
Under review as submission to TMLR

Noise Stability Optimization for Finding Flat Minima:
A Hessian-based Regularization Approach

Anonymous authors
Paper under double-blind review

Abstract

Consider a noise-injected function F of an input function f , perturbed by random noise U
with mean zero. When the noise follows an isotropic Gaussian distribution, F is approx-
imately f plus a penalty on the trace of the Hessian of f , scaled by noise variance. The
natural approach of adding noise perturbation to weights before gradient computation in
SGD shows limited improvement in fine-tuning pretrained networks on image classification
datasets. We hypothesize that this is caused by the increased variance of the noise-injected
gradient rather than the ineffectiveness of Hessian regularization. To address this issue, we
propose a two-point noise injection algorithm, adding noise in both U and −U and averaging
over multiple perturbations to reduce gradient variance. A generalization bound related to
the trace of the Hessian and the fine-tuned region’s radius is shown to support this approach.
We present comprehensive experiments demonstrating that the two-point noise injection
algorithm enhances generalization and Hessian regularization. The algorithm outperforms
existing sharpness-reducing training methods, achieving up to a 1.8% increase in test accu-
racy for fine-tuning pretrained ResNets on six image classification datasets. It also results
in a 17.7% reduction in the trace and a 12.8% reduction in the largest eigenvalue of the loss
Hessian matrix. The Hessian regularization induced by noise injection is compatible with
other popular regularization methods, such as weight decay and data augmentation, and
their combination leads to improved empirical performance.
We present a detailed convergence analysis of the two-point noise injection algorithm,
demonstrating precise rates on the norm of the gradient of the iterates. This analysis lever-
ages techniques from the stochastic optimization literature, establishing a new link between
these techniques and the analysis of sharpness-reducing methods.

1 Introduction

The loss landscape and geometry properties of neural networks have been widely studied (Keskar et al., 2017;
Dinh et al., 2017), with research showing that flat loss surfaces can improve generalization (Hochreiter &
Schmidhuber, 1997). Regularization schemes and methods like sharpness-aware minimization (SAM) (Foret
et al., 2021) and stochastic weight averaging (Izmailov et al., 2018) have shown empirical success, particularly
in low-sample regimes such as model fine-tuning (Wortsman et al., 2022a). Despite these advances, the
theoretical properties of sharpness-reducing methods remain underexplored (Andriushchenko & Flammarion,
2022). Recent work (Wen et al., 2023) has characterized the implicit bias of SAM as a penalty on the largest
eigenvalue of the loss Hessian matrix and noted that SAM’s local minimizers oscillate around a local basin
(Bartlett et al., 2023). Notably, SAM is based on a constrained min-max problem. In this paper, we study
a min-avg problem, focusing on improving generalization for model fine-tuning: given an input function
f : Rd → R such as the empirical risk and a d-dimensional distribution P with mean zero, we consider
minimizing noise-perturbed functions F (W) := EU∼P [f(W + U)] .

The sensitivity or resilience of the input function f around its local neighborhood (measured by F − f) can
influence algorithms to converge to wide minima (Nagarajan & Kolter, 2020). Research shows that opti-
mizing prior and posterior distributions from data achieves generalization bounds that align with empirical

1

Under review as submission to TMLR

Indoor Caltech-252 Aircrafts CIFAR-10 CIFAR-1000

2

4

6

8

T
es

t
L

os
s

×10−1

NSO (k = 1) SAM SGD

Indoor Caltech-256 Aircrafts CIFAR-10 CIFAR-1000.0

0.3

0.6

0.9

1.2

H
es

si
an

T
ra

ce

×104

NSO (k = 1) SAM SGD

Figure 1: Illustration of the test loss (left) and the trace of the Hessian (right), measured at the last epoch of
model fine-tuning. The results are run from a pretrained ResNet-34 network across five image classification
tasks. We report the averaged results over five random seeds; Their standard deviations are reported in
Section 3. Our proposed approach (NSO) can reduce both measures compared to SAM and SGD.

generalization gaps (Dziugaite & Roy, 2017). Additionally, the Hessian of multi-layer neural networks relates
to noise sensitivity (Tsuzuku et al., 2020; Ju et al., 2022). However, both earlier (Hinton & Van Camp, 1993;
An, 1996; Graves, 2011) and recent works (Orvieto et al., 2023) suggest that the regularization effect of noise
injection in SGD is not always evident.

To replicate these findings in our setting, we compare the performance of standard SGD and noise-injected
SGD for fine-tuning pretrained models on three classification datasets. It is observed that the noise injection
does not offer clear benefits, even after testing several noise distributions. This may be due to the stochasticity
of the noise injection, where the noise term’s variance on the gradient can overshadow the second-order
Hessian term, especially during a small number of epochs, such as transformer network fine-tuning.

To address this issue, we introduce two adjustments: i) adding a negative perturbation along W − U to
cancel out the first-order term while preserving the second-order term unaffected, and ii) sampling multiple
perturbations per step to reduce gradient variance. Unlike SAM, where the effect from the signed gradient
step is more nuanced (Wen et al., 2023; Andriushchenko et al., 2024), these adjustments provide an unbiased
Hessian estimate.

This approach is justified with a generalization bound dependent on the trace of the Hessian in empirical
risk minimization and the radius of the fine-tuned region, utilizing a linear PAC-Bayes bound (Catoni, 2007;
McAllester, 2013; Dziugaite et al., 2021) and optimizing the noise variance.

Next, we provide comprehensive experiments to validate our approach compared to existing sharpness-
reducing training methods. The key findings include:

• The algorithm improves generalization in an over-parameterized sensing problem, achieving the
lowest test loss compared to both SGD and noise-injected SGD, all of which can find solutions with
near-zero training loss.

• Across a wide range of image classification data sets, the algorithm finds neural networks with lower
test loss and better-regularized Hessians than four sharpness-reducing methods. See Figure 1 for an
illustration of the comparison.

• The regularization effect on the Hessian is compatible with other regularization methods such as
weight decay, data augmentation, and distance-based regularization. Combining our approach with
any of these methods leads to improved results.

Lastly, we analyze the convergence of our algorithm by establishing matching upper and lower bounds on
the norm of the gradient of the iterates. The upper bound builds on classical results from the stochastic
optimization literature (Ghadimi & Lan, 2013; Lan, 2020; Zhang, 2023), while carefully analyzing the gradient
variance in our procedure. The lower bound leverages recent advances in showing query complexity lower
bounds (Carmon et al., 2020; Drori & Shamir, 2020). Although the proof techniques are standard, their
application to sharpness-reducing methods is novel. Our work implies that it is possible to design flat-minima
optimizers with strong empirical performance and a clear analysis of convergence, which may benefit future
research in this area.

2

Under review as submission to TMLR

In summary, the main results of this paper include:

1. Revisiting the generalization effect of noise injection for fine-tuning pretrained models and designing
an algorithm that regularizes the trace of the Hessian.

2. Demonstrating that the proposed approach provides strong empirical performance compared to
four sharpness-reducing training methods, and that the regularization induced by noise injection is
compatible with other popular regularization methods.

3. Analyzing the convergence of the proposed algorithm using techniques from stochastic optimization,
establishing a new connection to the analysis of sharpness-reducing methods.

1.1 Related Work

Methods for fine-tuning neural networks have garnered significant attention, as these methods are now
widely used for adapting pretrained models (Hu et al., 2022; Wortsman et al., 2022b). Among these meth-
ods, sharpness-aware minimization (SAM) is particularly effective, motivated by a constrained min-max
optimization problem, though it is computationally intractable (Daskalakis et al., 2021). Bartlett et al.
(2023) found that for a convex quadratic function, SAM’s stationary point oscillates locally according to the
eigenvector corresponding to the largest eigenvalue, a behavior also observed in simulations. Additionally,
ensemble methods have proven effective for improving the robustness of fine-tuning (Wortsman et al., 2022a).
The generalization properties of fine-tuning in transformer networks are not well understood; for instance,
examining the Hessian during the fine-tuning procedure could be a promising direction for future work.

The concept that injecting noise into neural networks can induce flatness in the found minima dates back
to early research (Hinton & Van Camp, 1993; An, 1996). Graves (2011) develop a variational inference
approach to test different priors and posteriors (e.g., Delta, Laplace, Uniform, Gaussian) on recurrent neural
networks. Camuto et al. (2020) proposes a layer-wise regularization scheme motivated by adaptation patterns
of weights through deeper layers. Bisla et al. (2022) conduct empirical studies on the connection between
sharpness and generalization. Orvieto et al. (2023) analyze Taylor’s expansion of the stochastic objective
after noise injection, examining the induced regularization in various neural network training settings, and
found that layer-wise perturbation can improve generalization and test accuracy. The PAC-Bayes analysis
framework is related to noise injection, as it studies model generalization by postulating prior and posterior
distributions on the hypothesis space (McAllester, 1999; Shawe-Taylor & Williamson, 1997).

The connection between Hessian and sharpness has also been studied through the Edge of Stability (Cohen
et al., 2021), which is inverse to the operator norm of the Hessian matrix. Long & Bartlett (2023) identify
the edge of stability regime for the SAM algorithm, highlighting differences from gradient descent. Addi-
tionally, Gaussian smoothing has been used to estimate gradients in zeroth-order optimization (Nesterov &
Spokoiny, 2017). Besides, recent research has investigated the query complexity of finding stationary points
of nonconvex functions (Carmon et al., 2020; Arjevani et al., 2023). These results provide a fine-grained
characterization of the iteration complexity of iterative methods, under different orders of gradient oracles.
There is a strong connection between sharpness and generalization, and we hope this work will inspire future
research on the interplay between generalization and optimization.

Organization: The rest of this paper is organized as follows. In Section 2, we present the proposed
approach. Then in Section 3, we describe the experiments conducted to validate the approach. In Section 4,
we analyze the algorithm’s convergence. In Section 5, we conclude this paper. In Appendix A and Appendix
B, we show complete proofs of the theoretical statements.

2 Our Approach

In this section, we describe the regularization effect of our approach through the Hessian. We first state a
proposition that describes the implicit bias of the population function F (W) upon f(W).

3

Under review as submission to TMLR

Proposition 2.1. Suppose f(W) is twice-differentiable. Let Σ ∈ Rd×d be a positive semi-definite matrix.
For a Gaussian distribution P = N (0, Σ) and a random sample U ∈ Rd drawn from P, the following holds
with high probability:

F (W) = E
U∼P

[
1
2(f(W + U) + f(W − U))

]
= f(W) + 1

2 ⟨Σ, ∇2f(W)⟩ + O(∥Σ∥
3
2
2). (1)

Recall that P is a symmetric distribution. We use Taylor’s expansion on both f(W + U) and f(W − U):

f(W + U) = f(W) + ⟨U, ∇f(W)⟩ + 1
2U⊤∇2f(W)U + O(∥Σ∥ 3

2
2

),

f(W − U) = f(W) − ⟨U, ∇f(W)⟩ + 1
2U⊤∇2f(W)U + O(∥Σ∥ 3

2
2

).

By definition, E [U] = 0, and E
[
UU⊤] = Σ. Thus, by taking the average of the above two equations, one

can get equation (1).

As a remark, we point out that the case without the injection in the negative direction of U , has been
noted in prior work (Orvieto et al., 2023). As we shall show next, adding the negative perturbation step is
crucial for the algorithm to succeed. Concretely, we will study the behavior of noise injection for fine-tuning
pre-trained neural networks, as overfitting is quite common in this setting (Wortsman et al., 2022a). Hence,
developing methods to improve the generalization of fine-tuning would be crucial.

Experimental Setup: We consider fine-tuning a pre-trained ResNet-34 on image classification data sets,
including aircraft recognition (Aircrafts) (Maji et al., 2013), indoor scene recognition (Caltech-256) (Griffin
et al., 2007), and medical image classification (retina images for diabetic retinopathy classification) (Pachade
et al., 2021). We will compare i) vanilla SGD, and ii) weight-perturbed SGD (or WP-SGD in short), where
we sample a perturbation vector from P and add it to the model weights in each iteration before comput-
ing the gradient. For WP-SGD, we will sample the perturbation from an isotropic Gaussian distribution.
Then, we will set the standard deviation of the Gaussian based on validation performance, chosen between
0.008, 0.01, 0.012.

Summary of Findings: We report our findings in Table 1, listed as follows:

• We observe that the performance gap between SGD and WP-SGD is within 0.5%, accounting for
the standard deviations of the individual runs.

• Varying the type of noise distribution does not change the result. In particular, we test alternative
choices of P with Laplace distribution, uniform distribution, and Binomial distribution. Similar to
the Gaussian, we set their standard deviations between 0.008, 0.01, 0.012 using a validation set.

• Using the Laplace or Uniform distribution achieves a performance comparable to Gaussian. How-
ever, WP-SGD struggles to converge using the Binomial distribution, resulting in significantly lower
training and test results.

Based on the above empirical findings, we now present our approach, which involves two components:

• Two-point noise injection: During the noise injection, we add the perturbation from both the positive
direction and the negative direction. This is shown in Line 4.

• Averaging multiple perturbations to stabilize the gradient: To stabilize the stochasticity of the noise
injection, we average over multiple noise injections. This is described in Line 6.

The full procedure is summarized in Algorithm 1 below.

4

Under review as submission to TMLR

Table 1: Comparing weight perturbed SGD (WP-SGD) to SGD, across four types of perturbation distri-
butions, measured over three image classification data sets. The results and their standard deviations are
averaged over five independent seeds.

Aircrafts Indoor Retina
P Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

SGD None 100.0% ± 0.0 59.8% ± 0.7 100.0% ± 0.0 76.0% ± 0.4 100.0% ± 0.0 61.7% ± 0.8
WP-SGD Gaussian 98.4% ± 0.2 60.4% ± 0.1 99.0% ± 0.3 76.3% ± 0.0 100.0% ± 0.0 62.3% ± 0.5
WP-SGD Laplace 98.3% ± 0.1 60.3% ± 0.3 98.9% ± 0.1 76.4% ± 0.3 100.0% ± 0.0 62.0% ± 0.1
WP-SGD Uniform 98.6% ± 0.3 60.3% ± 0.5 98.6% ± 0.3 76.6% ± 0.1 100.0% ± 0.0 62.3% ± 0.0
WP-SGD Binomial 19.6% ± 0.1 11.3% ± 0.1 18.2% ± 0.9 10.7% ± 0.1 58.1% ± 0.1 57.1% ± 0.0

Algorithm 1 Noise stability optimization (NSO) for improving generalization of neural nets
Input: Initialization W0 ∈ Rd, a function f : Rd → R
Require: An estimator g : Rd → Rd that for any W , returns g(W) s.t. E [g(W)] = ∇f(W)
Parameters: # perturbations k, # epochs T , step sizes η0, . . . , ηT −1

1: for i = 0, 1, . . . , T − 1 do
2: for j = 0, 1, . . . , k − 1 do
3: Sample U

(j)
i independently from P

4: Let G
(j)
i = g

(
Wi + U

(j)
i

)
+ g
(
Wi − U

(j)
i

)
5: end for
6: Update iterates according to Wi+1 = Wi − ηi

2k

∑k
j=1 G

(j)
i

7: end for

2.1 A Generalization Bound Using Trace of the Hessian

Next, we present a PAC-Bayes bound which shows that the trace of the Hessian serves as an upper bound
on the generalization gap. As a remark, the trace norm has been studied by earlier work in the setting of
matrix recovery (Srebro & Shraibman, 2005). Its use as a generalization measure for fine-tuning has not
been studied before, up to our knowledge.

Concretely, in the fine-tuning setting, we have a pretrained model, which can be viewed as the prior in
PAC-Bayes analysis. Once we have learned a hypothesis, it can be viewed as the posterior. Let D ⊆ X × Y
be an unknown data distribution, supported on the feature space X and the label space Y. Given n random
samples (x1, y1), (x2, y2), . . . , (xn, yn) drawn from D, the empirical loss (measured by loss function ℓ) applied
to a model fW (with W ∈ Rp) is:

L̂(W) = 1
n

n∑
i=1

ℓ(fW (xi), yi).

The population loss is L(W) = E(x,y)∼D [ℓ(fW (x), y)] . It is sufficient to think that the empirical loss is less
than the population loss, and the goal is to bound the gap from above (Shalev-Shwartz & Ben-David, 2014).

Let W be any learned hypothesis within the hypothesis space, denoted as H. The generalization bound
will apply uniformly to W within the hypothesis space, assuming that this space, centered at the pretrained
initialization, has a bounded radius of r > 0. We state the result as follows.
Theorem 2.2. Assume that the loss function is bounded between 0 and C, for a fixed constant C. Suppose
that ℓ(fW (·), ·) is twice-differentiable in W and the Hessian matrix ∇2

W [ℓ(fW (·), ·)] is Lipschitz continuous
within the hypothesis space. With probability at least 1 − δ for any δ > 0, the following must hold, for any ϵ
close to zero:

L(W) ≤ (1 + ϵ)L̂(W) + (1 + ϵ)
√

Cαr2

n
+ O

(
n− 3

4 log(δ−1)
)

. (2)

5

Under review as submission to TMLR

where α := maxW ∈H max(x,y)∼D Tr
[
∇2ℓ(fW (x), y)

]
is the trace norm of the hypothesis space taken over the

data distribution D.

Proof Sketch: We provide a high-level illustration of the ideas behind Theorem 2.2 without belaboring
too much on the technical details. Let Q denote the posterior distribution. Specifically, we consider Q as
being centered at the learned hypothesis W (which could be anywhere within the hypothesis space), given
by a Gaussian distribution N (W, σ2 Idp), where Idp denotes the p by p identify matrix. Given a sample
U ∼ N (0, σ2 Idp), let the perturbed loss ℓQ(fW (x), y) be given by EU [ℓ(fW +U (x), y)]. Then, let L̂Q(W)
be the averaged value of ℓQ(fW (·), ·), taken over the n empirical samples. Likewise, let LQ(W) be the
population average of ℓQ(fW (·), ·).

Having introduced the notations, one starts with the PAC-Bayes bound (Catoni, 2007; McAllester, 2013;
Alquier, 2021) (see Theorem A.1 for reference), stated as follows:

LQ(W) ≤ 1
β

L̂Q(W) + C(KL(Q||P) + log(δ−1))
2β(1 − β)n , (3)

where β is a parameter chosen between (0, 1), and P is a prior distribution. For the fine-tuning setting, P
can be viewed as centered at the pretrained initialization, with variance σ2 Idp similar to Q.

Next, by Taylor’s expansion of ℓQ like Proposition 2.1 (see Lemma A.4 for the full result), we show that:

LQ(W) = L(W) + σ2

2 E
(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
+ O(σ3), and

L̂Q(W) = L̂(W) + σ2

2n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
+ O(σ3).

Since we have required the Hessian to be Lipschitz continuous, we bound the gap between the above two
using uniform convergence on Lipschitz functions (see Lemma A.5 for the result). By plugging in the above
two results back to the PAC-Bayes bound of equation (3), and making up the difference between 1/β and 1
between the left and right sides by α, we get:

L(W) ≤ 1
β

L̂(W) + σ2(1 − β)α
2β

+ Cr2/2σ2

2β(1 − β)n + O

(
σ3 +

σ2√
p

√
n

+ log(δ−1)
n

)
.

In particular, the above uses the fact that the hypothesis space is uniformly bounded in a ball of radius r,
and the derivation of the KL divergence can be found in Proposition A.2. By choosing σ2 and β to minimize
the above bound, we thus obtain the result of equation (2). This summarizes the high-level proof idea. The
complete proof can be found in Appendix A.1.

2.1.1 An In-depth Look of the Hessian in Matrix Sensing

Before proceeding, let us give an example to better understand the regularization effect of the Hessian.
We consider the matrix sensing problem, whose generalization properties are particularly well-understood
in the nonconvex factorization setting (Li et al., 2018). Let there be an unknown, rank-r positive semi-
definite matrix X⋆ = U⋆U⋆⊤ ∈ Rd×d. The input consists of a list of d by d Gaussian measurement matrix
A1, A2, . . . , An. The labels are given by yi = ⟨Ai, X⋆⟩, for every i = 1, 2, . . . n. The empirical loss is

L̂(W) = 1
2n

n∑
i=1

(
⟨Ai, WW ⊤⟩ − yi

)2
, where W ∈ Rd×d. (4)

When the loss reaches near zero (which implies the gradient also reaches near zero), it is known that multiple
local minimum solutions exist (Li et al., 2018), and the Hessian becomes

1
n

n∑
i=1

∥AiW∥2
F ≈ d ∥W∥2

F = d
∥∥WW ⊤∥∥

⋆
.

6

Under review as submission to TMLR

By prior results (Recht et al., 2010), among all X = WW ⊤ such that L̂(W) = 0, X⋆ has the lowest nuclear
norm. Thus, the regularization placed on L̂(W) is similar to nuclear norm regularization under interpolation.
We formalize this and state the proof below for completeness.
Proposition 2.3. In the setting above, for any W that satisfies L̂(W) = 0, the following must hold with
high probability:

Tr
[
∇2[L̂(U⋆)]

]
≤ Tr

[
∇2[L̂(W)]

]
+ O(n− 1

2). (5)

A similar statement holds if the trace operator is replaced by the largest eigenvalue of the Hessian in equation
(5). To see this, we look at the quadratic form of the Hessian in order to find the maximum eigenvalue. Let
u be a d2 dimension vector with length equal to one, ∥u∥ = 1. One can derive that:

λ1(∇2L̂(W)) = max
u∈Rd2 :∥u∥=1

u⊤∇2L̂(W)u = max
u∈Rd2 :∥u∥=1

1
n

n∑
i=1

⟨AiW, u⟩2 ≥ 1
d2n

n∑
i=1

∥AiW∥2
F .

The last step is by setting u = d−11d2 , whose length is equal to one. The detailed proof of Proposition 2.3
and derivations for the above step are deferred in Appendix A.2.

2.1.2 Discussions

In the case that f is a strongly convex function, the lowest eigenvalue of the Hessian is above from below.
Once the algorithm reaches the global minimizer, our result from Theorem 2 can be used to provide a
generalization bound based on the trace of the Hessian. Notice that the noise injection will add some bias to
this minimizer, leading to a sub-optimal empirical loss. To remedy this issue, one can place the regularization
of the Hessian as a constraint, similar to how ℓ2-regularization can be implemented as a constraint.

2.2 Empirical Measurements of the Hessian

Next, we provide several empirical examples to validate the theoretical bounds. Following the experimental
setup described earlier, we fine-tune several pretrained models on one downstream task. We test on three
different modalities of data, including images, texts, and graphs. After fine-tuning, we set the fine-tuned
model weight at the last epoch as W , for taking all the measurements. We summarize the empirical findings
below, leaving experimental details to Appendix C. First, we show that Taylor’s expansion of the noise
injection is numerically accurate. We add perturbations to model weights by injecting isotropic Gaussian
noise. We then compute F (W) − f(W), averaged over 100 independent runs, and we measure Tr[∇2f] as
the average over the training data set.

• In Table 2, we find that the trace of the Hessian provides an accurate approximation to the gap
between ℓQ and ℓ. After fine-tuning, we add random noise injections to the fine-tuned model weight.
We do this for 100 times, and we measure the perturbed loss ℓQ again on the training set. We take the
gap between ℓQ and ℓ and report that along with the magnitude of σ in the table. We also compute
the trace of the Hessian using Hessian-vector product computation libraries. Our measurements
show that the error between the actual gap and the Hessian approximation is within 3%. As a
remark, the range of σ2 differs across architectures because of the differing scales of their weights.

• We compare the measurements between SGD and NSO in Figure 2. Curiously, we find that as the
test loss goes down, the trace of the Hessian also goes down. While both SGD and NSO reduce the
trace of the Hessian, our approach indeed penalizes the Hessian more significantly than SGD.

• Compared with SGD, the generalization gap of the fine-tuned model also lowers by over 20%. The
test loss of the fine-tuned model using our approach is also lower than SGD.

7

Under review as submission to TMLR

Table 2: We find that the trace of the Hessian provides an accurate approximation to the gap between ℓQ
and ℓ. In particular, the measurements are taken on the fine-tuned model weight W at the last epoch.

Multi-Layer Perceptron (MNIST) BERT Base (MRPC) Graph ConvNets (COLLAB)

σ Gap σ2

2 Tr [∇2f(W)] σ Gap σ2

2 Tr [∇2f(W)] σ Gap σ2

2 Tr [∇2f(W)]

0.020 0.0122 ± 0.0027 0.0096 0.0070 0.0083 ± 0.0031 0.0095 0.040 0.0297 ± 0.0097 0.0278
0.021 0.0124 ± 0.0026 0.0106 0.0071 0.0088 ± 0.0031 0.0098 0.041 0.0266 ± 0.0141 0.0292
0.022 0.0137 ± 0.0042 0.0117 0.0072 0.0093 ± 0.0032 0.0101 0.042 0.0363 ± 0.0086 0.0306
0.023 0.0142 ± 0.0049 0.0128 0.0073 0.0098 ± 0.0034 0.0103 0.043 0.0243 ± 0.0109 0.0321
0.024 0.0152 ± 0.0046 0.0139 0.0074 0.0104 ± 0.0035 0.0106 0.044 0.0287 ± 0.0111 0.0336
0.025 0.0175 ± 0.0047 0.0151 0.0075 0.0110 ± 0.0036 0.0109 0.045 0.0298 ± 0.0092 0.0351
0.026 0.0182 ± 0.0038 0.0163 0.0076 0.0117 ± 0.0038 0.0112 0.046 0.0414 ± 0.0105 0.0367
0.027 0.0209 ± 0.0035 0.0176 0.0077 0.0124 ± 0.0040 0.0115 0.047 0.0313 ± 0.0109 0.0383
0.028 0.0215 ± 0.0049 0.0189 0.0078 0.0131 ± 0.0042 0.0118 0.048 0.0455 ± 0.0089 0.0400
0.029 0.0244 ± 0.0075 0.0203 0.0079 0.0139 ± 0.0044 0.0121 0.049 0.0449 ± 0.0160 0.0417
0.030 0.0258 ± 0.0059 0.0218 0.0080 0.0147 ± 0.0047 0.0124 0.050 0.0482 ± 0.0100 0.0434
RSS 2.74% 1.03% 2.16%

0 10 20 30
t

0.5

0.6

0.7

T
es

t
L

os
s

ResNet 34

SGD

NSO

0 10 20 30
t

2

4

6

8

T
ra

ce

×103 ResNet 34

SGD

NSO

0 10 20 30
t

0.0

0.3

0.6

0.9

1.2

G
en

er
al

iz
at

io
n

G
ap

ResNet 34

SGD

NSO

0 2 4 6
t

0.6

0.8

1.0

T
es

t
L

os
s

BERT Base

SGD

NSO

0 2 4 6
t

0.1

0.4

0.7

1.0

T
ra

ce

×104 BERT Base

SGD

NSO

0 2 4 6
t

0.0

0.2

0.4

0.6

0.8

G
en

er
al

iz
at

io
n

G
ap

BERT Base

SGD

NSO

Figure 2: Comparison between SGD and NSO, for fine-tuning ResNet-34 and BERT-Base, on an image
and a text classification data set, respectively. We report the test loss, the trace of the Hessian, and the
generalization gap, for W taken at the last epoch. For NSO, we sample random perturbations using isotropic
Gaussian distribution with standard deviation σ = 0.01 for both settings.

3 Experimental Results

We now turn to the empirical validation of our proposed algorithm. Through both simulations in the matrix
sensing problem and experiments in fine-tuning neural networks, we show that our algorithm can indeed
improve generalization, and this improvement can be explained by the regularization of the Hessian.

• Across various image classification data sets, NSO can outperform four previous sharpness-reducing
methods by up to 1.8%. We control the amount of computation in the experiments to allow for a
fair comparison. We justify each step of the algorithm design, through ablation analysis.

• We notice that NSO regularizes the Hessian of the loss surface much more significantly, by noting
reductions in the trace (and the largest eigenvalue) of the loss Hessian by 17.7% (and 12.8%),
respectively.

• Our method is compatible with existing regularization techniques, including weight decay, distance-
based regularization, and data augmentation, as combining these techniques leads to even greater
improvement in both the Hessian regularization and the test performance.

8

Under review as submission to TMLR

3.1 Simulation

We conduct a numerical simulation in the matrix sensing problem. We generate a low-rank matrix U⋆ ∈ Rd×r

from the isotropic Gaussian. We set d = 100 and r = 5. Then, we test three algorithms: gradient descent
(GD), weight-perturbed gradient descent (WP-GD), and Algorithm 1 (NSO). We use an initialization U0 ∈
Rd×d where each matrix entry is sampled independently from N (0, 1) (the standard Gaussian).

Recall that WP-GD and NSO require setting σ. We choose σ between 0.001, 0.002, 0.004, 0.008, 0.0016. NSO
additionally requires setting the number of sampled perturbations k. We set k = 1 for faster computation.

Our findings are illustrated in Figure 3. We can see that all three algorithms can reduce the training MSE
to near zero, as shown in Figure 3a. Regarding the validation loss, GD suffers from overfitting the training
data, while both WP GD and NSO can generalize to the validation samples. Moreover, NSO manages to
reduce this validation loss further.

0 1000 2000 3000 4000 5000

Number of epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

T
ra

in
in

g
M

S
E

GD

NSO (k = 1)

WP GD

(a) Training loss

0 1000 2000 3000 4000 5000

Number of epochs

10−3

10−2

10−1

100

V
al

id
at

io
n

M
S
E

GD

NSO (k = 1)

WP GD

(b) Validation loss

Figure 3: Comparing the training and validation losses between GD, NSO, and WP-GD.

3.2 Comparison with Sharpness Reducing Training Methods

We now compare Algorithm 1 with four sharpness-reducing training methods, including Sharpness-Aware
Minimization (SAM) (Foret et al., 2021), Adaptive SAM (ASAM) (Kwon et al., 2021), Random SAM
(RSAM) (Liu et al., 2022), and Bayesian SAM (BSAM) (Möllenhoff & Khan, 2023). During compari-
son, we control for the same amount of computation, by setting the number of sampled injections k = 1.
Thus, all of these methods will use twice the cost of SGD in the end. For NSO, we sample perturbation
from an isotropic Gaussian distribution and tune σ between 0.008, 0.01, and 0.012 using a validation split.
For SAM, we tune the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05. Since each other training
method involves its own set of hyper-parameters, we make sure they are carefully selected. The details are
tedious; See Appendix C for the range of values used for each hyper-parameter. To calibrate these results,
we include both SGD and Label Smoothing (LS), as they are both widely used in practice.

We report the overall comparison in Table 3. In a nutshell, NSO performs competitively with all the baseline
variants. Across these six data sets, NSO can achieve up to 1.8% accuracy gain, with an average test
accuracy improvement of 0.9%, relative to the best-performing baselines. The results are aggregated over
five independent runs, suggesting that our findings are statistically significant.

Ablation Analysis: Next, we conduct ablation studies of two components in NSO, i.e., using negative
perturbations and sampling multiple perturbations in each iteration, showing both are essential.

Comparing using vs. not using negative perturbations: Recall that our algorithm uses negative perturbations
to zero out the first-order order in Taylor’s expansion of F (W), leading to a better estimation of ∇F (W).
We validate this by comparing the performance between using and not using the negative perturbation. To
ensure that both use the same amount of computation, we sample two independent perturbations when not

9

Under review as submission to TMLR

Table 3: Comparison between NSO, SGD, Label Smoothing (LS), SAM, Adaptive SAM, Random-SAM, and
Bayesian SAM, on six image classification data sets, by fine-tuning a pre-trained ResNet-34 neural network
using each method. In this table, we report the test accuracy, the trace of the Hessian (for model weight
found in the last epoch of each training algorithm), and also the largest eigenvalue of the Hessian. For the
latter two measures, lower values indicate wider loss surfaces. In all test cases, we report the averaged result
over five random seeds, and the standard deviation across these five runs. The results indicate that NSO
outperforms the baselines in terms of the three metrics.

CIFAR-10 CIFAR-100 Aircrafts Caltech-256 Indoor Retina

Basic
Stats

Train 45,000 45,000 3,334 7,680 4,824 1,396
Val. 5,000 5,000 3,333 5,120 536 248
Test 10,000 10,000 3,333 5,120 1,340 250
Classes 10 100 100 256 67 5

Test
Acc.
(↑)

SGD 95.5% ± 0.1 82.3% ± 0.1 59.8% ± 0.7 75.5% ± 0.1 76.0% ± 0.4 61.7% ± 0.8
LS 96.7% ± 0.1 83.8% ± 0.1 58.5% ± 0.2 76.0% ± 0.2 75.9% ± 0.3 63.6% ± 0.7
SAM 96.6% ± 0.4 83.5% ± 0.1 61.5% ± 0.8 76.3% ± 0.1 76.6% ± 0.5 64.4% ± 0.6
ASAM 96.7% ± 0.1 83.8% ± 0.1 62.0% ± 0.6 76.7% ± 0.2 76.7% ± 0.3 64.8% ± 0.3
RSAM 96.4% ± 0.1 83.7% ± 0.2 60.5% ± 0.5 75.8% ± 0.2 76.1% ± 0.7 65.4% ± 0.3
BSAM 96.4% ± 0.0 83.5% ± 0.2 60.5% ± 0.5 76.3% ± 0.3 75.7% ± 0.7 64.9% ± 0.0
NSO 97.1% ± 0.2 84.3% ± 0.2 62.3% ± 0.3 77.4% ± 0.3 77.4% ± 0.5 66.6% ± 0.7

Trace
×103 (↓)

SGD 4.7 ± 0.0 14.4 ± 0.3 6.2 ± 0.0 4.1 ± 0.0 4.1 ± 0.0 30.4 ± 0.2
LS 2.9 ± 0.0 11.3 ± 0.4 6.3 ± 0.0 3.8 ± 0.0 4.2 ± 0.0 19.2 ± 0.1
SAM 2.8 ± 0.0 10.2 ± 0.4 5.0 ± 0.0 3.8 ± 0.0 3.8 ± 0.0 16.4 ± 0.2
ASAM 2.8 ± 0.0 10.5 ± 0.3 5.0 ± 0.0 3.8 ± 0.0 3.1 ± 0.0 14.7 ± 0.1
RSAM 2.7 ± 0.0 10.3 ± 0.5 5.5 ± 0.2 3.5 ± 0.0 4.1 ± 0.0 19.9 ± 0.5
BSAM 3.0 ± 0.1 10.3 ± 0.5 5.6 ± 0.1 3.9 ± 0.0 3.5 ± 0.0 18.2 ± 0.3
NSO 2.2 ± 0.0 5.9 ± 0.0 4.2 ± 0.0 3.3 ± 0.0 3.0 ± 0.0 11.6 ± 0.0

λ1

×103 (↓)

SGD 1.5 ± 0.0 4.9 ± 0.1 1.2 ± 0.0 1.1 ± 0.0 1.2 ± 0.1 9.0 ± 0.1
LS 1.4 ± 0.0 3.5 ± 0.1 1.3 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 4.9 ± 0.0
SAM 1.4 ± 0.0 2.8 ± 0.1 0.9 ± 0.1 1.0 ± 0.0 1.0 ± 0.1 4.2 ± 0.0
ASAM 1.4 ± 0.1 2.8 ± 0.1 0.6 ± 0.1 0.8 ± 0.0 0.7 ± 0.1 4.2 ± 0.0
RSAM 1.4 ± 0.1 3.0 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 1.0 ± 0.0 5.0 ± 0.0
BSAM 1.4 ± 0.0 3.0 ± 0.1 1.0 ± 0.1 0.9 ± 0.0 1.0 ± 0.1 4.3 ± 0.2
NSO 1.1 ± 0.1 2.2 ± 0.1 0.5 ± 0.1 0.6 ± 0.0 0.7 ± 0.1 3.9 ± 0.0

using negative perturbations. We find that using negative perturbations achieves a 1.8% improvement in
test accuracy on average over the one without negative perturbations.

Varying the number of noise injections per iteration: Furthermore, increasing the number of perturbations k
reduces the variance of the estimated ∇F (W). Thus, we consider increasing k in NSO and compare that with
WP SGD with comparable computation. We find that using k = 2 perturbations improves the test accuracy
by 1.2% on average compared to k = 1. However, increasing k over 3 brings no obvious improvement (but
adds more compute cost).

3.3 Compatibility with Existing Regularization Methods

Table 3 also shows the regularization effect of each training method on the Hessian. We compute the
trace and the λ1 of the loss Hessian matrix using power iteration implemented by Hessian vector product
operations in PyTorch. Notably, in the middle and lower tables, where lower sharpness means better, NSO
can significantly reduce them compared to the baselines, averaging 17.7% (on trace) and 12.8% (on λ1).

The regularization on the Hessian can serve as a complement to existing regularization methods, including
weight decay, distance-based regularization, and data augmentation. We combine NSO with these methods
in the same experiment setup to validate this. For distance-based regularization, we penalize the ℓ2 distance

10

Under review as submission to TMLR

from the fine-tuned model to the pre-trained initialization. For data augmentation, we use a popular scheme
that sequentially applies random horizontal flipping and random cropping to each training image.

The results are shown in Figure 4. We confirm that combining our algorithm with each regularization method
further reduces the trace of the loss Hessian matrix by 13.6% on average. Quite strikingly, this also leads to
16.3% lower test loss of the fine-tuned neural network on average, suggesting that our method can be used
on top of these already existing regularization methods.

0 10 20 30
t

0.8

1.2

1.6

T
es

t
L

os
s

w/o weight decay

w/ weight decay

0 10 20 30
t

0.8

1.2

1.6

T
es

t
L

os
s

w/o dist. reg.

w/ dist. reg.

0 10 20 30
t

0.8

1.2

1.6

T
es

t
L

os
s

w/o data aug.

w/ data aug.

0 10 20 30
t

3

5

7

T
ra

ce

×103

w/o weight decay

w/ weight decay

0 10 20 30
t

3

5

7

T
ra

ce

×103

w/o dist. reg.

w/ dist. reg.

0 10 20 30
t

3

5

7

T
ra

ce

×103

w/o data aug.

w/ data aug.

Figure 4: The Hessian regularization can be used in compatible with weight decay, ℓ2 distance-based regu-
larization, and data augmentation. We illustrate this for fine-tuning a pre-trained ResNet-34 neural network
on an image classification data set. Combining each regularization method with ours generally leads to lower
test losses and lowers the trace of the Hessian of the loss surface. Note that the shaded area indicates the
deviation across five independent runs, suggesting the statistical significance of these findings.

4 Convergence Analysis

We now study the convergence of Algorithm 1. Recall that our algorithm minimizes f(W) plus a regulariza-
tion term on the trace of Hessian. As is typical with regularization, the penalty is usually small relative to
the loss value. Thus, our goal is to find a stationary point of F (W) instead of f(W) because otherwise, we
would not have the desired Hessian regularization. We state the convergence to an ϵ-approximate stationary
point such that ∥∇F (W)∥ ≤ ϵ, for any small values of ϵ > 0. The analysis builds on standard assumptions
from the literature (Ghadimi & Lan, 2013; Duchi et al., 2015; Lan, 2020; Zhang, 2023).
Assumption 4.1. Given a random seed z, let gz : Rd → Rd be a continuous function that gives an unbiased
estimate of the gradient: Ez [gz(W)] = ∇f(W), for any W ∈ Rd. Additionally, the variance is bounded in
the sense that Ez

[
∥gz(W) − ∇f(W)∥2

]
≤ σ2.

Assumption 4.2. Let C, D be fixed, positive constants. Let W0 ∈ Rd denote the initialization. We require
that F (W0) − minW ∈Rd F (W) ≤ D2. Let ∇f(W) denote the gradient of f(W). For any W1 ∈ Rd and
W2 ∈ Rd, we have ∥∇f(W2) − ∇f(W1)∥ ≤ C ∥W2 − W1∥ . A corollary is that ∇F (W) is also C-Lipschitz.

We now state an upper bound on the norm of the gradient of the returned solution.
Theorem 4.3. Given Assumptions 4.1 and 4.2, let P be a distribution that is symmetric at zero. There
exists a fixed learning rate η < C−1 such that if we run Algorithm 1 with ηi = η for all i, arbitrary number
of perturbations k, for T steps, the algorithm returns Wt, where t is a random integer between 1, 2, . . . , T ,

11

Under review as submission to TMLR

such that in expectation over the randomness of Wt:

E
[
∥∇F (Wt)∥2

]
≤
√

2CD2(σ2 + C2H(P))
kT

+ 2CD2

T
, (6)

For a random sample U ∼ P, denote E[∥U∥2] as H(P).

Recall that each iteration involves two sources of randomness stemming from gz and {U
(j)
i }k

j=1, respectively.
Let us define

δi = 1
2k

k∑
j=1

(
∇f
(
Wi + U

(j)
i

)
+ ∇f

(
Wi − U

(j)
i

))
− ∇F (Wi),

ξi = 1
2k

k∑
j=1

(
G

(j)
i − ∇f

(
Wi + U

(j)
i

)
− ∇f

(
Wi − U

(j)
i

))
,

for i = 0, . . . , T − 1. One can see that both δi and ξi have mean zero. The former is by the symmetry of P.
The latter is because gz is unbiased under Assumption 4.1. The next result gives their variance.
Lemma 4.4. In the setting of Theorem 4.3, for any i = 1, . . . , T , we have

E
[
∥ξi∥2

]
≤ σ2

k
and E

[
∥δi∥2

]
≤ C2H(P)

k
. (7)

The last step is using smoothness to show that ∥∇F (Wt)∥ keeps reducing. For details, see Appendix B.1. As
a remark, existing sharpness-reducing methods such as SAM (Foret et al., 2021) seem to suffer from issues
of oscillation (Bartlett et al., 2023) around the local basin, leaving a convergence analysis challenging to
achieve. By contrast, our approach can be analyzed with standard techniques from stochastic optimization
(Ghadimi & Lan, 2013). This connection is not known before to our knowledge, and we believe is the key
strength of our approach compared with existing sharpness-reducing methods.

Next, we construct an example to match the rate of the above analysis, essentially showing that the gradient
norm bounds are tight (under the current assumptions). We use an example from the work of Drori &
Shamir (2020). The difference here, in particular, is that we have to deal with the perturbations that have
been added to the objective. For t = 0, 1, . . . , d − 1, let et ∈ Rd be the basis vector in dimension d, whose
t-th coordinate is 1, while the remaining coordinates are all zero. Let f : Rd → R be defined as

f(W) = 1
2G

⟨W, e0⟩2 +
T −1∑
i=0

hi(⟨W, ei+1⟩), (8)

where hi is a piece-wise quadratic function parameterized by αi, defined as follow:

hi(x) =



Cα2
i

4 |x| ≤ αi,

− C
(

|x|−αi

)2

2 + Cα2
i

4 αi ≤ |x| ≤ 3
2 αi,

C
(

|x|−2αi

)2

2
3
2 αi ≤ |x| ≤ 2αi,

0 2αi ≤ |x|.

One can verify that for each piece above, ∇hi is C-Lipschitz. As a result, provided that G ≤ C−1, ∇f is
C-Lipschitz, based on the definition of f in equation (8).

The stochastic function F requires setting the perturbation distribution P. We set P by truncating an
isotropic Gaussian N(0, σ2 Idd) so that the i-th coordinate is at most 2−1αi−1, for i = 1, . . . , T . Additionally,
we set the initialization W0 to satisfy ⟨W0, ei⟩ = 0 for any i ≥ 1 while ⟨W0, e0⟩ ̸= 0. Finally, we choose the
gradient oracle to satisfy that the i-th step’s gradient noise ξi = ⟨ξi, ei+1⟩ei+1, which means that ξi is along
the direction of the basis vector ei+1. In particular, this implies only coordinate i + 1 is updated in step i,
as long as ⟨ξi, ei+1⟩ ≤ 2−1αi.

12

Under review as submission to TMLR

Theorem 4.5. Let the learning rates η0, . . . , ηT −1 be at most C−1. Let D > 0 be a fixed value. When
they either satisfy

∑T −1
i=0 ηi ≲

√
kT , or ηi = η < C−1 for any epoch i, then for the above construction, the

following must hold

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32k · T
. (9)

We remark that the above construction requires T ≤ d. Notice that this is purely for technical reasons due
to the construction. It is an interesting question whether this condition can be removed or not. We briefly
illustrate the key ideas of the result. At step i, the gradient noise ξi plus the perturbation noise is less than
2−1αi + 2−1αi = αi at coordinate i + 1 (by triangle inequality). Thus, h′

i(⟨Wt, ei+1⟩) = 0, which holds for
all prior update steps. This implies

∇f(Wi) = G−1⟨Wi, e0⟩.

Recall from Assumption 4.2 that F (W0) ≤ D2. This condition imposes how large the αi’s can be. In
particular, in the proof we will set αi = 2ηiσ/

√
k. Then, based on the definition of f(W0),

hi(⟨W0, ei+1⟩) = Cα2
i

4 , since ⟨W0 + U, ei+1⟩ ≤ αi.

In Lemma B.2, we then argue that the learning rates in this case must satisfy
∑T −1

i=0 ηi ≤ O(
√

T).

When the learning rate is fixed and at least Ω(T −1/2), we construct a piece-wise quadratic function (similar
to equation (8)), now with a fixed α. This is described in Lemma B.3. In this case, the gradient noise grows
by 1 − C−1η up to T steps. We then carefully set α to lower bound the norm of the gradient. Combining
these two cases, we conclude the proof of Theorem 4.5. For details, see Appendix B.2. As is typical in
lower-bound constructions, our result holds for a specific instance that covers a specific range of learning
rates. It may be an interesting question to examine a broader range of instances for future work.

The proof can also be extended to adaptive learning rate schedules. Notice that the above construction
holds for arbitrary learning rates defined as a function of previous iterates. Then, we set the width of each
function ht, αt, proportional to ηt > 0, for any ηt that may depend on previous iterates, as long as they
satisfy the constraint that

∑T −1
i=0 ηi ≤ O(

√
T).

We can show a similar lower bound for the momentum update rule. Recall this is defined as

Mi+1 = µMi − ηiGi, and Wi+1 = Wi + Mi+1, (10)

for i = 0, 1, . . . , T − 1, where Gi is the specific gradient at step i. To handle this case, we will need a more
fine-grained control on the gradient, so we consider a quadratic function as f(W) = C

2 ∥W∥2
. We leave the

result and its proof to Appendix B.3.

5 Conclusion

This paper examines the injection of noise into the weights of a neural network. We begin by observing that
the natural approach of injecting noise into the weight before running SGD does not work well in practice.
Through extensive experiments for fine-tuning pretrained models, we show that a two-point noise injection
method can indeed regularize the Hessian effectively, improving upon SGD, perturbed SGD, and SAM.
Moreover, we show a generalization bound for model fine-tuning using PAC-Bayes analysis. Compared with
four sharpness-reducing methods, our proposed algorithm yields statistically significant improvements across
a wide range of data sets. Lastly, we provide a convergence analysis of the proposed algorithm.

We discuss several avenues for future work. Can the newly developed techniques be used for studying
transformer networks? Can we better understand the dynamics of the Hessian during training? More broadly,
there are many promising directions to explore, by approaching generalization through measuring geometric
properties of large models.

13

Under review as submission to TMLR

References
Pierre Alquier. User-friendly introduction to pac-bayes bounds. arXiv preprint arXiv:2110.11216, 2021. 6

Guozhong An. The effects of adding noise during backpropagation training on a generalization performance.
Neural computation, 8(3):643–674, 1996. 2, 3

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware minimization.
In ICML, 2022. 1

Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-aware mini-
mization leads to low-rank features. Advances in Neural Information Processing Systems, 36, 2024. 2

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth. Lower
bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165–214, 2023. 3

Francis Bach. Learning theory from first principles. Online version, 2021. 23

Peter L Bartlett, Philip M Long, and Olivier Bousquet. The dynamics of sharpness-aware minimization:
Bouncing across ravines and drifting towards wide minima. Journal of Machine Learning Research, 24
(316):1–36, 2023. 1, 3, 12

Devansh Bisla, Jing Wang, and Anna Choromanska. Low-pass filtering sgd for recovering flat optima in the
deep learning optimization landscape. In International Conference on Artificial Intelligence and Statistics,
pp. 8299–8339. PMLR, 2022. 3

Alexander Camuto, Matthew Willetts, Umut Simsekli, Stephen J Roberts, and Chris C Holmes. Explicit
regularisation in gaussian noise injections. Advances in Neural Information Processing Systems, 33:16603–
16614, 2020. 3

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary points
i. Mathematical Programming, 184(1-2):71–120, 2020. 2, 3

Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning. arXiv
preprint arXiv:0712.0248, 2007. 2, 6

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. ICLR, 2021. 3

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained min-
max optimization. In Symposium on Theory of Computing, 2021. 3

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep
nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017. 1

Yoel Drori and Ohad Shamir. The complexity of finding stationary points with stochastic gradient descent.
In ICML, 2020. 2, 12

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for zero-order
convex optimization: The power of two function evaluations. IEEE Transactions on Information Theory,
2015. 11

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. UAI, 2017. 2

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel Roy. On the role
of data in pac-bayes bounds. In International Conference on Artificial Intelligence and Statistics, pp.
604–612. PMLR, 2021. 2

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. ICLR, 2021. 1, 9, 12

14

Under review as submission to TMLR

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. 2, 11, 12, 23

Alex Graves. Practical variational inference for neural networks. Advances in neural information processing
systems, 24, 2011. 2, 3

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007. 4

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the description
length of the weights. In Proceedings of the sixth annual conference on Computational learning theory, pp.
5–13, 1993. 2, 3

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997. 1

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al.
Lora: Low-rank adaptation of large language models. In International Conference on Learning Represen-
tations, 2022. 3

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. UAI, 2018. 1

Haotian Ju, Dongyue Li, and Hongyang R Zhang. Robust fine-tuning of deep neural networks with hessian-
based generalization guarantees. ICML, 2022. 2

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2017. 1

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In ICML, 2021. 9

Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1. Springer,
2020. 2, 11

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized matrix
sensing and neural networks with quadratic activations. In Conference On Learning Theory, pp. 2–47.
PMLR, 2018. 6

Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Random sharpness-
aware minimization. Advances in Neural Information Processing Systems, 2022. 9

Philip M Long and Peter L Bartlett. Sharpness-aware minimization and the edge of stability. arXiv preprint
arXiv:2309.12488, 2023. 3

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151, 2013. 4

David McAllester. A pac-bayesian tutorial with a dropout bound. arXiv preprint arXiv:1307.2118, 2013. 2,
6, 17

David A McAllester. Some pac-bayesian theorems. Machine Learning, 1999. 3

Thomas Möllenhoff and Mohammad Emtiyaz Khan. Sam as an optimal relaxation of bayes. In International
Conference on Learning Representations, 2023. 9

Vaishnavh Nagarajan and J Zico Kolter. Deterministic pac-bayesian generalization bounds for deep networks
via generalizing noise-resilience. ICLR, 2020. 1

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Foundations
of Computational Mathematics, 17:527–566, 2017. 3

Antonio Orvieto, Anant Raj, Hans Kersting, and Francis Bach. Explicit regularization in overparametrized
models via noise injection. AISTATS, 2023. 2, 3, 4

15

Under review as submission to TMLR

Samiksha Pachade, Prasanna Porwal, Dhanshree Thulkar, Manesh Kokare, Girish Deshmukh, Vivek Sa-
hasrabuddhe, Luca Giancardo, Gwenolé Quellec, and Fabrice Mériaudeau. Retinal fundus multi-disease
image dataset (rfmid): A dataset for multi-disease detection research. Data, 6(2):14, 2021. 4

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010. 7, 21

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014. 5

John Shawe-Taylor and Robert C Williamson. A pac analysis of a bayesian estimator. In Proceedings of the
tenth annual conference on Computational learning theory, pp. 2–9, 1997. 3

Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In International conference on
computational learning theory, pp. 545–560. Springer, 2005. 5

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring scale invariant
definition of flat minima for neural networks using pac-bayesian analysis. In International Conference on
Machine Learning, pp. 9636–9647. PMLR, 2020. 2

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
University Press, 2019. 20, 21

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize sharpness?
ICLR, 2023. 1, 2

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model soups:
averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In
International conference on machine learning, pp. 23965–23998. PMLR, 2022a. 1, 3, 4

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig Schmidt.
Robust fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 7959–7971, 2022b. 3

Tong Zhang. Mathematical analysis of machine learning algorithms. Cambridge University Press, 2023. 2,
11

16

Under review as submission to TMLR

A Omitted Proofs from Section 2

Notations: We state a few standard notations first. Given two matrices X, Y having the same dimension,
let ⟨X, Y ⟩ = Tr[X⊤Y] denote the matrix inner product of X and Y . Let ∥X∥2 denote the spectral norm
(largest singular value) of X, and let ∥X∥F denote the Frobenius norm of X. We use the big-O notation
f(x) = O(g(x)) to indicate that there exists a fixed constant C independent of x such that f(x) ≤ C · g(x)
for large enough values of x.

A.1 Proof of Hessian-based PAC-Bayes Bound

We will use the following PAC-Bayes bound (for reference, see, e.g., Theorem 2, McAllester (2013)).
Theorem A.1. Suppose the loss function ℓ(fW (x), y) lies in a bounded range [0, C] given any x ∈ X with
label y. For any β ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1 − δ, the following holds:

LQ(W) ≤ 1
β

L̂Q(W) +
C
(
KL(Q||P) + log 1

δ

)
2β(1 − β)n . (11)

This result provides flexibility in setting β. Our results will set β to balance the perturbation error of Q and
the KL divergence between P and Q. We will need the KL divergence between the prior P and the posterior
Q in the PAC-Bayesian analysis. This is stated in the following result.
Proposition A.2. Suppose P = N(X, Σ) and Q = N(Y, Σ) are both Gaussian distributions with mean
vectors given by X ∈ Rp, Y ∈ Rp, and population covariance matrix Σ ∈ Rp×p. The KL divergence between
P and Q is equal to

KL(Q||P) = 1
2(X − Y)⊤Σ−1(X − Y).

Specifically, if Σ = σ2 Idp, then the above simplifies to

KL(Q||P) = ∥X − Y ∥2
2

2σ2 .

We will use Taylor’s expansion on the perturbed loss. This is stated precisely as follows.
Claim A.3. Let fW be twice-differentiable, parameterized by weight vector W ∈ Rp. Let U ∈ Rp be another
vector with dimension p. For any W and U , the following identity holds

ℓ(fW +U (x), y) = ℓ(fW (x), y) + U⊤∇ℓ(fW (x), y) + U⊤[∇2ℓ(fW (x), y)]U + R2(ℓ(fW (x), y)),

where R2(ℓ(fW (x), y))) is a second-order error term in Taylor’s expansion.

Proof. The proof follows by the fact that ℓ ◦ fW is twice-differentiable. From the mean value theorem, let
η ∈ Rp be a vector that has the same dimension as W and U . There must exist an η between W and U + W
such that the following equality holds:

R2(ℓ(fW (x), y)) = U⊤
(

∇2[ℓ(fη(x), y)] − ∇2[ℓ(fW (x), y)]
)

U.

This completes the proof of the claim.

Based on the above, we provide Taylor’s expansion of the gap between ℓQ and ℓ.
Lemma A.4. In the setting of Theorem 2.2, suppose each parameter is perturbed by an independent noise
drawn from N(0, σ2). Let ℓQ(fW (x), y) be the perturbed loss with noise perturbation injection vector on W .
There exist some fixed value C1 that do not grow with n and 1/δ such that∣∣∣∣ℓQ(fW (x), y) − ℓ(fW (x), y) − 1

2σ2 Tr
[
∇2[ℓ(fW (x), y)]

]∣∣∣∣ ≤ C1σ3.

17

Under review as submission to TMLR

Proof. We take the expectation over U for both sides of the equation in Claim A.3. The result becomes

E
U

[ℓ(fW +U (x), y)] = E
U

[
ℓ(fW (x), y) + U⊤∇ℓ(fW (x), y) + U⊤∇2[ℓ(fW (x), y)]U + R2(ℓ(fW (x), y))

]
.

Then, we use the perturbation distribution Q on EU [ℓ(fW +U (x), y)], and get

ℓQ(fW (x), y) = E
U

[ℓ(fW (x), y)] + E
U

[
U⊤∇ℓ(fW (x), y)

]
+ E

U

[
U⊤∇2[ℓ(fW (x), y)]U

]
+ E

U
[R2(ℓ(fW (x), y))] .

Since E[U] = 0, the first-order term will be zero in expectation. The second-order term becomes equal to

E
U

[
U⊤[∇2ℓ(fW (x), y)]U

]
= σ2 Tr

[
∇2[ℓ(fW (x), y)]

]
. (12)

The expectation of the error term R2(ℓ(fW (x), y)) be

E
U

[R2(ℓ(fW (x), y))] = E
U

[
U⊤(∇2[ℓ(fη(x), y)] − ∇2[ℓ(fW (x), y)]

)
U
]

≤ E
U

[
∥U∥2

2 ·
∥∥∇2[ℓ(fη(x), y)] − ∇2[ℓ(fW (x), y)]

∥∥
F

]
≲ E

U

[
∥U∥2

2 · C1∥U∥2

]
≲ C1σ3.

Thus, the proof is complete.

The last piece we will need is the uniform convergence of the Hessian operator. The result uses the fact that
the Hessian matrix is Lipschitz continuous.
Lemma A.5. In the setting of Theorem 2.2, there exist some fixed values C2, C3 that do not grow with
n and 1/δ, such that with probability at least 1 − δ for any δ > 0, over the randomness of the n training
examples, we have∥∥∥∥∥ 1

n

n∑
i=1

∇2[ℓ(fW (xi), yi)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤
C2
√

log(C3n/δ)√
n

. (13)

The proof will be deferred to Section A.1.2. With these results ready, we will now state the proof of the
Hessian-based generalization bound.

A.1.1 Proof of Theorem 2.2

Proof of Theorem 2.2. First, we separate the gap of L(W) and 1
β L̂(W) into three parts:

L(W) − 1
β

L̂(W) = L(W) − LQ(W) + LQ(W) − 1
β

L̂Q(W) + 1
β

L̂Q(W) − 1
β

L̂(W).

By Lemma A.4, we can bound the difference between L(W) and LQ(W) by the Hessian trace plus an error:

L(W) − 1
β

L̂(W) ≤ − E
(x,y)∼D

[
σ2

2 Tr
[
∇2[ℓ(fW (x), y)]

]]
+ C1σ3 +

(
LQ(W) − 1

β
L̂Q(W)

)
+ 1

β

(1
n

n∑
i=1

σ2

2 Tr
[
∇2[ℓ(fW (xi), yi)]

]
+ C1σ3

)
.

After re-arranging the terms, we can get the following:

L(W) − 1
β

L̂(W) ≤ − E
(x,y)∼D

[
σ2

2 Tr
[
∇2[ℓ(fW (x), y)]

]]
+ 1

nβ

n∑
i=1

σ2

2 Tr
[
∇2[ℓ(fW (xi), yi)]

]
︸ ︷︷ ︸

E1

+ 1 + β

β
C1σ3 + LQ(W) − 1

β
L̂Q(W)︸ ︷︷ ︸

E2

. (14)

18

Under review as submission to TMLR

We will examine E1 by separating it into two parts:

E1 = 1
β

(
1
n

n∑
i=1

σ2

2 Tr
[
∇2[ℓ(fŴ (xi), yi)]

]
− E

(x,y)∼D

[
σ2

2 Tr
[
∇2[ℓ(fW (x), y)]

]])
(15)

+ 1 − β

β

σ2

2 E
(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
. (16)

We can use the uniform convergence result of Lemma A.5 to bound equation (15), leading to:

σ2

2β

(
1
n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
− E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y))

]])

≤ σ2

2β
· √

p ·

∥∥∥∥∥ 1
n

n∑
i=1

Tr
[
∇2[ℓ(fW (xi), yi)]

]
− E

(x,y)∼D

[
Tr
[
∇2[ℓ(fW (x), y)]

]]∥∥∥∥∥
F

(by Cauchy-Schwarz)

≤
σ2√

p · C2
√

log(C3n/δ)
2β

√
n

. (17)

As for equation (16), we recall that

α := max
(x,y)∼D

Tr
[
∇2ℓ(fW (x), y)

]
.

Combined with equation (17), we have shown that

E1 ≤
σ2√

p · C2
√

log(C3n/δ)
2β

√
n

+ 1 − β

β

σ2

2 · α. (18)

As for E2, we will use the PAC-Bayes bound of Theorem A.1. In particular, we set the prior distribution P
as the distribution of U and we set the posterior distribution Q as the distribution of W + U . Thus,

E2 ≤
C
(
KL(Q||P) + log 1

δ

)
2β(1 − β)n ≤

C
(

∥W ∥2
2

2σ2 + log 1
δ

)
2β(1 − β)n ≤

C(r2

2σ2 + log δ−1)
2β(1 − β)n . (19)

The last step is because ∥W∥2 ≤ r by assumption of the hypothesis space. Combining equations (14), (18),
(19), we claim that with probability at least 1 − 2δ, the following must be true:

L(W) − 1
β

L̂(W) ≤
σ2√

p · C2
√

log(C3n/δ)
2β

√
n

+ 1 − β

β

σ2

2 α + 1 + β

β
C1σ3 +

C(r2

2σ2 + log 1
δ)

2β(1 − β)n . (20)

Thus, we will now choose σ and β ∈ (0, 1) to minimize the term above. In particular, we will set σ such
that:

σ2 = r

1 − β

√
C

αn
. (21)

By plugging in this setting to equation (20) and re-arranging terms, the gap between L(W) and L̂(W)/β
becomes:

L(W) − 1
β

L̂(W) ≤ 1
β

√
Cαr2

n
+ C2

√
2p log(C3n/δ)

2β
√

n
σ2 + 1 + β

β
C1σ3 + C

2β(1 − β)n log 1
δ

.

Let β be a fixed value close to 1 and independent of N and δ−1, and let ϵ = (1 − β)/β. We get

L(W) ≤ (1 + ϵ)L̂(W) + (1 + ϵ)
√

Cαr2

n
+ ξ, where

ξ = C2
√

2p log(C3n/δ)
2β

√
n

σ2 +
(

1 + 1
β

)
C1σ3 + C

2β(1 − β)n log 1
δ

.

Notice that ξ is of order O(n− 3
4 + n− 3

4 + log(δ−1)n−1) ≤ O(log(δ−1)n− 3
4). Therefore, we have finished the

proof of equation (2).

19

Under review as submission to TMLR

A.1.2 Proof of Lemma A.5

In this section, we provide the proof of Lemma A.5, which shows the uniform convergence of the loss Hessian.

Proof of Lemma A.5. Let C, ϵ > 0, and let S = {W ∈ Rp : ∥W∥2 ≤ C}. There exists an ϵ-cover of S

with respect to the ℓ2-norm at most max
((3C

ϵ

)p
, 1
)

elements; see, e.g., Example 5.8 (Wainwright, 2019).
Let T ⊆ S denote the set of this cover. Recall that the Hessian ∇2[ℓ(fW (x), y)] is C1-Lipschitz for all
(W + U) ∈ S, W ∈ S. Then we have∥∥∇2[ℓ(fW +U (x), y)] − ∇2[ℓ(fW (x), y)]

∥∥
F

≤ C1 ∥U∥2 .

For parameters δ, ϵ > 0, let N be the ϵ-cover of S with respect to the ℓ2-norm. Define the event

E =
{

∀W ∈ T,

∥∥∥∥∥ 1
n

n∑
i=1

∇2[ℓ(fW (xi), yi)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤ δ
}

.

By the matrix Bernstein inequality, we have

Pr[E] ≥ 1 − 4 · |N | · p · exp
(

− nδ2

2α2

)
.

Next, for any W ∈ S, we can pick some W + U ∈ T such that ∥U∥2 ≤ ϵ. We have∥∥∥∥ E
(x,y)∼D

[
∇2[ℓ(fW +U (x), y)]

]
− E

(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥
F

≤ C1 ∥U∥2 ≤ C1ϵ∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW +U (xj), yj)] − 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)]

∥∥∥∥∥∥
F

≤ C1 ∥U∥2 ≤ C1ϵ.

Therefore, for any W ∈ S, we obtain:∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤ 2C1ϵ + δ.

We will also set the value of δ and ϵ. First, set ϵ = δ/(2C1) so that conditional on E,∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤ 2δ.

The event E happens with a probability of at least:

1 − 4|T |p · exp
(

− nδ2

2α2

)
= 1 − 4p · exp

(
log |T | − nδ2

2α2

)
.

We have log |T | ≤ p log(3B/ϵ) = p log(6CC1/δ). If we set

δ =
√

4pα2 log(3τCC1n/α)
n

so that log(3τCC1n/α) ≥ 1 (because n ≥ eα
3C1

and τ ≥ 1), then we get

p log(6CC1/δ) − nδ2/(2α2) =p log
(

6CC1
√

n√
4pα2 log(3τCC1n/α)

)
− 2p log (3τCC1n/α)

=p log
(

3CC1
√

n

α
√

p log(3τCC1n/α)

)
− 2p log (3τCC1n/α)

≤p log (3τCC1n/α) − 2p log (3τCC1n/α) (τ ≥ 1, log(3τCC1n/α) ≥ 1)
= − p log (3τCC1n/α) ≤ −p log(eτ). (3CC1n/α ≥ e)

20

Under review as submission to TMLR

Therefore, with a probability greater than

1 − 4|N |p · exp(−nδ2/(2α2)) ≥ 1 − 4p(eτ)−p,

the following estimate holds:∥∥∥∥∥∥ 1
n

n∑
j=1

∇2[ℓ(fW (xj), yj)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤
√

16pα2 log(3τCC1n/α)
n

.

Denote δ′ = 4p(eτ)−p, C2 = 4α
√

p, and C3 = 12pCC1/(eα). With probability greater than 1 − δ′, the final
result is: ∥∥∥∥∥ 1

n

n∑
i=1

∇2[ℓ(fW (xi), yi)] − E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤ C2

√
log(C3n/δ′)

n
.

This completes the proof of Lemma A.5.

A.2 Proof of Proposition 2.3

Proof of Proposition 2.3. We can calculate the gradient as

∇L̂(W) = 1
n

n∑
i=1

(⟨Ai, WW ⊤⟩ − yi)AiW. (22)

For a particular entry Wj,k of W , for any 1 ≤ j, k ≤ d, the derivative of the above gradient with respect to
Wj,k is

1
n

n∑
i=1

(
[AiW]j,kAiW +

(
⟨Ai, WW ⊤⟩ − yi

)∂(AiW)
∂Wj,k

)
. (23)

When L̂(W) is zero, the second term of equation (23) above must be zero, because ⟨Ai, WW ⊤⟩ is equal to
yi, for any i = 1, . . . , n.

Now, we use the assumption that Ai is a random Gaussian matrix, in which every entry is drawn from a
normal distribution with mean zero and variance one. Notice that the expectation of ∥AiW∥2

F satisfies:

E
[
∥AiW∥2

F

]
= E

[
Tr
[
W ⊤A⊤

i AiW
]]

= Tr
[
W ⊤(d · Idd×d)W ⊤] = d · Tr

[
W ⊤W

]
= d ∥W∥2

F .

Thus, by concentration inequality for χ2 random variables (e.g., Wainwright (2019, equation (2.19))), the
following holds for any 0 < ϵ < 1,

Pr
[∣∣∣∣∣ 1n

n∑
i=1

∥AiW∥2
F − d ∥W∥2

F

∣∣∣∣∣ ≥ ϵd ∥W∥2
F

]
≤ 2 exp

(
−nϵ2

8

)
. (24)

This implies that ϵ must be smaller than O(n−1/2) with high probability. As a result, the average of ∥AiW∥2
F

must be d ∥W∥2
F plus some deviation error that scales with n−1/2 times the expectation.

By Theorem 3.2, Recht et al. (2010), the minimum Frobenius norm (∥W∥2
F

) solution that satisfies L̂(W) = 0
(for Gaussian random matrices) is precisely U⋆. Thus, we conclude that equation (5) holds.

21

Under review as submission to TMLR

B Omitted Proofs from Section 4

B.1 Proof of Theorem 4.3

First, let us show that ∇F is C-Lipschitz. To see this, we apply the Lipschitz condition of the gradient inside
the expectation of F (W). For any W1, W2 ∈ Rd, by definition,

∥∇F (W1) − ∇F (W2)∥ =
∥∥∥∥∇ E

U∼P
[f(W1 + U)] − ∇ E

U∼P
[f(W2 + U)]

∥∥∥∥
=
∥∥∥∥ E

U∼P
[∇f(W1 + U) − ∇f(W2 + U)]

∥∥∥∥
≤ E

U∼P
[∥∇f(W1 + U) − ∇f(W2 + U)∥] ≤ C ∥W1 − W2∥ .

Next, we provide the proof for bounding the variance of δi and ξi for i = 0, 1, . . . , T − 1.

Proof. First, we can see that

E
U1

i
,...,Uk

i

[
∥δi∥2

]
= E

U1
i

,...,Uk
i


∥∥∥∥∥∥ 1

2k

k∑
j=1

(
∇f(Wi + U j

i) + ∇f(Wi − U j
i) − 2∇F (Wi)

)∥∥∥∥∥∥
2


= 1
k2

k∑
j=1

E
Uj

i

[∥∥∥∥1
2

(
∇f(Wi + U j

i) + ∇f(Wi − U j
i) − 2∇F (Wi)

)∥∥∥∥2
]

(25)

= 1
k

E
U1

i

[∥∥∥∥1
2

(
∇f(Wi + U1

i) + ∇f(Wi − U1
i)
)

− ∇F (Wi)
∥∥∥∥2
]

(26)

where in the second line we use that U j1
i and U j2

i are independent when j1 ̸= j2, in the last line we use fact
that U1

i , . . . , Uk
i are identically distributed. In the second step, we use the fact that for two independent

random variables U, V , and any continuous functions h(U), g(V), h(U) and g(V) are still independent (recall
that f is continuous since it is twice-differentiable). We include a short proof of this fact for completeness.
If U and V are independent, we have Pr[U ∈ A, V ∈ B] = Pr[U ∈ A] · Pr[V ∈ B], for any A, B ∈ Borel(R).
Thus, if h and g are continuous functions, we obtain

Pr[h(U) ∈ A, g(V) ∈ B] = Pr[U ∈ h−1(A), V ∈ g−1(B)]
= Pr[U ∈ h−1(A)] · Pr[V ∈ g−1(B)] = Pr[h(U) ∈ A] · Pr[g(V) ∈ B].

Thus, we have shown that

E
[
∥δi∥2

]
= 1

k
E

U∼P

[∥∥∥∥1
2

(
∇f(Wi + U) + f(Wi − U)

)
− ∇F (Wi)

∥∥∥∥2
]

. (27)

Next, we deal with the variance of the two-point stochastic gradient. We will show that

E
U

[∥∥∥∥1
2

(
∇f(W + U) + ∇f(W − U)

)
− ∇F (W)

∥∥∥∥2
]

≤ C2H(P). (28)

22

Under review as submission to TMLR

We mainly use the Lipschitz continuity of the gradient of F . The left-hand side of equation (28) is equal to

E
U

[∥∥∥∥1
2

(
∇f(W + U) − ∇F (W)

)
+ 1

2

(
∇f(W − U) − ∇F (W)

)∥∥∥∥2
]

≤E
U

[
1
2 ∥∇f(W + U) − ∇F (W)∥2 + 1

2 ∥∇f(W − U) − ∇F (W)∥2
]

(by Cauchy-Schwartz)

=1
2 E

U

[
∥∇f(W + U) − ∇F (W)∥2

]
(by symmetry of P since it has mean zero)

=1
2 E

U

[∥∥∥∥ E
U ′∼P

[∇f(W + U) − ∇f(W + U ′)]
∥∥∥∥2
]

≤1
2 E

U

[
E

U ′∼P

[
∥∇f(W + U) − ∇f(W + U ′)∥2

]]
≤1

2 E
U,U ′

[
C2 ∥U − U ′∥2

]
= 1

2C2 E
U,U ′

[
∥U∥2 + ∥U ′∥2

]
= C2H(P) (by equation (30))

As for the variance of ξi, we note that U
(1)
i , . . . , U

(j)
i are all independent from each other. Therefore,

E{
U

(j)
i

,z
(j)
i

}k

j=1

[
∥ξi∥2

]
= 1

4k
E

U,z

[
∥gz(W + U) − ∇f(W + U) + gz(W − U) − f(W − U)∥2

]
≤ 1

2k
E

U,z

[
∥gz(W + U) − ∇f(W + U)∥2 + ∥gz(W − U) − ∇f(W − U)∥2

]
≤σ2

k
.

The first step uses the fact that both gz(·) and f(·) are continuous functions The second step above uses
Cauchy-Schwartz inequality. The last step uses the variance bound of gz(·), Thus, the proof is finished.

Next, we show the convergence of the gradient, which is based on the classical work of Ghadimi & Lan
(2013).
Lemma B.1. In the setting of Theorem 4.3, for any η0, · · · , ηT −1 less than C−1 and a random variable
according to a distribution Pr[t = j] = ηj∑T −1

i=0
ηi

, for any j = 0, . . . , T − 1, the following holds:

E
[
∥∇F (Wt)∥2

]
≤ 2C∑T −1

i=0 ηi

D2 +
C
∑T −1

i=0 η2
i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

])
∑T −1

i=0 ηi

. (29)

Proof. The smoothness condition in Assumption 4.2 implies the following domination inequality:

|F (W2) − F (W1) − ⟨∇F (W1), W2 − W1⟩| ≤ C

2 ∥W2 − W1∥2
. (30)

See, e.g., Bach (2021, Chapter 5). Here, we use the fact that ∇F (W) is L-Lipschitz continuous. Based on
the above smoothness inequality, we have

F (Wi+1)

≤F (Wi) + ⟨∇F (Wi), Wi+1 − Wi⟩ + C

2 η2
i

∥∥∥∥1
2

(
∇f(Wi + Ui) + ∇f(Wi − Ui)

)
+ ξi

∥∥∥∥2

=F (Wi) − ηi⟨∇F (Wi), δi + ξi + ∇F (Wi)⟩ + Cη2
i

2 ∥δi + ξi + ∇F (Wi)∥2

=F (Wi) −
(

ηi − Cη2
i

2

)
∥∇F (Wi)∥2 −

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + Cη2

i

2 ∥δi + ξi∥2
.

23

Under review as submission to TMLR

Summing up the above inequalities for i = 0, 1, . . . , T − 1, we obtain
T −1∑
i=0

F (Wi+1) ≤
T −1∑
i=0

F (Wi) −
T −1∑
i=0

(
ηi − Cη2

i

2

)
∥∇F (Wi)∥2

−
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ +

T −1∑
i=0

Cη2
i

2 ∥δi + ξi∥2
,

which implies that
T −1∑
i=0

(
ηi − Cη2

i

2

)
∥∇F (Wi)∥2 (31)

≤F (W0) − F (WT) −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

≤D2 −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

. (32)

where in the last step, we use the fact that

F (W0) − F (WT) ≤ F (W0) − min
W ∈Rd

F (W) ≤ D2.

For any t = 0, 1, . . . , T − 1, notice that as long as 0 < ηt ≤ 1
C , then

ηt ≤ 2ηt − Cη2
t .

Hence, we have

1
2

T −1∑
t=0

ηt ∥∇F (Wt)∥2 ≤
T −1∑
t=0

(
ηt − Cη2

t

2

)
∥∇F (Wt)∥2

,

which implies that

1
2

T −1∑
i=0

ηi ∥∇F (Wi)∥2 ≤ D2 −
T −1∑
i=0

(
ηi − Cη2

i

)
⟨∇F (Wi), δi + ξi⟩ + C

2

T −1∑
i=0

η2
i ∥δi + ξi∥2

. (33)

Additionally, since Ut is drawn from a distribution with mean zero. Hence, by symmetry, we get that

E
Ut

[δt] = 1
2 E

Ut

[∇f(Wt − Ut) − ∇f(Wt + Ut)] = 0. (34)

Thus, if we take the expectation over U0, U1, . . . , UT −1, ξ0, ξ1, . . . , ξT −1, then

E [⟨∇F (Wi), δi + ξi⟩] = 0.

Recall that t is a random variable whose probability mass is specified in Lemma B.1. We can write equation
(33) equivalently as (below, we take expectation over all the random variables along the update since Wt is
a function of the previous gradient updates, for each t = 0, 1, . . . , T − 1, recalling that Pr[t = i] = ηi∑T −1

j=0
ηj

)

E
t; U0,...,UT −1,ξ0,ξ1,...,ξT −1

[
∥∇F (Wt)∥2

]
=

∑T −1
i=0 ηi E

[
∥∇F (Wi)∥2

]
∑T −1

i=0 ηi

≤
2D2 + C

∑T −1
i=0 η2

i E
[
∥δi + ξi∥2

]
∑T −1

i=0 ηi

=
2D2 + C

∑T −1
i=0 η2

i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

])
∑T −1

i=0 ηi

.

24

Under review as submission to TMLR

where we use the fact that δi and ξi are independent for any i. Hence, we have finished the proof of equation
(29).

Based on the above result, we now finish the proof of the upper bound in Proposition 4.3.

Proof. Let the step sizes be equal to a fixed η for all epochs. Thus, Eq. (29) becomes

E
[
∥∇F (Wt)∥2

]
≤ 2

Tη
D2 + Cη

T

T −1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

])
. (35)

By Lemma 4.4,
T −1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

])
≤ T · σ2 + C2H(P)

k
. (36)

For simplicity, let us denote ∆ = σ2+C2H(P)
k . The proof is divided into two cases.

Case 1: ∆ is large. More precisely, suppose that ∆ ≥ 2CD2/T . Then, minimizing over η above leads us
to the following upper bound on the right-hand side of equation (35):√

2CD2∆
T

, (37)

which is obtained by setting

η =
√

2D2

C∆T
.

One can verify that this step size is less than 1
C since ∆ is at least 2CD2. Thus, we conclude that equation

(35) must be less than √
2CD2∆

T
=
√

2CD2(σ2 + C2H(P)))
kT

. (38)

Case 2: ∆ is small. In this case, suppose ∆ < 2CD2/T . Then, the right-hand side of equation (35) must
be less than

2D2

Tη
+ 2C2D2η

T
≤ 2CD2

T
. (39)

Thus, combining equations (38) and (39), we have completed the proof of equation (6).

B.2 Proof of Theorem 4.5

Recall our construction from Section 4 as follows. Let et be the basis vector for the t-th dimension, for
t = 0, 1, . . . , T − 1. Define f(W) as

f(W) = 1
2G

⟨W, e0⟩2 +
T −1∑
i=0

hi(⟨W, ei+1⟩),

where hi a quadratic function parameterized by αi, defined as follow:

hi(x) =


Cα2

i

4 |x| ≤ αi

− C(|x|−αi)2

2 + Cα2
i

4 αi ≤ |x| ≤ 3
2 αi

C(|x|−2αi)2

2
3
2 αi ≤ |x| ≤ 2αi

0 2αi ≤ |x|.

25

Under review as submission to TMLR

For technical reasons, we define a truncated perturbation distribution P as follows. Given a sample U from
a d-dimensional isotropic Gaussian N(0, Idd), we truncate the i-th coordinate of U so that Ũi = min(Ui, ai),
for some fixed ai > 0 that we will specify below, for all i = 0, 1, . . . , d − 1. We let P denote the distribution
of Ũ .

The proof of Theorem 4.5 is divided into two cases. In the first, we examine the case when the averaged
learning rate is O(T −1/2).

Lemma B.2. In the setting of Theorem 4.5, suppose the learning rates satisfy that
∑T −1

i=0 ηi ≤
√

D2kT
2σ2C ,

consider the function f(W) constructed in equation (8), we have

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32kT
.

Proof. We start by defining a gradient oracle by choosing the noise vectors {ξt}T −1
t=0 to be independent random

variables such that

ξt = ⟨ξt, et+1⟩et+1 and |⟨ξt, et+1⟩| ≤ σ√
k

, (40)

where et+1 is a basis vector whose (t + 1)-th entry is one and otherwise is zero. In other words, only the
(t + 1)-th coordinate of ξt is nonzero, otherwise the rest of the vector remains zero. We use ξ̄t to denote the
averaged noise variable as

ξ̄t = 1
k

k∑
i=1

ξ
(i)
t ,

where ξ
(i)
t is defined following the condition specified in equation (40). Thus, we can also conclude that

|⟨ξ̄t, et+1⟩| ≤ σ√
k

.

We consider the objective function f(W) : Rd → R defined above (see also equation (8), Section 4), with

αi = 2ηiσ√
k

, for i = 0, 1, . . . , T. (41)

We will analyze the dynamics of Algorithm 1 with the objective function f(W) and the starting point
W0 = D

√
G · e0, where G = max

{
C−1, 2

∑T −1
i=0 ηi

}
. For the first iteration, we have

W1 = W0 − η0

(1
2

k∑
i=1

(
∇f(W0 + U

(i)
0) + ∇f(W0 − U

(i)
0)
)

+ ξ̄0

)
= (1 − η0G−1)W0 − η0ξ̄0,

where U is a random draw from the truncated distribution P with ⟨U, ei⟩ = min{Pi, ai} for ai = ηi−1σ√
k

.
Next, from the construction of h1, we get

1
2
(
∇f(W1 + U) + ∇f(W1 − U)

)
= G−1⟨W1, e0⟩e0 + 1

2

(
h′

0
(
η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩

)
e1 + h′

0
(
η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩

)
e1

)
.

Here, using the fact that α0 = 2η0σ√
k

from equation (41) above, and the truncation of U , which implies
|⟨U, e1⟩| ≤ η0σ√

k
, and ⟨ξ̄0, e1⟩ ≤ σ√

k
, we obtain

∣∣η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩
∣∣ ≤ 2η0σ√

k
= α0, and similarly

∣∣η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩
∣∣ ≤ 2η0σ√

k
= α0,

26

Under review as submission to TMLR

which implies that
h′

0(η0⟨ξ̄0, e1⟩ + ⟨U, e1⟩) = h′
0(η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩) = 0.

This is the first update. Then, in the next iteration,

W2 = W1 − η1

(
G−1⟨W1, e0⟩ + ξ̄1

)
= −(1 − η1G−1)(1 − η0G−1)W0 − η0ξ̄0 − η1ξ̄1.

Similarly, we use the fact that αi = 2ηiσ√
k

and the fact that |⟨U, ei+1⟩| ≤ ηiσ√
k

, which renders the gradient as
zero similar to the above reasoning. This holds for any i = 1, 2, . . . , T − 1.

At the t-th iteration, suppose we have that

Wt = W0

t−1∏
i=0

(
1 − ηiG

−1
)

−
t−1∑
i=0

ηiξ̄i.

Then by induction, at the (t + 1)-th iteration, we must have

Wt+1 = Wt − ηt

(
G−1⟨Wt, e0⟩ + ξ̄t

)
= W0

t∏
i=0

(
1 − ηiG

−1
)

−
t∑

i=0
ηiξ̄i. (42)

Next, from the definition of ht above, we have that

F (W0) − min
W ∈Rd

F (W) = F (W0) (the minimum can be attained at zero)

= 1
2G

(D
√

G)2 +
T −1∑
i=0

C

4

(2ηiσ√
k

)2
(since ⟨W0 + U, ei+1⟩ ≤ αi)

The above must be at most D2, which implies that we should set the learning rates to satisfy (after some
calculation)

1
T

(T −1∑
i=0

ηi

)2
≤

T −1∑
i=0

η2
i ≤ kD2

2Cσ2 . (43)

We note that for all z ∈ [0, 1], 1 − z
2 ≥ exp(log z

2). Thus, applying this to the right-hand side of equation
(42), we obtain that for any t,

t∏
i=0

(
1 − ηiG

−1
)

≥ 1
2 , (44)

where we recall that G = max{C−1, 2
∑T −1

i=0 ηi}. Essentially, our calculation so far shows that for all the hi

except h0, the algorithm has not moved at all from its initialization at W0 under the above gradient noise.
We thus conclude that

min
1≤i≤T

∥∇F (Wi)∥2 = min
1≤i≤T

(
G−1⟨W0, e0⟩

)2
(by the construction of F (·))

≥ 1
4G−2(D

√
G)2 (by equations (42) and (44))

= D2

4 min
{

C,
1

2
∑T −1

i=0 ηi

}
(recall the definition of G above)

≥ D2

4 min
{

C,

√
2Cσ2

2D
√

kT

}
(by equation (43))

≥ D

√
Cσ2

32kT
.

27

Under review as submission to TMLR

In the first step, we use the fact that ⟨ξ̄i, e0⟩ = 0, for all 0 = 1, 2, . . . , T − 1.

Thus, we have proved that equation (9) holds for Wi for any i = 1, 2, . . . , T . The proof of Lemma B.2 is
finished.

Next, let us consider the case of large, fixed learning rates.

Lemma B.3. In the setting of Theorem 4.5, suppose the learning rates satisfy that
∑T −1

i=0 ηi ≥
√

D2kT
2σ2C

and ηi = η for some fixed η ≤ C−1. Then, consider the function from equation (8), we have that
min1≤t≤T E

[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32kT .

Proof. We define the functions g, parametrized by a fixed, positive constants α = 1−ρT

1−ρ · 2cησ, as follows:

g(x) =

 − C
2 x2 + C

4 α2 |x| ≤ α
2 ,

C
2 (|x| − α)2 α

2 ≤ |x| ≤ α,
0 α ≤ |x|.

One can verify that g has C-Lipschitz gradient, but g is not twice-differentiable. We also consider a chain-like
function:

f(W) = g(⟨W, e0⟩) +
d−1∑
t=0

C

2 ⟨W, et+1⟩2. (45)

From the definition of f , f also has C-Lipschitz gradient. Similar to equation (40), we start by defining an
adversarial gradient oracle by choosing the noise vectors {ξt}T −1

t=0 to be independent random variables such
that

ξt = ⟨ξt, et+1⟩,E
[
⟨ξt, et+1⟩2] = σ2, and |⟨ξt, et+1⟩| ≤ cσ,

where c is a fixed constant. We use ξ̄t to denote the averaged noise variable as

ξ̄t =
k∑

i=1
ξ

(i)
t .

Suppose {ξ
(i)
t }k

i=1 are i.i.d. random variables for any t, we have

|⟨ξ̄t, et+1⟩| ≤ cσ and E
[∥∥ξ̄t

∥∥2] ≤ σ2

k
. (46)

Next, we analyze the dynamics of Algorithm 1 with the objective function f(W) and the starting point
W0 =

∑d
i=1

√
D2

Cd · ei. In this case, by setting ηi = η for all i = 0, 1, . . . , T − 1. Recall that η < C−1. Denote
by ρ = Cη, which is strictly less than one.

Since ht is an even function, its derivative h′
t is odd. For the first iteration, we have

W1 = W0 − η
(1

2
(
∇f(W0 + U) + ∇f(W0 − U)

)
+ ξ̄0

)
= (1 − Cη)W0 − ηξ̄0.

where U is a truncate distribution of P ∼ N(0, Idd) with ⟨U, e0⟩ = min{P0, a0} and a0 = cησ.

Using the fact that α = 1−ρT

1−ρ · 2cησ, |⟨U, e0⟩| ≤ cησ, and ⟨ξ̄0, e0⟩ ≤ cσ, we have

g′(η⟨ξ̄0, e0⟩ + ⟨U, e0⟩) + g′(η⟨ξ̄0, e0⟩ − ⟨U, e0⟩) = −2Cη⟨ξ̄0, e0⟩.

28

Under review as submission to TMLR

Then, in the next iteration,

W2 = W1 − η
(

C

d∑
i=1

⟨W1, ei⟩ − Cηξ̄0 + ξ̄1

)
= (1 − Cη)2W0 − (1 − Cη)ηξ̄0 − ηξ̄1.

Similarly, we use the fact that α = 1−ρT

1−ρ · 2cησ and the fact that |⟨U, e0⟩| ≤ cησ, which renders the gradient
as g′(x) = −Cx, for any i = 1, 2, . . . , T − 1.

At the t-th iteration, suppose that

Wt = (1 − Cη)tW0 −
t−1∑
i=0

(1 − Cη)t−1−iηξ̄i.

Then by induction, at the (t + 1)-th iteration, we have

Wt+1 = Wt − η
(

C

d∑
i=1

⟨Wt, ei⟩ − C

t−1∑
i=0

(1 − Cη)t−1−iηξ̄i + ξ̄t

)
= (1 − Cη)t+1W0 −

t∑
i=0

(1 − Cη)t−1−iηξ̄i. (47)

Next, from the definition of F above, we have that

F (W0) − min
W ∈Rd

F (W) = F (W0)

= dC

2

(√D2

Cd

)2
+ C

4

(2(1 − ρT)cησ

(1 − ρ)

)2
, (since ⟨W0 + U, e0⟩ ≤ α)

which must be at most D2. Thus, we must have (after some calculation)

c2 ≤ D2(1 − ρ)2

2σ2ρ2(1 − ρT)2 .

We conclude that

min
1≤i≤T

E
[
∥∇F (Wi)∥2

]
= min

1≤i≤T
E

 d∑
j=1

C2⟨Wi, ej⟩2 + C2⟨Wi, e0⟩2


= min

1≤i≤T

(
dC2(1 − ρ)2t

(√D2

Cd

)2
+ σ2

k
· ρ2

t∑
i=0

(1 − ρ)2(t−1−i)
)

≥ min
1≤i≤T

(
CD2(1 − ρ)2t + σ2

k

ρ

2 − ρ

(
1 − (1 − ρ)2t

))
≥ min

{
CD2,

σ2

k

ρ

2 − ρ

}
≥ σ2

k
C

√
kD2

2Tσ2C

1

2 − C
√

kD2

2T σ2C

≥ D

√
Cσ2

16k · T
. (after some calculation)

Thus, we have proved this lemma.

Taking both Lemma B.2 and B.3 together, we thus conclude the proof of Theorem 4.5.

29

Under review as submission to TMLR

B.3 Proof of momentum lower bound

In this section, we prove the following result.
Theorem B.4. There exists a quadratic function f such that for the iterates W1, . . . , WT generated by
equation (10), we must have: min1≤t≤T E

[
∥∇F (Wt)∥2

]
≥ O

(
D
√

Cσ2

k·T
)
.

We will focus on a perturbation distribution P equal to the isotropic Gaussian distribution for this result.
In this case, we know that F (W) = f(W) + d. For the quadratic function f(W) = C

2 ∥W∥2, its gradient is
clearly C-Lipschitz. We set the initialization W0 ∈ Rd such that

F (W0) − min
W ∈Rd

F (W) = D2.

This condition can be met when we set W0 as a vector whose Euclidean norm is equal to

D

√√√√2 max
{

C−1, 2
T −1∑
i=0

ηi

}
.

The case when µ = 0. We begin by considering the case when µ = 0. In this case, the update reduces to
SGD, and the iterate Wt+1 evolves as follows:

Wt+1 =
(

1 − Cηt

)
Wt − ηtξ̄t, (48)

where we denote ξ̄t as the averaged noise k−1∑k
j=1 ξ

(j)
t , and the noise perturbation U

(j)
t cancelled out

between the plus and minus perturbations. The case when µ > 0 builds on this simpler case, as we will
describe below.

The key observation is that the gradient noise sequence ξ̄1, ξ̄2, . . . , ξ̄T forms a martingale sequence:

• For any i = 1, 2, . . . , T , conditioned on the previous random variables ξ
(j)
i′ for any i′ < i and any

j = 1, 2, . . . , k, the expectation of ξ̄i is equal to zero.

• In addition, the variance of ξ̄i is equal to k−1σ2, since conditional on the previous random variables,
the ξ

(j)
i s are all independent from each other.

The martingale property allows us to characterize the SGD path of ∥Wt∥2, as shown in the following result.
Lemma B.5. In the setting of Theorem B.4, for any step sizes η0, . . . , ηT −1 less than C−1, and any t =
1, . . . , T , the expected gradient of Wt, E

[
∥∇F (Wt)∥2

]
, is equal to

2CD2
t−1∏
j=0

(
1 − Cηj

)2 + Cσ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

Proof. By iterating over equation (48), we can get

Wt = W0

t−1∏
j=0

(
1 − Cηj

)
−

t−1∑
i=0

ηiξ̄i

t−1∏
j=i+1

(
1 − Cηj

)
.

Meanwhile,

∇F (Wt) = CWt ⇒ ∥∇F (Wt)∥2 = C2 ∥Wt∥2
.

30

Under review as submission to TMLR

Thus, by squaring the norm of Wt and taking the expectation, we can get

E
[
∥∇F (Wt)∥2

]
= C2 ∥W0∥2

t−1∏
j=0

(
1 − Cηj

)2

+ C2
t−1∑
i=0

E
[∣∣∣∣∣∣ηiξ̄i

t−1∏
j=i+1

(
1 − Cηj

)∣∣∣∣∣∣2]. (49)

Above, we use martingale property a), which says the expectation of ξ̄i is equal to zero for all i. In addition,
based on property b), equation (49) is equal to

C2
t−1∑
i=0

η2
i

 t−1∏
j=i+1

(
1 − Cηj

)2
E
[∥∥ξ̄i

∥∥2]
=C2σ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

To see this, based on the martingale property of ξ̄ again, the cross terms between ξ̄i and ξ̄j for different i, j
are equal to zero in expectation:

E
[
⟨ξ̄i, ξ̄j⟩|ξ̄j

]
= 0, for all 1 ≤ j < i ≤ T.

Additionally, the second moment of ξ̄i satisfies:

E
[∥∥ξ̄i

∥∥2] = σ2

k
, for any i = 1, . . . , T.

Lastly, let W0 be a vector such that

∥W0∥ = D
√

2C−1 ⇒ F (W0) − min
W ∈Rd

F (W) ≤ D2.

Setting ∥W0∥ = D
√

2C−1 in equation (49) leads to

E
[
∥∇F (Wt)∥2

]
= 2CD2

t−1∏
j=0

(
1 − Cηj

)2

+ C2σ2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − Cηj

)2
.

Thus, we conclude the proof of this result.

We now present the proof for the case when
∑T −1

i=0 ηi ≤ O(
√

T). For this result, we will use the following
quadratic function:

f(W) = 1
2κ

∥W∥2
, where κ = max{C−1, 2

T −1∑
i=0

ηi}, (50)

Lemma B.6. Consider f given in equation (50) above. For any step sizes η0, . . . , ηT −1 less than C−1, the
following holds for the stochastic objective F :

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2 max{C−1, 2
∑T −1

i=0 ηi}
.

31

Under review as submission to TMLR

Proof. Clearly, the norm of the gradient of F (W) is equal to

∥∇F (W)∥ = 1
κ

∥W∥ . (51)

Following the update rule in NSO, similar to equation (48), Wt evolves as follows:

Wt+1 =
(

1 − ηt

κ

)
Wt − ηtξ̄t, (52)

where ξ̄t has variance equal to σ2/k, according to the proof of Lemma B.5. By iterating equation (52) from
the initialization, we can get a closed-form equation for W

(1)
t , for any t = 1, 2, . . . , T :

Wt = W0

t−1∏
j=0

(
1 − ηj

κ

)
−

t−1∑
k=0

ηkξk

t−1∏
j=k+1

(
1 − ηj

κ

)
. (53)

Following equation (51), we can show that

∥∇F (W)∥2 = κ−2 ∥Wt∥2
.

Thus, in expectation,

E
[
∥∇F (Wt)∥2

]
= κ−2 E

[
∥Wt∥2

]
= κ−2 ∥W0∥2

t−1∏
j=0

(
1 − κ−1ηj

)2
+ κ−2

t−1∑
i=0

E


ηiξ̄i

t−1∏
j=i+1

(
1 − κ−1ηj

)2


= κ−2 ∥W0∥2
t−1∏
j=0

(
1 − κ−1ηj

)2
+ κ−2

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − κ−1ηj

)2
E
[∥∥ξ̄i

∥∥2]

= 2D2κ−1
t−1∏
j=0

(
1 − κ−1ηj

)2
+ σ2κ−2

k

t−1∑
i=0

η2
i

t−1∏
j=i+1

(
1 − κ−1ηj

)2
, (54)

where we use the definition of initialization W0 and the variance of ξ̄i in the last step. In order to tackle
equation (54), we note that for all z ∈ [0, 1],

1 − z

2 ≥ exp
(

log 1
2 · z

)
. (55)

Hence, applying equation (55) to the right-hand side of equation (54), we obtain that for any i = 0, 1, . . . , t−1,
t−1∏
j=i

(
1 − ηj

max{C−1, 2
∑T −1

j=i ηi}

)

≥ exp
(

log 1
2 ·

t−1∑
j=i

ηj

max{(2C)−1,
∑T −1

i=0 ηi}

)
≥ 1

2 .

Thus, equation (54) must be at least

E
[
∥∇F (Wt)∥2

]
≥ 2D2κ−1

4 + σ2κ−2

k

t−1∑
i=0

η2
i

4 . (56)

The above result holds for any t = 1, 2, . . . , T . Therefore, we conclude that

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2 max{C−1, 2
∑T −1

i=0 ηi}
.

Thus, the proof of Lemma B.6 is finished.

32

Under review as submission to TMLR

Next we consider the other case when the learning rates are fixed.
Lemma B.7. There exists convex quadratic functions f such that for any gradient oracle satisfying Assump-
tion 4.1 and any distribution P with mean zero, if ηi = η < C−1 for any i = 1, . . . , T , or if

∑T −1
i=0 ηi ≲

√
T ,

then the following must hold:

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32k · T
. (57)

Proof. By Lemma B.6, there exists a function such that the left-hand side of equation (57) is at least

D2

2 max{C−1, 2
∑T −1

i=0 ηi}
≥ CD2

2 max{1, 2x−1
√

T}
= D2x

4
√

T
, (58)

which holds if
∑T −1

i=0 ηi ≤
√

Tx−1 for any fixed x > 0.

On the other hand, if
∑T −1

i=0 ηi ≥ x−1
√

T and ηi = η for a fixed η, then η > x−1/
√

T . By setting ηi = η for
all i in Lemma B.5, the left-hand side of equation (57) is equal to

min
1≤t≤T

(
2CD2(1 − Cη)2t + C2σ2

k

t−1∑
k=0

η2(1 − Cη)2(t−k−1)
)

.

Recall that η < C−1. Thus, ρ = Cη must be less than one. With some calculations, we can simplify the
above to

min
1≤t≤T

(
2CD2(1 − ρ)2t + σ2ρ2

k

1 − (1 − ρ)2t

1 − (1 − ρ)2

)
= min

1≤t≤T

(
σ2ρ

k(2 − ρ) + (1 − ρ)2t
(

2CD2 − σ2ρ

k(2 − ρ)

))
. (59)

If 2CD2 < σ2ρ
k(2−ρ) , the above is the smallest when t = 1. In this case, equation (59) is equal to

2CD2(1 − ρ)2 + σ2ρ2

k
≥ 1

1
2CD2 + k

σ2

= O(1).

If 2CD2 ≥ σ2ρ
k(2−ρ) , the above is the smallest when t = T . In this case, equation (59) is at least

σ2ρ

k(2 − ρ) ≥ σ2ρ

2k
≥ σ2Cx−1

2k
· 1√

T
. (60)

To conclude the proof, we set x so that the right-hand side of equations (58) and (60) match each other.
This leads to

x =
√

2σ2C

kD2 .

Thus, by combining the conclusions from both equations (58) and (60) with this value of x, we finally
conclude that if

∑T −1
i=0 ηi ≤

√
Tx−1, or for all i = 0, . . . , T −1, ηi = η < C−1, then in both cases, there exists

a function f such that equation (57) holds. This completes the proof of Lemma B.7.

The case when µ > 0. In this case, since the update of Wt also depends on the update of the momentum,
it becomes significantly more involved. One can verify that the update from step t to step t + 1 is based on

Xu =
[

1 − Cηt µ
Cηt µ

]
. (61)

Our analysis examines the eigenvalues of the matrix XuX⊤
u and the first entry in the corresponding eigenvec-

tors. Particularly, we show that the two entries are bounded away from zero. Then, we apply the Hölder’s
inequality to reduce the case of µ > 0 to the case of µ = 0, Lemma B.7 in particular.

33

Under review as submission to TMLR

Proof. First, consider a quadratic function

f(W) = 1
2C

∥W∥2
.

Clearly, f(W) is C-Lipschitz. Further, F (W) = f(W) + d, for P being the isotropic Gaussian. Let W0 be a
vector whose Euclidean norm equals D

√
2C. Thus,

F (W0) − min
W ∈Rd

F (W) = D2.

As for the dynamic of momentum SGD, recall that

Mt+1 = µMt − ηtGt and Wt+1 = Wt + Mt+1.

We consider the case where ηt = η for all steps t. In this case, we can write the above update into a matrix
notation as follows: [

Wt+1
Mt+1

]
=
[

1 − Cη µ
−Cη µ

] [
Wt

Mt

]
+ Cη

[
ξ̄t

ξ̄t

]
.

Let Xµ = [1 − Cη, µ; −Cη, µ] denote the 2 by 2 matrix (that depends on µ) above. Similar to Lemma B.5,
we can apply the above iterative update to obtain the formula for Wt+1 as:[

Wt+1
Mt+1

]
= Xt

u

[
W0
M0

]
+

t∑
i=0

CηXt−i
u

[
ξ̄i

ξ̄i

]
. (62)

By multiplying both sides by the vector e1 = [1, 0]⊤, and then taking the Euclidean norm of the vector
(notice that this now only evolves that Wt+1 vector on the left, and the Wt vector on the right), we now
obtain that, in expectation over the randomness of the ξ̄i’s, the following holds:

E
[
∥Wt+1∥2

]
= 2CD2(e⊤

1 Xt
ue1)2 + C2η2σ2

k

t∑
i=0

∥∥e⊤
1 Xi

ue
∥∥2

. (63)

Above, similar to Lemma B.5, we have set the length of W0 appropriately, so that its length is equal to
D

√
2C−1, which has led to the CD2 term above. Recall that M0 is equal to zero in the beginning. To get

the first term above, we follow this calculation:∥∥∥∥e⊤
1 Xt

µ

[
W0
M0

]∥∥∥∥2
= Tr

[
e⊤

1 Xt
µ

[
W0
M0

] [
W0
M0

]⊤

Xt
µ

⊤
e1

]

= Tr
[
e⊤

1 Xt
µ

[
CD2 0

0 0

]
Xt

µ
⊤

e1

]
= 2CD2(e⊤

1 Xt
µe1)2.

We use e = [1, 1]⊤ to denote the vector of ones. Now, we focus on the 2 by 2 matrix Xu (recall this is
the coefficient matrix on the right side of equation (62)). Let its singular values be denoted as λ1 and λ2.
In addition, to deal with equation (63), let α1 and α2 denote the first entry of Xu’s left singular vectors,
corresponding to a and b, respectively. Thus, we can write

(e⊤
1 Xi

µe)2 = α2
1λ2i

1 + α2
2λ2i

2 . (64)

Now, one can verify that λ2
1 and λ2

2 are the roots of the following quadratic equation over x:

x2 − ((1 − Cη)2 + (Cη)2 + 2µ2)x + µ2 = 0. (65)

34

Under review as submission to TMLR

This can be checked by first taking Xu times X⊤
u , then using the definition of the eigenvalues by calculating

the determinant of XuX⊤
u − x Id = 0. Thus, we have that λ1 and λ2 are equal to:

λ1, λ2 = (1 − Cη)2 + (Cη)2 + 2µ2 ±
√

((1 − Cη)2 + (Cη)2 + 2µ2)2 − 4µ2

2 . (66)

Now, α2
1 (and α2

2, respectively) satisfies that:

α2
1 = −Cη(1 − Cη) + µ2

(1 − Cη)2 + µ2 − λ1 + −Cη(1 − Cη) + µ2 . (67)

By enumerating the possible values of Cη between 0 and 1, one can verify that for a fixed value of µ, α2
1 and

α2
2 are both bounded below from zero. Therefore, we can claim that from equation (64),

α2
1λ2i

1 + α2
2λ2i

2 ≳ λ2i
1 + λ2i

2 . (68)

By the Hölder’s inequality,

(λ2i
1 + λ2i

2) 1
2i (1 + 1)1− 1

2i ≥ λ1 + λ2 = (1 − Cη)2 + (Cη)2 + 2µ2 (69)
≥ (1 − Cη)2 + (Cη)2, (70)

which implies that

λ2i
1 + λ2i

2 ≥ ((1 − Cη)2 + (Cη)2)i

2(2i−1) . (71)

Now, we consider two cases. If Cη < 1/2, then the above is greater than (1 − Cη)2i, which holds for any
i = 0, 1, . . . , T − 1. By way of reduction, we can follow the proof of Lemma B.7 to complete this proof. If
Cη > 1/2, then the above is greater than (Cη)2i. Again by following the proof steps in Lemma B.7, we can
show that

T
min
t=1

E
[
∥Wt∥2

]
≳ D

√
Cσ2

k · T
.

This completes the proof of Theorem B.4.

C Omitted Experiment Details

Comparison of the largest eigenvalue of the loss Hessian. In Figure 5, we report the comparison
of the largest eigenvalue, i.e., λ1, of the Hessian matrix, using the model at the last epoch of fine-tuning,
in the same setting as Figure 1. We observe that our algorithm also reduces the λ1 of the Hessian matrix
compared with SAM and SGD.

Indoor Caltech-256 Aircrafts CIFAR-10 CIFAR-1000

1

2

3

4

λ
1[
∇

2]

×103

NSO (k = 1) SAM SGD

Figure 5: Reporting the λ1 of the Hessian matrix in the last iteration of fine-tuning ResNet-34 on five data
sets, comparing NSO with SAM and SGD. The results are averaged over five random seeds.

35

Under review as submission to TMLR

Implementation of Hessian measurements in Table 2. Recall that we find that the trace of the
Hessian provides an accurate approximation to the gap between the perturbed loss and the trained model
loss across several neural networks. These include (1) a two-layer Multi-Layer Perceptron (MLP) trained on
the MNIST digit classification data set, (2) a twelve-layer BERT-Base model trained on the MRPC sentence
classification data set from the GLUE benchmark, and (3) a two-layer Graph Convolutional Network (GCN)
trained on the COLLAB node classification data set from TUDataset.

In more detail, we set both MLP and GCN with a hidden dimension of 128 for model architectures and
initialize them randomly. We initialize the BERT model from pretrained BERT-Base-Uncased. We train
each model on the provided training set for the training process until the training loss is close to zero.
Specifically, we train the MLP, BERT, and GCN models for 30, 10, and 100 epochs. We use the model of
the last epoch to measure the error in the approximation.

Implementation. We use the same training hyper-parameters for the experiments in Section 3. These
include a learning rate of 0.02, batch size of 32, and training epochs of 30. We reduce the learning rate by
0.1 every 10 epochs. We choose these hyper-parameters based on a grid search on the validation split. The
range of hyper-parameters in which we conduct a grid search is as follows:

• Learning rate: 0.05, 0.02, 0.01, 0.005, 0.002, and 0.001;

• Epochs: 10, 20, and 30;

• Batch size: 16, 32, and 64.

Note that we do not use momentum, weight decay, or other advanced techniques in this experiment.

Each baseline method has its own set of hyper-parameters. We also conduct a grid search for the hyper-
parameters specifically for each baseline.

• For label smoothing, we choose the weight of the loss calculated from the incorrect labels between
0.1, 0.2, and 0.3.

• For SAM and BSAM, we choose the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05.

• For ASAM, we choose the ℓ2 norm of the perturbation for the rescaled weights between 0.5, 1.0, and
2.0.

• For RSAM, we choose the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05 and the standard
deviation for sampling perturbation between 0.008, 0.01, and 0.012.

36

	Introduction
	Related Work

	Our Approach
	A Generalization Bound Using Trace of the Hessian
	An In-depth Look of the Hessian in Matrix Sensing
	Discussions

	Empirical Measurements of the Hessian

	Experimental Results
	Simulation
	Comparison with Sharpness Reducing Training Methods
	Compatibility with Existing Regularization Methods

	Convergence Analysis
	Conclusion
	Omitted Proofs from Section 2
	Proof of Hessian-based PAC-Bayes Bound
	Proof of Theorem 2.2
	Proof of Lemma A.5

	Proof of Proposition 2.3

	Omitted Proofs from Section 4
	Proof of Theorem 4.3
	Proof of Theorem 4.5
	Proof of momentum lower bound

	Omitted Experiment Details

