nearly
on par with full-length DPO (See Section [E.2] for the training reward dynamics). This suggests that
the first 512 tokens capture most of the learnable signal and that the policy learned on short prefixes
generalizes to full-length reasoning trajectories. It motivates us to adopt prefix optimization in
the RLPIR method.

4.2 HIGH-CONSISTENCY PREFIX YIELDS HIGH-QUALITY REASONING TRAJECTORY

The second study investigates the strategy for prefix optimization in the absence of verifiable re-
wards. We hypothesize that within a group of decent-looking reasoning trajectories, the prefix
that is most semantically related to others is most likely to yield a correct reasoning trajec-
tory. To test this hypothesis, we designed a controlled “forced-prefix continuation” task, where we
forced Qwen3-8B to generate the full chain-of-thought solution based on the prefix on the AIME24
benchmark. For each problem, 64 full chain-of-thought solutions were sampled as marked as cor-
rect/incorrect based on their final answers. Then, the “best” prefix was selected with three different
strategies from the first L tokens of the solutions:

* A: High-consistency. The first L tokens of all solutions (K = 64 in total) were em-
bedde Then, for each solution ¢ with embedding e;, we estimated its overall seman-
tically relatedness with other prefixes by computing its intra-group consistency score

=% ZZK cos(e;, ej). The prefix with the greatest value of ¢; was selected.

* B: Random correct. The best prefix was randomly picked from the correct solutions with
a uniform distribution.

* C: Random incorrect. The best prefix was randomly picked from the incorrect solutions
with a uniform distribution.

Prefix Length Prefix Selection Strategy Accuracy (%)

A: High-consistency 77.1
512 tokens B: Random correct 75.0
C: Random incorrect 514
A: High-consistency 78.1
1024 tokens B: Random correct 77.2
C: Random incorrect 50.1
Owen3-8B baseline 73.0

Table 2: Accuracy of forced-prefix continuation under different prefix selection strategies on
AIME24. The high-consistency prefixes markedly boost performance over random correct ones,
while incorrect-solution prefixes cause severe degradation.

Table [2] shows the accuracy of the forced-prefix continuation task on AIME24, where the prefixes
were selected with all three strategies above with length L=>512 or 1024. At both lengths, the high-
consistency prefixes attain a superior performance over random correct, with a more remarkable gap
at L=>512 where high-consistency prefixes raises accuracy to 77.1% (vs 73.0% baseline). These
results indicate that the first few hundred tokens capture the pivotal decisions of the reasoning chain,
justifying our training strategy of intra-group consistency reward, where we generalize this idea
into a differentiable intrinsic reward for reinforcement learning.

Under review as a conference paper at ICLR 2026

Trained
Model

RLVR Frozen
(illustrated Reference Model Model
(hustated
A Group

D —_— :’IOI("‘C); E—— [2 —> Verifiable Rewards —> " Normalize

lode!

Full Rollout
L=16K [:] R(q,0) = 1[Verify(q, 0) = True] [:]
Reference Model =_ -
RLPIR : =01
T1=-01 B =-01
Poli . Group 1 Asymmetric 2

D-» M‘:xl;z _— . Intrinsic Reward —» - — Normalize — — Advantages —*

Prefix . 3 =

Rollout () ¢, = embedding(ry) €RY, () A~ aopellua) (=_—gp) As=min(0,4y), E=ry)

L=512 1

e= e
9

g = cos(eg,).

Figure 2: Comparison of RLVR (Reinforcement Learning with Verifiable Reward) and RLPIR
(Reinforcement Learning with Prefix and Intrinsic Reward). While RLVR suffers from high com-
putational costs due to long rollouts and relies on ground-truth verification, RLPIR achieves effi-
cient training via short prefix rollouts and intrinsic rewards without requiring external verification.
In addition, RLPIR employs Asymmetric Advantages to prevent reward hacking and maintain di-
versity while regularizing the policy effectively.

5 METHODOLOGY

As motivated in Section[d we introduce Reinforcement Learning with Prefix and Intrinsic Reward
(RLPIR), a novel reinforcement learning framework that addresses the limitations of traditional
RLVR by introducing two key innovations: (1) a prefix rollout paradigm that optimizes only the first
L tokens, and (2) an intra-group consistency reward that measures consistency among multiple
sampled outputs, eliminating reliance on verifiable rewards. Figure [2] illustrates the framework’s
architecture compared to conventional RLVR (e.g., GRPO) approaches.

5.1 PROBLEM FORMULATION

Let ¢ denote an input prompt drawn from a dataset D. The policy model 7y produces a partial
trajectory 7 = (t1,...,tr,) consisting of the first L tokens of the full reasoning chain. Our goal is to
maximize the expected intrinsic reward r(q, 7) while constraining policy drift with a KL-divergence
penalty:

ngaX]EqND, T~7r9(~\q)|:r(Q7 T) - BDKL(WGH'/Trcf)} , (6)

where ¢ is the frozen reference policy and /3 controls the regularisation strength. The remainder
of this section details the design of (g, 7) and the prefix rollout schedule.

5.2 PREFIX ROLLOUT

Long rollouts (e.g., ~ 16K tokens math) dominate the wall-clock cost in Reinforcement Learning
with Verifiable Rewards (RLVR). Inspired by the analysis in Section[d] we train exclusively on the
initial prefix of length L = 512 tokens. During training, rewards and policy gradients are computed
only over this prefix of L tokens. However, at evaluation time, the model is allowed to generate
freely beyond L tokens to complete the output.

"We use all-MiniLM-L6-v2 as embedding model

Under review as a conference paper at ICLR 2026

5.3 INTRA-GROUP CONSISTENCY REWARD

We achieve the intrinsic reward via Intra-group Consistency, using semantic similarity as the
reward signal. For each prompt ¢ we sample GG independent rollouts {Tg}gz1 under the current

policy. Each rollout 7, is embedded with a sentence encodelﬂ We measure similarity to the group
center € using cosine similarity, as described in Section [4.2]for computing high consistency:

. _ 1 _
ey = embedding(r,) € RY, €= I ; g, Ty = cos(eg, e). 7

5.4 ASYMMETRIC ADVANTAGES

To mitigate reward hacking caused by excessive similarity, which could lead to model collapse,
we adopt an asymmetric advantage mechanism. We first compute the cosine similarity scores 7,
standardize them, and then convert the standardized scores into asymmetric advantages by clipping
the positive branch:

rg—mean({r,...,ra}) o i
A, = e A, =min(0, A,). (8)

Only prefixes that are less consistent than the group average (flg < 0) get a non-zero (negative)
advantage. We penalize those low-consistency samples and give no reward to already-similar ones.
This prevents reward hacking while keeping useful diversity.

6 EXPERIMENTS

6.1 TRAINING SETUP

We implement RLPIR using Nemo-RL (nem, |2025). For each problem in a training batch, we
generate a group of G = 16 candidate solutions. Crucially, each rollout is limited to L = 512
tokens, as motivated by the ablation results in Section[8.1]

The intrinsic reward for each prefix is calculated based on its semantic consistency within its group.
We embed each L = 512 token prefix using the all—MiniLM-L6-v sentence encoder.

For policy optimization, we use GRPO (Shao et al., [2024b). We process a batch of 32 problems
per step, with a constant KL-divergence penalty of 3 = 0.001 to regularize the policy and prevent
deviation from the reference model. All models are trained using the AdamW optimizer with a
learning rate of 1 x 10~5. Experiments were conducted on 8 x NVIDIA A100 GPUs.

6.2 MODELS AND TRAINING DATA

Our experiments are conducted on several base models to demonstrate the broad applicability of
RLPIR. We apply our training method to Llama (Meta Al 2024), Qwen2.5 (Yang et al., [2024) and
Qwen?3 series (Team, 2025al).

We construct our training set from two public math corpora, Opean—Math—ZZOkE] and Big-Math-
RL-Veriﬁe(ﬂ For each problem, we run inference with three models (Deepseek R1 1.5B, Deepseek
R1 7B (DeepSeek-Al et al.l [2025), and QWQ 32B (Team|, 2025b)) and log their correctness. We
then define a four-stage data split strategy: problems solved by the 1.5B model are labeled as Level 1
(easiest); those missed by 1.5B but solved by 7B form Level 2; items only solved by the 32B model
become Level 3; and those unsolved by all three are Level 4 (hardest). This pipeline filters out
trivially easy or completely intractable items, yielding a challenging yet learnable dataset focused

2We use al1-MiniLM-L6-v2 as the embedding model.
3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
*https://huggingface.co/datasets/open-r1/OpenR 1-Math-220k
>https://huggingface.co/datasets/SynthLabsAl/Big-Math-RL-Verified

Under review as a conference paper at ICLR 2026

Model General Math Avg
MMLU-Pro T GPQA 1 SuperGPQA 1 |AIME 24 1 AIME 251 Olympiad © Minerva 1 | General ¥ Math 1
Llama Models

Llama3.1-8B-Inst 46.9 30.2 222 3.0 0.0 13.0 10.2 33.1 6.6

+RLPIR(ours) 47.0 31.8 21.0 4.3 0.0 15.3 12.6 ‘ 33.2 8.1
Qwen2.5 Models

Qwen2.5-7B-Inst 56.6 338 29.0 11.6 8.5 342 26.1 39.8 20.1
+RLPIR(ours) 58.5 35.5 31.6 16.2 14.7 38.3 31.1 41.9 25.1

Qwen2.5-14B-Inst 62.7 41.4 35.0 I1.3 11.0 37.3 29.7 46.4 223
+RLPIR(ours) 65.5 42.9 38.3 16.2 154 424 34.0 48.9 27.0

Qwen3 Models

Qwen3-4B-Inst 63.7 53.0 42.4 72.6 64.3 61.4 334 53.0 57.9
+RLVR 59.5 50.4 33.8 80.9 70.7 66.5 43.2 479 65.3
+RLPIR(ours) 65.1 53.9 42.0 71.3 69.8 65.7 38.6 53.7 62.9

Qwen3-8B-Inst 67.7 61.1 48.5 73.0 66.0 63.5 35.6 59.1 59.5
+RLVR 65.8 61.7 40.6 80.1 73.3 68.5 40.8 56.0 65.7
+RLPIR(ours) 69.7 62.2 46.2 78.8 722 69.3 40.0 59.3 65.1

Qwen3-14B-Inst 2.4 65.1 525 80.0 70.3 63.4 37.1 63.3 62.7
+RLVR 71.5 61.0 50.3 86.6 78.7 66.1 40.2 60.9 67.9
+RLPIR(ours) 75.1 66.4 53.0 86.2 76.9 67.9 41.9 64.8 68.2

Table 3: Main results. RLVR is implemented as full-length GRPOgx; RLPIR uses a 512-token
prefix during training. Without any external verifiers or ground-truth labels, RLPIR attains
math performance on par with verifier-dependent RLVR baselines. Beyond mathematics, RLPIR is
consistently more robust on general-domain benchmark

on informative examples. After filtering, our splits contain 154,817, 80,486, 25,309, and 74,825
problems for Levels 1-4 respectively. Unless noted, all experiments are trained on the Level 3 data.
Moreover, the correct/incorrect sample pairs obtained in this process constitute the DPO training
data used for the training in Section[4.1]

6.3 BASELINES

We compare the performance of RLPIR against several strong baselines to comprehensively evaluate
its effectiveness. Importantly, we do not include comparisons with verifier-free methods based on
probabilistic rewards such as RLPR (Yu et al.l [2025), since our method is explicitly designed for
settings without any ground truth, whereas those approaches still rely on ground-truth signals for
evaluation or reward construction.

Base models. We report the baseline performance of models without any further training, includ-
ing Llama (Meta All [2024), Qwen2.5 (Yang et al) [2024), and the Qwen3 series (Team) |2025a), to
verify the effectiveness of our method across different models.

RL with Verifiable Rewards (RLVR). As a verifier-dependent baseline, we implement GRPO
with full-length rollouts (GRPO¢k), where rewards are computed by programmatic verification
against ground-truth answers. Optimizing on full trajectories (up to ~16K tokens) yields substan-
tially higher cost but represents an approximate upper bound in performance, serving as a reference
for our more efficient verifier-free approach. RLVR uses the same training data in Section

6.4 EVALUATION

We evaluate the reasoning capabilities with multiple general reasoning and mathematical bench-
marks. For math reasoning, we include Olympiad, Minerva, AIME24 and AIME25. For general
domains, we include MMLU-Pro (Wang et al., 2024), GPQA (Rein et al., |2023)), and SuperGPQA.

7 MAIN RESULTS

7.1 TRAINING EFFECTIVENESS AND GENERALIZATION

Table 3| shows that, without any external verifiers or ground-truth labels, RLPIR attains math
performance on par with verifier-dependent RLVR baselines (e.g., GRPO,¢k) while optimizing only
a 512-token prefix. This indicates that high-fidelity reasoning signals can be learned from intrin-
sic, intra-group consistency alone. Beyond mathematics, RLPIR is consistently more robust on

Under review as a conference paper at ICLR 2026

general-domain benchmarks (e.g., MMLU-Pro, GPQA) than both the base models and RLVR,
underscoring stronger cross-task transfer when no domain-specific verifiers are available. Taken
together, these results demonstrate that RLPIR matches RLVR in verifier-friendly domains and
surpasses it in verifier-scarce domains, while also delivering substantially lower training cost via
short-prefix rollouts.

7.2 COMPUTE EFFICIENCY

Method Time Time/step Speed-up

RLVR (GRPOgx) 177.5h 10.65 min
RLPIR (ours, L = 512) 25.5h 1.53 min

We benchmark wall-clock training time on
Qwen3-8B for 1000 optimization steps us-
ing identical hardware and hyper-parameters.
RLVR (GRPOj¢x) requires 177.5 hours, Table 4: Compute Efficiency. Wall-clock training
whereas RLPIR completes in 25.5 hours, time on Qwen3-8B (8 x A100), 1000 steps.
yielding a 6.96x speed-up and an 85.6% reduction in wall-clock time. The observed gains are
consistent with our rollout budget: RLPIR trains on 512-token prefixes while RLVR consumes ~
16K tokens per step. RLPIR substantially lowers training cost.

6.96 <

7.3 REASONING EFFICIENCY

We measure reasoning efficiency by the average number of tokens generated on the AIME24 bench-
mark. Table[5|compares the average response lengths of Qwen3 models in three scenarios: the orig-
inal base model, after RLVR training, and after RLPIR training. While RLVR-based optimization
tends to increase response length, RLPIR produces markedly shorter response while maintaining
accuracy. See Section [. 1| for a detailed case.

Setting Qwen3-4B Qwen3-8B Qwen3-14B Prefix Len AcctT AAcc Len) ALen(%)
(tokens) (tokens) (tokens) (tokens) (tokens)

Base 14229 14539 15280

+RLVR (GRPOx) 15846 16483 17294 Qwen3-88 730 - 14539 -

+RLPIR (ours, L = 512) 11772 9564 9474 256 763 433 9866 32.0%

A vs Base —17.3% —34.2% —38.0% 512 788 +5.8 11797 -18.9%

A vs RLVR —25.7% —42.0% —45.2% 1024 77.0 +4.0 14601 +0.4%

Table 5: Reasoning efficiency. Average re-
sponse lengths (tokens) on AIME24 by model
(columns). Percent changes are computed for
RLPIR relative to the indicated baseline.

Table 6: Effect of prefix length L with Qwen3-
8B on AIME24. A 512-token prefix achieves
the best accuracy while still shortening solutions
substantially.

8 ABLATION STUDY

8.1 EFFECT OF PREFIX LENGTH

We ablate the rollout prefix budget L to understand its effect on both final accuracy and reasoning
efficiency. Using the Qwen3-8B backbone and AIME24 as the validation set, we train RLPIR with
three prefix lengths (L € {256, 512, 1024}) under identical settings (Section and report accuracy
as well as the average response length at evaluation time (the model is free to generate beyond the
prefix length at test time).

Table [6] shows that a 512-token prefix yields the best accuracy, while still providing substantial
length reduction relative to the base model. Shorter prefixes (e.g., L = 256) further compress re-
sponse but slightly underperform in accuracy, suggesting that the reward signal becomes less infor-
mative when too little of the early reasoning is observed. Conversely, longer prefixes (L = 1024)
do not improve accuracy and even increase average length back to the base level.

8.2 EFFECT OF ASYMMETRIC ADVANTAGES

We study the impact of Asymmetric Advantages in Eq. equation [§] which penalize only low-
consistency rollouts and assign zero advantage to highly consistent ones. This design aims to deter
reward hacking behaviors (such as trivial repetition) that can artificially inflate similarity.

Under review as a conference paper at ICLR 2026

As shown in Table [/} removing the Asymmetric clipping causes severe degradation: accuracy col-
lapses to 42.3% and outputs become extremely short (average length ~6.5K tokens), consistent with
a mode-seeking failure where the policy inflates similarity by emitting degenerate continuations. By
contrast, RLPIR with Asymmetric advantages attains higher accuracy and shorter outputs versus the
base model, indicating that the clipped signal effectively regularizes the policy away from collapse
while preserving legitimate diversity. See Section [[.3|for an illustration.

8.3 EFFECT OF TRAINING-DATA DIFFICULTY

Setting Acet AAcc Len| ALen (%)
We study how the difficulty of training data af- (tokens)
fects both accuracy and reasoning efficiency. Qwen3-8B 73.0 00 14539 -
RLPIR (L=512) 788 +58 11797 -18.9%

Recall from Section [6.2] that we partition the
training dataset into four levels (Level 1-4,

easiegt—)hardest) using success rates from pro- Tapie 7: Effect of Asymmetric advantages (Eq.
gressively stronger solvers. Using Qwen3-8B Qwen3-8B (AIME24). Removing it leads to

as the backbone, we fine-tune with RLPIR on o\a14 hacking and large accuracy drops despite
each single level separately and evaluate on gp oo outputs.

AIME24. See table [§] for details.

w/o Asymmetric Advantages 42.3 -30.7 6543 -55.0%

Findings. (1) Accuracy peaks at medium Setting Acct AAcc Len| ALen(%)
difficulty. All levels improve accuracy over vs Base (tokens) vs Base
the base model, with the best score attained Qwen3-8B 73.0 - 14539
by Level 3 (hard-but-solvable) and a mild drop Level I (easy) 773 +4.3 13007 -10.5%
at Level 4. We hypothesize that the intrin- Level2 780 +5.0 12423 —14.6%
: : : : Level 3 788 458 11797 —18.9%
sic consistency signal beneﬁts~ from. items that Lovel 4 (hard) 776 446 9364 Taion
are challenging enough to elicit diverse pre-

Random 781 +5.1 12073 -16.9%

fixes but not so hard that group rollouts become
uniformly noisy. Overly easy items (Level 1)
provide limited gradient signal because most
prefixes already agree; overly difficult items
(Level 4) increase variance and reduce the re-
liability of the group-consistency reward. (2)
Reasoning efficiency improves the most with higher difficulty. Average solution length decreases
monotonically as difficulty increases, with the largest compression observed at Level 4 (Table [).
Harder items induce stronger disagreement across sampled prefixes, which yields larger Asymmet-
ric penalties (Eq. [8) on off-manifold trajectories. Under RLPIR, the policy therefore learns to
commit earlier to high-consistency paths, pruning meandering continuations and producing shorter
final chains despite training only on 512-token prefixes. (3) Robustness to training-data difficulty.
RLPIR is robust to the difficulty distribution of training data: training on a randomly sampled subset
of the full dataset yields gains comparable to difficulty-stratified subsets (Table[g).

Table 8: Effect of training-data difficulty on
AIME24 with Qwen3-8B. “Random” uses 20,000
examples randomly sampled from the entire
dataset.

9 CONCLUSION AND FUTURE WORK

In this work we introduced RLPIR, Reinforcement Learning with Prefix and Intrinsic Reward, a
verifier free training paradigm that allows large language models to attain the "impossible trinity"
by simultaneously achieving: (1) unsupervised training without ground truth, (2) low-cost train-
ing via prefix training, yielding a 6.96 x speedup in training, and (3) efficient inference with a 45%
reduction in reasoning length. In contrast, traditional RLVR methods (e.g., GRPO) rely on exter-
nal verifiers and full-length rollouts (~16K-token in math), which are costly and typically result in
longer responses during inference. RLPIR achieves these goals through two key innovations: (a)
a prefix rollout paradigm that optimizes only the first L tokens, (b) an intra-group consistency
reward that measures consistency among multiple sampled outputs, eliminating reliance on verifi-
able rewards. Across mathematical and general benchmarks, RLPIR matches RLVR’s (e.g., GRPO)
performance without ground truth, while substantially lowering training time by 6.96 x. Moreover,
our method reduces reasoning sequence length by 45%, significantly improving the reasoning ef-
ficiency of LLMs. Moreover, RLPIR exhibits superior domain generalization compared to RLVR,
as its verifier-free design avoids overfitting to narrow, task-specific reward signals, enabling robust
transfer across diverse and open-ended domains. Future work will focus on extending RLPIR to
additional domains and models to further validate its scalability and generalization capabilities.

Under review as a conference paper at ICLR 2026

REFERENCES

Nemo rl: A scalable and efficient post-training library. https://github.com/
NVIDIA-NeMo/RL, 2025. GitHub repository.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-
tiveness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wengin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948,

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng, Bo An,
Yang Liu, and Yahui Zhou. Skywork open reasoner series, 2025. Notion Blog.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model, 2025. URL https://arxiv.org/abs/2503.24290.

Kydli¢ek Hynek and Gandenberger Greg. Math-verify, March 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey
Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben
Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen
Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin,
Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris
Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kap-
pler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred

10

https://github.com/NVIDIA-NeMo/RL
https://github.com/NVIDIA-NeMo/RL
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2503.24290

Under review as a conference paper at ICLR 2026

von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quifionero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

Ke Ji, Jiahao Xu, Tian Liang, Qiuzhi Liu, Zhiwei He, Xingyu Chen, Xiaoyuan Liu, Zhijie Wang,
Junying Chen, Benyou Wang, et al. The first few tokens are all you need: An efficient and effective
unsupervised prefix fine-tuning method for reasoning models. arXiv preprint arXiv:2503.02875,
2025.

Jung Hyun Lee, June Yong Yang, Byeongho Heo, Dongyoon Han, Kyungsu Kim, Eunho Yang, and
Kang Min Yoo. Token-supervised value models for enhancing mathematical problem-solving ca-
pabilities of large language models, 2025. URL https://arxiv.org/abs/2407.12863.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing 1lm reasoning across all domains, 2025. URLhttps://arxiv.org/abs/2505.
14652,

Meta Al Llama 3.2: Revolutionizing edge ai and vision with
open, customizable models. https://ai.meta.com/blog/

llama-3-2-connect—-2024-vision—-edge—-mobile—-devices/, 2024. Accessed:
2025-05-16.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. Controlled decoding from language models, 2024. URL https://arxiv.org/
abs/2310.17022.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

11

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2407.12863
https://arxiv.org/abs/2505.14652
https://arxiv.org/abs/2505.14652
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2311.12022

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300lk

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
IIms. arXiv preprint arXiv:2501.12599, 2025.

Qwen Team. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388\
Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark, 2024. URL https://arxiv.org/abs/2406.01574,

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

Zhihui Xie, Jizhou Guo, Tong Yu, and Shuai Li. Calibrating reasoning in language models with
internal consistency, 2024. URL https://arxiv.org/abs/2405.18711.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance, 2025. URL https://arxiv.org/abs/
2504.14945.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen?2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan
Yao, Zhiyuan Liu, Maosong Sun, and Tat-Seng Chua. Rlpr: Extrapolating rlvr to general domains
without verifiers, 2025. URL https://arxiv.org/abs/2506.18254.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URLhttps://arxiv.org/abs/2503.18892.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
data. arXiv preprint arXiv:2505.03335, 2025.

Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang, Zhaorun Chen, Chenhang Cui, Xiyao
Wang, Yun Li, Linjun Zhang, and Huaxiu Yao. Calibrated self-rewarding vision language models.
arXiv preprint arXiv:2405.14622, 2024.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, Biging Qi, Youbang Sun, Zhiyuan Ma, Lifan Yuan, Ning Ding,
and Bowen Zhou. Ttrl: Test-time reinforcement learning, 2025. URL https://arxiv.org/
abs/2504.16084.

12

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2405.18711
https://arxiv.org/abs/2504.14945
https://arxiv.org/abs/2504.14945
https://arxiv.org/abs/2506.18254
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2504.16084
https://arxiv.org/abs/2504.16084

Under review as a conference paper at ICLR 2026

A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We expect these practices will help the commu-
nity validate our work and push forward future advancements in the field.

C LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

D LIMITATIONS

RLPIR has several limitations: (i) while we empirically validate the effectiveness of a fixed prefix
length L = 512, the framework does not yet include an adaptive mechanism for selecting L, which
could further improve robustness across diverse tasks and contexts; (ii) as is common in reinforce-
ment learning methods, performance can be sensitive to hyperparameters such as KL weight, prefix
length, and learning rate; (iii) due to hardware resource constraints, our experiments focus on repre-
sentative domains and model sizes, so broader validation remains an important direction for future
work.

E DATA PREPARATION

E.1 TRAINING DATA DISTRIBUTION

We construct our training set from two public math corpora, Opean-Math-220kE] and Big-Math-
RL—Veriﬁecﬂ For each problem, we run inference with three models (Deepseek R1 1.5B, Deepseek
R1 7B (DeepSeek-Al et al., [2025), and QWQ 32B (Team, |2025b))) and log their correctness. We
then define a four-stage data split strategy: problems solved by the 1.5B model are labeled as Level 1
(easiest); those missed by 1.5B but solved by 7B form Level 2; items only solved by the 32B model
become Level 3; and those unsolved by all three are Level 4 (hardest). This pipeline filters out
trivially easy or completely intractable items, yielding a challenging yet learnable dataset focused

Shttps://huggingface.co/datasets/open-r1/OpenR 1-Math-220k
"https://huggingface.co/datasets/SynthLabsAl/Big-Math-RL-Verified

13

Under review as a conference paper at ICLR 2026

Training Reward vs. Steps (Qwen3-0.6B, 512-tokens)

—— Chosen Reward ’

Reject Reward ML Lt 1l 1N ——yTY
o me‘MW oA

I

N

|
MW»

o

Reward
|

0 100 200 300 400 500 600

Training Steps

Figure 3: Prefix-only DPO on Qwen3-0.6B (L=512). The reward for chosen prefixes (blue) rises
while the reward for rejected prefixes (orange) falls. This supports our claim that the first L tokens
contain sufficient information to learn a robust reasoning policy, motivating RLPIR’s short-prefix
rollouts.

on informative examples. After filtering, our splits contain 154,817, 80,486, 25,309, and 74,825
problems for Levels 1—4 respectively. Unless noted, all experiments are trained on the Level 3 data.

Level # Problems Proportion (%)
1 (easiest) 154,817 46.15
2 80,486 23.99
3 25,309 7.55
4 (hardest) 74,825 22.31
Total 335,437 100.00

Table 9: Curriculum levels and problem counts in our training set.

E.2 PREFIX DPO TRAINING

Setup. We use the same training corpus as in the main experiments. During corpus curation we
additionally obtain positive/negative pairs per problem (correct vs. incorrect solutions). From each
problem we construct a 512-token prefix pair.

Training. We fine-tune Qwen3-0.6B with DPO on these prefix pairs.

Results. Rewards for chosen prefixes increase while those for rejected prefixes decrease, indicating
that prefixes alone provide a learnable signal. This supports our claim that the first L tokens contain
sufficient information to learn a robust reasoning policy, motivating RLPIR’s short-prefix rollouts.

E.3 INITIAL DATA COLLECTION

Our training data is sourced from two high-quality mathematical reasoning datasets:
SynthLabsAl/Big-Math-RL-Verified and open-r1/OpenR1-Math-220k. The initial data collection
process involves downloading and preprocessing these datasets to create a unified training corpus.

import os

> import jsonlines
3 from datasets import load_dataset

4

6

/

from random import shuffle

dataset_name_1
dataset_name_2

"SynthLabsAI/Big-Math-RL-Verified"
"open-rl/OpenRl1-Math-220k"

14

Under review as a conference paper at ICLR 2026

8 dataset_name_list = [dataset_name_1, dataset_name_2]

9

def

def

process_prompt (example) :
messages = [
{
"role": "system",
"content": "You are a helpful and harmless assistant. You
should think step-by-step.",
br
{

"role": "user",
"content": example["problem"]
br
]
return {"messages": messages}

preprocess_dataset (dataset_name) :

dataset = load_dataset (dataset_name, split="train")
dataset = dataset.map (process_prompt, num_proc=64, batched=False)
return [x["messages"] for x in dataset], [x["answer"] for x in

dataset], [x["problem"] for x in dataset]

Collect and deduplicate data
messages_list, answer_list, problem_list = [], [], []

for

dataset_name in dataset_name_list:

m, a, p = preprocess_dataset (dataset_name)
messages_list.extend (m)
answer_list.extend (a)
problem_list.extend(p)

Remove duplicates based on problem content
messages_list, answer_list, problem_list = unique_list (messages_list,

E.4

answer_list, problem_list)

Listing 1: Initial Data Collection Script

DIFFICULTY-BASED DATA CATEGORIZATION

We implement a novel difficulty-based categorization system using three reference models of vary-
ing capabilities: DeepSeek-R1-Distill-Qwen-1.5B (1.5B parameters), DeepSeek-R1-Distill-Qwen-
7B (7B parameters), and QwQ-32B (32B parameters). Each problem is evaluated by all three mod-
els, and the difficulty level is determined based on the models’ success rates.

Algorithm 1 Difficulty-Based Data Categorization

Require: Problems P, Models M = {]\41,5}37 M7B, M323}
Ensure: Difficulty levels L = {Ly, Lo, L3, L4}
1: for each problem p € P do

2: C15B < Evaluate(p, M1.5B)
3: ¢rp Evaluate(p, M7p)
4: c3ap < Evaluate(p, M3op)
5: ifCl,g)B = 1 then
6: Assign p to Ly (Easiest)
7: elseif c;g = 1 then
8: Assign p to Loy
9: elseif c3op = 1 then
10: Assign pto L3
11: else
12: Assign p to Ly (Hardest)
13: endif
14: end for

15

W

)

Under review as a conference paper at ICLR 2026

The categorization results in four distinct difficulty levels:

* Level 1 (Easiest): Problems solved correctly by the 1.5B model

* Level 2: Problems failed by 1.5B but solved by 7B model

* Level 3: Problems failed by 1.5B and 7B but solved by 32B model
* Level 4 (Hardest): Problems failed by all three models

E.5 DATA FORMAT CONVERSION

After categorization, we convert the data into Hugging Face Dataset format for efficient training:
from datasets import Dataset

import Jjsonlines

def convert_to_hf_ format (data_path, target_path):
data = list (jsonlines.open (data_path, mode="r"))
dataset = Dataset.from_list (data)
dataset.save_to_disk (target_path)
return dataset

Listing 2: Dataset Format Conversion

F TRAINING PROMPT SAMPLING STRATEGY

F.1 GRPO CONFIGURATION

Our training employs Group Relative Policy Optimization (GRPO) with carefully designed sampling
strategies. The key configuration parameters are:

Table 10: GRPO Training Configuration

Parameter Value

num_prompts_per_step 32
num_generations_per_prompt 16
max_rollout_turns 1
normalize rewards True
use_leave_one_out_baseline false
reference_policy_kl_penalty 0.001
ratio_clip_min 0.2
ratio_clip_max 0.2

F.2 PROMPT TEMPLATE DESIGN

The prompt template is designed to encourage step-by-step reasoning:

Solve the following math problem. Make sure to put the answer (and only
answer) inside \boxed{}.

3 {problem_statement}

Listing 3: Mathematical Reasoning Prompt Template

G EVALUATION SAMPLING STRATEGY

G.1 MULTI-SHOT EVALUATION

For robust evaluation, we implement multi-shot sampling with different repetition counts based on
dataset characteristics:

16

)

Under review as a conference paper at ICLR 2026

Table 11: Evaluation Sampling Configuration

Dataset Repetitions Sampling Strategy

MMLU-Pro 2 Temperature=0.6, TOP_P=0.95
GPQA 1 Temperature=0.6, TOP_P=0.95
SuperGPQA 1 Temperature=0.6, TOP_P=0.95
AIME24 10 Temperature=0.6, TOP_P=0.95
AIME25 10 Temperature=0.6, TOP_P=0.95
Olympiad 4 Temperature=0.6, TOP_P=0.95
Minerva 4 Temperature=0.6, TOP_P=0.95

G.2 ANSWER EXTRACTION AND VERIFICATION

We implement sophisticated answer extraction mechanisms for different question types:

G.2.1 MATHEMATICAL EXPRESSION MATCHING

For mathematical problems, we extract answers using LaTeX pattern matching:

ANSWER_PATTERN_BOXED = r" (?i) \\boxed\sx{ ([*\n]+)}"

def extract_mathematical_answer (response_text) :
match = re.search (ANSWER_PATTERN_BOXED, response_text)
if match:
extracted_answer = match.group (1)
Normalize the extracted answer

extracted_answer = normalize_response (extracted_answer)

return extracted_answer

Listing 4: Mathematical Answer Extraction

G.2.2 MULTIPLE CHOICE ANSWER EXTRACTION

For multiple-choice questions, we extract answers using pattern matching:

ANSWER_PATTERN_MULTICHOICE = r" (?i)Answer[\t]=:[\t]lx\$? ([A-D])\$2"

def extract_multiple_choice_answer (response_text) :

match = re.search (ANSWER_PATTERN_MULTICHOICE, response_text)

if match:
extracted_answer = match.group (1) .upper ()
return extracted_answer

Listing 5: Multiple Choice Answer Extraction

G.3 EQUIVALENCE CHECKING

For problems, we implement equivalence checking using a dedicated LLM:

EQUALITY_TEMPLATE = r"""

Look at the following two expressions (answers to a math problem)

judge whether they are equivalent. Only perform trivial

simplifications.
Examples:

Expression 1l: $2x+3$

Expression 2: $3+2x$
Yes

Expression 1: 3/2
Expression 2: 1.5

17

Under review as a conference paper at ICLR 2026

Me's

Expression 1l: $x"2+2x+1$
Expression 2: $(x+1)"2$
Yes

YOUR TASK:
Respond with only "Yes" or "No" (without quotes).

Expression 1: % (expressionl)s
Expression 2: % (expression2)s

nun

def check_equality(sampler, exprl, expr2):
prompt = EQUALITY_TEMPLATE % {"expressionl": exprl, "expression2":

expr2}
response = sampler ([dict (content=prompt, role="user")])
return response.lower () .strip() == "yes"

Listing 6: Equivalence Verification

G.4 EVALUATION PIPELINE

The complete evaluation pipeline processes datasets in parallel:

Algorithm 2 Evaluation Pipeline

Requlre' Dataset D, Model M, Evaluation Config C
: Load dataset D from remote URL
Shuffle examples with fixed seed for reproducibility
Initialize sampler with model M and config C'
for each example e € D do
Generate response 7 using sampler
Extract answer a from response r
Compute score s based on ground truth
Store result (e, r, a, s)
end for

WRINRLN

18

Under review as a conference paper at ICLR 2026

H IMPLEMENTATION DETAILS

H.1 DETAILS IN MOTIVATION

In section [d for each problem, we first sample K =64 full chain-of-thought (CoT) solutions with
nucleus sampling (temperature = 0.6, top-p = 0.95, max new tokens = 32k). Each solution is labeled
as correct or incorrect by exact matching the final answer against the ground truth.

H.2 MULTI-PROCESSING FOR DATA GENERATION

For efficient data generation, we implement multi-processing with dynamic GPU allocation:

def worker_process_dynamic (proc_id, task_queue, progress_queue, config):

Dynamic GPU allocation based on process ID
global_cuda_visible = os.environ.get ("CUDA_VISIBLE_DEVICES", None)
available_gpus = [x.strip() for x in global_cuda_visible.split(",")]
assigned_gpus = []
for i in range(config["tensor_parallel"]):

assigned_index = (proc_id x config["tensor_parallel”] + i) % len(
available_gpus)

assigned_gpus.append(available_gpus[assigned_index])
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(assigned_gpus)

Initialize model with assigned GPUs

model = LLM(
model=config["base_model_name"],
tensor_parallel_size=config["tensor_parallel"],

max_model_len=config["max_tokens"],
gpu_memory_utilization=0.95,

Listing 7: Multi-Processing Data Generation

H.3 HYPERPARAMETER CONFIGURATION

Key hyperparameters for training:

Table 12: Training Hyperparameters

Parameter Value
Learning Rate 1.0e-6
Weight Decay 0.01
Batch Size 512
Max Sequence Length 512
Precision bfloat16
Temperature 1.0
Top-p 1.0

I TRAINING DYNAMIC DISCUSSION

I.1 REASONING LENGTH REDUCTION

To make the efficiency gains concrete, we report a representative item solved by Qwen3-8B. Before
RLPIR training, the model produced a 2802-token solution. After RLPIR with a 512-token prefix
budget, the same item was solved in 1299 tokens—a 53.6% reduction—while yielding the same
final answer. This case study aligns with the aggregate trend reported in Section [7.3] indicating
that optimizing the early prefix encourages earlier commitment to high-consistency trajectories and
prunes meandering continuations.

19

Under review as a conference paper at ICLR 2026

Qwen3-8B’s answer before training: 2802tokens

The question is: ## Task 2\n\nAs the special train stops, a freight

— train passes by. Peter counts the cars: Right after the

— locomotive, 5 closed cars pass. Then follow 4 times as many

— open cars. At the end, 6 tank cars pass.\n\nHow many cars does
— the freight train have?

Response:

<think>

Okay, let me try to figure out how many cars are in the freight
— train. So, Peter is counting the cars as the freight train

— passes by. Let me break down the information step by step.
[... (reasoning omitted for brevity) ...]

</think>

The freight train's composition is described in a sequence by Peter
< as 1t passes by. He counts the cars in the following order:

- xxAfter the locomotivexx, 5 xxclosed carsxx pass.

— Then, x4 times as many open cars*x follow the closed cars.

- Finally, 6 #*xtank cars*x conclude the train.

To determine the total number of xxcars**, we first calculate the
— number of each type:

— Closed cars: 5

- Open cars: 4 x 5 = 20

- Tank cars: 6

Adding these together gives:

The problem specifies that Peter counts the xxcars*x, and since the
— locomotive is mentioned as a separate entity ("right after the
— locomotive"), it is xxnot*+ included in the count of cars.
+**xFinal Answer:xx

$$

\boxed {31}

$$

Qwen3-8B’s answer after RLPIR training: 1299 tokens

<think>
Okay, let's see. So the problem is about Peter counting the cars of
— a freight train as it passes by. The question is asking how
— many cars the freight train has in total. Let me break down the
— information given step by step.
[... (reasoning omitted for brevity) ...]
</think>
To determine the total number of cars in the freight train, we
— analyze the sequence as described:
1. *xAfter the locomotive**, there are **5 closed carsx*=*.
2. xxThen**, there are x4 times as many open carsxx as closed
< cars. Since there are 5 closed cars, this means:
$ 4 \times 5 = 20 $ open cars.
3. **At the end**, there are **6 tank carsxx.
Adding these together gives the total number of cars:
$S
5 \text{ (closed)} + 20 \text{ (open)} + 6 \text{ (tank)} = 31
$S
Thus, the freight train has:
$S
\boxed{31}
$S

20

Under review as a conference paper at ICLR 2026

Qwen3-8B’s answer after GRPO training: 3271

The question is: ## Task 2\n\nAs the special train stops, a freight

— train passes by. Peter counts the cars: Right after the

— locomotive, 5 closed cars pass. Then follow 4 times as many

— open cars. At the end, 6 tank cars pass.\n\nHow many cars does
— the freight train have?

Response:

<think>

Okay, let's see. So the problem is about Peter counting the cars of
— a freight train as it passes by. The question is asking how
— many cars the freight train has in total. Let me try to break
— down the information given
step by step.
[... (reasoning omitted for brevity) ...]
</think>.
To determine how many #**cars** the freight train has, we need to
— carefully analyze the sequence of events described:
Step-by-Step Breakdown
1. *xAfter the locomotivex**, Peter observes **x5 closed carsx*x*.
- These are the first set of cars.
- So, we count x*x5%x cars.
2. #«*xThen follow 4 times as many open carsx*x.
— This means the number of open cars is *%4 times** the number
— of closed cars.
- Since there are 5 closed cars, the number of open cars is:
$S
4 \times 5 = 20
$S
- So, we add **20xx more cars.
3. xxAt the endx*, *%6 tank carsxx pass by.
— This is the final set of cars.
— Add *x6*x* more cars.
Total Number of Cars
Now, summing up all the cars (excluding the locomotive, as the
— problem refers to "cars" and the locomotive is a separate

— unit):

$$

5 \text{ (closed cars)} + 20 \text{ (open cars)} + 6 \text{ (tank
< cars)} = 31

$$

Final Answer

$$

\boxed {31}

$$

1.2 SIMILARITY IMPROVEMENT

To verify that RLPIR effectively increases intra-group semantic agreement, we track the average
pairwise cosine similarity among sampled prefixes during training. We observe a steady upward
trend in similarity as optimization progresses, indicating that the policy learns to generate more
coherent and self-consistent reasoning prefixes over time. This improvement confirms that the intra-
group consistency reward provides a strong learning signal and successfully guides the model toward
producing reasoning trajectories that are both semantically aligned and mutually consistent.

1.3 COLLAPSE PHENOMENON WITHOUT ASYMMETRIC ADVANTAGES

We further analyze the behavior of RLPIR when the asymmetric advantage clipping in Eq. [§] is
removed. In this setting, the model rapidly drives similarity to an extreme by generating nearly

21

Under review as a conference paper at ICLR 2026

train/rewards_sim

Step

100 200 300 400

Figure 4: Average pairwise cosine similarity among sampled reasoning prefixes during training. The
clear upward trend indicates that RLPIR enhances intra-group semantic agreement and encourages
the generation of more coherent and self-consistent reasoning trajectories.

validation/rewards_sim

0.53

0.525

0.52

0.515
Step

100 200 300 400

Figure 5: Trend of average pairwise cosine similarity on the AIME24 benchmark. The consistent
increase demonstrates that the model progressively learns to produce reasoning prefixes that are
semantically closer and more coherent as training advances.

22

Under review as a conference paper at ICLR 2026

identical and repetitive continuations, leading to a collapse of diversity. This repetition causes a
sharp drop in task accuracy and results in drastically shortened outputs. Such “mode collapse”
behavior highlights the importance of penalizing only low-consistency samples: the Asymmetric
design regularizes the policy, maintains useful variability in reasoning trajectories, and prevents
degenerate solutions that maximize similarity without improving actual reasoning quality.

Collapse Phenomenon without One-Sided Advantages

The question is: ## Task 2\n\nAs the special train stops, a freight
train passes by. Peter counts the cars: Right after the
locomotive, 5 closed cars pass. Then follow 4 times as many
open cars. At the end, 6 tank cars pass.\n\nHow many cars does
the freight train have?

R

Response:
<think>
Okay, let's see. Let me try to break down the information given

— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. Let me try to break down the information given
— step by step. [... (repeat reasoning content omitted for

— brevity) ...]

J MORE EXPERIMENTS

J.1 EFFECT OF EMBEDDING METHOD

To assess the sensitivity of our intrinsic reward to the embedding model, we ablate three embedding
method. As shown in Table the performance of RLPIR is remarkably robust to the choice of
embedding.

Embedding Method AccT Len(tokens)
all-MiniLM-L6-v2 78.8 11797
Qwen3-Embedding-0.6B 78.6 11239
TF-IDF 78.1 12016

Table 13: Ablation study on the embedding method for computing intra-group consistency. Results
are on AIME24 with the Qwen3-8B model. Performance is stable across different embedding meth-
ods.

23

	Introduction
	Related Work
	Reinforcement Learning for Reasoning in LLMs
	Beyond Verifiable Rewards
	Efficient Reinforcement Learning Training Paradigms

	Preliminary
	Reinforcement Learning with Verifiable Rewards (RLVR)

	Motivation
	Prefix Optimization Suffices to Improve Reasoning
	High-consistency Prefix Yields High-quality Reasoning Trajectory

	Methodology
	Problem Formulation
	Prefix Rollout
	Intra‑group Consistency Reward
	Asymmetric Advantages

	Experiments
	Training Setup
	Models and Training Data
	Baselines
	Evaluation

	Main Results
	Training Effectiveness and Generalization
	Compute Efficiency
	Reasoning Efficiency

	Ablation Study
	Effect of Prefix Length
	Effect of Asymmetric Advantages
	Effect of Training-Data Difficulty

	Conclusion and Future Work
	Ethics Statement
	Reproducibility Statement
	LLM Usage
	Limitations
	Data Preparation
	Training Data Distribution
	Prefix DPO Training
	Initial Data Collection
	Difficulty-Based Data Categorization
	Data Format Conversion

	Training Prompt Sampling Strategy
	GRPO Configuration
	Prompt Template Design

	Evaluation Sampling Strategy
	Multi-Shot Evaluation
	Answer Extraction and Verification
	Mathematical Expression Matching
	Multiple Choice Answer Extraction

	Equivalence Checking
	Evaluation Pipeline

	Implementation Details
	Details in Motivation
	Multi-Processing for Data Generation
	Hyperparameter Configuration

	Training Dynamic Discussion
	Reasoning Length Reduction
	Similarity Improvement
	Collapse Phenomenon without Asymmetric Advantages

	More Experiments
	Effect of Embedding Method

